1
|
Rigby Dames BA, Kilili H, Charvet CJ, Díaz-Barba K, Proulx MJ, de Sousa AA, Urrutia AO. Evolutionary and genomic perspectives of brain aging and neurodegenerative diseases. PROGRESS IN BRAIN RESEARCH 2023; 275:165-215. [PMID: 36841568 PMCID: PMC11191546 DOI: 10.1016/bs.pbr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This chapter utilizes genomic concepts and evolutionary perspectives to further understand the possible links between typical brain aging and neurodegenerative diseases, focusing on the two most prevalent of these: Alzheimer's disease and Parkinson's disease. Aging is the major risk factor for these neurodegenerative diseases. Researching the evolutionary and molecular underpinnings of aging helps to reveal elements of the typical aging process that leave individuals more vulnerable to neurodegenerative pathologies. Very little is known about the prevalence and susceptibility of neurodegenerative diseases in nonhuman species, as only a few individuals have been observed with these neuropathologies. However, several studies have investigated the evolution of lifespan, which is closely connected with brain size in mammals, and insights can be drawn from these to enrich our understanding of neurodegeneration. This chapter explores the relationship between the typical aging process and the events in neurodegeneration. First, we examined how age-related processes can increase susceptibility to neurodegenerative diseases. Second, we assessed to what extent neurodegeneration is an accelerated form of aging. We found that while at the phenotypic level both neurodegenerative diseases and the typical aging process share some characteristics, at the molecular level they show some distinctions in their profiles, such as variation in genes and gene expression. Furthermore, neurodegeneration of the brain is associated with an earlier onset of cellular, molecular, and structural age-related changes. In conclusion, a more integrative view of the aging process, both from a molecular and an evolutionary perspective, may increase our understanding of neurodegenerative diseases.
Collapse
Affiliation(s)
- Brier A Rigby Dames
- Department of Computer Science, University of Bath, Bath, United Kingdom; Department of Psychology, University of Bath, Bath, United Kingdom.
| | - Huseyin Kilili
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Karina Díaz-Barba
- Licenciatura en Ciencias Genómicas, UNAM, CP62210, Cuernavaca, México; Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México
| | - Michael J Proulx
- Department of Psychology, University of Bath, Bath, United Kingdom
| | | | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom; Licenciatura en Ciencias Genómicas, UNAM, CP62210, Cuernavaca, México; Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México.
| |
Collapse
|
2
|
Fox M. 'Evolutionary medicine' perspectives on Alzheimer's Disease: Review and new directions. Ageing Res Rev 2018; 47:140-148. [PMID: 30059789 PMCID: PMC6195455 DOI: 10.1016/j.arr.2018.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
Evolution by natural selection eliminates maladaptive traits from a species, and yet Alzheimer's Disease (AD) persists with rapidly increasing prevalence globally. This apparent paradox begs an explanation within the framework of evolutionary sciences. Here, I summarize and critique previously proposed theories to explain human susceptibility to AD, grouped into 8 distinct hypotheses based on the concepts of novel extension of the lifespan; lack of selective pressure during the post-reproductive phase; antagonistic pleiotropy; rapid brain evolution; delayed neuropathy by selection for grandmothering; novel alleles selected to delay neuropathy; by-product of selection against cardiovascular disease; and thrifty genotype. Subsequently, I describe a new hypothesis inspired by the concept of mismatched environments. Many of the factors that enhance AD risk today may have been absent or functioned differently before the modern era, potentially making AD a less common affliction for age-matched individuals before industrialization and for the majority of human history. Future research is needed to further explore whether changes in environments and lifestyles across human history moderate risk factors and susceptibility to AD.
Collapse
Affiliation(s)
- Molly Fox
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA; Department of Anthropology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Glass DJ, Arnold SE. Some evolutionary perspectives on Alzheimer's disease pathogenesis and pathology. Alzheimers Dement 2011; 8:343-51. [PMID: 22137143 DOI: 10.1016/j.jalz.2011.05.2408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 02/20/2011] [Accepted: 05/12/2011] [Indexed: 10/14/2022]
Abstract
There is increasing urgency to develop effective prevention and treatment for Alzheimer's disease (AD) as the aging population swells. Yet, our understanding remains limited for the elemental pathophysiological mechanisms of AD dementia that may be causal, compensatory, or epiphenomenal. To this end, we consider AD and why it exists from the perspectives of natural selection, adaptation, genetic drift, and other evolutionary forces. We discuss the connection between the apolipoprotein E (APOE) allele and AD, with special consideration to APOE ɛ4 as the ancestral allele. The phylogeny of AD-like changes across species is also examined, and pathology and treatment implications of AD are discussed from the perspective of evolutionary medicine. In particular, amyloid-β (Aβ) neuritic plaques and paired helical filament tau (PHFtau) neurofibrillary tangles have been traditionally viewed as injurious pathologies to be targeted, but may be preservative or restorative processes that mitigate harmful neurodegenerative processes or may be epiphenoma of the essential processes that cause neurodegeneration. Thus, we raise fundamental questions about current strategies for AD prevention and therapeutics.
