1
|
Holmes TC, Popp NM, Hintz CF, Dobrzycki I, Schmitz CJ, Schwichtenberg KA, Gonzalez-Rothi EJ, Sundberg CW, Streeter KA. Sex differences in spontaneous respiratory recovery following chronic C2 hemisection. J Appl Physiol (1985) 2024; 137:166-180. [PMID: 38867665 PMCID: PMC11381122 DOI: 10.1152/japplphysiol.00040.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Respiratory deficits after C2 hemisection (C2Hx) have been well documented through single-sex investigations. Although ovarian sex hormones enable enhanced respiratory recovery observed in females 2 wk post-C2Hx, it remains unknown if sex impacts spontaneous respiratory recovery at chronic time points. We conducted a longitudinal study to provide a comprehensive sex-based characterization of respiratory neuromuscular recovery for 8 wk after C2Hx. We recorded ventilation and chronic diaphragm electromyography (EMG) output in awake, behaving animals, phrenic motor output in anesthetized animals, and performed diaphragm muscle histology in chronically injured male and female rodents. Our results show that females expressed a greater recovery of tidal volume and minute ventilation compared with males during subacute and chronic time points. Eupneic diaphragm EMG amplitude during wakefulness and phrenic motor amplitude are similar between sexes at all time points after injury. Our data also suggest that females have a greater reduction in ipsilateral diaphragm EMG amplitude during spontaneous deep breaths (e.g., sighs) compared with males. Finally, we show evidence for atrophy and remodeling of the fast, fatigable fibers ipsilateral to injury in females, but not in males. To our knowledge, the data presented here represent the first study to report sex-dependent differences in spontaneous respiratory recovery and diaphragm muscle morphology following chronic C2Hx. These data highlight the need to study both sexes to inform evidence-based therapeutic interventions in respiratory recovery after spinal cord injury (SCI).NEW & NOTEWORTHY In response to chronic C2 hemisection, female rodents display increased tidal volume during eupneic breathing compared with males. Females show a greater reduction in diaphragm electromyography (EMG) amplitude during spontaneous deep breaths (e.g., sighs) and atrophy and remodeling of fast, fatigable diaphragm fibers. Given that most rehabilitative interventions occur in the subacute to chronic stages of injury, these results highlight the importance of considering sex when developing and evaluating therapeutics after spinal cord injury.
Collapse
Affiliation(s)
- Taylor C Holmes
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Nicole M Popp
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Carley F Hintz
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Isabell Dobrzycki
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
- Athletic and Human Performance Research Center, Marquette University, Milwaukee, Wisconsin, United States
| | - Carolyn J Schmitz
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Kaylyn A Schwichtenberg
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Elisa J Gonzalez-Rothi
- Department of Physical Therapy, University of Florida, Gainesville, Florida, United States
| | - Christopher W Sundberg
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
- Athletic and Human Performance Research Center, Marquette University, Milwaukee, Wisconsin, United States
| | - Kristi A Streeter
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| |
Collapse
|
2
|
Baumhardt R, Ripplinger A, Aiello G, Schwab ML, Ferrarin DA, Wrzesinski MR, Rauber J, Mazzanti A. Clinical management of dogs with presumptive diagnosis of thoracolumbar intervertebral disc disease: 164 cases (2006-2017). PESQUISA VETERINÁRIA BRASILEIRA 2020. [DOI: 10.1590/1678-5150-pvb-6067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: This study aimed to identify dogs with presumptive diagnosis of cervical intervertebral disc disease (IVDD) submitted to clinical management and to evaluate the outcomes. Data were obtained from the medical records of patients with neurological dysfunction assisted at a University Veterinary Hospital from 2006 to 2017. In addition to the patients’ records, dog owners responded to a questionnaire on the success of therapy. Four hundred and thirteen neurological records were evaluated, and 164 met the inclusion criteria of the study. The most common breed was Dachshund, followed by mongrels. Classification of neurological dysfunction in the study sample was as follows: 15.9% with grade I, 25.6% with grade II, 26.8% with grade III, 8.5% with grade IV, and 23.2% with grade V. Outcome was satisfactory in 71.6% of the dogs and unsatisfactory in 28.4% of them. Recurrence was observed in 27.7% of those with satisfactory outcomes. The clinical treatment of dogs with thoracolumbar IVDD is satisfactory, particularly for animals with milder disease grades (I, II, and III). There is possibility of recurrence with conservative therapy and clinical signs may be more severe.
