1
|
Arefanian H, Ramji Q, Gupta N, Spigelman AF, Grynoch D, MacDonald PE, Mueller TF, Gazda LS, Rajotte RV, Rayat GR. Yield, cell composition, and function of islets isolated from different ages of neonatal pigs. Front Endocrinol (Lausanne) 2022; 13:1032906. [PMID: 36619563 PMCID: PMC9811407 DOI: 10.3389/fendo.2022.1032906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022] Open
Abstract
The yield, cell composition, and function of islets isolated from various ages of neonatal pigs were characterized using in vitro and in vivo experimental models. Islets from 7- and 10-day-old pigs showed significantly better function both in vitro and in vivo compared to islets from 3- and 5-day-old pigs however, the islet yield from 10-day-old pigs were significantly less than those obtained from the other pigs. Since islets from 3-day-old pigs were used in our previous studies and islets from 7-day-old pigs reversed diabetes more efficiently than islets from other groups, we further evaluated the function of these islets post-transplantation. B6 rag-/- mouse recipients of various numbers of islets from 7-day-old pigs achieved normoglycemia faster and showed significantly improved response to glucose challenge compared to the recipients of the same numbers of islets from 3-day-old pigs. These results are in line with the findings that islets from 7-day-old pigs showed reduced voltage-dependent K+ (Kv) channel activity and their ability to recover from post-hypoxia/reoxygenation stress. Despite more resident immune cells and immunogenic characteristics detected in islets from 7-day-old pigs compared to islets from 3-day-old pigs, the combination of anti-LFA-1 and anti-CD154 monoclonal antibodies are equally effective at preventing the rejection of islets from both age groups of pigs. Collectively, these results suggest that islets from various ages of neonatal pigs vary in yield, cellular composition, and function. Such parameters may be considered when defining the optimal pancreas donor for islet xenotransplantation studies.
Collapse
Affiliation(s)
- Hossein Arefanian
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Qahir Ramji
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nancy Gupta
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Aliya F. Spigelman
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Donald Grynoch
- Alberta Precision Labs, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Patrick E. MacDonald
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Thomas F. Mueller
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | | | - Ray V. Rajotte
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Gina R. Rayat, ; Ray V. Rajotte,
| | - Gina R. Rayat
- Alberta Diabetes Institute, Ray Rajotte Surgical-Medical Research Institute, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Gina R. Rayat, ; Ray V. Rajotte,
| |
Collapse
|
2
|
Montanari E, Szabó L, Balaphas A, Meyer J, Perriraz-Mayer N, Pimenta J, Giraud MN, Egger B, Gerber-Lemaire S, Bühler L, Gonelle-Gispert C. Multipotent mesenchymal stromal cells derived from porcine exocrine pancreas improve insulin secretion from juvenile porcine islet cell clusters. Xenotransplantation 2021; 28:e12666. [PMID: 33538027 DOI: 10.1111/xen.12666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 01/03/2023]
Abstract
Neonatal and juvenile porcine islet cell clusters (ICC) present an unlimited source for islet xenotransplantation to treat type 1 diabetes patients. We isolated ICC from pancreata of 14 days old juvenile piglets and characterized their maturation by immunofluorescence and insulin secretion assays. Multipotent mesenchymal stromal cells derived from exocrine tissue of same pancreata (pMSC) were characterized for their differentiation potential and ability to sustain ICC insulin secretion in vitro and in vivo. Isolation of ICC resulted in 142 ± 50 × 103 IEQ per pancreas. Immunofluorescence staining revealed increasing presence of insulin-positive beta cells between day 9 and 21 in culture and insulin content per 500IEC of ICC increased progressively over time from 1178.4 ± 450 µg/L to 4479.7 ± 1954.2 µg/L from day 7 to 14, P < .001. Highest glucose-induced insulin secretion by ICC was obtained at day 7 of culture and reached a fold increase of 2.9 ± 0.4 compared to basal. Expansion of adherent cells from the pig exocrine tissue resulted in a homogenous CD90+ , CD34- , and CD45- fibroblast-like cell population and differentiation into adipocytes and chondrocytes demonstrated their multipotency. Insulin release from ICC was increased in the presence of pMSC and dependent on cell-cell contact (glucose-induced fold increase: ICC alone: 1.6 ± 0.2; ICC + pMSC + contact: 3.2 ± 0.5, P = .0057; ICC + pMSC no-contact: 1.9 ± 0.3; theophylline stimulation: alone: 5.4 ± 0.7; pMSC + contact: 8.4 ± 0.9, P = .013; pMSC no-contact: 5.2 ± 0.7). After transplantation of encapsulated ICC using Ca2+ -alginate (alg) microcapsules into streptozotocin-induced diabetic and immunocompetent mice, transient normalization of glycemia was obtained up to day 7 post-transplant, whereas ICC co-encapsulated with pMSC did not improve glycemia and showed increased pericapsular fibrosis. We conclude that pMSC derived from juvenile porcine exocrine pancreas improves insulin secretion of ICC by direct cell-cell contact. For transplantation purposes, the use of pMSC to support beta-cell function will depend on the development of new anti-fibrotic polymers and/or on genetically modified pigs with lower immunogenicity.
