1
|
Samanta A, Yoo MJ, Koh J, Lufkin SC, Lufkin T, Kraus P. Proteomic profiling of small extracellular vesicles from bovine nucleus pulposus cells. PLoS One 2025; 20:e0324179. [PMID: 40440285 PMCID: PMC12121814 DOI: 10.1371/journal.pone.0324179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/21/2025] [Indexed: 06/02/2025] Open
Abstract
Small extracellular vesicles (small EV) are a conserved means of communication across the domains of life and lately gained more interest in mammalian non-cancerous work as non-cellular, biological therapeutic with encouraging results in recent studies of chronic degenerative diseases. The nucleus pulposus (NP) is the avascular and aneural center of an intervertebral disc (IVD), home to unique niche conditions and affected in IVD degeneration. We investigated autologous and mesenchymal stem cell (MSC) small EVs for their potential to contribute to cell and tissue homeostasis in the NP niche via mass spectrometric proteome and functional enrichment analysis using adult and fetal donors. We compared these findings to published small EV databases and MSC small EV data. We propose several mechanisms associated with NP small EVs: Membrane receptor trafficking to modify signal responses promoting niche homeostasis; Redox and energy homeostasis via metabolic enzymes delivery; Cell homeostasis via proteasome delivery and immunomodulation beyond an association with a serum protein corona. The proteome signature of small EVs generated by NP parent cells is similar to previously published small EV data, yet with a focus on supplementing anaerobic metabolism and redox balance while contributing to the maintenance of an aneural and avascular microniche.
Collapse
Affiliation(s)
- Ankita Samanta
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Jin Koh
- The Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
| | - Sina Charlotte Lufkin
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| |
Collapse
|
2
|
Wani TU, Kim HY, Lee GH, Lim YJ, Chae HJ, Kim JY, Yoon H. Mechanistic insights into epithelial-mesenchymal transition mediated cisplatin resistance in ovarian cancer. Sci Rep 2025; 15:3053. [PMID: 39856185 PMCID: PMC11760351 DOI: 10.1038/s41598-025-87388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is designated as one of the prime causes of chemoresistance in many cancers. In our previous study we established that cisplatin resistance in ovarian cancer (OC) is associated with EMT using sensitive OV90 cells and its resistant counterparts OV90CisR1 and OV90CisR2. In this study, we revealed through RNAseq analysis that ITGA1 can play essential part in EMT mediated cisplatin resistance in OC. We found large number of EMT related terms predominant in the top gene ontologies (GO). We also found Extracellular matrix (ECM) and actin cytoskeleton genes highly altered in the resistant cells. This was further confirmed by the protein-protein interaction (PPI) analysis where we identified that the core ECM components e.g., collagen, fibronectin, metalloproteases and integrins possessed most interactions. The pathway analysis revealed the Wnt signaling as the leading pathway. Since integrins have significant interaction with Wnt signaling, we focused our study on integrins among which, ITGA1, ITGA6, ITGA11 and ITGAV were primarily altered. We validated our results by western blotting and found that ITGA1 was highly expressed in resistant cells. Additionally, the high ABCA5 (efflux transporter) expression in resistant cells also supports the EMT proposition. The western blotting also revealed high β-catenin expression in resistant cells confirming the high Wnt signaling activity. Further, we induced xenograft tumors in nude mice. The histopathological analysis confirmed the aggressive nature of resistant tumors and showed the presence of necrotic core which could be implicated to EMT. Finally, the immunohistochemical staining confirmed the high protein expression in resistant tumor.
Collapse
Affiliation(s)
- Taha Umair Wani
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju-si, 52828, Gyeongnam, Republic of Korea.
| | - Hyun-Yi Kim
- NGeneS Inc, Ansan-si, 15495, Gyeonggi-do, Republic of Korea
| | - Geum-Hwa Lee
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju-si, 54907, Jeollabuk-do, Republic of Korea
| | - Young Je Lim
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju-si, 54907, Jeollabuk-do, Republic of Korea
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju-si, 54896, Jeollabuk-do, Republic of Korea
| | - Han-Jung Chae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju-si, 54896, Jeollabuk-do, Republic of Korea
| | - Ji-Ye Kim
- Department of Pathology, Ilsan Paik Hospital, Inje University, College of Medicine, Goyang-si, 10380, Gyeonggi-do, Republic of Korea.
| | - Hyonok Yoon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju-si, 52828, Gyeongnam, Republic of Korea.
- Department of Pharmacology and Physiology, Drexel University, College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
3
|
Johnson H, Banakis S, Chung M, Ghedin E, Voronin D. MicroRNAs secreted by the parasitic nematode Brugia malayi disrupt lymphatic endothelial cell integrity. PLoS Negl Trop Dis 2024; 18:e0012803. [PMID: 39739969 PMCID: PMC11706539 DOI: 10.1371/journal.pntd.0012803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/07/2025] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
Lymphatic filariasis (LF) is a neglected tropical disease affecting over 51 million people in 72 endemic countries. Causative agents of LF are mosquito-borne parasitic nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori. The adult parasites impact the integrity of lymphatic vessels and damage valves, leading to a remodeling of the lymphatic system and lymphatic dilation. Chronic infections can develop into severe clinical manifestations, primarily lymphedema, hydrocoele, and elephantiasis. Mechanistic studies on the underlying pathology due to the parasite are necessary to better manage human filariasis. Since parasite molecules, such as microRNAs (miRNAs), can be found in secreted extracellular vesicles (EVs) and are transported between parasite and host cells, we hypothesized that these could also play a role in the development of pathology in LF. In this study, we tested two B. malayi miRNAs previously detected in vitro in the culture media of microfilarial stages of worms. While one is Brugia-specific (bma-miR-5864) and the other nematode-specific (bma-miR-86), both miRNAs are secreted in high abundance. We first examined the in vitro response by transcriptomic profiling of human lymphatic endothelial cells to treatment with these miRNAs, which allowed us to identify genes involved in maintaining the integrity of the lymphatic endothelium. We then measured the effect of these miRNAs on the regulation of proteins necessary for cell integrity, demonstrating downregulation leading to a significant increase in the permeability of the endothelium monolayer. With this study we identify parasite miRNAs involved in undermining the integrity of endothelial cells, thus potentially contributing to the development of pathology. These findings could pave the way for a novel treatment strategy where the inhibition of parasite-secreted molecules could slow the progression of LF pathology. From a broader perspective, the miRNAs secreted by filarial parasites could potentially be used in the future for diagnosing and monitoring disease progression or treatment efficacy.
Collapse
Affiliation(s)
- Hailey Johnson
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Stephanie Banakis
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Matthew Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Denis Voronin
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Prince E. Designing Biomimetic Strain-Stiffening into Synthetic Hydrogels. Biomacromolecules 2024; 25:6283-6295. [PMID: 39356204 DOI: 10.1021/acs.biomac.4c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Biological tissues are mechanoresponsive; that is, their properties dynamically change in response to mechanical stimuli. For example, in response to shear or elongational strain, collagen, fibrin, actin, and other filamentous biomaterials undergo dramatic strain-stiffening. Above a critical strain, their stiffness increases over orders of magnitude. While it is widely accepted that the stiffness of biological tissues impacts cell phenotype and several diseases, the biological impact of strain-stiffening remains understudied. Synthetic hydrogels that mimic the mechanoresponsive nature of biological tissues could serve as an in vitro platform for these studies. This review highlights recent efforts to mimic the strain-stiffening behavior of biological materials in synthetic hydrogels. We discuss the design principles for imparting synthetic hydrogels with biomimetic strain-stiffening, critically compare designs of strain-stiffening hydrogels that have been reported thus far, and discuss their use as in vitro platforms to probe how strain-stiffening impacts cell behavior, diseases, and other biological processes.
Collapse
Affiliation(s)
- Elisabeth Prince
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. West, N2L 3G1 Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. West, N2L 3G1 Waterloo, ON, Canada
| |
Collapse
|
5
|
Li C, Song J, Wang Y, Shi Y, Ji J, Lin Q, Liu Y. Adhesion and proliferation of bone marrow stromal cells on acellular spinal cord scaffolds. Int J Neurosci 2024; 134:889-898. [PMID: 36458531 DOI: 10.1080/00207454.2022.2155155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVES This study aimed to produce an acellular spinal cord scaffold-bone marrow stromal cell (ASCS-BMSC) complex in which the growth of BMSCs transplanted into the spinal cord of rats could be simulated in vitro, facilitating the observation and evaluation of the growth of BMSCs on the ASCS for the first time. METHODS Freeze-thaw, chemical extraction and mechanical shaking approaches were used to remove the cellular components and prepare a rat ASCS containing only the extracellular matrix (ECM) structure from the rat spinal cord. BMSCs were embedded into ASCSs and freeze-dried agarose scaffolds (FASs), and cell migration and proliferation were observed via fluorescence microscopy and the MTT assay. RESULTS Compared with the normal rat spinal cord, the ASCS had no cell structure and retained ECM components such as type IV collagen, fibronectin and laminin, showing a three-dimensional network structure with good voids. The growth and proliferation of BMSCs on the ASCS was good, as shown by the MTT assay. Scanning electron microscopy showed that BMSCs covered 65% of the ASCS surface, and the mitochondria of BMSCs were developed and adhered to collagen fibres, as demonstrated by transmission electron microscopy. HE staining showed that BMSCs could grow inside the ASCS, and immunohistochemical staining showed that BMSCs still expressed CD44 and CD90 on the ASCS and had stem cell characteristics. CONCLUSIONS The results of the experiment indicate that the ASCS has the ability to improve cell adhesion and proliferation. Thus, the ASCS-BMSC combination may be used to treat spinal cord injury.