Collapse
|
3
|
Matthews D, Diskin MG, Kenny DA, Creevey CJ, Keogh K, Waters SM. Effect of short term diet restriction on gene expression in the bovine hypothalamus using next generation RNA sequencing technology. BMC Genomics 2017; 18:857. [PMID: 29121875 PMCID: PMC5680758 DOI: 10.1186/s12864-017-4265-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Negative energy balance (NEB) is an imbalance between energy intake and energy requirements for lactation and body maintenance affecting high-yielding dairy cows and is of considerable economic importance due to its negative impact on fertility and health in dairy herds. It is anticipated that the cow hypothalamus experiences extensive biochemical changes during the early post partum period in an effort to re-establish metabolic homeostasis. However, there is variation in the tolerance to NEB between individual cows. In order to understand the genomic regulation of ovulation in hypothalamic tissue during NEB, mRNA transcriptional patterns between tolerant and sensitive animals were examined. A short term dietary restriction heifer model was developed which induced abrupt onset of anoestrus in some animals (Restricted Anovulatory; RA) while others maintained oestrous cyclicity (Restricted Ovulatory; RO). A third control group (C) received a higher level of normal feeding. RESULTS A total of 15,295 genes were expressed in hypothalamic tissue. Between RA and C groups 137 genes were differentially expressed, whereas between RO and C, 32 genes were differentially expressed. Differentially expressed genes were involved in the immune response and cellular motility in RA and RO groups, respectively, compared to C group. The largest difference between groups was observed in the comparison between RA and RO heifers, with 1094 genes shown to be significantly differentially expressed (SDE). Pathway analysis showed that these SDE genes were associated with 6 canonical pathways (P < 0.01), of which neuroactive ligand-receptor interaction was the most significant. Within the comparisons the main over-represented pathway functions were immune response including neuroprotection (CXCL10, Q1KLR3, IFIH1, IL1 and IL8; RA v C and RA v RO); energy homeostasis (AgRP and NPY; RA v RO); cell motility (CADH1, DSP and TSP4; RO v C) and prevention of GnRH release (NTSR1 IL1α, IL1β, NPY and PACA; RA v RO). CONCLUSIONS This information will assist in understanding the genomic factors regulating the influence of diet restriction on fertility and may assist in optimising nutritional and management systems for the improvement in reproductive performance.
Collapse
Affiliation(s)
- Daragh Matthews
- Animal and Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland.,School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael G Diskin
- Animal and Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Christopher J Creevey
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Sinead M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
4
|
Su S, Sun X, Zhou X, Fang F, Li Y. Effects of GnRH immunization on the reproductive axis and thymulin. J Endocrinol 2015; 226:93-102. [PMID: 26016747 DOI: 10.1530/joe-14-0720] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2015] [Indexed: 11/08/2022]
Abstract
The bidirectional regulation of thymulin in the reproductive-endocrine function of the hypothalamic-pituitary-gonadal (HPG) axis of rats immunized against GnRH remains largely unclear. We explored the alterations in hormones in the HPG axis in immunized rats to dissect the repressive effect of immunization on thymulin, and to clarify the interrelation of reproductive hormones and thymulin in vivo. The results showed that, in the first 2 weeks of booster immunization, thymulin was repressed when reproductive hormones were severely reduced. The self-feedback regulation of thymulin was then stimulated in later immune stages: the rising circulating thymulin upregulated LH and FSH, including GnRH in the hypothalamus, although the levels of those hormones were still significantly lower than in the control groups. In astrocytes, thymulin produced a feedback effect in regulated GnRH neurons. However, in the arcuate nucleus (Arc) and the median eminence (ME), the mediator of astrocytes and other glial cells were also directly affected by reproductive hormones. Thus, in immunized rats, the expression of glial fibrillary acidic protein was distinctly stimulated in the Arc and ME. This study demonstrated that thymulin was downregulated by immunization against GnRH in early stage. Subsequently, the self-feedback regulation was provoked by low circulating thymulin. Thereafter, rising thymulin levels promoted pituitary gonadotropins levels, while acting directly on GnRH neurons, which was mediated by astrocytes in a region-dependent manner in the hypothalamus.
Collapse
Affiliation(s)
- Shiping Su
- College of Animal Sciences and TechnologyAnhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui 230036, People's Republic of ChinaCollege of Life ScienceFujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of ChinaThe Biotechnology Center of Anhui Agriculture UniversityHefei, People's Republic of China
| | - Xiaoxia Sun
- College of Animal Sciences and TechnologyAnhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui 230036, People's Republic of ChinaCollege of Life ScienceFujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of ChinaThe Biotechnology Center of Anhui Agriculture UniversityHefei, People's Republic of China
| | - Xiuhong Zhou
- College of Animal Sciences and TechnologyAnhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui 230036, People's Republic of ChinaCollege of Life ScienceFujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of ChinaThe Biotechnology Center of Anhui Agriculture UniversityHefei, People's Republic of China
| | - Fuigui Fang
- College of Animal Sciences and TechnologyAnhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui 230036, People's Republic of ChinaCollege of Life ScienceFujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of ChinaThe Biotechnology Center of Anhui Agriculture UniversityHefei, People's Republic of China
| | - Yunsheng Li
- College of Animal Sciences and TechnologyAnhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui 230036, People's Republic of ChinaCollege of Life ScienceFujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of ChinaThe Biotechnology Center of Anhui Agriculture UniversityHefei, People's Republic of China
| |
Collapse
|
5
|
Sominsky L, Sobinoff AP, Jobling MS, Pye V, McLaughlin EA, Hodgson DM. Immune regulation of ovarian development: programming by neonatal immune challenge. Front Neurosci 2013; 7:100. [PMID: 23781169 PMCID: PMC3679471 DOI: 10.3389/fnins.2013.00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/22/2013] [Indexed: 12/20/2022] Open
Abstract
Neonatal immune challenge by administration of lipopolysaccharide (LPS) produces enduring alterations in the development and activity of neuroendocrine, immune and other physiological systems. We have recently reported that neonatal exposure to an immune challenge by administration of LPS results in altered reproductive development in the female Wistar rat. Specifically, LPS-treated animals exhibited diminished ovarian reserve and altered reproductive lifespan. In the current study, we examined the cellular mechanisms that lead to the previously documented impaired ovulation and reduced follicular pool. Rats were administered intraperitoneally either 0.05 mg/kg of LPS (Salmonella Enteritidis) or an equivalent volume of non-pyrogenic saline on postnatal days (PNDs) 3 and 5, and ovaries were obtained on PND 7. Microarray analysis revealed a significant upregulation in transcript expression (2-fold change; p < 0.05) for a substantial number of genes in the ovaries of LPS-treated animals, implicated in immune cell signaling, inflammatory responses, reproductive system development and disease. Several canonical pathways involved in immune recognition were affected by LPS treatment, such as nuclear factor-κB (NF-κB) activation and LPS-stimulated mitogen-activated protein kinase (MAPK) signaling. Quantitative Real-time PCR analysis supported the microarray results. Protein expression analysis of several components of the MAPK signaling pathway revealed a significant upregulation in the expression of Toll-like receptor 4 (TLR4) in the neonatal ovary of LPS-treated animals. These results indicate that neonatal immune challenge by administration of LPS has a direct effect on the ovary during the sensitive period of follicular formation. Given the pivotal role of inflammatory processes in the regulation of reproductive health, our findings suggest that early life immune activation via TLR signaling may have significant implications for the programming of ovarian development and fertility.