Collapse
Affiliation(s)
- Daniel J Glass
- Department of Psychology, State University of New York at New Paltz, USA
| | | |
Collapse
|
4
|
Ricart W, Fernández-Real JM. [Insulin resistance as a mechanism of adaptation during human evolution]. ENDOCRINOLOGIA Y NUTRICION : ORGANO DE LA SOCIEDAD ESPANOLA DE ENDOCRINOLOGIA Y NUTRICION 2010; 57:381-390. [PMID: 20675202 DOI: 10.1016/j.endonu.2010.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 05/29/2023]
Abstract
The recent application of concepts of evolution to human disease is proving useful to understand certain pathophysiological mechanisms of different entities that span genomic alterations of immunity, respiratory and hormone function, and the circulatory and neural systems. However, effort has concentrated on explaining the keys to adaptation that define human metabolism and, since the early 1960s, several theories have been developed. This article reviews some of the hypotheses postulated in recent years on the potential benefit of insulin resistance and discusses the most recent knowledge. The concept of the thrifty gene seems to have been definitively refuted by current knowledge. The current paradigm describes an interaction between the metabolic and the immune systems resulting from their coevolution, promoted by evolutionary pressures triggered by fasting, infection and intake of different foods. The activation and regulation of these ancient mechanisms in integrated and interdependent areas defines insulin resistance as a survival strategy that is critical during fasting and in the fight against infection. The relationship with some components of the diet and, particularly, with the symbiotic intestinal microflora points to new paradigms in understanding the pathophysiology of obesity, metabolic syndrome and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- W Ricart
- Servicio de Diabetis, Endocrinologia i Nutrició, Hospital Universitari de Girona Dr. Josep Trueta, Institut d'Investigació Biomédica de Girona, Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición, Girona, España.
| | | |
Collapse
|
5
|
Drenos F, Kirkwood TBL. Selection on alleles affecting human longevity and late-life disease: the example of apolipoprotein E. PLoS One 2010; 5:e10022. [PMID: 20368805 PMCID: PMC2848859 DOI: 10.1371/journal.pone.0010022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 03/13/2010] [Indexed: 11/28/2022] Open
Abstract
It is often claimed that genes affecting health in old age, such as cardiovascular and Alzheimer diseases, are beyond the reach of natural selection. We show in a simulation study based on known genetic (apolipoprotein E) and non-genetic risk factors (gender, diet, smoking, alcohol, exercise) that, because there is a statistical distribution of ages at which these genes exert their influence on morbidity and mortality, the effects of selection are in fact non-negligible. A gradual increase with each generation of the ε2 and ε3 alleles of the gene at the expense of the ε4 allele was predicted from the model. The ε2 allele frequency was found to increase slightly more rapidly than that for ε3, although there was no statistically significant difference between the two. Our result may explain the recent evolutionary history of the epsilon 2, 3 and 4 alleles of the apolipoprotein E gene and has wider relevance for genes affecting human longevity.
Collapse
Affiliation(s)
- Fotios Drenos
- Institute for Ageing and Health, Newcastle University, Newcastle Upon Tyne, Tyne, United Kingdom.
| | | |
Collapse
|
6
|
Nesse RM, Stearns SC. The great opportunity: Evolutionary applications to medicine and public health. Evol Appl 2008; 1:28-48. [PMID: 25567489 PMCID: PMC3352398 DOI: 10.1111/j.1752-4571.2007.00006.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 11/27/2007] [Indexed: 02/06/2023] Open
Abstract
Evolutionary biology is an essential basic science for medicine, but few doctors and medical researchers are familiar with its most relevant principles. Most medical schools have geneticists who understand evolution, but few have even one evolutionary biologist to suggest other possible applications. The canyon between evolutionary biology and medicine is wide. The question is whether they offer each other enough to make bridge building worthwhile. What benefits could be expected if evolution were brought fully to bear on the problems of medicine? How would studying medical problems advance evolutionary research? Do doctors need to learn evolution, or is it valuable mainly for researchers? What practical steps will promote the application of evolutionary biology in the areas of medicine where it offers the most? To address these questions, we review current and potential applications of evolutionary biology to medicine and public health. Some evolutionary technologies, such as population genetics, serial transfer production of live vaccines, and phylogenetic analysis, have been widely applied. Other areas, such as infectious disease and aging research, illustrate the dramatic recent progress made possible by evolutionary insights. In still other areas, such as epidemiology, psychiatry, and understanding the regulation of bodily defenses, applying evolutionary principles remains an open opportunity. In addition to the utility of specific applications, an evolutionary perspective fundamentally challenges the prevalent but fundamentally incorrect metaphor of the body as a machine designed by an engineer. Bodies are vulnerable to disease - and remarkably resilient - precisely because they are not machines built from a plan. They are, instead, bundles of compromises shaped by natural selection in small increments to maximize reproduction, not health. Understanding the body as a product of natural selection, not design, offers new research questions and a framework for making medical education more coherent. We conclude with recommendations for actions that would better connect evolutionary biology and medicine in ways that will benefit public health. It is our hope that faculty and students will send this article to their undergraduate and medical school Deans, and that this will initiate discussions about the gap, the great opportunity, and action plans to bring the full power of evolutionary biology to bear on human health problems.