Collapse
Affiliation(s)
- Changyu Li
- Department of Neurosurgery, Hainan Cancer Hospital, Hainan, China
| | - Jianan Song
- Department of Neurobiology, Harbin Medical University, Heilongjiang, China
| | - Yanping Wang
- Department of Neurobiology, Harbin Medical University, Heilongjiang, China
| | - Yu Shi
- Department of Neurobiology, Harbin Medical University, Heilongjiang, China
| | - Jiayu Ji
- Department of Neurobiology, Harbin Medical University, Heilongjiang, China
| | - Qian Lin
- Department of Neurobiology, Harbin Medical University, Heilongjiang, China
| | - Yumei Liu
- Department of Neurobiology, Harbin Medical University, Heilongjiang, China
| |
Collapse
|
6
|
Jiang H, Chan YW. Chromatin bridges: stochastic breakage or regulated resolution? Trends Genet 2024; 40:69-82. [PMID: 37891096 DOI: 10.1016/j.tig.2023.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
Genetic material is organized in the form of chromosomes, which need to be segregated accurately into two daughter cells in each cell cycle. However, chromosome fusion or the presence of unresolved interchromosomal linkages lead to the formation of chromatin bridges, which can induce DNA lesions and genome instability. Persistent chromatin bridges are trapped in the cleavage furrow and are broken at or after abscission, the final step of cytokinesis. In this review, we focus on recent progress in understanding the mechanism of bridge breakage and resolution. We discuss the molecular machinery and enzymes that have been implicated in the breakage and processing of bridge DNA. In addition, we outline both the immediate outcomes and genomic consequences induced by bridge breakage.
Collapse
Affiliation(s)
- Huadong Jiang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| |
Collapse
|
7
|
Wu H, Ueno T, Nozaki K, Xu H, Nakano Y, Chen P, Wakabayashi N. Lithium-Modified TiO 2 Surface by Anodization for Enhanced Protein Adsorption and Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55232-55243. [PMID: 38014813 DOI: 10.1021/acsami.3c06749] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Promoting osseointegration is an essential step in improving implant success rates. Lithium has gradually gained popularity for promoting alkaline phosphatase activity and osteogenic gene expression in osteoblasts. The incorporation of lithium into a titanium surface has been reported to change its surface charge, thereby enhancing its biocompatibility. In this study, we applied anodization as a novel approach to immobilizing Li on a titanium surface and evaluated the changes in its surface characteristics. The objective of this study was to determine the effect of Li treatment of titanium on typical proteins, such as albumin, laminin, and fibronectin, in terms of their adsorption level as well as on the attachment of osteoblast cells. Titanium disks were acid-etched by 66 wt % H2SO4 at 120 °C for 90 s and set as the control group. The etched samples were placed in contact with an anode, while a platinum bar served as the counter electrode. Both electrodes were mounted on a custom electrochemical cell filled with 1 M LiCl. The samples were anodized at constant voltages of 1, 3, and 9 V. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) results showed no significant differences in the topography. However, the ζ potentials of the 3 V group were higher than those of the control group at a physiological pH of 7.4. Interestingly, the adsorption level of the extracellular matrix protein was mostly enhanced on the 3 V-anodized surface. The number of attached cells on the Li-anodized surfaces increased. The localization of vinculin at the tips of the stretching cytoplasmic projections was observed more frequently in the osteoblasts on the 3 V-anodized surface. Although the optimal concentration or voltage for Li application should be investigated further, this study suggests that anodization could be an effective method to immobilize lithium ions on a titanium surface and that modifying the surface charge characteristics enables a direct protein-to-material interaction with enhanced biological adhesion.
Collapse
Affiliation(s)
- Huaze Wu
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| | - Takeshi Ueno
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| | - Kosuke Nozaki
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| | - Huichuan Xu
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| | - Yuki Nakano
- Anton Paar Japan K.K, Riverside Sumida Central Tower Palace, 1-19-9 Tsutsumidori, Sumida City 131-0034, Tokyo, Japan
| | - Peng Chen
- Division of Interdisciplinary Co-Creation (ICC-Division), Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku 980-8575, Sendai, Japan
| | - Noriyuki Wakabayashi
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku Tokyo, 113-8549, Japan
| |
Collapse
|
8
|
Rezvanian P, Álvarez-López A, Tabraue-Rubio R, Daza R, Colchero L, Elices M, Guinea GV, González-Nieto D, Pérez-Rigueiro J. Modulation of Cell Response through the Covalent Binding of Fibronectin to Titanium Substrates. J Funct Biomater 2023; 14:342. [PMID: 37504837 PMCID: PMC10381834 DOI: 10.3390/jfb14070342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Titanium (Ti-6Al-4V) substrates were functionalized through the covalent binding of fibronectin, and the effect of the existence of this extracellular matrix protein on the surface of the material was assessed by employing mesenchymal stem cell (MSC) cultures. The functionalization process comprised the usage of the activation vapor silanization (AVS) technique to deposit a thin film with a high surface density of amine groups on the material, followed by the covalent binding of fibronectin to the amine groups using the N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) crosslinking chemistry. The biological effect of the fibronectin on murine MSCs was assessed in vitro. It was found that functionalized samples not only showed enhanced initial cell adhesion compared with bare titanium, but also a three-fold increase in the cell area, reaching values comparable to those found on the polystyrene controls. These results provide compelling evidence of the potential to modulate the response of the organism to an implant through the covalent binding of extracellular matrix proteins on the prosthesis.
Collapse
Affiliation(s)
- Parsa Rezvanian
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8159358686, Iran
| | - Aroa Álvarez-López
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Raquel Tabraue-Rubio
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Bioactive Surfaces S.L. C/Puerto de Navacerrada 18, Galapagar, 28260 Madrid, Spain
| | - Rafael Daza
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Luis Colchero
- Bioactive Surfaces S.L. C/Puerto de Navacerrada 18, Galapagar, 28260 Madrid, Spain
| | - Manuel Elices
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Gustavo V Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Bioactive Surfaces S.L. C/Puerto de Navacerrada 18, Galapagar, 28260 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| |
Collapse
|
9
|
Hu J, Liu S, Fan C. Applications of functionally-adapted hydrogels in tendon repair. Front Bioeng Biotechnol 2023; 11:1135090. [PMID: 36815891 PMCID: PMC9934866 DOI: 10.3389/fbioe.2023.1135090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Despite all the efforts made in tissue engineering for tendon repair, the management of tendon injuries still poses a challenge, as current treatments are unable to restore the function of tendons following injuries. Hydrogels, due to their exceptional biocompatibility and plasticity, have been extensively applied and regarded as promising candidate biomaterials in tissue regeneration. Varieties of approaches have designed functionally-adapted hydrogels and combined hydrogels with other factors (e.g., bioactive molecules or drugs) or materials for the enhancement of tendon repair. This review first summarized the current state of knowledge on the mechanisms underlying the process of tendon healing. Afterward, we discussed novel strategies in fabricating hydrogels to overcome the issues frequently encountered during the applications in tendon repair, including poor mechanical properties and undesirable degradation. In addition, we comprehensively summarized the rational design of hydrogels for promoting stem-cell-based tendon tissue engineering via altering biophysical and biochemical factors. Finally, the role of macrophages in tendon repair and how they respond to immunomodulatory hydrogels were highlighted.
Collapse
Affiliation(s)
- Jiacheng Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Shen Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
10
|
The Role of Membrane-Type 1 Matrix Metalloproteinase-Substrate Interactions in Pathogenesis. Int J Mol Sci 2023; 24:ijms24032183. [PMID: 36768503 PMCID: PMC9917210 DOI: 10.3390/ijms24032183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
A protease is an enzyme with a proteolytic activity that facilitates the digestion of its substrates. Membrane-type I matrix metalloproteinase (MT1-MMP), a member of the broader matrix metalloproteinases (MMP) family, is involved in the regulation of diverse cellular activities. MT1-MMP is a very well-known enzyme as an activator of pro-MMP-2 and two collagenases, MMP-8 and MMP-13, all of which are essential for cell migration. As an anchored membrane enzyme, MT1-MMP has the ability to interact with a diverse group of molecules, including proteins that are not part of the extracellular matrix (ECM). Therefore, MT1-MMP can regulate various cellular activities not only by changing the extra-cellular environment but also by regulating cell signaling. The presence of both intracellular and extra-cellular portions of MT1-MMP can allow it to interact with proteins on both sides of the cell membrane. Here, we reviewed the MT1-MMP substrates involved in disease pathogenesis.
Collapse
|
11
|
Strickland S, Jorns M, Heyd L, Pappas D. Novel synthesis of fibronectin derived photoluminescent carbon dots for bioimaging applications. RSC Adv 2022; 12:30487-30494. [PMID: 36337972 PMCID: PMC9597609 DOI: 10.1039/d2ra05137k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Fibronectin (FN) derived from human plasma has been used for the first time as the carbon precursor in the top-down, microwave-assisted hydrothermal synthesis of nitrogen doped carbon dots (CDs). FN is a large glycoprotein primarily known for its roles in cell adhesion and cell growth. Due to these properties FN can be over expressed in the extracellular matrix (ECM) of some cancers allowing FN to be used as an indicator for the detection of cancerous cells over non-cancerous cells. These FN derived CDs display violet photoluminescence with UV excitation and appear to possess similar functional groups on their surface to their carbon precursor (-COOH and -NH2). This is believed to be due to the self-passivation of the CDs' nitrogen-containing surface functional groups during the heating process. These CDs were then used to stain MCF-7 and MDA-231 breast cancer cells and were observed to interact primarily with the cell membrane rather than intercalating into the cell like the many other types of CDs. This led to the hypothesis that the CDs are selectively binding to the FN overexpressed within the cancer cells' ECM via amide linkages. This is in agreement with the EDX and FTIR spectra of the FN CDs which indicate the presence of -COOH and nitrogen containing surface groups like -NH3. The inherent selectivity of the CDs combined with their ability to photoluminesce enables their use as a fluorophore for bioimaging applications.