Collapse
Affiliation(s)
- Luba Sominsky
- Laboratory of Neuroimmunology, Faculty of Science and IT, School of Psychology, The University of Newcastle Callaghan, NSW, Australia
| | | | | | | | | | | |
Collapse
|
6
|
Su S, Fang F, Liu Y, Li Y, Ren C, Zhang Y, Zhang X. The compensatory expression of reproductive hormone receptors in the thymus of the male rat following active immunization against GnRH. Gen Comp Endocrinol 2013; 185:57-66. [PMID: 23395683 DOI: 10.1016/j.ygcen.2013.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 01/18/2013] [Accepted: 01/19/2013] [Indexed: 11/15/2022]
Abstract
To determine whether hormone-receptor signaling pathways in the thymus are altered by active immunization against gonadotrophin-releasing hormone I (GnRH), 3-week-old Sprague-Dawley male rats received GnRH-tandem-OVA peptides (200 μg/ml), and the effects were compared to a control group. Serum testosterone, LH and FSH concentrations were markedly reduced, with severe testicular atrophy, compared to controls, demonstrating effective blockade of the pituitary-gonadal axis. The reduction in LH and FSH concentrations in the thymus of immunized animals was lower than that observed in the serum, where a significant difference (P<0.001) in concentration was observed between both groups. Concentrations of GnRH were increased in the thymus of immunized rats. In thymic tissue, GnRHR, FSHR and LHR demonstrated stronger immunostaining, and AR weaker staining, in the immunized group compared to controls. Reproductive hormone receptor mRNA expression was consistent with protein variations in the immunized thymus. Compared to controls, GnRHR gene levels were significantly increased (P<0.05), however, AR mRNA expression were greatly decreased with immune week-age (P<0.05). Both FSHR and LHR mRNA expression levels were significantly higher in the treated group than in controls in the first three samples (P<0.05). When GnRHR was blocked by an antagonist in thymocytes, all reproductive hormone receptor gene expressions were significantly increased (P<0.001). In summary, these findings suggest that active immunization against GnRH can up-regulate GnRH receptor and gonadotropin receptor signaling, by stimulating thymic autocrine and paracrine function, whereas the androgen receptor is down-regulated due to a lack of testosterone secretion in the thymus.
Collapse
Affiliation(s)
- Shiping Su
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 of Changjiang West Road, Hefei, Anhui 230036, PR China
| | | | | | | | | | | | | |
Collapse
|
7
|
Jung DO, Jasurda JS, Egashira N, Ellsworth BS. The forkhead transcription factor, FOXP3, is required for normal pituitary gonadotropin expression in mice. Biol Reprod 2012; 86:144, 1-9. [PMID: 22357547 PMCID: PMC3364925 DOI: 10.1095/biolreprod.111.094904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/26/2011] [Accepted: 02/17/2012] [Indexed: 01/17/2023] Open
Abstract
The hypothalamic-pituitary-gonadal axis is central to normal reproductive function. This pathway begins with the release of gonadotropin-releasing hormone in systematic pulses by the hypothalamus. Gonadotropin-releasing hormone is bound by receptors on gonadotroph cells in the anterior pituitary gland and stimulates the synthesis and secretion of luteinizing hormone and, to some extent, follicle-stimulating hormone. Once stimulated by these glycoprotein hormones, the gonads begin gametogenesis and the synthesis of sex hormones. In humans, mutations of the forkhead transcription factor, FOXP3, lead to an autoimmune disorder known as immunodysregulation, polyendocrinopathy, and enteropathy, X-linked syndrome. Mice with a mutation in the Foxp3 gene have a similar autoimmune syndrome and are infertile. To understand why FOXP3 is required for reproductive function, we are investigating the reproductive phenotype of Foxp3 mutant mice (Foxp3(sf/Y)). Although the gonadotroph cells appear to be intact in Foxp3(sf/Y) mice, luteinizing hormone beta (Lhb) and follicle-stimulating hormone beta (Fshb) expression are significantly decreased, demonstrating that these mice exhibit a hypogonadotropic hypogonadism. Hypothalamic expression of gonadotropin-releasing hormone is not significantly decreased in Foxp3(sf/Y) males. Treatment of Foxp3(sf/Y) males with a gonadotropin-releasing hormone receptor agonist does not rescue expression of Lhb or Fshb. Interestingly, we do not detect Foxp3 expression in the pituitary or hypothalamus, suggesting that the infertility seen in Foxp3(sf/Y) males is a secondary effect, possibly due to loss of FOXP3 in immune cells. Pituitary expression of glycoprotein hormone alpha (Cga) and prolactin (Prl) are significantly reduced in Foxp3(sf/Y) males, whereas the precursor for adrenocorticotropic hormone, pro-opiomelanocortin (Pomc), is increased. Human patients diagnosed with IPEX often exhibit thyroiditis due to destruction of the thyroid gland by autoimmune cells. We find that Foxp3(sf/Y) mice have elevated expression of thyroid-stimulating hormone beta (Tshb), suggesting that they may suffer from thyroiditis as well. Expression of the pituitary transcription factors, Pitx1, Pitx2, Lhx3, and Egr1, is normal; however, expression of Foxl2 and Gata2 is elevated. These data are the first to demonstrate a defect at the pituitary level in the absence of FOXP3, which contributes to the infertility observed in mice with Foxp3 loss of function mutations.
