1
|
Song S, Wang C, Chen Y, Zhou X, Han Y, Zhang H. Dynamic roles of tumor-infiltrating B lymphocytes in cancer immunotherapy. Cancer Immunol Immunother 2025; 74:92. [PMID: 39891668 PMCID: PMC11787113 DOI: 10.1007/s00262-024-03936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 02/03/2025]
Abstract
The amazing diversity of B cells within the tumor microenvironment is the basis for the diverse development of B cell-based immunotherapies. Here, we focus on elucidating the mechanisms of tumor intervention mediated by four tumor-infiltrating B lymphocytes. Naive B cells present the initial antigen, germinal center B cell subsets enhance antibody affinity, and immunoglobulin subtypes exert multiple immune effects, while regulatory B cells establish immune tolerance. Together they reflect the complexity of the changing dynamics of cancer immunity. Additionally, we have investigated the dynamic effects of tumor-infiltrating B lymphocytes in immunotherapy and their relationship to prognosis, providing new insights into potential treatment strategies for patients.
Collapse
Affiliation(s)
- Shishengnan Song
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chong Wang
- Department of Thoracic Surgery, Beijing Chest Hospital Affiliated to Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), 9 Beiguan Street, Tongzhou, 101149, Beijing, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, NT, China
| | - Xiaorong Zhou
- Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Yi Han
- Department of Thoracic Surgery, Beijing Chest Hospital Affiliated to Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), 9 Beiguan Street, Tongzhou, 101149, Beijing, China.
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
2
|
Čelakovská J, Čermáková E, Andrýs C, Boudkova P, Krejsek J. The expression of CD200 and CD23 on B lymphocytes in the pollen season and outside the pollen season in atopic dermatitis patients with and without dupilumab therapy. J DERMATOL TREAT 2024; 35:2305832. [PMID: 38263709 DOI: 10.1080/09546634.2024.2305832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Affiliation(s)
- Jarmila Čelakovská
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - Eva Čermáková
- Department of Medical Biophysics, Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - Ctirad Andrýs
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - Petra Boudkova
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
3
|
Čelakovská J, Čermáková E, Andrýs C, Boudkova P, Krejsek J. The differences in the count of B lymphocytes in atopic dermatitis patients with and without dupilumab therapy and in healthy subjects in pollen season and out of pollen season. J DERMATOL TREAT 2024; 35:2290360. [PMID: 38213263 DOI: 10.1080/09546634.2023.2290360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/28/2023] [Indexed: 01/13/2024]
Affiliation(s)
- Jarmila Čelakovská
- Department of Dermatology and Venereology, Charles University, Hradec Králové, Czech Republic
| | - Eva Čermáková
- Department of Medical Biophysics, Charles University, Hradec Králové, Czech Republic
| | - Ctirad Andrýs
- Department of Clinical Immunology and Allergy, Charles University, Hradec Králové, Czech Republic
| | - Petra Boudkova
- Department of Clinical Immunology and Allergy, Charles University, Hradec Králové, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Blevins LK, Khan DIO, Crawford RB, O’Neill C, Bach AP, Zhou J, Karmaus PW, Ang DC, Thapa R, Kaminski NE. CD9 and Aryl Hydrocarbon Receptor Are Markers of Human CD19+CD14+ Atypical B Cells and Are Dysregulated in Systemic Lupus Erythematous Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1076-1092. [PMID: 39212542 PMCID: PMC11458359 DOI: 10.4049/jimmunol.2400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor whose expression regulates immune cell differentiation. Single-cell transcriptomic profiling was used to ascertain the heterogeneity of AHR expression in human B cell subpopulations. We identified a unique population of B cells marked by expression of AHR, CD9, and myeloid genes such as CD14 and CXCL8. Results were confirmed directly in human PBMCs and purified B cells at the protein level. TLR9 signaling induced CD14, CD9, and IL-8 protein expression in CD19+ B cells. CD14-expressing CD9+ B cells also highly expressed AHR and atypical B cell markers such as CD11c and TBET. In patients with active lupus disease, CD14+ and CD9+ B cells are dysregulated, with loss of CD9+ B cells strongly predicting disease severity and demonstrating the relevance of CD9+ B cells in systemic lupus erythematosus and autoimmune disease.
Collapse
Affiliation(s)
- Lance K. Blevins
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI USA 48824
| | - D.M. Isha O. Khan
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI USA 48824
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI USA 48824
| | - Robert B. Crawford
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI USA 48824
| | - Christine O’Neill
- Atrium Health Wake Forest Baptist School of Medicine, Winston Salem, NC USA 27157
| | - Anthony P. Bach
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI USA 48824
| | - Jiajun Zhou
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI USA 48824
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI USA 48824
| | - Peer W. Karmaus
- National Institute of Environmental Health Sciences, Research Triangle Park, NC USA 27709
| | - Dennis C. Ang
- Atrium Health Wake Forest Baptist School of Medicine, Winston Salem, NC USA 27157
| | - Rupak Thapa
- Atrium Health Wake Forest Baptist School of Medicine, Winston Salem, NC USA 27157
| | - Norbert E. Kaminski
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI USA 48824
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI USA 48824
- Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI USA 48824
| |
Collapse
|
5
|
Baert L, Mahmudul HM, Stegall M, Joo H, Oh S. B Cell-mediated Immune Regulation and the Quest for Transplantation Tolerance. Transplantation 2024; 108:2021-2033. [PMID: 38389135 DOI: 10.1097/tp.0000000000004948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Pathophysiologic function of B cells in graft rejection has been well recognized in transplantation. B cells promote alloantigen-specific T-cell response and secrete antibodies that can cause antibody-mediated graft failures and rejections. Therefore, strategies targeting B cells, for example, B-cell depletion, have been used for the prevention of both acute and chronic rejections. Interestingly, however, recent mounting evidence indicates that subsets of B cells yet to be further identified can display potent immune regulatory functions, and they contribute to transplantation tolerance and operational tolerance in both experimental and clinical settings, respectively. In this review, we integrate currently available information on B-cell subsets, including T-cell Ig domain and mucin domain 1-positive transitional and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive memory B cells, displaying immune regulatory functions, with a focus on transplantation tolerance, by analyzing their mechanisms of action. In addition, we will discuss potential T-cell Ig domain and mucin domain 1-positive and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive B cell-based strategies for the enhancement of operational tolerance in transplantation patients.
Collapse
Affiliation(s)
- Laurie Baert
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | | | - Mark Stegall
- Department of Surgery, William J. von Liebig Transplant Center, Mayo Clinic, Rochester, MN
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| |
Collapse
|
6
|
Čelakovská J, Čermáková E, Boudková P, Andýs C, Krejsek J. Differences in immunological profile in atopic dermatitis patients with and without dupilumab therapy. Immunol Med 2024:1-14. [PMID: 39148480 DOI: 10.1080/25785826.2024.2387882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Our aim is to determine the number of leukocytes, T lymphocytes and B lymphocytes and the expression of activation markers CD200 and CD23 on B lymphocytes in atopic dermatitis (AD) patients (treated and not treated with dupilumab) during the pollen season. We examined 29 patients not treated with dupilumab, 24 patients treated with dupilumab and 40 healthy subjects as a control group. The count of T and B lymphocytes and their subsets were assessed by flow cytometry. The non-parametric Kruskal-Wallis one-factor analysis of variance with post hoc by Dunn's test with Bonferroni's modification was used for statistical processing. Although there was a significant improvement in skin findings in patients treated with dupilumab, the changes in immunological profile show a persistent altered immune response characterized by dysregulation and overactivation of B lymphocytes. Dupilumab therapy leads to normalization of relative T regulatory lymphocytes and total memory B lymphocytes and to decreased count of absolute CD8+ T lymphocytes.Why carry out this study?Studies investigating the immunological profile of atopic dermatitis (AD) patients during the pollen season are rare. There are no studies investigating the count of B lymphocytes (CD5+, CD22+ and CD73+ B lymphocytes) and the expression of activation markers CD23 and CD200 on B lymphocytes and on their subsets during pollen season in AD patients treated and non-treated with dupilumab therapy.What was learned from the study?In atopic dermatitis (AD) patients with and without dupilumab therapy, we confirmed the significantly higher count of absolute neutrophils, absolute monocytes, absolute eosinophils, absolute basophils, non-switched B lymphocytes, transitional B lymphocytes, CD23 memory, naive, non-switched, switched and total CD23 B lymphocytes, the relative count of CD200 memory and CD200 switched B lymphocytes.In dupilumab treated patients, we confirmed the significantly higher count of relative eosinophils, relative CD16+ eosinophils, relative CD200 non-switched B lymphocytes and lower count of absolute CD8+ T lymphocytes. Further studies should focus on investigating the effect of dupilumab on CD8+ T lymphocytes and their subpopulations.In patients without dupilumab therapy, we confirmed the significantly higher count of relative neutrophils, relative T regulatory lymphocytes and total memory B lymphocytes.The changes in the count of CD5+, CD22+ and CD73+ B lymphocytes were not observed during pollen season in both groups of AD patients.
Collapse
Affiliation(s)
- Jarmila Čelakovská
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - Eva Čermáková
- Department of Medical Biophysics, Medical Faculty of Charles University, Hradec Králové, Czech republic
| | - Petra Boudková
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - Ctirad Andýs
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
7
|
Velez C, Williamson D, Cánovas ML, Giai LR, Rutland C, Pérez W, Barbeito CG. Changes in Immune Response during Pig Gestation with a Focus on Cytokines. Vet Sci 2024; 11:50. [PMID: 38275932 PMCID: PMC10819333 DOI: 10.3390/vetsci11010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Pigs have the highest percentage of embryonic death not associated with specific diseases of all livestock species, at 20-45%. During gestation processes, a series of complex alterations can arise, including embryonic migration and elongation, maternal immunological recognition of pregnancy, and embryonic competition for implantation sites and subsequent nutrition requirements and development. Immune cells and cytokines act as mediators between other molecules in highly complex interactions between various cell types. However, other non-immune cells, such as trophoblast cells, are important in immune pregnancy regulation. Numerous studies have shed light on the crucial roles of several cytokines that regulate the inflammatory processes that characterize the interface between the fetus and the mother throughout normal porcine gestation, but most of these reports are limited to the implantational and peri-implantational periods. Increase in some proinflammatory cytokines have been found in other gestational periods, such as placental remodeling. Porcine immune changes during delivery have not been studied as deeply as in other species. This review details some of the immune system cells actively involved in the fetomaternal interface during porcine gestation, as well as the principal cells, cytokines, and molecules, such as antibodies, that play crucial roles in sow pregnancy, both in early and mid-to-late gestation.