Collapse
Affiliation(s)
- Sara Strickland
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX USA
| | - Mychele Jorns
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX USA
| | - Lindsey Heyd
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX USA
| |
Collapse
|
12
|
Friedland F, Babu S, Springer R, Konrad J, Herfs Y, Gerlach S, Gehlen J, Krause HJ, De Laporte L, Merkel R, Noetzel E. ECM-transmitted shear stress induces apoptotic cell extrusion in early breast gland development. Front Cell Dev Biol 2022; 10:947430. [PMID: 36105352 PMCID: PMC9465044 DOI: 10.3389/fcell.2022.947430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial cells of human breast glands are exposed to various mechanical ECM stresses that regulate tissue development and homeostasis. Mechanoadaptation of breast gland tissue to ECM-transmitted shear stress remained poorly investigated due to the lack of valid experimental approaches. Therefore, we created a magnetic shear strain device that enabled, for the first time, to analyze the instant shear strain response of human breast gland cells. MCF10A-derived breast acini with basement membranes (BM) of defined maturation state and basoapical polarization were used to resemble breast gland morphogenesis in vitro. The novel biophysical tool was used to apply cyclic shear strain with defined amplitudes (≤15%, 0.2 Hz) over 22 h on living spheroids embedded in an ultrasoft matrix (<60 Pa). We demonstrated that breast spheroids gain resistance to shear strain, which increased with BM maturation and basoapical polarization. Most intriguingly, poorly developed spheroids were prone to cyclic strain-induced extrusion of apoptotic cells from the spheroid body. In contrast, matured spheroids were insensitive to this mechanoresponse—indicating changing mechanosensing or mechanotransduction mechanisms during breast tissue morphogenesis. Together, we introduced a versatile tool to study cyclic shear stress responses of 3D cell culture models. It can be used to strain, in principle, all kinds of cell clusters, even those that grow only in ultrasoft hydrogels. We believe that this approach opens new doors to gain new insights into dynamic shear strain-induced mechanobiological regulation circuits between cells and their ECM.
Collapse
Affiliation(s)
- F. Friedland
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - S. Babu
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), Polymeric Biomaterials, RWTH University Aachen, Aachen, Germany
| | - R. Springer
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - J. Konrad
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - Y. Herfs
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - S. Gerlach
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - J. Gehlen
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - H.-J. Krause
- Institute of Biological Information Processing 3 (IBI-3): Bioelectronics, Forschungszentrum Jülich, Jülich, Germany
| | - L. De Laporte
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), Polymeric Biomaterials, RWTH University Aachen, Aachen, Germany
- Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME), University Hospital RWTH Aachen, Center for Biohybrid Medical Systems (CMBS), Aachen, Germany
| | - R. Merkel
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - E. Noetzel
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
- *Correspondence: E. Noetzel,
| |
Collapse
|
13
|
He X, Li Y, Deng B, Lin A, Zhang G, Ma M, Wang Y, Yang Y, Kang X. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif 2022; 55:e13275. [PMID: 35754255 PMCID: PMC9436900 DOI: 10.1111/cpr.13275] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Objects Traumatic spinal cord injury (TSCI) causes neurological dysfunction below the injured segment of the spinal cord, which significantly impacts the quality of life in affected patients. The phosphoinositide 3kinase/serine‐threonine kinase (PI3K/AKT) signaling pathway offers a potential therapeutic target for the inhibition of secondary TSCI. This review summarizes updates concerning the role of the PI3K/AKT pathway in TSCI. Materials and Methods By searching articles related to the TSCI field and the PI3K/AKT signaling pathway, we summarized the mechanisms of secondary TSCI and the PI3K/AKT signaling pathway; we also discuss current and potential future treatment methods for TSCI based on the PI3K/AKT signaling pathway. Results Early apoptosis and autophagy after TSCI protect the body against injury; a prolonged inflammatory response leads to the accumulation of pro‐inflammatory factors and excessive apoptosis, as well as excessive autophagy in the surrounding normal nerve cells, thus aggravating TSCI in the subacute stage of secondary injury. Initial glial scar formation in the subacute phase is a protective mechanism for TSCI, which limits the spread of damage and inflammation. However, mature scar tissue in the chronic phase hinders axon regeneration and prevents the recovery of nerve function. Activation of PI3K/AKT signaling pathway can inhibit the inflammatory response and apoptosis in the subacute phase after secondary TSCI; inhibiting this pathway in the chronic phase can reduce the formation of glial scar. Conclusion The PI3K/AKT signaling pathway has an important role in the recovery of spinal cord function after secondary injury. Inducing the activation of PI3K/AKT signaling pathway in the subacute phase of secondary injury and inhibiting this pathway in the chronic phase may be one of the potential strategies for the treatment of TSCI.
Collapse
Affiliation(s)
- Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Ying Li
- Medical School of Yan'an University, Yan'an University, Yan'an, China
| | - Bo Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Aixin Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Miao Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Yong Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| |
Collapse
|
14
|
Correlating degradation of functionalized polycaprolactone fibers and fibronectin adsorption using atomic force microscopy. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2021.109788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Park BH, Jeong ES, Lee S, Jang JH. Bio-functionalization and in-vitro evaluation of titanium surface with recombinant fibronectin and elastin fragment in human mesenchymal stem cell. PLoS One 2021; 16:e0260760. [PMID: 34914752 PMCID: PMC8675760 DOI: 10.1371/journal.pone.0260760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
Titanium is a biomaterial that meets a number of important requirements, including excellent mechanical and chemical properties, but has low bioactivity. To improve cellular response onto titanium surfaces and hence its osseointegration, the titanium surface was bio-functionalized to mimic an extracellular matrix (ECM)-like microenvironment that positively influences the behavior of stem cells. In this respect, fibronectin and elastin are important components of the ECM that regulate stem cell differentiation by supporting the biological microenvironment. However, each native ECM is unsuitable due to its high production cost and immunogenicity. To overcome these problems, a recombinant chimeric fibronectin type III9-10 and elastin-like peptide fragments (FN9-10ELP) was developed herein and applied to the bio-functionalized of the titanium surface. An evaluation of the biological activity and cellular responses with respect to bone regeneration indicated a 4-week sustainability on the FN9-10ELP functionalized titanium surface without an initial burst effect. In particular, the adhesion and proliferation of human mesenchymal stem cells (hMSCs) was significantly increased on the FN9-10ELP coated titanium compared to that observed on the non-coated titanium. The FN9-10ELP coated titanium induced osteogenic differentiation such as the alkaline phosphatase (ALP) activity and mineralization activity. In addition, expressions of osteogenesis-related genes such as a collagen type I (Col I), Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), bone sialo protein (BSP), and PDZ-binding motif (TAZ) were further increased. Thus, in vitro the FN9-10ELP functionalization titanium not only sustained bioactivity but also induced osteogenic differentiation of hMSCs to improve bone regeneration.
Collapse
Affiliation(s)
- Bo-Hyun Park
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Eui-Seung Jeong
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Sujin Lee
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
- * E-mail:
| |
Collapse
|
16
|
Fibronectin adsorption on polystyrene sulfonate-grafted polyester using atomic force microscope. Biointerphases 2021; 16:051003. [PMID: 34634913 DOI: 10.1116/6.0001165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cell adhesion and growth over prostheses are strongly influenced by the adsorption and conformation of adhesive proteins from blood and extracellular matrix, such as fibronectin. This key behavior can be possibly exploited to develop a prosthetic ligament based on the surface bioactivation of biodegradable materials. In this work, surface functionalization was performed by grafting poly(sodium 4-styrene sulfonate) on polyethylene terephthalate and polycaprolactone using a thermal surface-initiated atom transfer radical polymerization grafting technique. The morphology and mechanical properties of the adsorbed fibronectin in the presence of albumin were studied by atomic force microscopy. The morphology of fibronectin on two kinds of polyester surfaces was similar. However, the study results showed a remarkable conformation change of fibronectin when adsorbed onto the nongrafted or grafted surface, leading to an increase in cell adhesion and organization in the second case. This research provided evidence of the relationship between the morphology change of fibronectin to the enhancement of the cell adhesion and spreading on the grafted surface of polyester.
Collapse
|
17
|
Pluta KD, Ciezkowska M, Wisniewska M, Wencel A, Pijanowska DG. Cell-based clinical and experimental methods for assisting the function of impaired livers – Present and future of liver support systems. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Ryan C, Pugliese E, Shologu N, Gaspar D, Rooney P, Islam MN, O'Riordan A, Biggs M, Griffin M, Zeugolis D. A combined physicochemical approach towards human tenocyte phenotype maintenance. Mater Today Bio 2021; 12:100130. [PMID: 34632361 PMCID: PMC8488312 DOI: 10.1016/j.mtbio.2021.100130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
During in vitro culture, bereft of their optimal tissue context, tenocytes lose their phenotype and function. Considering that tenocytes in their native tissue milieu are exposed simultaneously to manifold signals, combination approaches (e.g. growth factor supplementation and mechanical stimulation) are continuously gaining pace to control cell fate during in vitro expansion, albeit with limited success due to the literally infinite number of possible permutations. In this work, we assessed the potential of scalable and potent physicochemical approaches that control cell fate (substrate stiffness, anisotropic surface topography, collagen type I coating) and enhance extracellular matrix deposition (macromolecular crowding) in maintaining human tenocyte phenotype in culture. Cell morphology was primarily responsive to surface topography. The tissue culture plastic induced the largest nuclei area, the lowest aspect ratio, and the highest focal adhesion kinase. Collagen type I coating increased cell number and metabolic activity. Cell viability was not affected by any of the variables assessed. Macromolecular crowding intensely enhanced and accelerated native extracellular matrix deposition, albeit not in an aligned fashion, even on the grooved substrates. Gene analysis at day 14 revealed that the 130 kPa grooved substrate without collagen type I coating and under macromolecular crowding conditions positively regulated human tenocyte phenotype. Collectively, this work illustrates the beneficial effects of combined physicochemical approaches in controlling cell fate during in vitro expansion.
Collapse
Affiliation(s)
- C.N.M. Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - E. Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - N. Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D. Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - P. Rooney
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Md N. Islam
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - A. O'Riordan
- Tyndall National Institute, University College Cork (UCC), Cork, Ireland
| | - M.J. Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - M.D. Griffin
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D.I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
19
|
Mrugacz M, Bryl A, Falkowski M, Zorena K. Integrins: An Important Link between Angiogenesis, Inflammation and Eye Diseases. Cells 2021; 10:1703. [PMID: 34359873 PMCID: PMC8305893 DOI: 10.3390/cells10071703] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022] Open
Abstract
Integrins belong to a group of cell adhesion molecules (CAMs) which is a large group of membrane-bound proteins. They are responsible for cell attachment to the extracellular matrix (ECM) and signal transduction from the ECM to the cells. Integrins take part in many other biological activities, such as extravasation, cell-to-cell adhesion, migration, cytokine activation and release, and act as receptors for some viruses, including severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). They play a pivotal role in cell proliferation, migration, apoptosis, tissue repair and are involved in the processes that are crucial to infection, inflammation and angiogenesis. Integrins have an important part in normal development and tissue homeostasis, and also in the development of pathological processes in the eye. This review presents the available evidence from human and animal research into integrin structure, classification, function and their role in inflammation, infection and angiogenesis in ocular diseases. Integrin receptors and ligands are clinically interesting and may be promising as new therapeutic targets in the treatment of some eye disorders.