Collapse
Affiliation(s)
- Deborah O. Jung
- Department of Physiology, Southern Illinois University, Carbondale, Carbondale, Illinois
| | - Jake S. Jasurda
- Department of Physiology, Southern Illinois University, Carbondale, Carbondale, Illinois
| | - Noboru Egashira
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Buffy S. Ellsworth
- Department of Physiology, Southern Illinois University, Carbondale, Carbondale, Illinois
| |
Collapse
|
8
|
Luchetti S, Huitinga I, Swaab DF. Neurosteroid and GABA-A receptor alterations in Alzheimer's disease, Parkinson's disease and multiple sclerosis. Neuroscience 2011; 191:6-21. [PMID: 21514366 DOI: 10.1016/j.neuroscience.2011.04.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/03/2011] [Accepted: 04/05/2011] [Indexed: 01/17/2023]
Abstract
Steroid hormones (e.g. estrogens, androgens, progestagens) which are synthesized de novo or metabolized within the CNS are called neurosteroids. There is substantial evidence from animal studies suggesting that these steroids can affect brain function by modulating neurotransmission, and influence neuronal survival, neuronal and glial differentiation and myelination in the CNS by regulating gene expression of neurotrophic factors and anti-inflammatory molecules. Indeed, evidence is emerging that expression of the enzymes responsible for the synthesis of neurosteroids changes in neurodegenerative diseases. Some of these changes may contribute to the pathology, while others, conversely, may represent an attempted rescue program in the diseased brain. Here we review the data on changes in neurosteroid levels and neurosteroid synthesis pathways in the human brain in three neurodegenerative conditions, Alzheimers's (AD) and Parkinson's (PD) diseases and Multiple Sclerosis (MS) and the extent to which these findings may implicate protective or pathological roles for neurosteroids in the course of these diseases.Some neurosteroids can modulate neurotransmitter activity, for example, the pregnane steroids allopregnanolone and 3α5α-tetrahydro-deoxycorticosterone which are potent positive allosteric modulators of ionotropic GABA-A receptors. Therefore, neurosteroid-modulated GABA-A receptor subunit alterations found in AD and PD will also be discussed. These data imply an involvement of neurosteroid changes in the neurodegenerative and neuroinflammatory processes and suggest that they may deserve further investigation as potential therapeutic agents in AD, PD and MS. Finally, suggestions for therapeutic strategies will be included. This article is part of a Special Issue entitled: Neuroactive Steroids: Focus on Human Brain.
Collapse
Affiliation(s)
- S Luchetti
- Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
9
|
Calder AE, Hince MN, Dudakov JA, Chidgey AP, Boyd RL. Thymic involution: where endocrinology meets immunology. Neuroimmunomodulation 2011; 18:281-9. [PMID: 21952680 DOI: 10.1159/000329496] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The decline in immune function with aging represents a major clinical challenge in many disease conditions. It is manifest in many parameters but is essentially linked to the adaptive immune responses. The prediction would be that abnormalities in both T and B lymphocytes underlie the loss of cellular and humoral capacity, respectively. Somewhat surprisingly, this is not reflected in numerical losses but more in alterations at the population and single cell levels. There is a major reduction in naïve T cells with a proportional increase in memory cells, and also a generally reduced function of these cells. While bone marrow function reduces with age, the most obvious reason for the T cell defects is the severe atrophy of the thymus. This is closely aligned with puberty, thereby implicating a major aetiological role for sex steroids in both thymus and immune system deterioration with age. Accordingly surgical or chemical castration (utilizing luteinizing hormone-releasing hormone) blocks sex steroids resulting in profound rejuvenation of the immune system.
Collapse
Affiliation(s)
- Adrienne E Calder
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Vic., Australia
| | | | | | | | | |
Collapse
|
10
|
van de Looij Y, Chatagner A, Hüppi PS, Gruetter R, Sizonenko SV. Longitudinal MR assessment of hypoxic ischemic injury in the immature rat brain. Magn Reson Med 2010; 65:305-12. [DOI: 10.1002/mrm.22617] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 07/29/2010] [Accepted: 08/06/2010] [Indexed: 01/31/2023]
|
11
|
Holländer GA, Krenger W, Blazar BR. Emerging strategies to boost thymic function. Curr Opin Pharmacol 2010; 10:443-53. [PMID: 20447867 DOI: 10.1016/j.coph.2010.04.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/06/2010] [Accepted: 04/06/2010] [Indexed: 11/28/2022]
Abstract
The thymus constitutes the primary lymphoid organ for the generation of T cells. Its function is particularly susceptible to various negative influences ranging from age-related involution to atrophy as a consequence of malnutrition, infection or harmful iatrogenic influences such as chemotherapy and radiation. The loss of regular thymus function significantly increases the risk for infections and cancer because of a restricted capacity for immune surveillance. In recent years, thymus-stimulatory, thymus-regenerative, and thymus-protective strategies have been developed to enhance and repair thymus function in the elderly and in individuals undergoing hematopoietic stem cell transplantation. These strategies include the use of sex steroid ablation, the administration of growth and differentiation factors, the inhibition of p53, and the transfer of T cell progenitors to alleviate the effects of thymus dysfunction and consequent T cell deficiency.