Collapse
Affiliation(s)
- Carolina Velez
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
- National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires 2690, Argentina;
| | - Delia Williamson
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Mariela Lorena Cánovas
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Laura Romina Giai
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Catrin Rutland
- Sutton Bonington Campus, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - William Pérez
- Department of Veterinary Anatomy, University of Montevideo, Montevideo 11600, Uruguay
| | - Claudio Gustavo Barbeito
- National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires 2690, Argentina;
- Laboratory of Descriptive, Comparative and Experimental Histology and Embriology (LHYEDEC), Department of Basic Sciences, Faculty of Veterinary Science, National University of La Plata (UNLP), La Plata 1900, Argentina
| |
Collapse
|
8
|
Daamen AR, Alajoleen RM, Grammer AC, Luo XM, Lipsky PE. Single-cell RNA sequencing analysis reveals the heterogeneity of IL-10 producing regulatory B cells in lupus-prone mice. Front Immunol 2023; 14:1282770. [PMID: 38155972 PMCID: PMC10752970 DOI: 10.3389/fimmu.2023.1282770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction B cells can have both pathogenic and protective roles in autoimmune diseases, including systemic lupus erythematosus (SLE). Deficiencies in the number or immunosuppressive function of IL-10 producing regulatory B cells (Bregs) can cause exacerbated autoimmune inflammation. However, the exact role of Bregs in lupus pathogenesis has not been elucidated. Methods We carried out gene expression analysis by scRNA-seq to characterize differences in splenic Breg subsets and molecular profiles through stages of disease progression in lupus-prone mice. Transcriptome-based changes in Bregs from mice with active disease were confirmed by phenotypic analysis. Results We found that a loss of marginal zone (MZ) lineage Bregs, an increase in plasmablast/plasma cell (PB-PC) lineage Bregs, and overall increases in inflammatory gene signatures were characteristic of active disease as compared to Bregs from the pre-disease stage. However, the frequencies of both MZ Bregs and PB-PCs expressing IL-10 were significantly decreased in active-disease mice. Conclusion Overall, we have identified changes to the repertoire and transcriptional landscape of Breg subsets associated with active disease that provide insights into the role of Bregs in lupus pathogenesis. These results could inform the design of Breg-targeted therapies and interventions to restore Breg suppressive function in autoimmunity.
Collapse
Affiliation(s)
- Andrea R. Daamen
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - Razan M. Alajoleen
- Department of Biomedical Sciences and Pathology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Amrie C. Grammer
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Peter E. Lipsky
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| |
Collapse
|
9
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Kosyreva A, Fatkhudinov T. Immune Cells in the Tumor Microenvironment of Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:5760. [PMID: 38136307 PMCID: PMC10741982 DOI: 10.3390/cancers15245760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Soft tissue sarcomas (STSs) are a rare heterogeneous group of malignant neoplasms characterized by their aggressive course and poor response to treatment. This determines the relevance of research aimed at studying the pathogenesis of STSs. By now, it is known that STSs is characterized by complex relationships between the tumor cells and immune cells of the microenvironment. Dynamic interactions between tumor cells and components of the microenvironment enhance adaptation to changing environmental conditions, which provides the high aggressive potential of STSs and resistance to antitumor therapy. Today, active research is being conducted to find effective antitumor drugs and to evaluate the possibility of using therapy with immune cells of STS. The difficulty in assessing the efficacy of new antitumor options is primarily due to the high heterogeneity of this group of malignant neoplasms. Studying the role of immune cells in the microenvironment in the progression STSs and resistance to antitumor therapies will provide the discovery of new biomarkers of the disease and the prediction of response to immunotherapy. In addition, it will help to initially divide patients into subgroups of good and poor response to immunotherapy, thus avoiding wasting precious time in selecting the appropriate antitumor agent.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
10
|
Enriquez J, McDaniel Mims B, Stroever S, dos Santos AP, Jones-Hall Y, Furr KL, Grisham MB. Influence of Housing Temperature and Genetic Diversity on Allogeneic T Cell-Induced Tissue Damage in Mice. PATHOPHYSIOLOGY 2023; 30:522-547. [PMID: 37987308 PMCID: PMC10661280 DOI: 10.3390/pathophysiology30040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/12/2023] [Accepted: 11/18/2023] [Indexed: 11/22/2023] Open
Abstract
The objective of this study was to determine how housing temperature and genetic diversity affect the onset and severity of allogeneic T cell-induced tissue damage in mice subjected to reduced intensity conditioning (RIC). We found that adoptive transfer of allogeneic CD4+ T cells from inbred donors into sub-lethally irradiated inbred recipients (I→I) housed at standard housing temperatures (ST; 22-24 °C) induced extensive BM and spleen damage in the absence of injury to any other tissue. Although engraftment of T cells in RIC-treated mice housed at their thermo-neutral temperature (TNT; 30-32 °C) also developed similar BM and spleen damage, their survival was markedly and significantly increased when compared to their ST counterparts. In contrast, the adoptive transfer of allogeneic T cells into RIC-treated outbred CD1 recipients failed to induce disease in any tissue at ST or TNT. The lack of tissue damage was not due to defects in donor T cell trafficking to BM or spleen but was associated with the presence of large numbers of B cells and myeloid cells within these tissues that are known to contain immunosuppressive regulatory B cells and myeloid-derived suppressor cells. These data demonstrate, for the first time, that housing temperature affects the survival of RIC-treated I→I mice and that RIC-conditioned outbred mice are resistant to allogeneic T cell-induced BM and spleen damage.
Collapse
Affiliation(s)
- Josue Enriquez
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Brianyell McDaniel Mims
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephanie Stroever
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Andrea Pires dos Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Yava Jones-Hall
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kathryn L. Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
11
|
Aoun M, Coelho A, Krämer A, Saxena A, Sabatier P, Beusch CM, Lönnblom E, Geng M, Do NN, Xu Z, Zhang J, He Y, Romero Castillo L, Abolhassani H, Xu B, Viljanen J, Rorbach J, Fernandez Lahore G, Gjertsson I, Kastbom A, Sjöwall C, Kihlberg J, Zubarev RA, Burkhardt H, Holmdahl R. Antigen-presenting autoreactive B cells activate regulatory T cells and suppress autoimmune arthritis in mice. J Exp Med 2023; 220:e20230101. [PMID: 37695523 PMCID: PMC10494526 DOI: 10.1084/jem.20230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
B cells undergo several rounds of selection to eliminate potentially pathogenic autoreactive clones, but in contrast to T cells, evidence of positive selection of autoreactive B cells remains moot. Using unique tetramers, we traced natural autoreactive B cells (C1-B) specific for a defined triple-helical epitope on collagen type-II (COL2), constituting a sizeable fraction of the physiological B cell repertoire in mice, rats, and humans. Adoptive transfer of C1-B suppressed arthritis independently of IL10, separating them from IL10-secreting regulatory B cells. Single-cell sequencing revealed an antigen processing and presentation signature, including induced expression of CD72 and CCR7 as surface markers. C1-B presented COL2 to T cells and induced the expansion of regulatory T cells in a contact-dependent manner. CD72 blockade impeded this effect suggesting a new downstream suppressor mechanism that regulates antigen-specific T cell tolerization. Thus, our results indicate that autoreactive antigen-specific naïve B cells tolerize infiltrating T cells against self-antigens to impede the development of tissue-specific autoimmune inflammation.
Collapse
Affiliation(s)
- Mike Aoun
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Ana Coelho
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Alexander Krämer
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Amit Saxena
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Pierre Sabatier
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Christian Michel Beusch
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Erik Lönnblom
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Manman Geng
- Precision Medicine Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Nhu-Nguyen Do
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
- Fraunhofer Institute for Translational Medicine and Pharmacology, and Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Frankfurt am Main, Germany
| | - Zhongwei Xu
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Jingdian Zhang
- Max Planck Institute Biology of Ageing—Karolinska Institute Laboratory, Karolinska Institute, Solna, Sweden
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Yibo He
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Laura Romero Castillo
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Neo Building, Solna, Sweden
| | - Bingze Xu
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Johan Viljanen
- Department of Chemistry, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Joanna Rorbach
- Max Planck Institute Biology of Ageing—Karolinska Institute Laboratory, Karolinska Institute, Solna, Sweden
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Gonzalo Fernandez Lahore
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Alf Kastbom
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jan Kihlberg
- Department of Chemistry, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Roman A. Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
- Department of Pharmacological and Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Harald Burkhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology, and Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
- Precision Medicine Institute, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
12
|
Suchanek O, Ferdinand JR, Tuong ZK, Wijeyesinghe S, Chandra A, Clauder AK, Almeida LN, Clare S, Harcourt K, Ward CJ, Bashford-Rogers R, Lawley T, Manz RA, Okkenhaug K, Masopust D, Clatworthy MR. Tissue-resident B cells orchestrate macrophage polarisation and function. Nat Commun 2023; 14:7081. [PMID: 37925420 PMCID: PMC10625551 DOI: 10.1038/s41467-023-42625-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
B cells play a central role in humoral immunity but also have antibody-independent functions. Studies to date have focused on B cells in blood and secondary lymphoid organs but whether B cells reside in non-lymphoid organs (NLO) in homeostasis is unknown. Here we identify, using intravenous labeling and parabiosis, a bona-fide tissue-resident B cell population in lung, liver, kidney and urinary bladder, a substantial proportion of which are B-1a cells. Tissue-resident B cells are present in neonatal tissues and also in germ-free mice NLOs, albeit in lower numbers than in specific pathogen-free mice and following co-housing with 'pet-store' mice. They spatially co-localise with macrophages and regulate their polarization and function, promoting an anti-inflammatory phenotype, in-part via interleukin-10 production, with effects on bacterial clearance during urinary tract infection. Thus, our data reveal a critical role for tissue-resident B cells in determining the homeostatic 'inflammatory set-point' of myeloid cells, with important consequences for tissue immunity.
Collapse
Affiliation(s)
- Ondrej Suchanek
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Sathi Wijeyesinghe
- Department of Microbiology and Immunology, Centre for Immunology, University of Minnesota, Minneapolis, MI, USA
| | - Anita Chandra
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Larissa N Almeida
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Christopher J Ward
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | | | - Trevor Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David Masopust
- Department of Microbiology and Immunology, Centre for Immunology, University of Minnesota, Minneapolis, MI, USA
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
13
|
Abosalif KOA, Abdalla AE, Junaid K, Eltayeb LB, Ejaz H. The interleukin-10 family: Major regulators of the immune response against Plasmodium falciparum infections. Saudi J Biol Sci 2023; 30:103805. [PMID: 37727525 PMCID: PMC10506046 DOI: 10.1016/j.sjbs.2023.103805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Malaria caused by the Plasmodium falciparum strain is more severe because of this protozoan's ability to disrupt the physiology of host cells during the blood stages of development by initiating the production of the interleukin-10 (IL-10) family of cytokines. P. falciparum feeds on hemoglobin and causes host cells to adhere to the walls of blood vessels by remodeling their composition. IL-10 is produced by CD4+ T cells that inhibits antigen-presenting cells' activity to prevent inflammation. This cytokine and its family members are crucial in promoting malarial infection by inhibiting the host's protective immune response, thus initiating Plasmodium parasitemia. IL-10 is also responsible for preventing severe pathology during Plasmodium infection and initiates several signaling pathways to alter the physiology of host cells during malarial infection. This review summarizes the critical aspects of P. falciparum infection, including its role in signaling pathways for cytokine exudation, its effect on microRNA, the human immune response in malaria, and the role played by the liver hormone hepcidin. Moreover, future aspects of vaccine development and therapeutic strategies to combat P. falciparum infections are also discussed in detail.