Collapse
Affiliation(s)
- Małgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Anna Bryl
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | | | - Katarzyna Zorena
- Department of Immunobiology and Environmental Microbiology, Medical University of Gdansk, 80-211 Gdansk, Poland;
| |
Collapse
|
20
|
Lupi SM, Torchia M, Rizzo S. Biochemical Modification of Titanium Oral Implants: Evidence from In Vivo Studies. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2798. [PMID: 34074006 PMCID: PMC8197372 DOI: 10.3390/ma14112798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022]
Abstract
The discovery of osseointegration of titanium implants revolutionized the dental prosthesis field. Traditionally, implants have a surface that is processed by additive or subtractive techniques, which have positive effects on the osseointegration process by altering the topography. In the last decade, innovative implant surfaces have been developed, on which biologically active molecules have been immobilized with the aim of increasing stimulation at the implant-biological tissue interface, thus favoring the quality of osseointegration. Among these molecules, some are normally present in the human body, and the techniques for the immobilization of these molecules on the implant surface have been called Biochemical Modification of Titanium Surfaces (BMTiS). Different techniques have been described in order to immobilize those biomolecules on titanium implant surfaces. The aim of the present paper is to present evidence, available from in vivo studies, about the effects of biochemical modification of titanium oral implants on osseointegration.
Collapse
|
21
|
Mao M, Popli T, Jeanne M, Hoff K, Sen S, Gould DB. Identification of fibronectin 1 as a candidate genetic modifier in a Col4a1 mutant mouse model of Gould syndrome. Dis Model Mech 2021; 14:dmm048231. [PMID: 34424299 PMCID: PMC8106953 DOI: 10.1242/dmm.048231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Collagen type IV alpha 1 and alpha 2 (COL4A1 and COL4A2) are major components of almost all basement membranes. COL4A1 and COL4A2 mutations cause a multisystem disorder that can affect any organ but typically involves the cerebral vasculature, eyes, kidneys and skeletal muscles. In recent years, patient advocacy and family support groups have united under the name of Gould syndrome. The manifestations of Gould syndrome are highly variable, and animal studies suggest that allelic heterogeneity and genetic context contribute to the clinical variability. We previously characterized a mouse model of Gould syndrome caused by a Col4a1 mutation in which the severities of ocular anterior segment dysgenesis (ASD), myopathy and intracerebral hemorrhage (ICH) were dependent on genetic background. Here, we performed a genetic modifier screen to provide insight into the mechanisms contributing to Gould syndrome pathogenesis and identified a single locus [modifier of Gould syndrome 1 (MoGS1)] on Chromosome 1 that suppressed ASD. A separate screen showed that the same locus ameliorated myopathy. Interestingly, MoGS1 had no effect on ICH, suggesting that this phenotype could be mechanistically distinct. We refined the MoGS1 locus to a 4.3 Mb interval containing 18 protein-coding genes, including Fn1, which encodes the extracellular matrix component fibronectin 1. Molecular analysis showed that the MoGS1 locus increased Fn1 expression, raising the possibility that suppression is achieved through a compensatory extracellular mechanism. Furthermore, we found evidence of increased integrin-linked kinase levels and focal adhesion kinase phosphorylation in Col4a1 mutant mice that is partially restored by the MoGS1 locus, implicating the involvement of integrin signaling. Taken together, our results suggest that tissue-specific mechanistic heterogeneity contributes to the variable expressivity of Gould syndrome and that perturbations in integrin signaling may play a role in ocular and muscular manifestations.
Collapse
Affiliation(s)
- Mao Mao
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tanav Popli
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Marion Jeanne
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kendall Hoff
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Saunak Sen
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Preventive Medicine, University of Tennessee Health Science Center, 66 North Pauline St, Memphis, TN 38163, USA
| | - Douglas B. Gould
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
22
|
Kheirjou R, Rad JS, Khosroshahi AF, Roshangar L. The useful agent to have an ideal biological scaffold. Cell Tissue Bank 2020; 22:225-239. [PMID: 33222022 DOI: 10.1007/s10561-020-09881-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022]
Abstract
Tissue engineering which is applied in regenerative medicine has three basic components: cells, scaffolds and growth factors. This multidisciplinary field can regulate cell behaviors in different conditions using scaffolds and growth factors. Scaffolds perform this regulation with their structural, mechanical, functional and bioinductive properties and growth factors by attaching to and activating their receptors in cells. There are various types of biological extracellular matrix (ECM) and polymeric scaffolds in tissue engineering. Recently, many researchers have turned to using biological ECM rather than polymeric scaffolds because of its safety and growth factors. Therefore, selection the right scaffold with the best properties tailored to clinical use is an ideal way to regulate cell behaviors in order to repair or improve damaged tissue functions in regenerative medicine. In this review we first divided properties of biological scaffold into intrinsic and extrinsic elements and then explain the components of each element. Finally, the types of scaffold storage methods and their advantages and disadvantages are examined.
Collapse
Affiliation(s)
- Raziyeh Kheirjou
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, 33363879, Tabriz, Iran
| | - Ahad Ferdowsi Khosroshahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, 33363879, Tabriz, Iran.
| |
Collapse
|
23
|
Veny M, Garrido-Trigo A, Corraliza AM, Masamunt MC, Bassolas-Molina H, Esteller M, Arroyes M, Tristán E, Fernández-Clotet A, Ordás I, Ricart E, Esteve M, Panés J, Salas A. Dissecting Common and Unique Effects of Anti-α4β7 and Anti-Tumor Necrosis Factor Treatment in Ulcerative Colitis. J Crohns Colitis 2020; 15:441-452. [PMID: 32926095 PMCID: PMC7944518 DOI: 10.1093/ecco-jcc/jjaa178] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Vedolizumab is an anti-α4β7 antibody approved for the treatment of ulcerative colitis [UC]. Although it is assumed that vedolizumab blocks intestinal homing of lymphocytes, its effects on different intestinal cell populations are not fully stablished. In order to establish the unique mechanisms of action of vedolizumab in UC patients, we compared its effects to those induced by anti-tumour necrosis factor [TNF]. METHODS Patients with active UC [endoscopic Mayo score >1] starting vedolizumab [n = 33] or anti-TNF [n = 45] and controls [n = 22] were included. Colon biopsies [at weeks 0, 14 and 46] and blood samples [at weeks 0, 2, 6, 14, 30 and 46] were used for cell phenotyping, transcriptional analysis [qPCR], and to measure receptor occupancy. RESULTS Vedolizumab, in contrast to anti-TNF, significantly reduced the proportion of α4β7+ cells within intestinal T subsets while preserving the percentage of α4β7+ plasma cells. The marked decrease in α4β7 did not change the percentage of colonic αEβ7+ cells [at 46 weeks]. Both vedolizumab and anti-TNF significantly downregulated inflammation-related genes in the colon of responders [Mayo score < 2]. Moreover, both treatments significantly decreased the percentage of intestinal, but not blood, total lymphocytes [T and plasma cells], as well as the proportion of α4β1+ cells within intestinal T lymphocytes. CONCLUSIONS Our data show that while vedolizumab and anti-TNF block two unrelated targets, they induce remarkably similar effects. On the other hand, vedolizumab's unique mechanism of action relies on blocking intestinal trafficking of α4β7 T cells, despite effectively binding to B and plasma cells that express α4β7.
Collapse
Affiliation(s)
- Marisol Veny
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Alba Garrido-Trigo
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Ana M Corraliza
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Maria C Masamunt
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Helena Bassolas-Molina
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Miriam Esteller
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Montserrat Arroyes
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Eva Tristán
- Hospital Universitari Mutua Terrassa, CIBERehd, Department of Gastroenterology, Terrassa, Spain
| | - Agnès Fernández-Clotet
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Ingrid Ordás
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Elena Ricart
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Maria Esteve
- Hospital Universitari Mutua Terrassa, CIBERehd, Department of Gastroenterology, Terrassa, Spain
| | - Julian Panés
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,Corresponding author: Azucena Salas, PhD, Center Esther Koplowitz, Rossello 149–153, Barcelona 08036, Spain. Tel: 34 93 2275400 ext 2436;
| |
Collapse
|
24
|
Umbreit NT, Zhang CZ, Lynch LD, Blaine LJ, Cheng AM, Tourdot R, Sun L, Almubarak HF, Judge K, Mitchell TJ, Spektor A, Pellman D. Mechanisms generating cancer genome complexity from a single cell division error. Science 2020; 368:eaba0712. [PMID: 32299917 PMCID: PMC7347108 DOI: 10.1126/science.aba0712] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
The chromosome breakage-fusion-bridge (BFB) cycle is a mutational process that produces gene amplification and genome instability. Signatures of BFB cycles can be observed in cancer genomes alongside chromothripsis, another catastrophic mutational phenomenon. We explain this association by elucidating a mutational cascade that is triggered by a single cell division error-chromosome bridge formation-that rapidly increases genomic complexity. We show that actomyosin forces are required for initial bridge breakage. Chromothripsis accumulates, beginning with aberrant interphase replication of bridge DNA. A subsequent burst of DNA replication in the next mitosis generates extensive DNA damage. During this second cell division, broken bridge chromosomes frequently missegregate and form micronuclei, promoting additional chromothripsis. We propose that iterations of this mutational cascade generate the continuing evolution and subclonal heterogeneity characteristic of many human cancers.
Collapse
Affiliation(s)
- Neil T Umbreit
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cheng-Zhong Zhang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Luke D Lynch
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Logan J Blaine
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anna M Cheng
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Richard Tourdot
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lili Sun
- Single-Cell Sequencing Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hannah F Almubarak
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kim Judge
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Thomas J Mitchell
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Alexander Spektor
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
25
|
The Extracellular Matrix: An Accomplice in Gastric Cancer Development and Progression. Cells 2020; 9:cells9020394. [PMID: 32046329 PMCID: PMC7072625 DOI: 10.3390/cells9020394] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is a dynamic and highly organized tissue structure, providing support and maintaining normal epithelial architecture. In the last decade, increasing evidence has emerged demonstrating that alterations in ECM composition and assembly strongly affect cellular function and behavior. Even though the detailed mechanisms underlying cell-ECM crosstalk are yet to unravel, it is well established that ECM deregulation accompanies the development of many pathological conditions, such as gastric cancer. Notably, gastric cancer remains a worldwide concern, representing the third most frequent cause of cancer-associated deaths. Despite increased surveillance protocols, patients are usually diagnosed at advanced disease stages, urging the identification of novel diagnostic biomarkers and efficient therapeutic strategies. In this review, we provide a comprehensive overview regarding expression patterns of ECM components and cognate receptors described in normal gastric epithelium, pre-malignant lesions, and gastric carcinomas. Important insights are also discussed for the use of ECM-associated molecules as predictive biomarkers of the disease or as potential targets in gastric cancer.