Collapse
Affiliation(s)
- Elisa Montanari
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Luca Szabó
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Lausanne, Switzerland
| | - Alexandre Balaphas
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Jeremy Meyer
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Nadja Perriraz-Mayer
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Joel Pimenta
- Surgical Research Unit, CMU-1, University Hospitals of Geneva, Geneva, Switzerland
| | - Marie-Noelle Giraud
- Cardiology, Dpt EMC, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Bernhard Egger
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Lausanne, Switzerland
| | - Leo Bühler
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Primavera R, Kevadiya BD, Swaminathan G, Wilson RJ, De Pascale A, Decuzzi P, Thakor AS. Emerging Nano- and Micro-Technologies Used in the Treatment of Type-1 Diabetes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E789. [PMID: 32325974 PMCID: PMC7221526 DOI: 10.3390/nano10040789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Type-1 diabetes is characterized by high blood glucose levels due to a failure of insulin secretion from beta cells within pancreatic islets. Current treatment strategies consist of multiple, daily injections of insulin or transplantation of either the whole pancreas or isolated pancreatic islets. While there are different forms of insulin with tunable pharmacokinetics (fast, intermediate, and long-acting), improper dosing continues to be a major limitation often leading to complications resulting from hyper- or hypo-glycemia. Glucose-responsive insulin delivery systems, consisting of a glucose sensor connected to an insulin infusion pump, have improved dosing but they still suffer from inaccurate feedback, biofouling and poor patient compliance. Islet transplantation is a promising strategy but requires multiple donors per patient and post-transplantation islet survival is impaired by inflammation and suboptimal revascularization. This review discusses how nano- and micro-technologies, as well as tissue engineering approaches, can overcome many of these challenges and help contribute to an artificial pancreas-like system.
Collapse
Affiliation(s)
- Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Bhavesh D Kevadiya
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Ganesh Swaminathan
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Rudilyn Joyce Wilson
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Angelo De Pascale
- Unit of Endocrinology, Department of Internal Medicine & Medical Specialist (DIMI), University of Genoa, 16163 Genoa, Italy;
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| |
Collapse
|
4
|
Molecular shielding of porcine islets by tissue-adhesive chitosan-catechol for enhancement of in-vitro stability. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.08.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Affiliation(s)
- James R. Wright
- Departments of Pathology, Biomedical Engineering, and Surgery, Izaak Walton Killam Health Centre, Dalhousie University Faculty of Medicine, 5850 University Ave., Halifax, Nova Scotia, Canada B3J 3G9
| | - Bill Pohajdak
- Department of Biology, 5076 Life Sciences Bldg., Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| |
Collapse
|
6
|
Ellis CE, Korbutt GS. Justifying clinical trials for porcine islet xenotransplantation. Xenotransplantation 2016; 22:336-44. [PMID: 26381492 DOI: 10.1111/xen.12196] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022]
Abstract
The development of the Edmonton Protocol encouraged a great deal of optimism that a cell-based cure for type I diabetes could be achieved. However, donor organ shortages prevent islet transplantation from being a widespread solution as the supply cannot possibly equal the demand. Porcine islet xenotransplantation has the potential to address these shortages, and recent preclinical and clinical trials show promising scientific support. Consequently, it is important to consider whether the current science meets the ethical requirements for moving toward clinical trials. Despite the potential risks and the scientific unknowns that remain to be investigated, there is optimism regarding the xenotransplantation of some types of tissue, and enough evidence has been gathered to ethically justify clinical trials for the most safe and advanced area of research, porcine islet transplantation. Researchers must make a concerted effort to maintain a positive image for xenotransplantation, as a few well-publicized failed trials could irrevocably damage public perception of xenotransplantation. Because all of society carries the burden of risk, it is important that the public be involved in the decision to proceed. As new information from preclinical and clinical trials develops, policy decisions should be frequently updated. If at any point evidence shows that islet xenotransplantation is unsafe, then clinical trials will no longer be justified and they should be halted. However, as of now, the expected benefit of an unlimited supply of islets, combined with adequate informed consent, justifies clinical trials for islet xenotransplantation.
Collapse
Affiliation(s)
- Cara E Ellis
- Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Gregory S Korbutt
- Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Wolf-van Buerck L, Schuster M, Baehr A, Mayr T, Guethoff S, Abicht J, Reichart B, Nam-Apostolopoulos YC, Klymiuk N, Wolf E, Seissler J. Engraftment and reversal of diabetes after intramuscular transplantation of neonatal porcine islet-like clusters. Xenotransplantation 2015; 22:443-50. [PMID: 26490671 DOI: 10.1111/xen.12201] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/16/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Intraportal infusion is currently the method of choice for clinical islet cell transplantation but suffers from poor efficacy. As the liver may not represent an optimal transplantation site for Langerhans islets, we examined the potential of neonatal porcine islet-like clusters (NPICCs) to engraft in skeletal muscle as an alternative transplantation site. METHODS Neonatal porcine islet-like clusters were isolated from 2- to 5-day-old piglets and either transplanted under the kidney capsule (s.k.) or injected into the lower hindlimb muscle (i.m.) of streptozotocin-diabetic NOD-SCID IL2rγ(-/-) (NSG) mice. Survival, vascularization, maturation, and functional activity were analyzed by intraperitoneal glucose tolerance testing and immunohistochemical analyses. RESULTS Intramuscular transplantation of NPICCs resulted in development of normoglycemia and restored glucose homeostasis. Time to reversal of diabetes and glucose tolerance (AUC glucose and AUC insulin) did not significantly differ as compared to s.k. transplantation. Intramuscular grafts exhibited rapid neovascularization and graft composition with cytokeratin-positive ductal cells and beta cells at post-transplant weeks 2 and 8 and after establishment of normoglycemia was comparable in both groups. CONCLUSIONS Intramuscular injection represents a minimally invasive but efficient alternative for transplantation of NPICCs and, thus, offers an attractive alternative site for xenotransplantation approaches. These findings may have important implications for improving the outcome and the monitoring of pig islet xenotransplantation.