Collapse
Affiliation(s)
- Khalid Omer Abdalla Abosalif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Kashaf Junaid
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University- Al-Kharj, 11942 Riyadh, Saudi Arabia
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
14
|
Xi Y, Zhang Y, Zheng K, Zou J, Gui L, Zou X, Chen L, Hao J, Zhang Y. A chemotherapy response prediction model derived from tumor-promoting B and Tregs and proinflammatory macrophages in HGSOC. Front Oncol 2023; 13:1171582. [PMID: 37519793 PMCID: PMC10382026 DOI: 10.3389/fonc.2023.1171582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Background Most patients with high-grade serous ovarian cancer (HGSOC) experienced disease recurrence with cumulative chemoresistance, leading to treatment failure. However, few biomarkers are currently available in clinical practice that can accurately predict chemotherapy response. The tumor immune microenvironment is critical for cancer development, and its transcriptomic profile may be associated with treatment response and differential outcomes. The aim of this study was to develop a new predictive signature for chemotherapy in patients with HGSOC. Methods Two HGSOC single-cell RNA sequencing datasets from patients receiving chemotherapy were reinvestigated. The subtypes of endoplasmic reticulum stress-related XBP1+ B cells, invasive metastasis-related ACTB+ Tregs, and proinflammatory-related macrophage subtypes with good predictive power and associated with chemotherapy response were identified. These results were verified in an independent HGSOC bulk RNA-seq dataset for chemotherapy. Further validation in clinical cohorts used quantitative real-time PCR (qRT-PCR). Results By combining cluster-specific genes for the aforementioned cell subtypes, we constructed a chemotherapy response prediction model containing 43 signature genes that achieved an area under the receiver operator curve (AUC) of 0.97 (p = 2.1e-07) for the GSE156699 cohort (88 samples). A huge improvement was achieved compared to existing prediction models with a maximum AUC of 0.74. In addition, its predictive capability was validated in multiple independent bulk RNA-seq datasets. The qRT-PCR results demonstrate that the expression of the six genes has the highest diagnostic value, consistent with the trend observed in the analysis of public data. Conclusions The developed chemotherapy response prediction model can be used as a valuable clinical decision tool to guide chemotherapy in HGSOC patients.
Collapse
Affiliation(s)
- Yue Xi
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yingchun Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Kun Zheng
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Zou
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lv Gui
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xin Zou
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Liang Chen
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Hao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiming Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
15
|
Vidal-Realpe A, Dueñas-Cuellar RA, Niño-Castaño VE, Mora-Obando DL, Arias-Agudelo JJ, Bolaños HJ. Clinical and pathologic characteristics of gastric adenocarcinoma associated with Epstein-Barr virus in a region with a high incidence of gastric cancer in Colombia. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2023; 88:256-266. [PMID: 35810098 DOI: 10.1016/j.rgmxen.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION AND AIMS Epstein-Barr virus (EBV) infection is an etiologic factor in EBV-associated gastric carcinoma (EBVaGC). The aim of our study was to describe the clinical and histopathologic characteristics of EBV infection in intestinal-type gastric adenocarcinoma samples. MATERIAL AND METHODS Of 180 paraffin-embedded gastrectomy samples, 28 were studied. Chromogenic in situ hybridization was performed to detect EBV. Sociodemographic and histopathologic data were obtained from the patients' clinical histories. RESULTS A total of 21.4% of the samples were positive for EBV. The predominant morphologic characteristic was the lace pattern, with dense inflammatory infiltration. Fifty percent of the EBVaGC+ patients were men, and the median age of the positive patients was 59 years (range: 50-75); 77.2% of the EBVaGC- patients were men, and the median age of the negative patients was 66 years (range: 34-89). Helicobacter pylori infection was associated with 10.7% of the EBVaGC+ patients and 53.6% of the EBVaGC- patients. In the EBVaGC+ patients, the cardia was the most frequent tumor location (17.9%), 7.1% had histologic grades 2 and 3, and 17.9% presented with Borrmann classification type III. In the EBVaGC- patients, the cardia and fundus were the most frequent tumor locations (71.4%), 35.7% had histologic grade 2, and 39.3% and 21.4% presented with Borrmann classification type III and IV, respectively. CONCLUSIONS The present study describes the clinical and histopathologic characteristics associated with EBVaGC positivity. Those data may aid in the selection of cases that are candidates for analysis through molecular methods aimed at identifying EBV infection in intestinal-type gastric adenocarcinoma.
Collapse
Affiliation(s)
- A Vidal-Realpe
- Programa de Medicina, Grupo de Investigación en Inmunología y Enfermedades Infecciosas, Facultad de Ciencias de la Salud, Universidad del Cauca, Popayán, Cauca, Colombia
| | - R A Dueñas-Cuellar
- Departamento de Patología, Grupo de Investigación en Inmunología y Enfermedades Infecciosas, Facultad de Ciencias de la Salud, Universidad del Cauca, Popayán, Cauca, Colombia
| | - V E Niño-Castaño
- Departamento de Patología, Grupo de Investigación en Inmunología y Enfermedades Infecciosas, Facultad de Ciencias de la Salud, Universidad del Cauca, Popayán, Cauca, Colombia
| | - D L Mora-Obando
- Grupo de Investigación en Inmunología y Enfermedades Infecciosas, Facultad de Ciencias de la Salud, Universidad del Cauca, Popayán, Cauca, Colombia
| | - J J Arias-Agudelo
- Médico Especialista en Patología Anatómica y Clínica, Bogotá, Colombia
| | - H J Bolaños
- Departamento de Patología, Grupo de Investigación en Inmunología y Enfermedades Infecciosas, Facultad de Ciencias de la Salud, Universidad del Cauca, Popayán, Cauca, Colombia.
| |
Collapse
|
16
|
Hiéronimus L, Huaux F. B-1 cells in immunotoxicology: Mechanisms underlying their response to chemicals and particles. FRONTIERS IN TOXICOLOGY 2023; 5:960861. [PMID: 37143777 PMCID: PMC10151831 DOI: 10.3389/ftox.2023.960861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Since their discovery nearly 40 years ago, B-1 cells have continued to challenge the boundaries between innate and adaptive immunity, as well as myeloid and lymphoid functions. This B-cell subset ensures early immunity in neonates before the development of conventional B (B-2) cells and respond to immune injuries throughout life. B-1 cells are multifaceted and serve as natural- and induced-antibody-producing cells, phagocytic cells, antigen-presenting cells, and anti-/pro-inflammatory cytokine-releasing cells. This review retraces the origin of B-1 cells and their different roles in homeostatic and infectious conditions before focusing on pollutants comprising contact-sensitivity-inducing chemicals, endocrine disruptors, aryl hydrocarbon receptor (AHR) ligands, and reactive particles.
Collapse
|
17
|
Scott KM, Chong YT, Park S, Wijeyekoon RS, Hayat S, Mathews RJ, Fitzpatrick Z, Tyers P, Wright G, Whitby J, Barker RA, Hu MT, Williams-Gray CH, Clatworthy MR. B lymphocyte responses in Parkinson's disease and their possible significance in disease progression. Brain Commun 2023; 5:fcad060. [PMID: 36993946 PMCID: PMC10042276 DOI: 10.1093/braincomms/fcad060] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/27/2022] [Accepted: 03/08/2023] [Indexed: 03/11/2023] Open
Abstract
Inflammation contributes to Parkinson's disease pathogenesis. We hypothesized that B lymphocytes are involved in Parkinson's disease progression. We measured antibodies to alpha-synuclein and tau in serum from patients with rapid eye movement sleep behaviour disorder (n = 79), early Parkinson's disease (n = 50) and matched controls (n = 50). Rapid eye movement sleep behaviour disorder cases were stratified by risk of progression to Parkinson's disease (low risk = 30, high risk = 49). We also measured B-cell activating factor of the tumour necrosis factor receptor family, C-reactive protein and total immunoglobulin G. We found elevated levels of antibodies to alpha-synuclein fibrils in rapid eye movement sleep behaviour disorder patients at high risk of Parkinson's disease conversion (ANOVA, P < 0.001) and lower S129D peptide-specific antibodies in those at low risk (ANOVA, P < 0.001). An early humoral response to alpha-synuclein is therefore detectable prior to the development of Parkinson's disease. Peripheral B lymphocyte phenotyping using flow cytometry in early Parkinson's disease patients and matched controls (n = 41 per group) revealed reduced B cells in Parkinson's disease, particularly in those at higher risk of developing an early dementia [t(3) = 2.87, P = 0.01]. Patients with a greater proportion of regulatory B cells had better motor scores [F(4,24) = 3.612, P = 0.019], suggesting they have a protective role in Parkinson's disease. In contrast, B cells isolated from Parkinson's disease patients at higher risk of dementia had greater cytokine (interleukin 6 and interleukin 10) responses following in vitro stimulation. We assessed peripheral blood lymphocytes in alpha-synuclein transgenic mouse models of Parkinson's disease: they also had reduced B cells, suggesting this is related to alpha-synuclein pathology. In a toxin-based mouse model of Parkinson's disease, B-cell deficiency or depletion resulted in worse pathological and behavioural outcomes, supporting the conclusion that B cells play an early protective role in dopaminergic cell loss. In conclusion, we found changes in the B-cell compartment associated with risk of disease progression in rapid eye movement sleep behaviour disorder (higher alpha-synuclein antibodies) and early Parkinson's disease (lower levels of B lymphocytes that were more reactive to stimulation). Regulatory B cells play a protective role in a mouse model, potentially by attenuating inflammation and dopaminergic cell loss. B cells are therefore likely to be involved in the pathogenesis of Parkinson's disease, albeit in a complex way, and thus warrant consideration as a therapeutic target.