Collapse
|
26
|
Wang Y, Zhao Y, Sarkar A, Wang X. Optical sensor revealed abnormal nuclease spatial activity on cancer cell membrane. JOURNAL OF BIOPHOTONICS 2019; 12:e201800351. [PMID: 30488667 PMCID: PMC6550314 DOI: 10.1002/jbio.201800351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/11/2018] [Accepted: 11/21/2018] [Indexed: 05/22/2023]
Abstract
Nucleases are important enzymes that cleave nucleic acids and play critical roles in DNA repair, immune defense and potentially in cancer invasion. However, their spatial dynamics at subcellular level is much less studied. Here, we developed a surface-tethered nuclease sensor (SNS) which directly converts membrane-bound nuclease (MN) activity to fluorescent signal, therefore, mapping MN activity on cell adhesion sites with high resolution and sensitivity. With SNS, we studied MN activity on the ventral membrane of cancer cells, where MN activity initially occurs in punctate regions and advances in a coral-shaped pattern. In six tested cell-lines, the MN activity levels in cancer cells are significantly higher than those in non-cancer cells. We then tested SNS as a sensitive approach to detect cancer cells at single cell level. Single breast cancer cells were successfully detected from thousands of adherent non-cancer cells and from millions of non-adherent blood cells.
Collapse
Affiliation(s)
- Yongliang Wang
- Department of Physics and AstronomyIowa State UniversityAmesIowa
| | - Yuanchang Zhao
- Department of Physics and AstronomyIowa State UniversityAmesIowa
| | - Anwesha Sarkar
- Department of Physics and AstronomyIowa State UniversityAmesIowa
| | - Xuefeng Wang
- Department of Physics and AstronomyIowa State UniversityAmesIowa
- Molecular, Cellular, and Developmental Biology Interdepartmental ProgramMolecular Biology BuildingAmesIowa
| |
Collapse
|
27
|
Haggerty AE, Al-Ali H, Oudega M. Soluble laminin polymers enhance axon growth of primary neurons in vitro. J Biomed Mater Res A 2018; 106:2372-2381. [PMID: 29637694 DOI: 10.1002/jbm.a.36429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/09/2018] [Accepted: 03/28/2018] [Indexed: 12/26/2022]
Abstract
A substrate of laminin polymers formed at pH 4 (acidic pH-induced laminin; aLam) promotes neurite growth of embryonic rat cortical neurons better than a substrate of similar but structurally different laminin polymers formed at neutral pH (neutral pH-induced laminin; nLam). We investigated the effects of these laminin polymers, used as soluble supplements, on neurite growth of cultured adult rat primary dorsal root ganglion neurons. When added to the culture medium, aLam was found to promote neurite growth about twofold better than nLam. Immunoblocking experiments revealed that aLam elicited neurite growth to a similar extent through the α1 or α3 integrin subunit, while nLam required the availability of the α1 integrin subunit to elicit neurite growth. With aLam, but not nLam, immunoblocking of the α1 or α3 subunit resulted in an increase in the protein level of the alternative subunit. The presence of a mature focal adhesion complex, which is associated with neurite growth, was elevated in neurons in the presence of aLam relative to nLam or culture medium. Our data indicated that the two types of laminin polymers promote neurite growth of adult rat primary sensory neurons to a different degree, likely through different ligand-receptor interactions. These findings support the potential of soluble laminin polymers as injectable therapeutics for eliciting axon growth after nervous system injury. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2372-2381, 2018.
Collapse
Affiliation(s)
- Agnes E Haggerty
- University of Miami Miller School of Medicine, The Miami Project to Cure Paralysis, Miami, Florida
| | - Hassan Al-Ali
- University of Miami Miller School of Medicine, The Miami Project to Cure Paralysis, Miami, Florida.,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida.,University of Miami Miller School of Medicine, Peggy and Harold Katz Family Drug Discovery Center, Miami, Florida
| | - Martin Oudega
- University of Miami Miller School of Medicine, The Miami Project to Cure Paralysis, Miami, Florida.,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Lin J, Zhou W, Han S, Bunpetch V, Zhao K, Liu C, Yin Z, Ouyang H. Cell-material interactions in tendon tissue engineering. Acta Biomater 2018; 70:1-11. [PMID: 29355716 DOI: 10.1016/j.actbio.2018.01.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 12/11/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
The interplay between cells and materials is a fundamental topic in biomaterial-based tissue regeneration. One of the principles for biomaterial development in tendon regeneration is to stimulate tenogenic differentiation of stem cells. To this end, efforts have been made to optimize the physicochemical and bio-mechanical properties of biomaterials for tendon tissue engineering. However, recent progress indicated that innate immune cells, especially macrophages, can also respond to the material cues and undergo phenotypical changes, which will either facilitate or hinder tissue regeneration. This process has been, to some extent, neglected by traditional strategies and may partially explain the unsatisfactory outcomes of previous studies; thus, more researchers have turned their focus on developing and designing immunoregenerative biomaterials to enhance tendon regeneration. In this review, we will first summarize the effects of material cues on tenogenic differentiation and paracrine secretion of stem cells. A brief introduction will also be made on how material cues can be manipulated for the regeneration of tendon-to-bone interface. Then, we will discuss the characteristics and influences of macrophages on the repair process of tendon healing and how they respond to different materials cues. These principles may benefit the development of novel biomaterials provided with combinative bioactive cues to activate tenogenic differentiation of stem cells and pro-resolving macrophage phenotype. STATEMENT OF SIGNIFICANCE The progress achieved with the rapid development of biomaterial-based strategies for tendon regeneration has not yielded broad benefits to clinical patients. In addition to the interplay between stem cells and biomaterials, the innate immune response to biomaterials also plays a determinant role in tissue regeneration. Here, we propose that fine-tuning of stem cell behaviors and alternative activation of macrophages through material cues may lead to effective tendon/ligament regeneration. We first review the characteristics of key material cues that have been manipulated to promote tenogenic differentiation and paracrine secretion of stem cells in tendon regeneration. Then, we discuss the potentiality of corresponding material cues in activating macrophages toward a pro-resolving phenotype to promote tissue repair.
Collapse
Affiliation(s)
- Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Wenyan Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Shan Han
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Kun Zhao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China; Department of Sports Medicine, School of Medicine, Zhejiang University, China
| | - Chaozhong Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Zhejiang University, China; Department of Sports Medicine, School of Medicine, Zhejiang University, China; China Orthopedic Regenerative Medicine Group (CORMed), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, China.
| |
Collapse
|
29
|
Esmaeilzadeh P, Köwitsch A, Liedmann A, Menzel M, Fuhrmann B, Schmidt G, Klehm J, Groth T. Stimuli-Responsive Multilayers Based on Thiolated Polysaccharides That Affect Fibroblast Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8507-8518. [PMID: 29470914 DOI: 10.1021/acsami.7b19022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Control of the biomaterial properties through stimuli-responsive polymeric platforms has become an essential technique in recent biomedical applications. A multilayer system of thiolated chitosan (t-Chi) and thiolated chondroitin sulfate (t-CS), consisting of five double layers ([t-Chi/t-CS]5), was fabricated here by applying a layer-by-layer coating strategy. To represent a novel class of chemically tunable nanostructures, the ability to cross-link pendant thiol groups was tested by a rise from pH 4 during layer formation to pH 9.3 and a more powerful chemical stimulus by using chloramine-T (ChT). Following both treatments, the resulting multilayers showed stimuli-dependent behavior, as demonstrated by their content of free thiols, wettability, surface charge, elastic modulus, roughness, topography, thickness, and binding of fibronectin. Studies with human dermal fibroblasts further demonstrated the favorable potential of the ChT-responsive multilayers as a cell-adhesive surface compared to pH-induced cross-linking. Because the [t-Chi/t-CS]5 multilayer system is responsive to stimuli such as the pH and redox environment, multilayer systems with disulfide bond formation may help to tailor their interaction with cells, film degradation, and controlled release of bioactive substances like growth factors in a stimuli-responsive manner useful in future wound healing and tissue engineering applications.
Collapse
Affiliation(s)
- Pegah Esmaeilzadeh
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale) , Germany
- Interdisciplinary Center of Material Research , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale) , Germany
| | - Alexander Köwitsch
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale) , Germany
| | - Andrea Liedmann
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale) , Germany
| | - Matthias Menzel
- Fraunhofer Institute for Microstructure of Materials and Systems , Walter-Hülse-Strasse 1 , 06120 Halle (Saale) , Germany
| | - Bodo Fuhrmann
- Interdisciplinary Center of Material Research , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale) , Germany
- Institute of Physics , Martin Luther University Halle-Wittenberg , 06099 Halle (Saale) , Germany
| | - Georg Schmidt
- Interdisciplinary Center of Material Research , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale) , Germany
- Institute of Physics , Martin Luther University Halle-Wittenberg , 06099 Halle (Saale) , Germany
| | - Jessica Klehm
- Fraunhofer Institute for Microstructure of Materials and Systems , Walter-Hülse-Strasse 1 , 06120 Halle (Saale) , Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale) , Germany
- Interdisciplinary Center of Material Research , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale) , Germany
| |
Collapse
|
30
|
|
31
|
Goodarzi P, Falahzadeh K, Nematizadeh M, Farazandeh P, Payab M, Larijani B, Tayanloo Beik A, Arjmand B. Tissue Engineered Skin Substitutes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:143-188. [PMID: 29855826 DOI: 10.1007/5584_2018_226] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fundamental skin role is to supply a supportive barrier to protect body against harmful agents and injuries. Three layers of skin including epidermis, dermis and hypodermis form a sophisticated tissue composed of extracellular matrix (ECM) mainly made of collagens and glycosaminoglycans (GAGs) as a scaffold, different cell types such as keratinocytes, fibroblasts and functional cells embedded in the ECM. When the skin is injured, depends on its severity, the majority of mentioned components are recruited to wound regeneration. Additionally, different growth factors like fibroblast growth factor (FGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) are needed to orchestrated wound healing process. In case of large surface area wounds, natural wound repair seems inefficient. Inspired by nature, scientists in tissue engineering field attempt to engineered constructs mimicking natural healing process to promote skin restoration in untreatable injuries. There are three main types of commercially available engineered skin substitutes including epidermal, dermal, and dermoepidermal. Each of them could be composed of scaffold, desired cell types or growth factors. These substitutes could have autologous, allogeneic, or xenogeneic origin. Moreover, they may be cellular or acellular. They are used to accelerate wound healing and recover normal skin functions with pain relief. Although there are a wide variety of commercially available skin substitutes, almost none of them considered as an ideal equivalents required for proper wound healing.