Collapse
Affiliation(s)
- Lelia Wolf-van Buerck
- Medizinische Klinik und Poliklinik IV-Campus Innenstadt, Diabetes Zentrum, Klinikum der Ludwig-Maximilians-Universität, München, Germany.,Transregio Collaborative Research Center 127, Ludwig-Maximilians-Universität, München, Germany
| | - Marion Schuster
- Medizinische Klinik und Poliklinik IV-Campus Innenstadt, Diabetes Zentrum, Klinikum der Ludwig-Maximilians-Universität, München, Germany.,Transregio Collaborative Research Center 127, Ludwig-Maximilians-Universität, München, Germany
| | - Andrea Baehr
- Transregio Collaborative Research Center 127, Ludwig-Maximilians-Universität, München, Germany.,Chair for Molecular Animal Breeding and Biotechnology and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, München, Germany
| | - Tanja Mayr
- Transregio Collaborative Research Center 127, Ludwig-Maximilians-Universität, München, Germany.,Department of Cardiac Surgery, Ludwig-Maximilians-Universität, München, Germany
| | - Sonja Guethoff
- Transregio Collaborative Research Center 127, Ludwig-Maximilians-Universität, München, Germany.,Department of Cardiac Surgery, Ludwig-Maximilians-Universität, München, Germany
| | - Jan Abicht
- Transregio Collaborative Research Center 127, Ludwig-Maximilians-Universität, München, Germany.,Department of Anesthesiology, Ludwig-Maximilians-Universität, München, Germany
| | - Bruno Reichart
- Transregio Collaborative Research Center 127, Ludwig-Maximilians-Universität, München, Germany
| | | | - Nikolai Klymiuk
- Transregio Collaborative Research Center 127, Ludwig-Maximilians-Universität, München, Germany.,Chair for Molecular Animal Breeding and Biotechnology and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, München, Germany
| | - Eckhard Wolf
- Transregio Collaborative Research Center 127, Ludwig-Maximilians-Universität, München, Germany.,Chair for Molecular Animal Breeding and Biotechnology and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, München, Germany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV-Campus Innenstadt, Diabetes Zentrum, Klinikum der Ludwig-Maximilians-Universität, München, Germany.,Transregio Collaborative Research Center 127, Ludwig-Maximilians-Universität, München, Germany
| |
Collapse
|
8
|
Ham DS, Song MS, Park HS, Rhee M, Yang HK, Lee SH, Kim JW, Jung ES, Yoon KH. Successful xenotransplantation with re-aggregated and encapsulated neonatal pig liver cells for treatment of mice with acute liver failure. Xenotransplantation 2015; 22:249-59. [DOI: 10.1111/xen.12177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/04/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Dong-Sik Ham
- Department of Endocrinology & Metabolism; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Min-Sang Song
- Department of Endocrinology & Metabolism; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Heon-Seok Park
- Department of Endocrinology & Metabolism; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Marie Rhee
- Department of Endocrinology & Metabolism; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Hae Kyung Yang
- Department of Endocrinology & Metabolism; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Seung-Hwan Lee
- Department of Endocrinology & Metabolism; College of Medicine; The Catholic University of Korea; Seoul Korea
| | - Ji-Won Kim
- Department of Endocrinology & Metabolism; College of Medicine; The Catholic University of Korea; Seoul Korea
- Convergent Research Consortium for Immunologic Disease; Seoul St. Mary's Hospital; Seoul Korea
| | - Eun-Sun Jung
- Department of Hospital Pathology; The Catholic University of Korea; Seoul Korea
| | - Kun-Ho Yoon
- Department of Endocrinology & Metabolism; College of Medicine; The Catholic University of Korea; Seoul Korea
- Convergent Research Consortium for Immunologic Disease; Seoul St. Mary's Hospital; Seoul Korea
| |
Collapse
|
9
|
Nagaraju S, Bottino R, Wijkstrom M, Trucco M, Cooper DKC. Islet xenotransplantation: what is the optimal age of the islet-source pig? Xenotransplantation 2014; 22:7-19. [DOI: 10.1111/xen.12130] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/26/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Santosh Nagaraju
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh Medical Center; Pittsburgh PA USA
| | - Rita Bottino
- Division of Immunogenetics; Department of Pediatrics; Children's Hospital of Pittsburgh; University of Pittsburgh Medical Center; Pittsburgh PA USA
| | - Martin Wijkstrom
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh Medical Center; Pittsburgh PA USA
| | - Massimo Trucco
- Division of Immunogenetics; Department of Pediatrics; Children's Hospital of Pittsburgh; University of Pittsburgh Medical Center; Pittsburgh PA USA
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh Medical Center; Pittsburgh PA USA
| |
Collapse
|
10
|
Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:485-502. [PMID: 23672709 DOI: 10.1089/ten.teb.2012.0437] [Citation(s) in RCA: 1445] [Impact Index Per Article: 131.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tissue engineering applications commonly encompass the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the incorporation of cells or growth factors to regenerate damaged tissues or organs. These scaffolds serve to mimic the actual in vivo microenvironment where cells interact and behave according to the mechanical cues obtained from the surrounding 3D environment. Hence, the material properties of the scaffolds are vital in determining cellular response and fate. These 3D scaffolds are generally highly porous with interconnected pore networks to facilitate nutrient and oxygen diffusion and waste removal. This review focuses on the various fabrication techniques (e.g., conventional and rapid prototyping methods) that have been employed to fabricate 3D scaffolds of different pore sizes and porosity. The different pore size and porosity measurement methods will also be discussed. Scaffolds with graded porosity have also been studied for their ability to better represent the actual in vivo situation where cells are exposed to layers of different tissues with varying properties. In addition, the ability of pore size and porosity of scaffolds to direct cellular responses and alter the mechanical properties of scaffolds will be reviewed, followed by a look at nature's own scaffold, the extracellular matrix. Overall, the limitations of current scaffold fabrication approaches for tissue engineering applications and some novel and promising alternatives will be highlighted.