Collapse
Affiliation(s)
- Kirsten M Scott
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, UK
| | - Yen Ting Chong
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Seoyoung Park
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Ruwani S Wijeyekoon
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Shaista Hayat
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Rebeccah J Mathews
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, UK
| | - Zachary Fitzpatrick
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, UK
| | - Pam Tyers
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Georgia Wright
- University of Cambridge Clinical School of Medicine, Cambridge CB2 OQQ, UK
| | - Jennifer Whitby
- University of Cambridge Clinical School of Medicine, Cambridge CB2 OQQ, UK
| | - Roger A Barker
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Michele T Hu
- Division of Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QH, UK
- Cellular Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
18
|
Cheng X, Chi L, Lin T, Liang F, Pei Z, Sun J, Teng W. Exogenous monocyte myeloid-derived suppressor cells ameliorate immune imbalance, neuroinflammation and cognitive impairment in 5xFAD mice infected with Porphyromonas gingivalis. J Neuroinflammation 2023; 20:55. [PMID: 36864466 PMCID: PMC9979576 DOI: 10.1186/s12974-023-02743-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Periodontitis is closely associated with the pathogenesis of Alzheimer's disease (AD). Porphyromonas gingivalis (Pg), the keystone periodontal pathogen, has been reported in our recent study to cause immune-overreaction and induce cognitive impairment. Monocytic myeloid-derived suppressor cells (mMDSCs) possess potent immunosuppressive function. It is unclear whether mMDSCs-mediated immune homeostasis is impaired in AD patients with periodontitis, and whether exogenous mMDSCs could ameliorate immune-overreaction and cognitive impairment induced by Pg. METHODS To explore the influence of Pg on cognitive function, neuropathology and immune balance in vivo, 5xFAD mice were treated with live Pg by oral gavage, three times a week for 1 month. The cells of peripheral blood, spleen and bone marrow from 5xFAD mice were treated with Pg to detect the proportional and functional alterations of mMDSCs in vitro. Next, exogenous mMDSCs were sorted from wild-type healthy mice and intravenously injected into 5xFAD mice that were infected with Pg. We used behavioral tests, flow cytometry and immunofluorescent staining to evaluate whether exogenous mMDSCs could ameliorate the cognitive function, immune homeostasis and reduce neuropathology exacerbated by Pg infection. RESULTS Pg exacerbated cognitive impairment in 5xFAD mice, with the deposition of amyloid plaque and increased number of microglia in the hippocampus and cortex region. The proportion of mMDSCs decreased in Pg-treated mice. In addition, Pg reduced the proportion and the immunosuppressive function of mMDSCs in vitro. Supplement of exogenous mMDSCs improved the cognitive function, and enhanced the proportions of mMDSCs and IL-10+ T cells of 5xFAD mice infected with Pg. At the same time, supplement of exogenous mMDSCs increased the immunosuppressive function of endogenous mMDSCs while decreased the proportions of IL-6+ T cells and IFN-γ+ CD4+ T cells. In addition, the deposition of amyloid plaque decreased while the number of neurons increased in the hippocampus and cortex region after the supplement of exogenous mMDSCs. Furthermore, the number of microglia increased with an increase in the proportion of M2 phenotype. CONCLUSIONS Pg can reduce the proportion of mMDSCs, induce immune-overreaction, and exacerbate the neuroinflammation and cognitive impairment in 5xFAD mice. Supplement of exogenous mMDSCs can reduce the neuroinflammation, immune imbalance and cognitive impairment in 5xFAD mice infected with Pg. These findings indicate the mechanism of AD pathogenesis and Pg-mediated promotion of AD, and provide a potential therapeutic strategy for AD patients.
Collapse
Affiliation(s)
- Xiao Cheng
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Li Chi
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Tianqiong Lin
- grid.410560.60000 0004 1760 3078Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Fengyin Liang
- grid.12981.330000 0001 2360 039XDepartment of Neurology, The First Affiliated Hospital, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road2, Guangzhou, 510080 China
| | - Zhong Pei
- grid.12981.330000 0001 2360 039XDepartment of Neurology, The First Affiliated Hospital, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road2, Guangzhou, 510080 China
| | - Jianbo Sun
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| | - Wei Teng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
19
|
Vélez C, Clauzure M, Williamson D, Koncurat MA, Barbeito C. IFN-γ and IL-10: seric and placental profile during pig gestation Seric and placental cytokines in pig gestation. AN ACAD BRAS CIENC 2023; 95:e20201160. [PMID: 37075349 DOI: 10.1590/0001-3765202320201160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/25/2020] [Indexed: 04/21/2023] Open
Abstract
Concentration of interferon-gamma and interleukin-10 in maternal serum and in maternal and fetal porcine placental extracts from different gestation periods was determined. Crossbred pigs' placental samples of 17, 30, 60, 70, and 114 days gestation and non-pregnant uteri were used. Interferon-gamma concentration was increased at the placental interface at 17 days, in maternal and fetal placenta, and decreased significantly in the remaining gestation periods. Interferon-gamma showed a peak in serum at 60 days. Regarding interleukin-10, placental tissue concentrations were unaltered, there were no significant differences with non-gestating uteri samples. In serum interleukin-10 increased at 17, 60, and 114 days gestation. At 17 days there are uterus structural and molecular changes that allow the embryos implantation and placenta development. The presence of interferon-gamma found at this moment in the interface would favor that placental growth. Moreover, its significant increase in serum at 60 days, would generate a proinflammatory cytokine pattern that facility the placental remodeling characteristic of this moment of porcine gestation. On the other hand, a significant interleukin-10 increase in serum at 17, 60 and 114 days could indicate its immunoregulatory role at a systemic level during pig gestation.
Collapse
Affiliation(s)
- Carolina Vélez
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Calle 5, 116, General Pico, 6360 La Pampa, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Mariángeles Clauzure
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Calle 5, 116, General Pico, 6360 La Pampa, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Delia Williamson
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Calle 5, 116, General Pico, 6360 La Pampa, Argentina
| | - Mirta A Koncurat
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), Calle 5, 116, General Pico, 6360 La Pampa, Argentina
| | - Claudio Barbeito
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
- Laboratory of Descriptive, Comparative and Experimental Histology and Embryology, School of Veterinary Science, National University of La Plata, Av. 60, 118, B1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
20
|
Jianyi D, Haili G, Bo Y, Meiqin Y, Baoyou H, Haoran H, Fang L, Qingliang Z, Lingfei H. Myeloid-derived suppressor cells cross-talk with B10 cells by BAFF/BAFF-R pathway to promote immunosuppression in cervical cancer. Cancer Immunol Immunother 2023; 72:73-85. [PMID: 35725835 DOI: 10.1007/s00262-022-03226-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/17/2022] [Indexed: 01/07/2023]
Abstract
Immunosuppression induced by myeloid-derived suppressor cells (MDSCs) is one of the main obstacles to the efficacy of immunotherapy for cervical cancer. Recent studies on the immunosuppressive ability of MDSCs have primarily focused on T cells, but the effect of MDSCs on B cells function is still unclear. In a study of clinical specimens, we found that the accumulation of MDSCs in patients with cervical cancer was accompanied by high expression of B cell activating factor (BAFF) on the surface and high expression of interleukin (IL)-10-producing B cells (B10) in vivo. We found that the absence of BAFF could significantly inhibit tumor growth in a cervical cancer model using BAFF KO mice. Further studies showed that abundant MDSCs in cervical cancer induced B cells to differentiate into B10 cells by regulating BAFF which acted on the BAFF receptor (BAFF-R) of them. In this process, we found that a large amount of IL-10 secreted by B10 cells can activate STAT3 signaling pathway in MDSCs, and then form a positive feedback loop to promote the differentiation of B10 cells. Therefore, this study reveals a new mechanism of BAFF-mediated mutual immune regulation between MDSCs and B cells in the occurrence and development of cervical cancer.
Collapse
Affiliation(s)
- Ding Jianyi
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201240, China
| | - Gan Haili
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201240, China
| | - Yin Bo
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201240, China
| | - Yang Meiqin
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201240, China
| | - Huang Baoyou
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201240, China
| | - Hu Haoran
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201240, China
| | - Li Fang
- Department of Gynecology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
| | - Zheng Qingliang
- Sun Yat-sen University, Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Shenzhen, 518000, People's Republic of China.
| | - Han Lingfei
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201240, China.
| |
Collapse
|
21
|
Missale F, Bugatti M, Marchi F, Mandelli GE, Bruni M, Palmerini G, Monti M, Bozzola AM, Arena G, Guastini L, Boggio M, Parrinello G, Peretti G, Vermi W. The prometastatic relevance of tumor-infiltrating B lymphocytes in laryngeal squamous cell carcinoma. Clin Transl Immunology 2023; 12:e1445. [PMID: 37122496 PMCID: PMC10131296 DOI: 10.1002/cti2.1445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/19/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Objectives Laryngeal squamous cell carcinomas (LSCCs) typically have an excellent prognosis for stage I tumors but a significant risk of locoregional and distant recurrence for intermediate to advanced disease. This study will investigate the clinical relevance of the tumor microenvironment in a large cohort of treatment-naïve patients affected by stage II-IV LSCC. Methods Whole slide-based digital pathology analysis was applied to measure six immune cell populations identified by immunohistochemistry (IHC) staining for CD3, CD8, CD20, CD66b, CD163 and CD38. Survival analysis was performed by Cox proportional hazards models and unsupervised hierarchical clustering using the k-means method. Double IHC staining and in-situ hybridisation by RNAscope allowed further analysis of a protumoral B cell population. Results A cohort of 98 patients was enrolled and analysed. The cluster of immune-infiltrated LSCCs demonstrated a significantly worse disease-specific survival rate. We also discovered a new association between high CD20+ B cells and a greater risk of distant recurrence. The phenotypic analysis of infiltrating CD20+ B cells showed a naïve (BCL6-CD27-Mum1-) regulatory phenotype, producing TGFβ but not IL10, according to an active TGFβ pathway, as proved by positive pSMAD2 staining. Conclusion The identification of regulatory B cells in the context of LSCC, along with the activation of the TGFβ pathway, could provide the basis for new trials investigating the efficacy of already available molecules targeting the TGFβ pathway in the treatment of LSCC.