Collapse
Affiliation(s)
- Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Falahzadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Nematizadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Farazandeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Zhang D, Lee J, Kilian KA. Synthetic Biomaterials to Rival Nature's Complexity-a Path Forward with Combinatorics, High-Throughput Discovery, and High-Content Analysis. Adv Healthc Mater 2017; 6. [PMID: 28841770 DOI: 10.1002/adhm.201700535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Cells in tissue receive a host of soluble and insoluble signals in a context-dependent fashion, where integration of these cues through a complex network of signal transduction cascades will define a particular outcome. Biomaterials scientists and engineers are tasked with designing materials that can at least partially recreate this complex signaling milieu towards new materials for biomedical applications. In this progress report, recent advances in high throughput techniques and high content imaging approaches that are facilitating the discovery of efficacious biomaterials are described. From microarrays of synthetic polymers, peptides and full-length proteins, to designer cell culture systems that present multiple biophysical and biochemical cues in tandem, it is discussed how the integration of combinatorics with high content imaging and analysis is essential to extracting biologically meaningful information from large scale cellular screens to inform the design of next generation biomaterials.
Collapse
Affiliation(s)
- Douglas Zhang
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| | - Junmin Lee
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| | - Kristopher A. Kilian
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
- Department of Bioengineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| |
Collapse
|
33
|
Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 2017; 35:530-544. [DOI: 10.1016/j.biotechadv.2017.05.006] [Citation(s) in RCA: 521] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/08/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
|
34
|
Decellularized tongue tissue as an in vitro model for studying tongue cancer and tongue regeneration. Acta Biomater 2017; 58:122-135. [PMID: 28600128 DOI: 10.1016/j.actbio.2017.05.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/25/2017] [Accepted: 05/25/2017] [Indexed: 12/15/2022]
Abstract
The decellularization of tissues or organs provides an efficient strategy for preparing functional scaffolds for tissue engineering. The microstructures of native extracellular matrices and biochemical compositions retained in the decellularized matrices provide tissue-specific microenvironments for anchoring cells. Here, we report the tongue extracellular matrix (TEM), which showed favorable cytocompatibility for normal tongue-derived cells and tongue squamous cell carcinoma (TSCC) cells under static or stirring culture conditions. Our results show that TEM retained tongue-specific integrated microstructures and abundant matrix components, which offer mechanical support and spatial signals for regulating cell behavior and function. Reconstructed TSCC by TEM presented characteristics resembling clinical TSCC histopathology, suggesting the possibility for TSCC research. In addition, TEM might be capable of guiding tongue-derived cells to the niche, benefiting cell survival, proliferation and differentiation. STATEMENT OF SIGNIFICANCE In this study, we prepared decellularized tongue extracellular matrix (TEM) and evaluated the possibility for tongue squamous cell carcinoma (TSCC) research and tongue regeneration. TEM has six irreplaceable advantages: (1) tongue-specific intricate structures of TEM, which offer mechanical support for the cells; (2) abundant matrix components and spatial signals benefiting for cell attachment, survival, differentiation, and long-term viability of the highly functional phenotypes of tongue cells or TSCC cells; (3) reconstructed TSCC by TEM exhibited tumor heterogeneity, extremely resembling clinical TSCC histopathology; (4) ideal model to evaluate TSCC movement mode; (5) guiding tongue-derived cells to the site-appropriate niche; and (6) the possibility for static or stirred cell culture. These properties might be considered in TSCC research or tongue regeneration.
Collapse
|
35
|
Bäcker H, Polgár L, Soós P, Lajkó E, Láng O, Merkely B, Szabó G, Dohmen PM, Weymann A, Kőhidai L. Impedimetric Analysis of the Effect of Decellularized Porcine Heart Scaffold on Human Fibrosarcoma, Endothelial, and Cardiomyocyte Cell Lines. Med Sci Monit 2017; 23:2232-2240. [PMID: 28493851 PMCID: PMC5436501 DOI: 10.12659/msm.901527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Experiments on porcine heart scaffold represent significant assays in development of immunoneutral materials for cardiac surgery. Characterization of cell-cell and cell-scaffold interactions is essential to understand the homing process of cardiac cells into the scaffolds. MATERIAL AND METHODS In the present study, the highly sensitive and real-time impedimetric technique of xCELLigence SP was used to monitor cell adhesion, which is the key process of recellularization in heart scaffolds. Our objectives were: (i) to characterize the effect of decellularized porcine heart scaffold on cell adhesion of human cardiovascular cells potentially used in the recellularization process; and (ii) to investigate cell-extracellular matrix element interactions for building artificial multi-layer systems, applied as cellular models of recellularization experiments. Human fibrosarcoma, endothelial, and cardiomyocyte cells were investigated and the effect of decellularized porcine heart scaffold (HS) and fibronectin on cell adhesion was examined. Adhesion was quantified as slope of curves. RESULTS Heart scaffold had neutral effect on cardiomyocytes as well as on endothelial cells. Adhesion of cardiomyocytes was increased by fibronectin (1.480±0.021) compared to control (0.745±0.029). The combination of fibronectin and HS induced stronger adhesion of cardiomyocytes (2.407±0.634) than fibronectin alone. Endothelial and fibrosarcoma cells showed similarly strong adhesion profiles with marked enhancer effect by fibronectin. CONCLUSIONS Decellularized porcine HS does not inhibit adhesion of human cardiovascular cells at the cell biological level, while fibronectin has strong cell adhesion-inducer effect, as well as an enhancer effect on activity of HS. Consequently, decellularized porcine hearts could be used as scaffolds for recellularization with cardiomyocytes and endothelial cells with fibronectin acting as a regulator, leading to construction of working bioartificial hearts.
Collapse
Affiliation(s)
- Henrik Bäcker
- Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| | - Livia Polgár
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary.,Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Pal Soós
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Eszter Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Orsolya Láng
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gabor Szabó
- Department of Cardiac Surgery, Heidelberg University, Heidelberg, Germany
| | - Pascal M Dohmen
- Department of Cardiac Surgery, University Hospital Oldenburg, European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Alexander Weymann
- Department of Cardiac Surgery, University Hospital Oldenburg, European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg, Heidelberg, Germany
| | - Laszlo Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
36
|
Simões IN, Vale P, Soker S, Atala A, Keller D, Noiva R, Carvalho S, Peleteiro C, Cabral JMS, Eberli D, da Silva CL, Baptista PM. Acellular Urethra Bioscaffold: Decellularization of Whole Urethras for Tissue Engineering Applications. Sci Rep 2017; 7:41934. [PMID: 28165009 PMCID: PMC5292742 DOI: 10.1038/srep41934] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/03/2017] [Indexed: 11/16/2022] Open
Abstract
Patients with stress urinary incontinence mainly suffer from malfunction of the urethra closure mechanism. We established the decellularization of porcine urethras to produce acellular urethra bioscaffolds for future tissue engineering applications, using bioscaffolds or bioscaffold-derived soluble products. Cellular removal was evaluated by H&E, DAPI and DNA quantification. The presence of specific ECM proteins was assessed through immunofluorescence staining and colorimetric assay kits. Human skeletal muscle myoblasts, muscle progenitor cells and adipose-derived stromal vascular fractions were used to evaluate the recellularization of the acellular urethra bioscaffolds. The mechanochemical decellularization system removed ~93% of tissue's DNA, generally preserving ECM's components and microarchitecture. Recellularization was achieved, though methodological advances are required regarding cell seeding strategies and functional assessment. Through microdissection and partial digestion, different urethra ECM-derived coating substrates were formulated (i.e. containing smooth or skeletal muscle ECM) and used to culture MPCs in vitro. The skeletal muscle ECM substrates enhanced fiber formation leading to the expression of the main skeletal muscle-related proteins and genes, as confirmed by immunofluorescence and RT-qPCR. The described methodology produced a urethra bioscaffold that retained vital ECM proteins and was liable to cell repopulation, a crucial first step towards the generation of urethra bioscaffold-based Tissue Engineering products.
Collapse
Affiliation(s)
- Irina N. Simões
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Paulo Vale
- Serviço Urologia, Hospital Garcia de Orta, Almada, Portugal
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Daniel Keller
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Rute Noiva
- Faculdade de Medicina Veterinária, The Interdisciplinary Centre of Research in Animal Health (CIISA), Universidade de Lisboa, Lisboa, Portugal
| | - Sandra Carvalho
- Faculdade de Medicina Veterinária, The Interdisciplinary Centre of Research in Animal Health (CIISA), Universidade de Lisboa, Lisboa, Portugal
| | - Conceição Peleteiro
- Faculdade de Medicina Veterinária, The Interdisciplinary Centre of Research in Animal Health (CIISA), Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Daniel Eberli
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Cláudia L. da Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro M. Baptista
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Instituto de Investigacion Sanitaria de Aragón (IIS Aragon), Zaragoza, Spain
- CIBERehd, Zaragoza, Spain
| |
Collapse
|
37
|
Zhu B, Liu W, Liu Y, Zhao X, Zhang H, Luo Z, Jin Y. Jawbone microenvironment promotes periodontium regeneration by regulating the function of periodontal ligament stem cells. Sci Rep 2017; 7:40088. [PMID: 28053317 PMCID: PMC5215380 DOI: 10.1038/srep40088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/01/2016] [Indexed: 12/23/2022] Open
Abstract
During tooth development, the jawbone interacts with dental germ and provides the development microenvironment. Jawbone-derived mesenchymal stem cells (JBMSCs) maintain this microenvironment for root and periodontium development. However, the effect of the jawbone microenvironment on periodontium tissue regeneration is largely elusive. Our previous study showed that cell aggregates (CAs) of bone marrow mesenchymal stem cells promoted periodontium regeneration on the treated dentin scaffold. Here, we found that JBMSCs enhanced not only the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) but also their adhesion to titanium (Ti) material surface. Importantly, the compound CAs of PDLSCs and JBMSCs regenerated periodontal ligament-like fibers and mineralized matrix on the Ti scaffold surface, both in nude mice ectopic and minipig orthotopic transplantations. Our data revealed that an effective regenerative microenvironment, reconstructed by JBMSCs, promoted periodontium regeneration by regulating PDLSCs function on the Ti material.