Collapse
|
7
|
Bao AM, Swaab DF. Gender difference in age-related number of corticotropin-releasing hormone-expressing neurons in the human hypothalamic paraventricular nucleus and the role of sex hormones. Neuroendocrinology 2007; 85:27-36. [PMID: 17308368 DOI: 10.1159/000099832] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 01/18/2007] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that the total number of corticotropin-releasing hormone (CRH)-stained neurons in the human hypothalamic paraventricular nucleus (PVN) increases with age. To determine whether this age-related change depends on gender and whether circulating sex hormones play a role, we analyzed the total number of CRH-immunoreactive neurons by means of immunocytochemistry and image analysis in the postmortem hypothalamic PVN of 22 control subjects (11 males and 11 females) between the ages of 22 and 89 years, and of 10 subjects with abnormal sex hormone status. Our data show that men have a significantly larger number of CRH neurons than women (p = 0.004) and that the total number of CRH neurons increases significantly with age, but only in male controls (p = 0.032), not in female controls (p = 0.733). Female controls do not show a significant change in the total number of CRH neurons either before or after the age (50 years) of menopause (p = 0.792). Male subjects with low testosterone levels due to castration showed significantly fewer CRH neurons than well-matched intact males (p = 0.008), while castrated male-to-female (M-F) transsexuals with estrogen replacement showed normal numbers of CRH neurons. One male case, who had high estrogen levels due to an estrogen-producing tumor, showed a large number of CRH neurons. Thus, although circulating androgens and estrogens both seem to play a stimulatory role with respect to CRH neurons, the age-dependent increase in the number of CRH neurons in the PVN of men, which has been interpreted to reflect activation of the CRH neurons with age, seems to result from factors other than age-related changes of circulating sex hormone levels.
Collapse
Affiliation(s)
- Ai-Min Bao
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| | | |
Collapse
|
8
|
Harris EE, Malyango AA. Evolutionary explanations in medical and health profession courses: are you answering your students' "why" questions? BMC MEDICAL EDUCATION 2005; 5:16. [PMID: 15885137 PMCID: PMC1142319 DOI: 10.1186/1472-6920-5-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 05/10/2005] [Indexed: 05/02/2023]
Abstract
BACKGROUND Medical and pre-professional health students ask questions about human health that can be answered in two ways, by giving proximate and evolutionary explanations. Proximate explanations, most common in textbooks and classes, describe the immediate scientifically known biological mechanisms of anatomical characteristics or physiological processes. These explanations are necessary but insufficient. They can be complemented with evolutionary explanations that describe the evolutionary processes and principles that have resulted in human biology we study today. The main goal of the science of Darwinian Medicine is to investigate human disease, disorders, and medical complications from an evolutionary perspective. DISCUSSION This paper contrasts the differences between these two types of explanations by describing principles of natural selection that underlie medical questions. Thus, why is human birth complicated? Why does sickle cell anemia exist? Why do we show symptoms like fever, diarrhea, and coughing when we have infection? Why do we suffer from ubiquitous age-related diseases like arteriosclerosis, Alzheimer's and others? Why are chronic diseases like type II diabetes and obesity so prevalent in modern society? Why hasn't natural selection eliminated the genes that cause common genetic diseases like hemochromatosis, cystic fibrosis, Tay sachs, PKU and others? SUMMARY In giving students evolutionary explanations professors should underscore principles of natural selection, since these can be generalized for the analysis of many medical questions. From a research perspective, natural selection seems central to leading hypotheses of obesity and type II diabetes and might very well explain the occurrence of certain common genetic diseases like cystic fibrosis, hemochromatosis, Tay sachs, Fragile X syndrome, G6PD and others because of their compensating advantages. Furthermore, armed with evolutionary explanations, health care professionals can bring practical benefits to patients by treating their symptoms of infection more specifically and judiciously. They might also help curtail the evolutionary arms race between pathogens and antibiotic defenses.
Collapse
Affiliation(s)
- Eugene E Harris
- Department of Biological Sciences and Geology, Queensborough Community College, City University of New York, New York City, USA
| | - Avelin A Malyango
- Department of Cell Biology, New York University School of Medicine, New York City, USA
| |
Collapse
|