Collapse
Affiliation(s)
- Francesco Missale
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Department of Head & Neck Oncology & Surgery Otorhinolaryngology, Antoni Van LeeuwenhoekNederlands Kanker InstituutAmsterdamThe Netherlands
| | - Mattia Bugatti
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Unit of PathologyASST Spedali Civili di BresciaBresciaItaly
| | - Filippo Marchi
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
- Department of Surgical Sciences and Integrated Diagnostics (DISC)University of GenoaGenoaItaly
| | | | - Maria Bruni
- Unit of PathologyASST Spedali Civili di BresciaBresciaItaly
| | | | - Matilde Monti
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Anna M Bozzola
- Unit of PathologyASST Spedali Civili di BresciaBresciaItaly
| | - Giorgio Arena
- ENT DivisionUniversity of Easter Pidmont – AOU Maggiore della Carità di NovaraNovaraItaly
| | - Luca Guastini
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
- Department of Surgical Sciences and Integrated Diagnostics (DISC)University of GenoaGenoaItaly
| | | | | | - Giorgio Peretti
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
- Department of Surgical Sciences and Integrated Diagnostics (DISC)University of GenoaGenoaItaly
| | - William Vermi
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Unit of PathologyASST Spedali Civili di BresciaBresciaItaly
- Department of Pathology and ImmunologyWashington University School of MedicineMOSt. LouisUSA
| |
Collapse
|
22
|
Eiza N, Sabag AD, Kessler O, Neufeld G, Vadasz Z. CD72-semaphorin3A axis: A new regulatory pathway in systemic lupus erythematosus. J Autoimmun 2023; 134:102960. [PMID: 36470209 DOI: 10.1016/j.jaut.2022.102960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
CD72 is a regulatory co-receptor on B cells, with a role in the pathogenesis of systemic lupus erythematosus (SLE) in both human and animal models. Semaphorin3A (sema3A) is a secreted member of the semaphorin family that can reconstruct B cells' regulatory functions by upregulating IL-10 expression and inhibiting the pro-inflammatory activity of B and T cells in autoimmune diseases. The aim of our present study was to identify a new ligand for CD72, namely sema3A, and exploring the signal transduction pathways following its ligation in B cells. We established that CD72 functions as sema3A binding and signal-transducing receptor. These functions of CD72 are independent of neuropilin-1 (NRP-1) (the known sema3A receptor). We discovered that sema3A induces the phosphorylation of CD72 on tyrosine residues and the association of CD72 with SHP-1 and SHP-2. In addition, the binding of sema3A to CD72 on B cells inhibits the phosphorylation of STAT-4 and HDAC-1 and induces the phosphorylation of p38-MAPK and PKC-theta in B-cells derived B-lymphoblastoid (BLCL) cells, and in primary B-cells isolated from either healthy donors or SLE patients. We concluded that sema3A is a functional regulatory ligand for CD72 on B cells. The sema3A-CD72 axis is a crucial regulatory pathway in the pathogenesis of autoimmune and inflammatory diseases namely SLE, and modulation of this pathway may have a potential therapeutic value for autoimmune diseases.
Collapse
Affiliation(s)
- Nasren Eiza
- The Proteomic Unit, Bnai Zion Medical Center; Haifa, 3339419, Israel; Cancer Research Center, The Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 3525422, Israel
| | - Adi D Sabag
- The Proteomic Unit, Bnai Zion Medical Center; Haifa, 3339419, Israel
| | - Ofra Kessler
- Cancer Research Center, The Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 3525422, Israel
| | - Gera Neufeld
- Cancer Research Center, The Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 3525422, Israel
| | - Zahava Vadasz
- The Proteomic Unit, Bnai Zion Medical Center; Haifa, 3339419, Israel; Cancer Research Center, The Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, 3525422, Israel.
| |
Collapse
|
23
|
Ghobadinezhad F, Ebrahimi N, Mozaffari F, Moradi N, Beiranvand S, Pournazari M, Rezaei-Tazangi F, Khorram R, Afshinpour M, Robino RA, Aref AR, Ferreira LMR. The emerging role of regulatory cell-based therapy in autoimmune disease. Front Immunol 2022; 13:1075813. [PMID: 36591309 PMCID: PMC9795194 DOI: 10.3389/fimmu.2022.1075813] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Autoimmune disease, caused by unwanted immune responses to self-antigens, affects millions of people each year and poses a great social and economic burden to individuals and communities. In the course of autoimmune disorders, including rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and multiple sclerosis, disturbances in the balance between the immune response against harmful agents and tolerance towards self-antigens lead to an immune response against self-tissues. In recent years, various regulatory immune cells have been identified. Disruptions in the quality, quantity, and function of these cells have been implicated in autoimmune disease development. Therefore, targeting or engineering these cells is a promising therapeutic for different autoimmune diseases. Regulatory T cells, regulatory B cells, regulatory dendritic cells, myeloid suppressor cells, and some subsets of innate lymphoid cells are arising as important players among this class of cells. Here, we review the roles of each suppressive cell type in the immune system during homeostasis and in the development of autoimmunity. Moreover, we discuss the current and future therapeutic potential of each one of these cell types for autoimmune diseases.
Collapse
Affiliation(s)
- Farbod Ghobadinezhad
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran,Universal Scientific Education and Research Network (USERN) Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Ebrahimi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Mozaffari
- Department of Nutrition, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Neda Moradi
- Division of Biotechnology, Department of Cell and Molecular Biology and Microbiology, Nourdanesh Institute of Higher Education, University of Meymeh, Isfahan, Iran
| | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Shahrekord, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Afshinpour
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
| | - Rob A. Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States,Xsphera Biosciences, Boston, MA, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| |
Collapse
|
24
|
Wang C, Xu H, Gao R, Leng F, Huo F, Li Y, Liu S, Xu M, Bai J. CD19 +CD24 hiCD38 hi regulatory B cells deficiency revealed severity and poor prognosis in patients with sepsis. BMC Immunol 2022; 23:54. [PMID: 36357845 PMCID: PMC9648441 DOI: 10.1186/s12865-022-00528-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
Background Sepsis still remains a major challenge in intensive care medicine with unacceptably high mortality among patients with septic shock. Due to current limitations of human CD19+CD24hiCD38hi Breg cells (Bregs) studies among sepsis, here, we tried to evaluate Bregs in severity and prognostic value in patients with sepsis. Methods Peripheral blood from 58 patients with sepsis and 22 healthy controls was analyzed using flow cytometry to evaluate the frequency and number of Bregs. All cases were divided into non-survived or survived group after 28 days followed up. Spearman's correlation analysis was performed on Bregs frequency and clinical indices. The area under the curve was acquired using the receiver operating characteristic analysis to assess the sensitivity and specificity of Bregs for outcome of sepsis. Survival curve analysis and binary logistic regression were applied to estimate the value of Bregs in prognosis among cases with sepsis. Results Sepsis patients had decreased proportions and number of Bregs. Sepsis patients with low frequency of Bregs were associated with an increased risk of septic shock. Bregs frequency is inversely associated with lactate, SOFA, and APACHE II and positively correlated with Tregs frequency. Low levels of Bregs closely correlated with septic outcomes. Numbers of Bregs were prediction factors for poor prognosis. Conclusions Frequency and number of Bregs decreased, and Bregs deficiency revealed poor prognosis in patients with sepsis. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00528-x.
Collapse
Affiliation(s)
- Chunmei Wang
- grid.89957.3a0000 0000 9255 8984Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Nanjing Medical University, Nanjing, 211166 Jiangsu Province China ,grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Huihui Xu
- grid.9227.e0000000119573309Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Rui Gao
- grid.452252.60000 0004 8342 692XDepartment of Respiratory and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, 272067 Shandong Province China
| | - Fengying Leng
- grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Fangjie Huo
- Department of Respiratory Medicine, Xi’an No. 4 Hospital, Xi’an, 710004 Shanxi Province China
| | - Yinzhen Li
- grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China ,grid.24516.340000000123704535Medical School, Tongji University, Shanghai, 200120 China
| | - Siting Liu
- grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Mingzheng Xu
- grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Jianwen Bai
- grid.89957.3a0000 0000 9255 8984Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Nanjing Medical University, Nanjing, 211166 Jiangsu Province China ,grid.24516.340000000123704535Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| |
Collapse
|
25
|
Liu Z, Zeng Q, Chen X, He C, Wang F, Liu T. Donor peritoneal-derived cells can attenuate graft-versus-host disease after MHC-incompatible bone marrow transplantation in mice. Int Immunopharmacol 2022; 112:109296. [DOI: 10.1016/j.intimp.2022.109296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
|
26
|
Liu M, Zhou J, Yin R, Yin H, Ding Y, Ma F, Qian L. The HMGB1 (C106A) mutation inhibits IL-10-producing CD19hiFcγRIIbhi B cell expansion by suppressing STAT3 activation in mice. Front Immunol 2022; 13:975551. [PMID: 35983056 PMCID: PMC9378787 DOI: 10.3389/fimmu.2022.975551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 12/05/2022] Open
Abstract
Regulatory B cells have important roles in inflammation and autoimmune diseases. A newly discovered subpopulation of B cells with a CD19hiFcγRIIbhi phenotype inhibits the proliferation of CD4+ T cells by secreting interleukin (IL)-10. The expansion of CD19hiFcγRIIbhi B cells in mouse spleen can be induced by lipopolysaccharide (LPS) or CpG oligodeoxynucleotide stimulation. However, the mechanism of CD19hiFcγRIIbhi B cell expansion and its role in inflammatory diseases are unclear. Here, we report that, under inflammatory conditions, the proliferation and immunosuppressive function of CD19hiFcγRIIbhi B cells were decreased in high mobility group box1 (HMGB1) C106A mutant mice, compared with wild-type mice. The HMGB1 (C106A) mutation in B cells reduced STAT3 phosphorylation, restricting the expansion and suppressive function of CD19hiFcγRIIbhi B cells. Compared with CD19hiFcγRIIbhi B cells from wild-type mice, CD19hiFcγRIIbhi B cells from Hmgb1(C106A) mice significantly reduced the survival of mice with sepsis. Recombinant HMGB1 promoted the expansion of IL-10-producing CD19hiFcγRIIbhi B cells among LPS-activated B cells in vitro. Furthermore, the percentage of CD19hiFcγRIIbhi regulatory B cells in the peripheral blood was increased in patients with sepsis, compared with healthy controls. These findings implicate the role of HMGB1 in the expansion and immunosuppressive function of CD19hiFcγRIIbhi B cells.
Collapse
Affiliation(s)
- Mengru Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jingwen Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Rui Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Hui Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yue Ding
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Feng Ma
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
- *Correspondence: Li Qian, ; Feng Ma,
| | - Li Qian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
- *Correspondence: Li Qian, ; Feng Ma,
| |
Collapse
|
27
|
Humoral immunity at the brain borders in homeostasis. Curr Opin Immunol 2022; 76:102188. [DOI: 10.1016/j.coi.2022.102188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/18/2022]
|
28
|
Wu M, Yu S, Chen Y, Meng W, Chen H, He J, Shen J, Lin X. Acteoside promotes B cell-derived IL-10 production and ameliorates autoimmunity. J Leukoc Biol 2022; 112:875-885. [PMID: 35638582 DOI: 10.1002/jlb.3ma0422-510r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/11/2022] [Indexed: 12/21/2022] Open
Abstract
IL-10-producing regulatory B (Breg) cells are well recognized for maintaining immune tolerance. The impaired Breg cell function with decreased IL-10-producing capacity has been found in autoimmune diseases, such as rheumatoid arthritis, lupus, and primary Sjogren's syndrome (pSS). However, seldom therapeutic agents targeting Breg cells are available to treat those autoimmune diseases. Here, we showed that acteoside (AC), a caffeoyl phenylethanoid glycoside from a medicinal herb Radix Rehmanniae, could promote IL-10 production from both human and murine B cells via critically regulating the TLR4/PI3K axis. Moreover, TLR4 was found increased in Breg cells from mice with experimental SS (ESS), a mouse model that recapitulates human pSS. Thus, B cells from the ESS mice were susceptible to AC treatment, showing higher IL-10-producing capacity than those from naïve controls. In addition, AC treatment also promoted the production of IL-10 from TLR4+ CXCR4+ plasma cells of ESS mice. Notably, we found that AC was able to enter lymphoid organs upon oral administration. AC treatment effectively increased IL-10+ B cells in ESS mice and ameliorated disease pathology accompanied by reduced T effector cells, including Th17 and T follicular helper cells in the ESS mice. In conclusion, AC could promote Breg cell function and attenuate ESS pathology in vivo, which may be a promising drug candidate for treating pSS and other autoimmune diseases.