Collapse
Affiliation(s)
- Qiu Li Loh
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University , Singapore, Singapore
| | | |
Collapse
|
11
|
Yi S, Ji M, Wu J, Ma X, Phillips P, Hawthorne WJ, O’Connell PJ. Adoptive transfer with in vitro expanded human regulatory T cells protects against porcine islet xenograft rejection via interleukin-10 in humanized mice. Diabetes 2012; 61:1180-91. [PMID: 22403295 PMCID: PMC3331767 DOI: 10.2337/db11-1306] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/18/2012] [Indexed: 11/13/2022]
Abstract
T cell-mediated rejection remains a barrier to the clinical application of islet xenotransplantation. Regulatory T cells (Treg) regulate immune responses by suppressing effector T cells. This study aimed to determine the ability of human Treg to prevent islet xenograft rejection and the mechanism(s) involved. Neonatal porcine islet transplanted NOD-SCID IL2rγ(-/-) mice received human peripheral blood mononuclear cells (PBMC) with in vitro expanded autologous Treg in the absence or presence of anti-human interleukin-10 (IL-10) monoclonal antibody. In addition, human PBMC-reconstituted recipient mice received recombinant human IL-10 (rhIL-10). Adoptive transfer with expanded autologous Treg prevented islet xenograft rejection in human PBMC-reconstituted mice by inhibiting graft infiltration of effector cells and their function. Neutralization of human IL-10 shortened xenograft survival in mice receiving human PBMC and Treg. In addition, rhIL-10 treatment led to prolonged xenograft survival in human PBMC-reconstituted mice. This study demonstrates the ability of human Treg to prevent T-cell effector function and the importance of IL-10 in this response. In vitro Treg expansion was a simple and effective strategy for generating autologous Treg and highlighted a potential adoptive Treg cell therapy to suppress antigraft T-cell responses and reduce the requirement for immunosuppression in islet xenotransplantation.
Collapse
Affiliation(s)
- Shounan Yi
- Centre for Transplant and Renal Research, Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia
- The Key Laboratory of Diabetes Immunology of the Ministry of Education at the 2nd Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ming Ji
- Centre for Transplant and Renal Research, Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia
| | - Jingjing Wu
- Centre for Transplant and Renal Research, Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia
| | - Xiaoqian Ma
- Centre for Transplant and Renal Research, Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia
| | - Peta Phillips
- Centre for Transplant and Renal Research, Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia
| | - Wayne J. Hawthorne
- Centre for Transplant and Renal Research, Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia
| | - Philip J. O’Connell
- Centre for Transplant and Renal Research, Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
12
|
Protection of porcine islet xenografts in mice using sertoli cells and monoclonal antibodies. Transplantation 2012; 92:1309-15. [PMID: 22037619 DOI: 10.1097/tp.0b013e3182384ab0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND To remedy the shortage of human donor islets, xenotransplantation of neonatal porcine islets (NPI) provides an attractive alternative source of donor tissue so long as graft rejection can be circumvented. Thus, in this study, we sought to determine whether cotransplantation of NPI with Sertoli cells (SC) combined with a short-course treatment of monoclonal antibody (mAb) could provide long-term islet xenograft survival. METHODS NPI alone or NPI cotransplanted with neonatal porcine SC were transplanted into diabetic C57BL/6 mice. These mice were left untreated or were treated with a short course of antileukocyte function associated antigen-1 (LFA-1), anti-CD154, or anti-CD45RB mAb. Blood glucose levels were monitored twice a week to assess graft function. At more than 100 days posttransplantation or on the day of rejection, graft-bearing kidneys were collected for characterization using immunohistochemistry. RESULTS None of the untreated control mice transplanted with NPI alone (0/5) or NPI cotransplanted with SC (0/8) achieved normoglycemia. However, of the mice receiving NPI alone, 3 of 7 treated with anti-LFA-1 mAb, 2 of 7 treated with anti-CD154 mAb, and 1 of 7 treated with anti-CD45RB mAb achieved long-term graft survival (>100 days). These proportions improved considerably when NPI were cotransplanted with SC, as 15 of 15 mice treated with anti-LFA-1 mAb, 7 of 8 mice treated with anti-CD154 mAb, and 4 of 9 mice treated with anti-CD45RB mAb achieved long-term graft survival. CONCLUSIONS These results show that transient administration of anti-LFA-1 mAb or anti-CD154 mAb is efficacious in prolonging NPI xenograft survival when islets are cotransplanted with SC. Interleukin-4 and Serpina3n may be important mediators of protection observed in this model.