Collapse
Affiliation(s)
- Georg A Holländer
- Laboratory of Pediatric Immunology, Department of Biomedicine, University of Basel, The University Children's Hospital (UKBB), Mattenstrasse 28, 4058 Basel, Switzerland.
| | | | | |
Collapse
|
12
|
Ciesielska A, Joniec I, Kurkowska-Jastrzebska I, Cudna A, Przybyłkowski A, Członkowska A, Członkowski A. The impact of age and gender on the striatal astrocytes activation in murine model of Parkinson's disease. Inflamm Res 2010; 58:747-53. [PMID: 19777158 DOI: 10.1007/s00011-009-0026-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 02/10/2009] [Accepted: 03/03/2009] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE The aim of the present study was to determine how aging and gender influence the response of astrocytes to 1-methyl-4-phenyl-1,2,3,6-tetrahydropiridine (MPTP) intoxication. MATERIALS AND METHODS To asses the MPTP-induced astrocytes activation in nigro-striatal system, we measured the temporal changes in mRNA and protein expression of the specific astrocytic marker, glial fibrillary acidic protein (GFAP; by RT-PCR and Western blot), in the striatum of male and female C57BL/6 mice (2 and 12-month old) after 6 h and 1, 3, 7, 14 and 21 days post-intoxication. RESULTS We observed the increases of GFAP mRNA level post-MPTP intoxication in both young and aging males only at early time points, whereas in females (both ages) also at later time points. We noticed maximal increase of GFAP protein content on the 3rd day post-intoxication in young and aged males, whereas in females at the 7-daytime point. CONCLUSIONS The present results provide additional information of potential relevance to understand the mechanisms of gender and age-related difference in susceptibility of nigro-striatal system to MPTP insult.
Collapse
Affiliation(s)
- Agnieszka Ciesielska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
13
|
Laks DR. Luteinizing hormone provides a causal mechanism for mercury associated disease. Med Hypotheses 2009; 74:698-701. [PMID: 19914008 DOI: 10.1016/j.mehy.2009.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 10/18/2009] [Indexed: 10/20/2022]
Abstract
Previous studies have demonstrated that the pituitary is a main target for inorganic mercury (I-Hg) deposition and accumulation within the brain. My recent study of the US population (1999-2006) has uncovered a significant, inverse relationship between chronic mercury exposure and levels of luteinizing hormone (LH). This association with LH signifies more than its presumed role as bioindicator for pituitary neurosecretion and function. LH is the only hormone with a rare and well characterized, high affinity binding site for mercury. On its catalytic beta subunit, LH has the structure to preferentially bind inorganic mercury almost irreversibly, and, by that manner, accumulate the neurotoxic element. Thus, it is likely that LH is an early and significant target of chronic mercury exposure. Moreover, due to the role of LH in immune-modulation and neurogenesis, I present LH as a central candidate to elucidate a causal mechanism for chronic mercury exposure and associated disease.
Collapse
Affiliation(s)
- Dan R Laks
- Mental Retardation Research Center, David Geffen School of Medicine at UCLA, 635 Charles E. Young Dr. South, Neuroscience Research Building, Los Angeles, CA 90095-7332, USA.
| |
Collapse
|
14
|
Scivoletto G, Di Donna V. Prediction of walking recovery after spinal cord injury. Brain Res Bull 2009; 78:43-51. [PMID: 18639616 DOI: 10.1016/j.brainresbull.2008.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 05/28/2008] [Accepted: 06/04/2008] [Indexed: 12/11/2022]
|
15
|
Morphological changes in immune and endocrine organs of stressed mice after administration of a gonadotropin-releasing hormone analogue. Bull Exp Biol Med 2008; 144:744-7. [PMID: 18683513 DOI: 10.1007/s10517-007-0422-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Administration of Surfagon, a gonadotropin-releasing hormone analogue, in doses of 0.1 and 5.0 microg/kg before emotional nociceptive stress increased lymphocyte migration from the thymus, decreased the volume of lymphoid tissue in the spleen and thymus, reduced the width of the zona fasciculata and increased the width of the zona glomerulosa in the adrenal cortex of male CBA mice. These effects of the peptide persisted in castrated animals. Surfagon prevented stress-induced activation of the adrenal glands and accidental transformation of the thymus and spleen in castrated animals.
Collapse
|
16
|
Hince M, Sakkal S, Vlahos K, Dudakov J, Boyd R, Chidgey A. The role of sex steroids and gonadectomy in the control of thymic involution. Cell Immunol 2008; 252:122-38. [PMID: 18294626 DOI: 10.1016/j.cellimm.2007.10.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 10/30/2007] [Indexed: 01/25/2023]
Abstract
A major underlying cause for aging of the immune system is the structural and functional atrophy of the thymus, and associated decline in T cell genesis. This loss of naïve T cells reduces adaptive immunity to new stimuli and precipitates a peripheral bias to memory cells against prior antigens. Whilst multiple mechanisms may contribute to this process, the temporal alliance of thymic decline with puberty has implicated a causative role for sex steroids. Accordingly ablation of sex steroids induces profound thymic rejuvenation. Although the thymus retains some, albeit highly limited, function in healthy adults, this is insufficient for resurrecting the T cell pool following cytoablative treatments such as chemo- and radiation-therapy and AIDS. Increased risk of opportunistic infections and cancer relapse or appearance, are a direct consequence. Temporary sex steroid ablation may thus provide a clinically effective means to regenerate the thymus and immune system in immunodeficiency states.