Collapse
Affiliation(s)
- Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sulan Yu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yacun Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wei Meng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Workstation for Training and Research (Hong Kong Branch), Distinguished Professor Yu Jin Gynaecology of Chinese Medicine & Integrative Medicine, Hong Kong SAR, China.,Workstation of Zhu Nansun, National Master of Chinese Medicine, Hong Kong Branch of Zhu's School of Gynaecology of Chinese Medicine from Shanghai, Hong Kong SAR, China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiang Lin
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
29
|
IL-10 Producing Regulatory B Cells Mediated Protection against Murine Malaria Pathogenesis. BIOLOGY 2022; 11:biology11050669. [PMID: 35625397 PMCID: PMC9138363 DOI: 10.3390/biology11050669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023]
Abstract
Simple Summary The immunomodulatory role of B cell subset called regulatory B cells was evaluated during Plasmodium infection to study their role in susceptibility or resistance during infection. The expansion of regulatory B cells during Plasmodium infection indicated their important role in regulating the immune response. Adoptive transfer of regulatory B cells following infection with a lethal parasite resulted in enhanced survival of mice and inhibited growth of the Plasmodium parasite. Moreover, by inhibiting the production of the pro-inflammatory cytokine, IFN-γ, and stimulating anti-inflammatory IL-10 production, regulatory B cells may serve as an important contributor to protective immune response. Abstract Various immune cells are known to participate in combating infection. Regulatory B cells represent a subset of B cells that take part in immunomodulation and control inflammation. The immunoregulatory function of regulatory B cells has been shown in various murine models of several disorders. In this study, a comparable IL-10 competent B-10 cell subset (regulatory B cells) was characterized during lethal and non-lethal infection with malaria parasites using the mouse model. We observed that infection of Balb/c mice with P. yoelii I 7XL was lethal, and a rapid increase in dynamics of IL-10 producing B220+CD5+CD1d+ regulatory B cells over the course of infection was observed. However, animals infected with a less virulent strain of the parasite P. yoelii I7XNL attained complete resistance. It was observed that there is an increase in the population of regulatory B cells with an increase of parasitemia; however, a sudden drop in the frequency of these cells was observed with parasite clearance. Adoptive transfer of regulatory B cells to naïve mice followed by infection results in slow parasite growth and enhancement of survival in P. yoelii 17XL (lethal) infected animals. Adoptively transferred regulatory B cells also resulted in decreased production of pro-inflammatory cytokine (IFN-γ) and enhanced production of anti-inflammatory cytokine (IL-10). It infers that these regulatory B cells may contribute in immune protection by preventing the inflammation associated with disease and inhibiting the parasite growth.
Collapse
|
30
|
Czaja AJ. Immune Inhibitory Properties and Therapeutic Prospects of Transforming Growth Factor-Beta and Interleukin 10 in Autoimmune Hepatitis. Dig Dis Sci 2022; 67:1163-1186. [PMID: 33835375 DOI: 10.1007/s10620-021-06968-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-beta and interleukin 10 have diverse immune inhibitory properties that have restored homeostatic defense mechanisms in experimental models of autoimmune disease. The goals of this review are to describe the actions of each cytokine, review their investigational use in animal models and patients, and indicate their prospects as interventions in autoimmune hepatitis. English abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Transforming growth factor-beta expands the natural and inducible populations of regulatory T cells, limits the proliferation of natural killer cells, suppresses the activation of naïve CD8+ T cells, decreases the production of interferon-gamma, and stimulates fibrotic repair. Interleukin 10 selectively inhibits the CD28 co-stimulatory signal for antigen recognition and impairs antigen-specific activation of uncommitted CD4+ and CD8+ T cells. It also inhibits maturation of dendritic cells, suppresses Th17 cells, supports regulatory T cells, and limits production of diverse pro-inflammatory cytokines. Contradictory immune stimulatory effects have been associated with each cytokine and may relate to the dose and accompanying cytokine milieu. Experimental findings have not translated into successful early clinical trials. The recombinant preparation of each agent in low dosage has been safe in human studies. In conclusion, transforming growth factor-beta and interleukin 10 have powerful immune inhibitory actions of potential therapeutic value in autoimmune hepatitis. The keys to their therapeutic application will be to match their predominant non-redundant function with the pivotal pathogenic mechanism or cytokine deficiency and to avoid contradictory immune stimulatory actions.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
31
|
Song Z, Yuan W, Zheng L, Wang X, Kuchroo VK, Mohib K, Rothstein DM. B Cell IL-4 Drives Th2 Responses In Vivo, Ameliorates Allograft Rejection, and Promotes Allergic Airway Disease. Front Immunol 2022; 13:762390. [PMID: 35359977 PMCID: PMC8963939 DOI: 10.3389/fimmu.2022.762390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
B cells can be polarized to express various cytokines. The roles of IFNγ and IL-10, expressed respectively by B effector 1 (Be1) and Bregs, have been established in pathogen clearance, tumor growth, autoimmunity and allograft rejection. However, the in vivo role of B cell IL-4, produced by Be2 cells, remains to be established. We developed B-IL-4/13 iKO mice carrying a tamoxifen-inducible B cell-specific deletion of IL-4 and IL-13. After alloimmunization, B-IL-4/13 iKO mice exhibited decreased IL-4+ Th2 cells and IL-10+ Bregs without impact on Th1, Tregs, or CD8 T cell responses. B-IL-4/13 iKO mice rejected islet allografts more rapidly, even when treated with tolerogenic anti-TIM-1 mAb. In ovalbumin-induced allergic airway disease (AAD), B-IL-4/13 iKO mice had reduced inflammatory cells in BAL, and preserved lung histology with markedly decreased infiltration by IL-4+ and IL-5+ CD4+ T cells. Hence, B cell IL-4 is a major driver of Th2 responses in vivo which promotes allograft survival, and conversely, worsens AAD.
Collapse
Affiliation(s)
- Zhixing Song
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,School of Medicine, Tsinghua University, Beijing, China
| | - Wenjia Yuan
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,Department of Kidney Transplantation and Department of Organ Transplantation and General Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Leting Zheng
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,Department of Rheumatology and Clinical Immunology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xingan Wang
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, United States,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David M. Rothstein
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: David M. Rothstein, ; orcid.org/0000-0002-9455-7971
| |
Collapse
|
32
|
Deloch L, Hehlgans S, Rückert M, Maier A, Hinrichs A, Flohr AS, Eckert D, Weissmann T, Seeling M, Nimmerjahn F, Fietkau R, Rödel F, Fournier C, Frey B, Gaipl US. Radon Improves Clinical Response in an Animal Model of Rheumatoid Arthritis Accompanied by Increased Numbers of Peripheral Blood B Cells and Interleukin-5 Concentration. Cells 2022; 11:689. [PMID: 35203348 PMCID: PMC8870723 DOI: 10.3390/cells11040689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Radon treatment is used as an established therapy option in chronic painful inflammatory diseases. While analgesic effects are well described, little is known about the underlying molecular effects. Among the suspected mechanisms are modulations of the anti-oxidative and the immune system. Therefore, we aimed for the first time to examine the beneficial effects of radon exposure on clinical outcome as well as the underlying mechanisms by utilizing a holistic approach in a controlled environment of a radon chamber with an animal model: K/BxN serum-induced arthritic mice as well as isolated cells were exposed to sham or radon irradiation. The effects on the anti-oxidative and the immune system were analyzed by flow-cytometry, qPCR or ELISA. We found a significantly improved clinical disease progression score in the mice, alongside significant increase of peripheral blood B cells and IL-5. No significant alterations were visible in the anti-oxidative system or regarding cell death. We conclude that neither cell death nor anti-oxidative systems are responsible for the beneficial effects of radon exposure in our preclinical model. Rather, radon slightly affects the immune system. However, more research is still needed in order to fully understand radon-mediated effects and to carry out reasonable risk-benefit considerations.
Collapse
Affiliation(s)
- Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.H.); (F.R.)
| | - Michael Rückert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Andreas Maier
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.M.); (A.H.); (D.E.); (C.F.)
| | - Annika Hinrichs
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.M.); (A.H.); (D.E.); (C.F.)
- Department of Physics, Goethe Universität Frankfurt am Main, 60323 Frankfurt am Main, Germany
| | - Ann-Sophie Flohr
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Denise Eckert
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.M.); (A.H.); (D.E.); (C.F.)
| | - Thomas Weissmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
| | - Michaela Seeling
- Department of Biology, Institute of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (M.S.); (F.N.)
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (M.S.); (F.N.)
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.H.); (F.R.)
| | - Claudia Fournier
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (A.M.); (A.H.); (D.E.); (C.F.)
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Udo S. Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.R.); (A.-S.F.); (T.W.); (R.F.); (B.F.); (U.S.G.)
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
33
|
Hong H, Lee J, Park GY, Kim S, Park J, Park JS, Song Y, Lee S, Kim TJ, Lee YJ, Roh TY, Kwok SK, Kim SW, Tan Q, Lee Y. Postnatal regulation of B-1a cell development and survival by the CIC-PER2-BHLHE41 axis. Cell Rep 2022; 38:110386. [PMID: 35172136 DOI: 10.1016/j.celrep.2022.110386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/23/2021] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
B-1 cell development mainly occurs via fetal and neonatal hematopoiesis and is suppressed in adult bone marrow hematopoiesis. However, little is known about the factors inhibiting B-1 cell development at the adult stage. We report that capicua (CIC) suppresses postnatal B-1a cell development and survival. CIC levels are high in B-1a cells and gradually increase in transitional B-1a (TrB-1a) cells with age. B-cell-specific Cic-null mice exhibit expansion of the B-1a cell population and a gradual increase in TrB-1a cell frequency with age but attenuated B-2 cell development. CIC deficiency enhances B cell receptor (BCR) signaling in transitional B cells and B-1a cell viability. Mechanistically, CIC-deficiency-mediated Per2 derepression upregulates Bhlhe41 levels by inhibiting CRY-mediated transcriptional repression for Bhlhe41, consequently promoting B-1a cell formation in Cic-null mice. Taken together, CIC is a key transcription factor that limits the B-1a cell population at the adult stage and balances B-1 versus B-2 cell formation.