Collapse
|
13
|
Ekser B, Ezzelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R, Trucco M, Cooper DKC. Clinical xenotransplantation: the next medical revolution? Lancet 2012; 379:672-83. [PMID: 22019026 DOI: 10.1016/s0140-6736(11)61091-x] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The shortage of organs and cells from deceased individuals continues to restrict allotransplantation. Pigs could provide an alternative source of tissue and cells but the immunological challenges and other barriers associated with xenotransplantation need to be overcome. Transplantation of organs from genetically modified pigs into non-human primates is now not substantially limited by hyperacute, acute antibody-mediated, or cellular rejection, but other issues have become more prominent, such as development of thrombotic microangiopathy in the graft or systemic consumptive coagulopathy in the recipient. To address these problems, pigs that express one or more human thromboregulatory or anti-inflammatory genes are being developed. The results of preclinical transplantation of pig cells--eg, islets, neuronal cells, hepatocytes, or corneas--are much more encouraging than they are for organ transplantation, with survival times greater than 1 year in all cases. Risk of transfer of an infectious microorganism to the recipient is small.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Thompson P, Cardona K, Russell M, Badell IR, Shaffer V, Korbutt G, Rayat GR, Cano J, Song M, Jiang W, Strobert E, Rajotte R, Pearson T, Kirk AD, Larsen CP. CD40-specific costimulation blockade enhances neonatal porcine islet survival in nonhuman primates. Am J Transplant 2011; 11:947-57. [PMID: 21521467 PMCID: PMC4845096 DOI: 10.1111/j.1600-6143.2011.03509.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The widespread clinical implementation of alloislet transplantation as therapy for type 1 diabetes has been hindered by the lack of suitable islet donors. Pig-to-human islet xenotransplantation is one strategy with potential to alleviate this shortage. Long-term survival of porcine islets has been achieved using CD154-specific antibodies to interrupt the CD40/CD154 costimulation pathway; however, CD154-specific antibodies seem unlikely candidates for clinical translation. An alternative strategy for CD40/CD154 pathway interruption is use of CD40-specific antibodies. Herein, we evaluate the ability of a chimeric CD40-specific monoclonal antibody (Chi220) to protect islet xenografts. Neonatal porcine islets (~50,000 IEQ/kg) were transplanted intraportally into pancreatectomized diabetic macaques. Immunosuppression consisted of induction therapy with Chi220 and the IL-2 receptor-specific antibody basiliximab, and maintenance therapy with sirolimus and the B7-specific fusion protein belatacept. Chi220 effectively promoted xenoislet engraftment and survival, with five of six treated recipients achieving insulin-independent normoglycemia (median rejection-free survival 59 days; mean 90.8 days, maximum 203 days). No thromboembolic phenomena were observed. CD40 represents a promising alternative to CD154 as a therapeutic target, and the efficacy of CD40-specific antibodies in islet xenotransplantation warrants further investigation.
Collapse
Affiliation(s)
- P Thompson
- Emory Transplant Center, Emory University, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cooper DKC, Ayares D. The immense potential of xenotransplantation in surgery. Int J Surg 2010; 9:122-9. [PMID: 21059418 DOI: 10.1016/j.ijsu.2010.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 11/02/2010] [Indexed: 01/28/2023]
Abstract
There is a limited availability of deceased human organs and cells for the purposes of clinical transplantation. Genetically-engineered pigs may provide an alternative source. Although several immune barriers need to be overcome, considerable progress has been made in experimental models in recent years, largely through the increasing availability of pigs with new genetic modifications. Pig heterotopic heart graft survival in nonhuman primates has extended for 8 months, with orthotopic grafts supporting life for almost 2 months. Life-supporting kidney transplants have functioned for almost 3 months. The current barriers are related to coagulation dysfunction between pig and primate that results in thrombotic microangiopathy and/or a consumptive coagulopathy, which may in part be related to molecular incompatibilities in the coagulation systems of pigs and primates. Current efforts are concentrated on genetically-modifying the organ- or islet-source pigs by the introduction of 'anticoagulant' or 'anti-thrombotic' genes to provide protection from the recipient coagulation cascade and platelet activation. Progress with pig islet xenotransplantation has been particularly encouraging with complete control of glycemia in diabetic monkeys extending in one case for >12 months. Other areas where experimental data suggest the possibility of early clinical trials are corneal xenotransplantation and pig neuronal cell xenotransplantation, for example, in patients with Parkinson's disease. With the speed of advances in genetic engineering increasing steadily, it is almost certain that the remaining problems will be overcome within the foreseeable future, and clinical allotransplantation will eventually become of historical interest only.