Collapse
Affiliation(s)
- Bin Zhu
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Orthopedics Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Stomatology, PLA Xizang Military Region General Hospital, Lhasa, Tibet, People's Republic of China
| | - Wenjia Liu
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yihan Liu
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Stomatology, PLA 301th Hospital, Beijing, People's Republic of China
| | - Xicong Zhao
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhuojing Luo
- Department of Orthopedics Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yan Jin
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
38
|
Kim HW, Han S, Kim W, Lim J, Kim DS. Modulating wall shear stress gradient via equilateral triangular channel for in situ cellular adhesion assay. BIOMICROFLUIDICS 2016; 10:054119. [PMID: 27822327 PMCID: PMC5074993 DOI: 10.1063/1.4965822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
This study introduces an equilateral triangular channel (ETRIC), a novel microfluidic channel with an equilateral triangular cross-section, for cell adhesion assay by modulating the wall shear stress (WSS) gradient. The channel can generate a parabolic WSS gradient perpendicular to the flow direction at a single flow rate, and cell detachment can be in situ screened in response to spatially different levels of WSS. The existence of a simple form of exact solution for the velocity field inside the entire ETRIC region enables the easy design and modulation of the WSS levels at the bottom surface; therefore, the detachment of the cells can be investigated at the pre-defined observation window in real time. The exact solution for the velocity field was validated by comparing the analytical velocity profile with those obtained from both numerical simulation and experimental particle image velocimetry. The parabolic WSS gradient can be generated stably and consistently over time at a steady-state condition and easily modulated by changing the flow rate for the given ETRIC geometry. The WSS gradient in the ETRIC is in a symmetric parabolic form, and this symmetry feature doubles the experimental data, thereby efficiently minimizing the number of experiments. Finally, a WSS gradient ranging from 0 to 160 dyn/cm2 was generated through the present ETRIC, which enables not only to measure the adhesion strength but also to investigate the time-dependent detachment of NIH-3T3 cells attached on the glass.
Collapse
Affiliation(s)
- Hyung Woo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Seonjin Han
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Wonkyoung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Jiwon Lim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| |
Collapse
|
39
|
Aydin T, Varol FG, Sayin NC. Third Trimester Maternal Plasma Total Fibronectin Levels in Pregnancy-Induced Hypertension: Results of a Tertiary Center. Clin Appl Thromb Hemost 2016; 12:33-9. [PMID: 16444432 DOI: 10.1177/107602960601200106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to evaluate maternal plasma total fibronectin values in pregnancy-associated hypertension in women in the third trimester of pregnancy. A total of 125 pregnant women at the 24th week of gestation participated in this study. Nonpregnant normotensive women were included as control group (n = 30). Plasma samples for fibronectin were obtained at the 24th, 28th, and 32nd weeks of gestation from all pregnant patients. From this cohort, 10 patients met the criteria for the diagnosis of gestational hypertension and 15 women met the stringent requirements of preeclampsia, whereas 100 patients were normotensive later in gestation. Plasma total fibronectin levels were determined by radial immunodiffusion technique. Data were analyzed using the SPSS program. The mean plasma fibronectin levels of the pregnant women in whom gestational hypertension and preeclampsia developed were significantly higher at the 24th, 28th, and 32nd weeks in comparison to normotensive pregnant women (p < 0.001). However, throughout the period from the 24th to 32nd weeks of pregnancy, plasma total fibronectin levels did not exhibit a significant change in normotensive pregnant patients or in patients with preeclampsia and gestational hypertension. There was also no correlation between plasma fibronectin levels and gestational age, mean arterial pressure, birth weight, and 5-minute Apgar scores in all groups (p < 0.05). The elevated maternal plasma fibronectin level over 40 mg/dL is capable of predicting preeclampsia with a sensitivity of 73% and a specificity of 92%. These results suggest that serial plasma fibronectin measurements before 24 weeks’ of gestation may be helpful in the early detection of preeclampsia in normotensive gravid women who are destined to become clinically preeclamptic.
Collapse
|
40
|
Zhou P, Huang Y, Guo Y, Wang L, Ling C, Guo Q, Wang Y, Zhu S, Fan X, Zhu M, Huang H, Lu Y, Wang Z. Decellularization and Recellularization of Rat Livers With Hepatocytes and Endothelial Progenitor Cells. Artif Organs 2015; 40:E25-38. [PMID: 26637111 DOI: 10.1111/aor.12645] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Pengcheng Zhou
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
- Department of Emergency Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Yan Huang
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Yibing Guo
- Surgical Comprehensive Laboratory; Affiliated Hospital of Nantong University; Nantong China
| | - Lei Wang
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Changchun Ling
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Qingsong Guo
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Yao Wang
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Shajun Zhu
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Xiangjun Fan
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Mingyan Zhu
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| | - Hua Huang
- Department of Pathology; Affiliated Hospital of Nantong University; Nantong China
| | - Yuhua Lu
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
- Surgical Comprehensive Laboratory; Affiliated Hospital of Nantong University; Nantong China
| | - Zhiwei Wang
- Department of General Surgery; Affiliated Hospital of Nantong University; Nantong China
| |
Collapse
|
41
|
Oltolina F, Zamperone A, Colangelo D, Gregoletto L, Reano S, Pietronave S, Merlin S, Talmon M, Novelli E, Diena M, Nicoletti C, Musarò A, Filigheddu N, Follenzi A, Prat M. Human Cardiac Progenitor Spheroids Exhibit Enhanced Engraftment Potential. PLoS One 2015; 10:e0137999. [PMID: 26375957 PMCID: PMC4572703 DOI: 10.1371/journal.pone.0137999] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/24/2015] [Indexed: 01/08/2023] Open
Abstract
A major obstacle to an effective myocardium stem cell therapy has always been the delivery and survival of implanted stem cells in the heart. Better engraftment can be achieved if cells are administered as cell aggregates, which maintain their extra-cellular matrix (ECM). We have generated spheroid aggregates in less than 24 h by seeding human cardiac progenitor cells (hCPCs) onto methylcellulose hydrogel-coated microwells. Cells within spheroids maintained the expression of stemness/mesenchymal and ECM markers, growth factors and their cognate receptors, cardiac commitment factors, and metalloproteases, as detected by immunofluorescence, q-RT-PCR and immunoarray, and expressed a higher, but regulated, telomerase activity. Compared to cells in monolayers, 3D spheroids secreted also bFGF and showed MMP2 activity. When spheroids were seeded on culture plates, the cells quickly migrated, displaying an increased wound healing ability with or without pharmacological modulation, and reached confluence at a higher rate than cells from conventional monolayers. When spheroids were injected in the heart wall of healthy mice, some cells migrated from the spheroids, engrafted, and remained detectable for at least 1 week after transplantation, while, when the same amount of cells was injected as suspension, no cells were detectable three days after injection. Cells from spheroids displayed the same engraftment capability when they were injected in cardiotoxin-injured myocardium. Our study shows that spherical in vivo ready-to-implant scaffold-less aggregates of hCPCs able to engraft also in the hostile environment of an injured myocardium can be produced with an economic, easy and fast protocol.
Collapse
Affiliation(s)
- Francesca Oltolina
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Andrea Zamperone
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Donato Colangelo
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Luca Gregoletto
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Simone Reano
- Dept. Translational Medicine, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Stefano Pietronave
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Simone Merlin
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Maria Talmon
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Eugenio Novelli
- Dept. of Cardiac Surgery, Clinica S. Gaudenzio, Novara, Italy
| | - Marco Diena
- Dept. of Cardiac Surgery, Clinica S. Gaudenzio, Novara, Italy
| | - Carmine Nicoletti
- Institute Pasteur Cenci-Bolognetti, DAHFMO, Roma, Italy
- Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, Rome, Italy
| | - Antonio Musarò
- Institute Pasteur Cenci-Bolognetti, DAHFMO, Roma, Italy
- Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Filigheddu
- Dept. Translational Medicine, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Antonia Follenzi
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
- Centro di Biotecnologie per la Ricerca Medica Applicata (BRMA), Novara, Italy
| | - Maria Prat
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
- Centro di Biotecnologie per la Ricerca Medica Applicata (BRMA), Novara, Italy
- * E-mail:
| |
Collapse
|
42
|
Wang K, Seo BR, Fischbach C, Gourdon D. Fibronectin Mechanobiology Regulates Tumorigenesis. Cell Mol Bioeng 2015; 9:1-11. [PMID: 26900407 PMCID: PMC4746220 DOI: 10.1007/s12195-015-0417-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/08/2015] [Indexed: 12/25/2022] Open
Abstract
Fibronectin (Fn) is an essential extracellular matrix (ECM) glycoprotein involved in both physiological and pathological processes. The structure–function relationship of Fn has been and is still being studied, as changes in its molecular structure are integral in regulating (or dysregulating) its biological activities via its cell, matrix component, and growth factor binding sites. Fn comprises three types of repeating modules; among them, FnIII modules are mechanically unstable domains that may be extended/unfolded upon cell traction and either uncover cryptic binding sites or disrupt otherwise exposed binding sites. Cells assemble Fn into a fibrillar network; its conformational flexibility implicates Fn as a critical mechanoregulator of the ECM. Fn has been shown to contribute to altered stroma remodeling during tumorigenesis. This review will discuss (i) the significance of the structure–function relationship of Fn at both the molecular and the matrix scales, (ii) the role of Fn mechanobiology in the regulation of tumorigenesis, and (iii) Fn-related advances in cancer therapy development.