Collapse
Affiliation(s)
- Melanie Hince
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building-75, Monash University, Wellington Road, Clayton, Melbourne 3800, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Morale MC, Serra PA, L'episcopo F, Tirolo C, Caniglia S, Testa N, Gennuso F, Giaquinta G, Rocchitta G, Desole MS, Miele E, Marchetti B. Estrogen, neuroinflammation and neuroprotection in Parkinson's disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience 2005; 138:869-78. [PMID: 16337092 DOI: 10.1016/j.neuroscience.2005.07.060] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 07/11/2005] [Accepted: 07/25/2005] [Indexed: 11/21/2022]
Abstract
Post-menopausal estrogen deficiency is recognized to play a pivotal role in the pathogenesis of a number of age-related diseases in women, such as osteoporosis, coronary heart disease and Alzheimer's disease. There are also sexual differences in the progression of diseases associated with the nigrostriatal dopaminergic system, such as Parkinson's disease, a chronic progressive degenerative disorder characterized by the selective degeneration of mesencephalic dopaminergic neurons in the substancia nigra pars compacta. The mechanism(s) responsible for dopaminergic neuron degeneration in Parkinson's disease are still unknown, but oxidative stress and neuroinflammation are believed to play a key role in nigrostriatal dopaminergic neuron demise. Estrogen neuroprotective effects have been widely reported in a number of neuronal cell systems including the nigrostriatal dopaminergic neurons, via both genomic and non-genomic effects, however, little is known on estrogen modulation of astrocyte and microglia function in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. We here highlight estrogen modulation of glial neuroinflammatory reaction in the protection of mesencephalic dopaminergic neurons and emphasize the cardinal role of glia-neuron crosstalk in directing neuroprotection vs neurodegeneration. In particular, the specific role of astroglia and its pro-/anti-inflammatory mechanisms in estrogen neuroprotection are presented. This study shows that astrocyte and microglia response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine injury vary according to the estrogenic status with direct consequences for dopaminergic neuron survival, recovery and repair. These findings provide a new insight into the protective action of estrogen that may possibly contribute to the development of novel therapeutic treatment strategies for Parkinson's disease.
Collapse
Affiliation(s)
- M C Morale
- OASI Institute for Research and Care on Mental Retardation and Brain Aging (IRCCS), Neuropharmacology Section, Troina, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Leposavić G, Pekić S, Kosec D. Gonadotropin-releasing hormone agonist administration affects the thymopoiesis in adult female rats independently on gonadal hormone production. Am J Reprod Immunol 2005; 53:30-41. [PMID: 15667523 DOI: 10.1111/j.1600-0897.2004.00244.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PROBLEM In addition to having an indirect effect on the T-cell development by controlling the production of ovarian steroids, an accumulating body of evidence suggest that GnRH analogue (GnRH-A) administration may exert a thymopoietic regulatory effect that is not mediated by ovarian hormones. METHOD OF STUDY In non-ovariectomized (non-OVX) and OVX adult female AO rats treated s.c. with GnRH-A or saline (controls), over 14 days, were estimated the thymic cellularity and thymocyte expression of CD4/CD8/TCRalphabeta by stereological analysis and three-color flow cytometry, respectively. RESULTS GnRH-A in both groups of rats diminished the thymic cellularity. In non-OVX rats GnRH-A increased the relative numbers of immature cells (CD4-8-TCRalphabeta(-), CD4-8-TCRalphabeta(low) and CD4+8-TCRalphabeta(low)), and reduced those of positively selected CD4+8+TCRalphabeta(high) and mature (CD4-8+TCRalphabeta(high), CD4(+8)-TCRalphabeta(high)) cells, suggesting decelerated expression of TCRalphabeta followed by less efficient positive selection and further maturation of the selected cells. Differently, in OVX rats GnRH-A decreased the percentage of immature (CD4-8-TCRalphabeta(-), CD4+8+ TCRalphabeta(-)) cells and increased those of all TCRalphabeta(high) subsets, suggesting an increased rate of early thymocyte differentiation, more efficient positive selection and further maturation of the selected cells. CONCLUSIONS The effect of GnRH-A administration is affected by the presence of ovarian steroids.