Collapse
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, BST W1543, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
16
|
Hunkeler D, Rajotte R, Grey D, Morel P, Skjak-Break G, Korbutt G, Gill R, Oberholzer J. Bioartificial Organ Grafts: A View at the Beginning of the Third Millennium. ACTA ACUST UNITED AC 2009; 31:365-82. [PMID: 14672414 DOI: 10.1081/bio-120025408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An immunoisolated collection of cells, which communicate and exchange essential factors, co-stimulatory hormones, as well as providing immunoprotection and immunomodulation, can be prepared, given existing scientific and medical know-how, within two decades. These "Bioartificial Organ Grafts" have advantages relative to isolated cell therapies, including beta-cell encapsulation for diabetes treatment, and xenotransplantation, which has a de facto moratorium. This paper documents that the majority of the research for the bioartificial organ grafts has been concluded, with the remaining hurdles minimum in comparison. The use of co-encapsulation and the induction of local immune-privilege will provide a more sensitive humoral hormonal response and graft survival, without systemic immunosuppression. A call for the staged implementation of bioartificial organ grafts, based on the best available medical practice, materials, tissue and technology available, is advocated. The implementation of bioartificial organ grafts can begin within the next two years, based on allografts succeeded by genetically modified human tissue, without the need to pass through a xenograft stage.
Collapse
Affiliation(s)
- D Hunkeler
- AQUA + TECH Specialties SA, Geneva, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kin T, Korbutt GS. Delayed functional maturation of neonatal porcine islets in recipients under strict glycemic control. Xenotransplantation 2007; 14:333-8. [PMID: 17669175 DOI: 10.1111/j.1399-3089.2007.00414.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The aim of this study was to compare the functional maturation of neonatal porcine islet (NPI) grafts exposed to long-term hyperglycemia with those implanted under euglycemic conditions. METHODS mice Neonatal porcine islets were transplanted under the left renal capsule of diabetic SCID mice (group H), or in diabetic SCID mice who were also implanted with 500 BALB/c islets under the right renal capsule (group N). On day 42, the right kidneys were removed in both groups. RESULTS No animals in group H achieved euglycemia within 3 weeks after transplantation. Thus, these mice were exposed to long-term hyperglycemia. Mice in group N became euglycemic immediately after transplantation, however after removal of BALB/c grafts on day 42 they exhibited significantly higher blood glucose levels than in group H and showed glucose intolerance after glucose administration. Cellular insulin content of NPI grafts harvested on day 58 or 72 was significantly lower in group N mice compared to group H. CONCLUSIONS These results suggest that tight control of glycemia reduces the functional maturation of NPI grafts.
Collapse
Affiliation(s)
- Tatsuya Kin
- Surgical-Medical Research Institute, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
18
|
Calafiore R, Basta G. Artificial pancreas to treat type 1 diabetes mellitus. METHODS IN MOLECULAR MEDICINE 2007; 140:197-236. [PMID: 18085211 DOI: 10.1007/978-1-59745-443-8_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Substitution of diseased organ/tissues with totally artificial machines or transplantable biohybrid devices where functionally competent cells are enveloped within immunoprotective artificial membranes could represent one of the future goals in medicine. In particular, artificial or, closer to feasibility, biohybrid artificial pancreas (BHAP) could replace the function of pancreatic islet beta-cells that have been destroyed by autoimmunity, thereby obviating the need to treat patients with type 1 diabetes mellitus (TIDM) with multiple daily insulin injections. State-of-the-art diabetes therapy and perspectives in the use of BHAP, with special regard to islet-cell-containing microcapsules fabricated with alginate-based polymers, including applications to experimental animal models according to different chemical procedures, are reviewed. Special emphasis has been given to preparation methods, immunoprotection strategies, and biocompatibility of the islet-cell-containing microbarriers, as well as to approaches to ameliorate these features. Currently available BHAP prototypes have been critically reviewed to define expectations about the next generation devices targeting the final cure of TIDM.
Collapse
|
19
|
Narang AS, Mahato RI. Biological and Biomaterial Approaches for Improved Islet Transplantation. Pharmacol Rev 2006; 58:194-243. [PMID: 16714486 DOI: 10.1124/pr.58.2.6] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Islet transplantation may be used to treat type I diabetes. Despite tremendous progress in islet isolation, culture, and preservation, the clinical use of this modality of treatment is limited due to post-transplantation challenges to the islets such as the failure to revascularize and immune destruction of the islet graft. In addition, the need for lifelong strong immunosuppressing agents restricts the use of this option to a limited subset of patients, which is further restricted by the unmet need for large numbers of islets. Inadequate islet supply issues are being addressed by regeneration therapy and xenotransplantation. Various strategies are being tried to prevent beta-cell death, including immunoisolation using semipermeable biocompatible polymeric capsules and induction of immune tolerance. Genetic modification of islets promises to complement all these strategies toward the success of islet transplantation. Furthermore, synergistic application of more than one strategy is required for improving the success of islet transplantation. This review will critically address various insights developed in each individual strategy and for multipronged approaches, which will be helpful in achieving better outcomes.