Collapse
Affiliation(s)
- Karin Wang
- Department of Materials Science and Engineering, Cornell University, 327 Bard Hall, Ithaca, NY 14853 USA ; Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Bo Ri Seo
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Claudia Fischbach
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA ; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 USA
| | - Delphine Gourdon
- Department of Materials Science and Engineering, Cornell University, 327 Bard Hall, Ithaca, NY 14853 USA ; Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
43
|
Sato R, Fukuoka H, Yokohama-Tamaki T, Kaku M, Shibata S. Immunohistochemical localization of tenascin-C in rat periodontal ligament with reference to alveolar bone remodeling. Anat Sci Int 2015; 91:196-206. [PMID: 25957016 DOI: 10.1007/s12565-015-0285-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/23/2015] [Indexed: 11/30/2022]
Abstract
We investigated the immunohistochemical localization of tenascin-C in 8-week-old rat periodontal ligaments. Tenascin-C immunoreactivity was detected in zones along with cementum and alveolar bone, and more intensely on the resorption surface of alveolar bone than on the formation surface. On the resorbing surface, tenascin-C immunoreactivity was detected in Howship's lacunae without osteoclasts, and in the interfibrous space of the periodontal ligaments, indicating that this molecule works as an adhesion molecule between bone and fibers of periodontal ligaments. Upon experimental tooth movement by inserting elastic bands (Waldo method), the physiological resorption surface of alveolar bone under compressive force showed enhanced bone resorption and enhanced tenascin-C immunoreactivity. However, on the physiological bone formation surface under compressive force, bone resorption was seen only occasionally, and no enhanced tenascin-C immunoreactivity was noted. In an experiment involving excessive occlusal loading to rat molars, transient bone resorption occurred within interradicular septa, but no enhanced tenascin-C immunoreactivity was seen in the periodontal ligaments. These results indicate that tenascin-C works effectively on the bone resorbing surface of physiological alveolar bone remodeling sites, rather than on the non-physiological transient bone resorbing surface. Fibronectin immunoreactivity was distributed evenly in the periodontal ligaments under experimental conditions. Co-localization of tenascin-C and fibronectin immunoreactivity was observed in many regions, but mutually exclusive expression patterns were also seen in some regions, indicating that fibronectin might not be directly involved in alveolar bone remodeling, but may play a role via interaction with tenascin-C.
Collapse
Affiliation(s)
- Rei Sato
- Maxillofacial Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Hiroki Fukuoka
- Maxillofacial Orthognatics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tamaki Yokohama-Tamaki
- Maxillofacial Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shunichi Shibata
- Maxillofacial Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
44
|
Matsui N, Nozaki K, Ishihara K, Yamashita K, Nagai A. Concentration-dependent effects of fibronectin adsorbed on hydroxyapatite surfaces on osteoblast adhesion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:378-83. [DOI: 10.1016/j.msec.2014.12.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/24/2014] [Accepted: 12/07/2014] [Indexed: 10/24/2022]
|
45
|
탈세포 장기 지지체의 제조 및 분석기법. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-014-0421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
46
|
Deng J, Ren T, Zhu J, Mao Z, Gao C. Adsorption of plasma proteins and fibronectin on poly(hydroxylethyl methacrylate) brushes of different thickness and their relationship with adhesion and migration of vascular smooth muscle cells. Regen Biomater 2014; 1:17-25. [PMID: 26814446 PMCID: PMC4669003 DOI: 10.1093/rb/rbu008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/23/2014] [Indexed: 12/27/2022] Open
Abstract
The surface-grafted poly(hydroxylethyl methacrylate) (PHEMA) molecules were demonstrated to show a brush state regardless of their molecular length (molecular weight). Adsorption of proteins from 10% fetal bovine serum (FBS), fibronectin (Fn) and bovine serum albumin (BSA) was quantified by ellipsometry, revealing that the amounts of FBS and Fn decreased monotonously along with the increase of PHEMA thickness, whereas not detectable for BSA when the PHEMA thickness was larger than 6 nm. Radio immunoassay found that the adsorption of Fn from 10% FBS had no significant difference regardless of the PHEMA thickness. However, ELISA results showed that the Arg-Gly-Asp (RGD) activity of adsorbed Fn decreased with the increase of PHEMA thickness. By comparison of cellular behaviors of vascular smooth muscle cells (VSMCs) being cultured in vitro in the normal serum-containing medium and the Fn-depleted serum-containing medium, the significant role of Fn on modulating the adhesion and migration of VSMCs was verified. Taking account all the results, the Fn adsorption model and its role on linking the biomaterials surface to the VSMCs behaviors are proposed.
Collapse
Affiliation(s)
- Jun Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tanchen Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiyu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
47
|
Neo PY, Tan DJA, Shi P, Toh SL, Goh JCH. Enhancing analysis of cells and proteins by fluorescence imaging on silk-based biomaterials: modulating the autofluorescence of silk. Tissue Eng Part C Methods 2014; 21:218-28. [PMID: 25050876 DOI: 10.1089/ten.tec.2014.0209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Silk is a versatile and established biomaterial for various tissue engineering purposes. However, it also exhibits strong autofluorescence signals-thereby hindering fluorescence imaging analysis of cells and proteins on silk-derived biomaterials. Sudan Black B (SB) is a lysochrome dye commonly used to stain lipids in histology. It has also been reported to be able to quench autofluorescence of tissues in histology and has been tested on artificial biomedical polymers in recent years. It was hypothesized that SB would exert similar quenching effects on silk, modulating the autofluorescence signals, and thereby enabling improved imaging analysis of cells and molecules of interests. The quenching effect of SB on the intrinsic fluorescence properties of silk and on commercial fluorescent dyes were first investigated in this study. SB was then incorporated into typical fluorescence-based staining protocols to study its effectiveness in improving fluorescence-based imaging of the cells and proteins residing with the silk-based biomaterials. Silk processed into various forms of biomaterials (e.g., films, sponges, fibers, and electrospun mats) was seeded with cells and cultured in vitro. At sacrificial time points, specimens were harvested, fixed, and prepared for fluorescence staining. SB, available commercially as a powder, was dissolved in 70% ethanol (0.3% [w/v]) to form staining solutions. SB treatment was introduced at the last step of typical immunofluorescence staining protocols for 15-120 min. For actin staining protocols by phalloidin toxin, SB staining solutions were added before and after permeabilization with Triton-X for 15-30 min. Results showed that ideal SB treatment duration is about 15 min. Apart from being able to suppress the autofluorescence of silk, this treatment duration was also not too long to adversely affect the fluorescent labeling probes used. The relative improvement brought about by SB treatment was most evident in the blue and green emission wavelengths compared with the red emission wavelength. This study has showed that the use of SB is a cost and time effective approach to enhance fluorescence-based imaging analyses of cell-seeded silk biomaterials, which otherwise would have been hindered by the unmodulated autofluorescence signals.
Collapse
Affiliation(s)
- Puay Yong Neo
- 1 Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore , Singapore , Singapore
| | | | | | | | | |
Collapse
|
48
|
Mitsi M, Handschin S, Gerber I, Schwartländer R, Klotzsch E, Wepf R, Vogel V. The ultrastructure of fibronectin fibers pulled from a protein monolayer at the air-liquid interface and the mechanism of the sheet-to-fiber transition. Biomaterials 2014; 36:66-79. [PMID: 25442805 PMCID: PMC4234482 DOI: 10.1016/j.biomaterials.2014.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/08/2014] [Indexed: 11/20/2022]
Abstract
Fibronectin is a globular protein that circulates in the blood and undergoes fibrillogenesis if stretched or under other partially denaturing conditions, even in the absence of cells. Stretch assays made by pulling fibers from droplets of solutions containing high concentrations of fibronectin have previously been introduced in mechanobiology, particularly to ask how bacteria and cells exploit the stretching of fibronectin fibers within extracellular matrix to mechano-regulate its chemical display. Our electron microscopy analysis of their ultrastructure now reveals that the manually pulled fibronectin fibers are composed of densely packed lamellar spirals, whose interlamellar distances are dictated by ion-tunable electrostatic interactions. Our findings suggest that fibrillogenesis proceeds via an irreversible sheet-to-fiber transition as the fibronectin sheet formed at the air-liquid interface of the droplet is pulled off by a sharp tip. This far from equilibrium process is driven by the externally applied force, interfacial surface tension, shear-induced fibronectin self-association, and capillary force-induced buffer drainage. The ultrastructural characterization is then contrasted with previous FRET studies that characterized the molecular strain within these manually pulled fibers. Particularly relevant for stretch-dependent binding studies is the finding that the interior fiber surfaces are accessible to nanoparticles smaller than 10 nm. In summary, our study discovers the underpinning mechanism by which highly hierarchically structured fibers can be generated with unique mechanical and mechano-chemical properties, a concept that might be extended to other bio- or biomimetic polymers.
Collapse
Affiliation(s)
- Maria Mitsi
- Laboratory of Applied Mechanobiology, Vladimir-Prelog-Weg 4, ETH Zurich, Switzerland
| | - Stephan Handschin
- SCOPEM - Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland
| | - Isabel Gerber
- Laboratory of Applied Mechanobiology, Vladimir-Prelog-Weg 4, ETH Zurich, Switzerland
| | - Ruth Schwartländer
- Laboratory of Applied Mechanobiology, Vladimir-Prelog-Weg 4, ETH Zurich, Switzerland
| | - Enrico Klotzsch
- Laboratory of Applied Mechanobiology, Vladimir-Prelog-Weg 4, ETH Zurich, Switzerland
| | - Roger Wepf
- SCOPEM - Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Vladimir-Prelog-Weg 4, ETH Zurich, Switzerland.
| |
Collapse
|
49
|
Sun M, Deng J, Tang Z, Wu J, Li D, Chen H, Gao C. A correlation study of protein adsorption and cell behaviors on substrates with different densities of PEG chains. Colloids Surf B Biointerfaces 2014; 122:134-142. [DOI: 10.1016/j.colsurfb.2014.06.041] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/03/2014] [Accepted: 06/19/2014] [Indexed: 11/16/2022]
|
50
|
Kim MJ, Lee DY. Pancreas-like extracellular matrix scaffold for successful pancreatic islet transplantation. Macromol Res 2014. [DOI: 10.1007/s13233-014-2097-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|