Collapse
Affiliation(s)
- Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, Belgrade, Serbia and Montenegro.
| | | | | |
Collapse
|
19
|
Sipski ML, Jackson AB, Gómez-Marín O, Estores I, Stein A. Effects of gender on neurologic and functional recovery after spinal cord injury. Arch Phys Med Rehabil 2004; 85:1826-36. [PMID: 15520978 DOI: 10.1016/j.apmr.2004.04.031] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To assess gender differences in neurologic and functional outcome measures in persons with spinal cord injury (SCI). DESIGN Case series. SETTINGS Model Spinal Cord Injury Systems (MSCIS) throughout the United States. PARTICIPANTS People (N=14,433) admitted to an MSCIS within 30 days of injury. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Improvement in American Spinal Injury Association (ASIA) motor index score, ASIA Impairment Scale, level of injury, and FIM instrument scores after SCI. RESULTS When examining subjects grouped by severity of injury, changes in ASIA motor index total scores, from system admission to 1-year anniversary, were significantly greater for women than men with either complete ( P =.035) or incomplete ( P =.031) injuries. Functional comparison of men and women, using the FIM motor subscale, revealed that men had higher FIM motor scores at rehabilitation discharge among those with motor-complete injuries, except for those with C1-4 and C6 neurologic levels. Women with motor-incomplete high tetraplegia (C1-4 levels) had higher discharge FIM motor scores than did similarly afflicted men. There were no significant differences in FIM motor scores among men and women with other levels of motor incomplete SCI. CONCLUSIONS Gender differences in SCI were seen in several areas. Women may have more natural neurologic recovery than men; however, for a given level and degree of neurologic injury, men tend to do better functionally than women at time of discharge from rehabilitation. Future prospective study of the effects of estrogen on neurologic recovery and the effects of gender on functional potential are recommended.
Collapse
Affiliation(s)
- Marca L Sipski
- Center for Excellence in Functional Recovery in Chronic SCI, Veterans Administration Rehabilitation Research and Development, Miami, FL, USA.
| | | | | | | | | |
Collapse
|
20
|
Morale MC, Serra PA, Delogu MR, Migheli R, Rocchitta G, Tirolo C, Caniglia S, Testa N, L'Episcopo F, Gennuso F, Scoto GM, Barden N, Miele E, Desole MS, Marchetti B. Glucocorticoid receptor deficiency increases vulnerability of the nigrostriatal dopaminergic system: critical role of glial nitric oxide. FASEB J 2003; 18:164-6. [PMID: 14630699 DOI: 10.1096/fj.03-0501fje] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glucocorticoids (GCs) exert via glucocorticoid receptors (GRs) potent anti-inflammatory and immunosuppressive effects. Emerging evidence indicates that an inflammatory process is involved in dopaminergic nigro-striatal neuronal loss in Parkinson's disease. We here report that the GR deficiency of transgenic (Tg) mice expressing GR antisense RNA from early embryonic life has a dramatic impact in "programming" the vulnerability of dopaminergic neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The GR deficiency of Tg mice exacerbates MPTP-induced toxicity to dopaminergic neurons, as revealed by both severe loss of tyrosine hydroxylase positive nigral neurons and sharp decreases in striatal levels of dopamine and its metabolites. In addition, the late increase in dopamine oxidative metabolism and ascorbic acid oxidative status in GR-deficient mice was far greater than in wild-type (Wt) mice. Inducible nitric oxide synthase (iNOS) was sharply increased in activated astrocytes, macrophages/microglia of GR-deficient as compared with Wt mice. Moreover, GR-deficient microglia produced three- to fourfold higher nitrite levels than Wt mice; these increases preceded the loss of dopaminergic function and were resistant to GR the inhibitory effect of GC, pointing to peroxynitrites as candidate neurotoxic effectors. The iNOS inhibitor N6-(1-iminoethyl)-L-lysine normalized vulnerability of Tg mice, thus establishing a novel link between genetic impairment of GR function and vulnerability to MPTP.
Collapse
Affiliation(s)
- Maria Concetta Morale
- OASI Institute for Research and Care on Mental Retardation and Brain Aging (IRCCS), Neuropharmacology Section, 94018 Troina, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Morale MC, Gallo F, Tirolo C, L'Episcopo F, Gennuso F, Testa N, Caniglia S, Spina-Purrello V, Avola R, Scoto GM, Marchetti B. The reproductive system at the neuroendocrine-immune interface: focus on LHRH, estrogens and growth factors in LHRH neuron-glial interactions. Domest Anim Endocrinol 2003; 25:21-46. [PMID: 12963097 DOI: 10.1016/s0739-7240(03)00043-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bidirectional communication between the neuroendocrine and immune systems plays a pivotal role in health and disease. Signals generated by the hypothalamic-pituitary-gonadal (HPG) axis (i.e. luteinizing hormone-releasing hormone, LHRH, and sex steroids) are major players coordinating the development immune system function. Conversely, products generated by immune system activation exert powerful and longlasting effects on HPG axis activity. In the central nervous system (CNS), one chief neuroendocrine-immune (NEI) compartment is represented by the astroglial cell population and its mediators. Of special interest, the major supporting cells of the brain and the thymus, astrocytes and thymic epithelial cells, share a similar origin and a similar set of peptides, transmitters, hormones and cytokines functioning as paracrine/autocrine regulators. This may explain some fundamental analogies in LHRH regulation of both cell types during ontogeny and in adult life. Hence, the neuropeptide LHRH significantly modulates astrocyte and thymic cell development and function. Here we focus this work on LHRH neuron-glial signaling cascades which dictate major changes during LHRH neuronal differentiation and growth as well as in response to hormonal manipulations and pro-inflammatory challenges. The interplay between LHRH, growth factors, estrogens and pro-inflammatory mediators will be discussed, and the potential physiopathological implications of these findings summarized. The overall study highlights the plasticity of this intersystem cross-talk and emphasize neuron-glial interactions as a key regulatory level of neuroendocrine axes activity.