Collapse
Affiliation(s)
- Ajit S Narang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 26 S. Dunlap St., Feurt Building, Room 413, Memphis, TN 38163, USA
| | | |
Collapse
|
20
|
Balamurugan AN, Ramakrishna B, Gunasekaran S. Insulin secretory characteristics of monkey pancreatic islets: a simple method of islet isolation and the effect of various density gradients on separation. Diabetes Res Clin Pract 2004; 66:13-21. [PMID: 15364157 DOI: 10.1016/j.diabres.2004.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2003] [Revised: 02/16/2004] [Accepted: 02/18/2004] [Indexed: 11/25/2022]
Abstract
We describe a simple stationary digestion method of islet isolation and separation by various density gradients from monkey pancreas (Macaca radiata radiata). Effective method, different types and concentrations of collagenase were standardized. Sigma type XI collagenase yielded >1000 islets/gram pancreas at the concentration of 4 mg/ml and 3 ml Hank's/gram pancreas. Slow digestion with less concentration of collagenase was suitable for monkey islet isolation. Discontinuous density gradients of bovine serum albumin (BSA) and dextran were compared with standard Ficoll for separation of islets. Islet yield (1038 +/- 81), insulin secretory response (stimulation index, S.I.11) and histological examination revealed dextran gradients were more appropriate for monkey islets when compared to BSA and Ficoll. Insulin secretory characteristics of monkey islets were studied by exposing them to low and high concentrations glucose (S.I.11.5), arginine (S.I.4.2), leucine (S.I.2.3) and tolbutamide (S.I.1.7). The results indicated that the magnitude of glucose induced insulin secretion of monkey islet is about half as that of rat and mouse islets. However, it is higher than that of porcine and bovine islets. In conclusion, the knowledge of insulin secretory ability of Indian bonnet monkey islets together with the techniques of isolation and separation are useful tool for diabetic research especially islet transplantation.
Collapse
Affiliation(s)
- A N Balamurugan
- Departments of Physiology and Pathology, Christian Medical College and Hospital, Vellore 632 002, TN, India.
| | | | | |
Collapse
|
21
|
Binette TM, Seeberger KL, Lyon JG, Rajotte RV, Korbutt GS. Porcine endogenous retroviral nucleic acid in peripheral tissues is associated with migration of porcine cells post islet transplant. Am J Transplant 2004; 4:1051-60. [PMID: 15196061 DOI: 10.1111/j.1600-6143.2004.00460.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Porcine islets represent an alternative source of insulin-producing tissue, however, porcine endogenous retrovirus (PERV) remains a concern. In this study, SCID mice were transplanted with nonencapsulated (non-EC), microencapsulated (EC) or macroencapsulated (in a TheraCyte trade mark device) neonatal porcine islets (NPIs), and peripheral tissues were screened for presence of viral DNA and mRNA. To understand the role of an intact immune system in PERV incidence, mice with established NPI grafts were reconstituted with splenocytes. Peripheral tissues were screened for PERV and porcine DNA using PCR. Tissues with positive DNA were analyzed for PERV mRNA using RT-PCR. No significant difference was observed between non-EC and EC transplants regarding presence of PERV or porcine-specific DNA or mRNA. In reconstituted animals, little PERV or porcine DNA, and no PERV mRNA was detected. No PERV or porcine-specific DNA was observed in animals implanted with a TheraCyte trade mark device. In conclusion, an intact immune system significantly lowered the presence of PERV. Microencapsulation of islets did not alter PERV presence, however, macroencapsulation in the TheraCyte device did. Lower PERV incidence coincided with lower porcine DNA in peripheral tissues, linking the presence of PERV to migration of porcine cells.
Collapse
Affiliation(s)
- Tanya M Binette
- Surgical-Medical Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
22
|
Larsen MO, Rolin B. Use of the Gottingen Minipig as a Model of Diabetes, with Special Focus on Type 1 Diabetes Research. ILAR J 2004; 45:303-13. [PMID: 15229377 DOI: 10.1093/ilar.45.3.303] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animal models of type 1 diabetes remain essential tools for investigation of the etiology and pathogenesis of the disease and, importantly, for the development of effective new treatments. Although a range of well-characterized and widely used models of type 1 diabetes in rodents are currently available, large animal models are a valuable complement to rodent models for both physiological and practical reasons. The pig is very useful in many aspects as a model for human physiology and pathophysiology because many organ systems of this species, as well as physiological and pathophysiological responses, resemble those of the human. The Göttingen minipig is particularly suitable for long-term studies because of its inherent small size and ease of handling, even at full maturity. Of particular relevance to the field of type 1 diabetes are the many similarities evident between humans and pigs with regard to pharmacokinetics of compounds after subcutaneous administration, structure and function of the gastrointestinal tract, morphology of the pancreas, and the overall metabolic status of the two species. Because spontaneous type 1-like diabetes is very rare in pigs, a model of the condition must be induced experimentally, either surgically or chemically. This process is discussed, and the use of the pig as a model in islet transplantation and diabetic complications is briefly summarized.