Collapse
Affiliation(s)
- Hyebeen Hong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Guk-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Soeun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jiho Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jong Seok Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Youngkwon Song
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sujin Lee
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - You Jeong Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Qiumin Tan
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
34
|
Age-related functional decline of human B cells. Cytotechnology 2022; 74:319-327. [PMID: 35464165 PMCID: PMC8975901 DOI: 10.1007/s10616-021-00513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022] Open
Abstract
This study aimed to investigate the changes in B cell functional decline and antigen sensitization with aging using two Epstein Barr virus (EBV)-immortalized human B cell lines, one from a 22-year-old man (EBV-B young) and the other from a 65-year-old man (EBV-B old). The activity of senescence-associated β-galactosidase, a marker of cellular senescence, was enhanced in the EBV-B old cells compared with EBV-B young cells. Moreover, the levels of p16, p21, IL-6, TNF-α, and TGF-β1, which are senescence-associated secretary phenotypes, were also increased in EBV-B old cells. In vitro immunization of EBV-B cells with β-lactoglobulin further showed that EBV-B old cells had a reduced cell population of naïve B cells than that of EBV-B young cells. Furthermore, HLA-DR expression, which is important for antigen presentation, was decreased in the EBV-B old cells. Comparative microarray analysis between EBV-B young and old cells also showed decreased expression of antibody genes, such as those of the heavy chain and light chain (κ chain). These results suggest that cellular senescence and decreased gene expression are responsible, at least in part, for the decline in B cell function and antigen sensitization capacity with aging, which ultimately impairs the function of the acquired immune system.
Collapse
|
35
|
Khani L, Jazayeri MH, Nedaeinia R, Bozorgmehr M, Nabavi SM, Ferns GA. The frequencies of peripheral blood CD5 +CD19 + B cells, CD3 -CD16 +CD56 + NK, and CD3 +CD56 + NKT cells and serum interleukin-10 in patients with multiple sclerosis and neuromyelitis optica spectrum disorder. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:5. [PMID: 35031055 PMCID: PMC8760701 DOI: 10.1186/s13223-021-00596-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) and neuromyelitis optica syndrome disease (NMOSD) are inflammatory diseases of the central nervous system. The pathogenesis and treatments for these two conditions are very different. Natural killer (NK) and natural killer T (NKT) cells are immune cells with an important role in shaping the immune response. B cells are involved in antigen presentation as well as antibody and cytokine production. There is conflicting evidence of the roles of NK, NKT, and B cells in the two conditions. We aimed to compare the frequency of CD3-CD16+CD56+NK, CD3+ CD56+ NKT, and CD5+CD19+ B cells in the peripheral blood and serum Interleukin-10 (IL-10) in patients with MS and NMOSD. METHODS CD19+CD5+ B, CD3- CD16+CD56+ NK, and CD3+CD56+ NKT cells were quantitated by flow cytometry in 15 individuals with Interferon-Beta (IFN-β) treated relapsing-remitting MS (RRMS), 15 untreated RRMS, and 15 NMOSD patients as well as 30 healthy controls (HC). Serum IL-10 was measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS The percentage of CD3-CD56+CD16+ NK cells in the peripheral blood of IFN-treated MS (1.81 ± 0.87) was significantly lower than for untreated RRMS (4.74 ± 1.80), NMOSD (4.64 ± 1.26) and HC (5.83 ± 2.19) (p < 0.0001). There were also differences for the percentage of CD3-CD16+ and CD3-CD56+ cells (p < 0.001 and p < 0.0007; respectively). IFN-treated RRMS (2.89 ± 1.51) had the lowest proportion of CD3+CD56+ among the study groups (p < 0.002). Untreated RRMS (5.56 ± 3.04) and NMOSD (5.47 ± 1.24) had higher levels of CD3+CD56+ than the HC (3.16 ± 1.98). The mean percentage of CD19+CD5+ B cells in the peripheral blood of untreated RRMS patients (1.32 ± 0.67) was higher compared to the patients with NMOSD (0.30 ± 0.20), HC (0.5 ± 0.22) and IFN-treated RRMS (0.81 ± 0.17) (p < 0.0001). Serum interleukin-10 was significantly higher in the IFN-treated RRMS (8.06 ± 5.39) and in HC (8.38 ± 2.84) compared to untreated RRMS (5.07 ± 1.44) and the patients with NMOSD (5.33 ± 2.56) (p < 0.003). CONCLUSIONS The lower proportion of CD3-CD56+ CD16+ NK and CD3+CD56+ cells in peripheral blood of IFN-treated RRMS compared to other groups suggests the importance of immunomodulation in patients with RRMS disorder. Based on the differences in CD19+CD5+ B cells and serum IL-10 between patients and HC, supplementary assessments could be of value in clarifying their roles in autoimmunity.
Collapse
Affiliation(s)
- Leila Khani
- Department of Immunology, School of Medicine, Iran University of Medical Science, Shahid Hemmat Highway, P.O Box 14665-354, 14496-14535, Tehran, Iran
| | - Mir Hadi Jazayeri
- Department of Immunology, School of Medicine, Iran University of Medical Science, Shahid Hemmat Highway, P.O Box 14665-354, 14496-14535, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Science, Shahid Hemmat Highway, P.O Box 14665-354, 14496-14535, Tehran, Iran.
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Seyed Masood Nabavi
- Department of Regenerative Biomedicine, Cell Science Research Center, Neuroscience and Cognition Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| |
Collapse
|
36
|
Abstract
It is well known that B lymphocytes differentiate into plasma cells that produce antibodies. B cells also perform a number of less well-known roles including antigen presentation, regulation of T cells and innate immune cells, cytokine production, and maintenance of subcapsular sinus macrophages. Given that there is clear evidence of inflammation in Parkinson's disease (PD) both in the central nervous system and in the periphery, it is almost certain that B lymphocytes are involved. This involvement is likely to be complicated given the variety of roles B cells play via a number of distinct subsets. They have received less attention to date than their counterparts, T cells, and monocytes. B lymphocytes are decreased in PD overall with some limited evidence that this may be driven by a decrease in regulatory subsets. There is also evidence that regulatory B cells are protective in PD. There is evidence for a role played by antibodies to alpha-synuclein in PD with a possible increase in early disease. There are many exciting potential future avenues for further exploration of the role of B lymphocytes including improving our understanding of the role of meningeal and calvarial (skull bone marrow) based B cells in health and disease, the use of larger, well phenotyped clinical cohorts to understand changes in peripheral and cerebrospinal fluid B cells over time and the potential application of B cell targeted therapies in PD.
Collapse
Affiliation(s)
- Kirsten M. Scott
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
37
|
Pasquarelli-do-Nascimento G, Machado SA, de Carvalho JMA, Magalhães KG. Obesity and adipose tissue impact on T-cell response and cancer immune checkpoint blockade therapy. IMMUNOTHERAPY ADVANCES 2022; 2:ltac015. [PMID: 36033972 PMCID: PMC9404253 DOI: 10.1093/immadv/ltac015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Many different types of cancer are now well known to have increased occurrence or severity in individuals with obesity. The influence of obesity on cancer and the immune cells in the tumor microenvironment has been thought to be a pleiotropic effect. As key endocrine and immune organs, the highly plastic adipose tissues play crucial roles in obesity pathophysiology, as they show alterations according to environmental cues. Adipose tissues of lean subjects present mostly anti-inflammatory cells that are crucial in tissue remodeling, favoring uncoupling protein 1 expression and non-shivering thermogenesis. Oppositely, obese adipose tissues display massive proinflammatory immune cell infiltration, dying adipocytes, and enhanced crown-like structure formation. In this review, we discuss how obesity can lead to derangements and dysfunctions in antitumor CD8+ T lymphocytes dysfunction. Moreover, we explain how obesity can affect the efficiency of cancer immunotherapy, depicting the mechanisms involved in this process. Cancer immunotherapy management includes monoclonal antibodies targeting the immune checkpoint blockade. Exhausted CD8+ T lymphocytes show elevated programmed cell death-1 (PD-1) expression and highly glycolytic tumors tend to show a good response to anti-PD-1/PD-L1 immunotherapy. Although obesity is a risk factor for the development of several neoplasms and is linked with increased tumor growth and aggressiveness, obesity is also related to improved response to cancer immunotherapy, a phenomenon called the obesity paradox. However, patients affected by obesity present higher incidences of adverse events related to this therapy. These limitations highlight the necessity of a deeper investigation of factors that influence the obesity paradox to improve the application of these therapies.
Collapse
Affiliation(s)
| | - Sabrina Azevedo Machado
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia , DF , Brazil
| | | | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia , DF , Brazil
| |
Collapse
|
38
|
Feng Y, Liu L, Li J, Huang J, Xie J, Menard L, Shi Y, Zhao X, Xie S, Zang W, Tan H, Yang Z, Ni L. Systematic characterization of the tumor microenvironment in Chinese patients with hepatocellular carcinoma highlights intratumoral B cells as a potential immunotherapy target. Oncol Rep 2021; 47:38. [PMID: 34958112 PMCID: PMC8717124 DOI: 10.3892/or.2021.8249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/01/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yu Feng
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Liguo Liu
- Department of Hepatobiliary Surgery, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Jing Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Jia Huang
- Department of Hepatobiliary Surgery, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Jenny Xie
- Research and Early Development, Bristol Myers Squibb, Princeton, NJ 08540, USA
| | - Laurence Menard
- Research and Early Development, Bristol Myers Squibb, Princeton, NJ 08540, USA
| | - Yanfen Shi
- Department of Pathology, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Shan Xie
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Wenjuan Zang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Haidong Tan
- Department of Hepatobiliary Surgery, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Zhiying Yang
- Department of Hepatobiliary Surgery, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
39
|
Li W, Wang D, Yue R, Chen X, Liu A, Xu H, Teng P, Wang Z, Zou Y, Xu X, Zhao H, Li R, Fu Y, Guo L, Ni C, Fan J, Ma L. Gut microbes enlarged the protective effect of transplanted regulatory B cells on rejection of cardiac allografts. J Heart Lung Transplant 2021; 40:1502-1516. [PMID: 34742645 DOI: 10.1016/j.healun.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Regulatory B cells (Bregs) play an important role in maintaining immune homeostasis and have the potential to induce tolerance. Previous work has found that Breg cells are involved in heart transplantation tolerance. However, the effect of Breg on the transplantation tolerance and the underlying mechanisms remain to be clarified. METHODS Using a within-species heart transplantation model, we aimed to investigate the role of CD19+CD5+CD1dhigh Bregs isolated from transplanted mice in preventing transplant rejection in vivo. We also explored the effects of CD40 and tumor necrosis factor receptor-associated factor 6 (TRAF6) ubiquitin ligase on Breg-mediated prolongation of survival in heart transplant (HT) mice, and the regulatory effects of downstream Cdk4 and Cdk6 proteins on dendritic cells (DCs), which clarified the function and molecular mechanism of Breg cells in HT mice. RESULTS Our data suggest that adoptive transfer of the transplanted Bregs served as an effective tolerance-inducing mechanism in HT mice and was involved in the CD40-TRAF6 signaling pathway in DCs. Moreover, DCs collected from the Breg treated HT mice also prolonged the survival of HT mice. Furthermore, DC-specific knockout of TRAF6 diminished Breg-mediated prolongation of survival in HT mice. Interestingly, gut microbes from donors increased the survival of cardiac allografts both in both the absence and presence of Bregs but were not implicated in CD40-TRAF6 signaling. CONCLUSIONS These findings reveal a role of Breg cells in the induction of transplantation tolerance through the blockade of the CD40-TRAF6 signaling pathway, which might be used in the treatment of HT in the clinic.