Collapse
Affiliation(s)
- M C Morale
- Department of Neuropharmacology, OASI Institute for Research and Care (IRCCS) on Mental Retardation and Brain Aging, Via Conte Ruggero 73, 94018 Troina (EN), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cashion AB, Smith MJ, Wise PM. The morphometry of astrocytes in the rostral preoptic area exhibits a diurnal rhythm on proestrus: relationship to the luteinizing hormone surge and effects of age. Endocrinology 2003; 144:274-80. [PMID: 12488355 DOI: 10.1210/en.2002-220711] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The morphometry of astrocytes in the arcuate nucleus exhibits cyclic changes during the estrous cycle leading to dynamic changes in the communication between neurotransmitters and neuropeptides that regulate pituitary hormone secretion. Data suggest that remodeling of direct and/or indirect inputs into GnRH neurons may influence the timing and/or amplitude of the preovulatory LH surge in young rats. We have previously found that aging alters the timing and amplitude of the LH surge. Therefore, the purpose of this study was to focus on the rostral preoptic area where GnRH cell bodies reside. We assessed the possibility that the morphometry of astrocytes in the rostral preoptic area displays time-related and age-dependent changes on proestrus. Our results demonstrate that, in young rats, astrocyte cell surface area decreases between 0800 h and 1200 h, before the initiation of the LH surge. Changes in surface area over the cycle were specific to astrocytes in close apposition to GnRH neurons. In contrast, in middle-aged rats astrocyte surface area was significantly less than in young rats and did not change during the day. These findings suggest that a loss of astrocyte plasticity could lead to the delayed and attenuated LH surge that has been previously observed in middle-aged rats.
Collapse
Affiliation(s)
- Adrienne B Cashion
- Department of Physiology, University of Kentucky, College of Medicine, Lexington, Kentucky 40536-0098, USA
| | | | | |
Collapse
|
23
|
Marchetti B, Morale MC, Testa N, Tirolo C, Caniglia S, Amor S, Dijkstra CD, Barden N. Stress, the immune system and vulnerability to degenerative disorders of the central nervous system in transgenic mice expressing glucocorticoid receptor antisense RNA. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 37:259-72. [PMID: 11744091 DOI: 10.1016/s0165-0173(01)00130-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Current research evidence suggests that interactions between genetic and environmental factors contribute to modulate the susceptibility to degenerative disorders, including inflammatory and autoimmune diseases of the central nervous system (CNS). In this context, bidirectional communication between the neuroendocrine and immune systems during ontogeny plays a pivotal role in programming the development of neuroendocrine and immune responses in adult life, thereby influencing the predisposition to several disease entities. Glucocorticoids (GCs), the end products of the hypothalamic-pituitary-adrenocortical (HPA) axis, gender and signals generated by hypothalamic-pituitary-gonadal (HPG) axis are major players coordinating the development of immune system function and exerting powerful effects in the susceptibility to autoimmune disorders, including experimental autoimmune encephalomyelitis (EAE), the experimental model for multiple sclerosis (MS). In particular, GCs exert their beneficial immunosuppressive and anti-inflammatory effects in inflammatory disorders of the CNS, after binding to their cytoplasmic receptors (GRs). Here we review our work using transgenic (Tg) mice with a dysfunctional GR from early embryonic life on programming vulnerability to EAE. The GR-deficiency of these Tg mice confers resistance to active EAE induction. The interplay between GCs, proinflammatory mediators, gender and EAE is summarized. On the basis of our data, it does appear that exposure to a defective GR through development programs major changes in endogenous neuroendocrine and immune mechanisms controlling the vulnerability to EAE. These studies highlight the plasticity of the HPA-immune axis and its pharmacological manipulation in autoimmune diseases of the CNS.
Collapse
Affiliation(s)
- B Marchetti
- Department of Pharmacology, Medical School, University of Sassari 07100, Sassari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Morale MC, Gallo F, Tirolo C, Testa N, Caniglia S, Marletta N, Spina-Purrello V, Avola R, Caucci F, Tomasi P, Delitala G, Barden N, Marchetti B. Neuroendocrine-immune (NEI) circuitry from neuron-glial interactions to function: Focus on gender and HPA-HPG interactions on early programming of the NEI system. Immunol Cell Biol 2001; 79:400-17. [PMID: 11488988 DOI: 10.1046/j.1440-1711.2001.01030.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bidirectional communication between the neuroendocrine and immune systems during ontogeny plays a pivotal role in programming the development of neuroendocrine and immune responses in adult life. Signals generated by the hypothalamic-pituitary-gonadal axis (i.e. luteinizing hormone-releasing hormone, LHRH, and sex steroids), and by the hypothalamic-pituitary-adrenocortical axis (glucocorticoids (GC)), are major players coordinating the development of immune system function. Conversely, products generated by immune system activation exert a powerful and long-lasting regulation on neuroendocrine axes activity. The neuroendocrine-immune system is very sensitive to preperinatal experiences, including hormonal manipulations and immune challenges, which may influence the future predisposition to several disease entities. We review our work on the ongoing mutual regulation of neuroendocrine and immune cell activities, both at a cellular and molecular level. In the central nervous system, one chief compartment is represented by the astroglial cell and its mediators. Hence, neuron-glial signalling cascades dictate major changes in response to hormonal manipulations and pro-inflammatory triggers. The interplay between LHRH, sex steroids, GC and pro-inflammatory mediators in some physiological and pathological states, together with the potential clinical implications of these findings, are summarized. The overall study highlights the plasticity of this intersystem cross-talk for pharmacological targeting with drugs acting at the neuroendocrine-immune interface.
Collapse
Affiliation(s)
- M C Morale
- Department of Pharmacology, Medical School, University of Sassari, Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|