Collapse
Affiliation(s)
- Marianne O Larsen
- Department of Pharmacology Research I, Novo Nordisk A/S, Maaloev, Denmark
| | | |
Collapse
|
23
|
Min KA, Oh ST, Yoon KH, Kim CK, Lee SK. Prolonged gene expression in primary porcine pancreatic cells using an Epstein-Barr virus-based episomal vector. Biochem Biophys Res Commun 2003; 305:108-15. [PMID: 12732203 DOI: 10.1016/s0006-291x(03)00689-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Epstein-Barr virus (EBV)-based plasmids containing the origin of replication (oriP) and EBV nuclear antigen 1 (EBNA-1) are well known for the stable episomal maintenance in human cells. In order to clarify whether an EBV-based plasmid can be maintained stably in the porcine pancreatic cells which are the primary candidate sources of islet xenotransplantation, we constructed pEBVGFP encoding the green fluorescent protein (GFP). Monolayer culture of the porcine neonatal pancreatic cells was lipofected with pEBVGFP or pGFP which was derived from pEBVGFP by deleting out oriP and EBNA-1. pEBVGFP significantly prolonged GFP expression not only in human cell lines but also in the primary porcine pancreatic cells compared with pGFP. Interestingly, the duct cells that are believed as the pancreatic precursor cells were preferentially transfected and conveniently enriched among the mixed primary cell populations using a hygromycin B selection. To our knowledge, this is the first report suggesting the potential application of an EBV-based plasmid for the extended gene expression in the primary porcine pancreatic duct cells.
Collapse
Affiliation(s)
- Kyoung Ah Min
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, San 56-1, Shinlim-Dong, Kwanack-Ku, Seoul 151-742, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Vizzardelli C, Molano RD, Pileggi A, Berney T, Cattan P, Fenjves ES, Peel A, Fraker C, Ricordi C, Inverardi L. Neonatal porcine pancreatic cell clusters as a potential source for transplantation in humans: characterization of proliferation, apoptosis, xenoantigen expression and gene delivery with recombinant AAV. Xenotransplantation 2002; 9:14-24. [PMID: 12005100 DOI: 10.1034/j.1399-3089.2002.0o128.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neonatal porcine islets are characterized by reproducible isolation success and high yields, sizable advantages over adult islets. In this work we have analyzed selected phenotypic and functional characteristics of porcine neonatal islets relevant to their possible use for transplant in humans. We show that porcine islet cells proliferate in culture, and synthesize and store islet-specific hormones. Proliferating beta cells can be easily identified. Implant of cultured neonatal islets in immunodeficient rodents results in the reversal of diabetes, albeit with delay. We also show that measurable apoptosis occurs in cultured neonatal porcine islets. Further, antigens recognized by human natural antibodies are expressed in a dynamic fashion over the culture period analyzed and are not limited to the alpha-Gal epitope. Lastly, we demonstrate that a recombinant Adeno-Associated virus can be used to efficiently deliver a reporter gene in porcine islets. This characterization might be helpful in the definition of the potential use of neonatal porcine islets for human transplantation.
Collapse
Affiliation(s)
- Caterina Vizzardelli
- Diabetes Research Institute, Cell Transplant Center, University of Miami School of Medicine, FL 33136, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Auchincloss H. Literature update 1999, part 3. Xenotransplantation. Xenotransplantation 2000; 7:156-62. [PMID: 10961300 DOI: 10.1034/j.1399-3089.2000.00062.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- H Auchincloss
- Transplantation Unit, Surgical Services, Massachusetts General Hospital, Boston 02114, USA
| |
Collapse
|
26
|
Mankertz A, Domingo M, Folch JM, LeCann P, Jestin A, Segalés J, Chmielewicz B, Plana-Durán J, Soike D. Characterisation of PCV-2 isolates from Spain, Germany and France. Virus Res 2000; 66:65-77. [PMID: 10653918 DOI: 10.1016/s0168-1702(99)00122-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The new isolated circovirus variant PCV-2 is discussed to be the etiological agent of a new emerging swine disease with a variable morbidity and high lethality, postweaning multisystemic wasting syndrome (PMWS). PMWS has been diagnosed in North America and West Europe. Clinical signs include dyspnea, loss of weight, lymph node enlargement and lymphocyte depletion in lymphoid tissues. This report describes the characterisation of PCV-2 isolates from animals affected with PMWS from Germany, Spain and France. We could demonstrate the presence of circovirus by electron microscope, in situ hybridisation and PCR. PCR revealed incidence of PCV-2 in many tissues of one infected animal with the exception of heart and nervous system. The phylogenetic analysis of all PCV-2 isolates yet published in the database, showed relationship of isolates from Spain, Germany and France, with three sequences from Canada determined recently and two isolates from Taiwan, while other North American sequences display a separate cluster. PCR screening of randomly collected organ samples from German pigs not affected with PMWS, revealed a rate of infection with PCV-1 of 5% and with PCV-2 of 26.8%, while blood samples showed a lower incidence.
Collapse
Affiliation(s)
- A Mankertz
- Robert Koch Institut, P24 (Xenotransplantation), Nordufer 20, 13353, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|