Collapse
Affiliation(s)
- Weidong Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dimin Wang
- School of Medicine, Zhejiang University, Hangzhou, China; Department of Reproductive endocrinology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Rongcai Yue
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Xin Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Aixia Liu
- Department of Reproductive endocrinology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongfei Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Teng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingjie Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haige Zhao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Renyuan Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yufei Fu
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Guo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengyao Ni
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingya Fan
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Ma
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
40
|
Werner A, Schäfer S, Zaytseva O, Albert H, Lux A, Krištić J, Pezer M, Lauc G, Winkler T, Nimmerjahn F. Targeting B cells in the pre-phase of systemic autoimmunity globally interferes with autoimmune pathology. iScience 2021; 24:103076. [PMID: 34585117 PMCID: PMC8455742 DOI: 10.1016/j.isci.2021.103076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by a loss of self-tolerance, systemic inflammation, and multi-organ damage. While a variety of therapeutic interventions are available, it has become clear that an early diagnosis and treatment may be key to achieve long lasting therapeutic responses and to limit irreversible organ damage. Loss of humoral tolerance including the appearance of self-reactive antibodies can be detected years before the actual onset of the clinical autoimmune disease, representing a potential early point of intervention. Not much is known, however, about how and to what extent this pre-phase of disease impacts the onset and development of subsequent autoimmunity. By targeting the B cell compartment in the pre-disease phase of a spontaneous mouse model of SLE we now show, that resetting the humoral immune system during the clinically unapparent phase of the disease globally alters immune homeostasis delaying the downstream development of systemic autoimmunity. The clinically unapparent pre-phase of SLE impacts clinical disease Autoreactive IgM antibodies represent a biomarker for early therapeutic intervention Pre-phase B cells orchestrate clinical disease Depleting pre-phase B cells diminishes disease pathology
Collapse
Affiliation(s)
- Anja Werner
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Simon Schäfer
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Olga Zaytseva
- Genos Ltd, Glycoscience Research Laboratory, Borongajska 83H, 10000 Zagreb, Croatia
| | - Heike Albert
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Anja Lux
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Jasminka Krištić
- Genos Ltd, Glycoscience Research Laboratory, Borongajska 83H, 10000 Zagreb, Croatia
| | - Marija Pezer
- Genos Ltd, Glycoscience Research Laboratory, Borongajska 83H, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Genos Ltd, Glycoscience Research Laboratory, Borongajska 83H, 10000 Zagreb, Croatia
| | - Thomas Winkler
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Falk Nimmerjahn
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erwin-Rommelstr. 3, 91058 Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
41
|
Ben Nasr M, Usuelli V, Seelam AJ, D'Addio F, Abdi R, Markmann JF, Fiorina P. Regulatory B Cells in Autoimmune Diabetes. THE JOURNAL OF IMMUNOLOGY 2021; 206:1117-1125. [PMID: 33685919 DOI: 10.4049/jimmunol.2001127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022]
Abstract
Since they were discovered almost three decades ago, a subset of B cells denoted as regulatory B cells (Bregs) have elicited interest throughout the immunology community. Many investigators have sought to characterize their phenotype and to understand their function and immunosuppressive mechanisms. Indeed, studies in murine models have demonstrated that Bregs possess varied phenotypic markers and could be classified into different subsets whose action and pivotal role depend on the pathological condition or stimuli. Similar conclusions were drawn in clinical settings delineating an analogous Breg population phenotypically resembling the murine Bregs that ultimately may be associated with a state of tolerance. Recent studies suggested that Bregs may play a role in the onset of autoimmune diabetes. This review will focus on deciphering the different subclasses of Bregs, their emerging role in autoimmune diabetes, and their potential use as a cell-based therapeutic.
Collapse
Affiliation(s)
- Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115.,International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Science "L. Sacco," University of Milan, 20157 Milan, Italy.,Transplantation Research Center, Nephrology Division, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Science "L. Sacco," University of Milan, 20157 Milan, Italy
| | - Andy Joe Seelam
- International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Science "L. Sacco," University of Milan, 20157 Milan, Italy
| | - Francesca D'Addio
- International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Science "L. Sacco," University of Milan, 20157 Milan, Italy
| | - Reza Abdi
- Transplantation Research Center, Nephrology Division, Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - James F Markmann
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; and
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115; .,International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi," Department of Biomedical and Clinical Science "L. Sacco," University of Milan, 20157 Milan, Italy.,Division of Endocrinology, ASST Fatebenefratelli Sacco, 20157 Milan, Italy
| |
Collapse
|
42
|
Qiu Z, Li Q, Lu Y, Wang Q. Clinical significance and prognostic value of circulating B10 cells in colorectal cancer. Asia Pac J Clin Oncol 2021; 18:e157-e162. [PMID: 34314570 DOI: 10.1111/ajco.13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/14/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND B10 cells, a subset of regulatory B cells, can inhibit antitumor response and thus promote tumor development. This study explored the clinical meaning and prognostic value of circulating B10 cells in colorectal cancer (CRC). MATERIALS AND METHODS The proportion of B10 cells in peripheral blood in CRC patients and healthy controls was detected by multicolor flow cytometry. RESULTS The proportion of circulating B10 cells was remarkably elevated in CRC patients compared to normal controls (% of CD19+ B cells; 16.6% (IQR 6.0%) versus 9.0% (IQR 5.7%), p < 0.001). B10 cells proportion was associated with tumor size, depth of invasion, lymph node metastasis, and TNM stage in CRC. Kaplan-Meier analysis indicated that CRC patients with high B10 cells proportion suffered worse overall survival than those with low B10 cells proportion. Multivariate analysis revealed that the proportion of B10 cells was an independent prognostic indicator for CRC patients. CONCLUSION Our results indicate that the proportion of circulating B10 cells is an independent prognostic factor for patients with CRC and thus may help guide the clinical decision in CRC.
Collapse
Affiliation(s)
- Zhaoyan Qiu
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qian Li
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Yixun Lu
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qian Wang
- Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
43
|
Jiao J, He S, Wang Y, Lu Y, Gu M, Li D, Tang T, Nie S, Zhang M, Lv B, Li J, Xia N, Cheng X. Regulatory B cells improve ventricular remodeling after myocardial infarction by modulating monocyte migration. Basic Res Cardiol 2021; 116:46. [PMID: 34302556 PMCID: PMC8310480 DOI: 10.1007/s00395-021-00886-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023]
Abstract
Overactivated inflammatory responses contribute to adverse ventricular remodeling after myocardial infarction (MI). Regulatory B cells (Bregs) are a newly discovered subset of B cells with immunomodulatory roles in many immune and inflammation-related diseases. Our study aims to determine whether the expansion of Bregs exerts a beneficial effect on ventricular remodeling and explore the mechanisms involved. Here, we showed that adoptive transfer of Bregs ameliorated ventricular remodeling in a murine MI model, as demonstrated by improved cardiac function, decreased scar size and attenuated interstitial fibrosis without changing the survival rate. Reduced Ly6Chi monocyte infiltration was found in the hearts of the Breg-transferred mice, while the infiltration of Ly6Clo monocytes was not affected. In addition, the replenishment of Bregs had no effect on the myocardial accumulation of T cells or neutrophils. Mechanistically, Bregs reduced the expression of C-C motif chemokine receptor 2 (CCR2) in monocytes, which inhibited proinflammatory monocyte recruitment to the heart from the peripheral blood and mobilization from the bone marrow. Breg-mediated protection against MI was abrogated by treatment with an interleukin 10 (IL-10) antibody. Finally, IL-10 neutralization reversed the effect of Bregs on monocyte migration and CCR2 expression. The present study suggests a therapeutic value of Bregs in limiting ventricular remodeling after MI through decreasing CCR2-mediated monocyte recruitment and mobilization.
Collapse
Affiliation(s)
- Jiao Jiao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shujie He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiqiu Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuzhi Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Muyang Gu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dan Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tingting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shaofang Nie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingyong Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
44
|
Made to Measure: Patient-Tailored Treatment of Multiple Sclerosis Using Cell-Based Therapies. Int J Mol Sci 2021; 22:ijms22147536. [PMID: 34299154 PMCID: PMC8304207 DOI: 10.3390/ijms22147536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, there is still no cure for multiple sclerosis (MS), which is an autoimmune and neurodegenerative disease of the central nervous system. Treatment options predominantly consist of drugs that affect adaptive immunity and lead to a reduction of the inflammatory disease activity. A broad range of possible cell-based therapeutic options are being explored in the treatment of autoimmune diseases, including MS. This review aims to provide an overview of recent and future advances in the development of cell-based treatment options for the induction of tolerance in MS. Here, we will focus on haematopoietic stem cells, mesenchymal stromal cells, regulatory T cells and dendritic cells. We will also focus on less familiar cell types that are used in cell therapy, including B cells, natural killer cells and peripheral blood mononuclear cells. We will address key issues regarding the depicted therapies and highlight the major challenges that lie ahead to successfully reverse autoimmune diseases, such as MS, while minimising the side effects. Although cell-based therapies are well known and used in the treatment of several cancers, cell-based treatment options hold promise for the future treatment of autoimmune diseases in general, and MS in particular.
Collapse
|
45
|
Żabińska M, Kościelska-Kasprzak K, Krajewska J, Bartoszek D, Augustyniak-Bartosik H, Krajewska M. Immune Cells Profiling in ANCA-Associated Vasculitis Patients-Relation to Disease Activity. Cells 2021; 10:1773. [PMID: 34359942 PMCID: PMC8307495 DOI: 10.3390/cells10071773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/11/2021] [Indexed: 12/05/2022] Open
Abstract
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV) are a group of necrotizing multiorgan autoimmune vasculitides that predominantly affect small blood vessels and are associated with the presence of ANCAs. The aim was to assess regulatory and effector cell populations accompanied by the suPAR biomarker level and link the so-defined immune state to the AAV disease activity. The research involved a multicomponent description of an immune state encompassing a range of B and T cell subsets such as transitional/regulatory B cells (CD19+CD24++CD38++), naïve B cells (CD19+CD24INTCD38INT), Th17 cells, T regulatory cells (CD4+CD25+FoxP3+) and cytotoxic CD4+CD28- cells by flow cytometry. The suPAR plasma level was measured by ELISA. The results indicate that AAV is associated with an increased suPAR plasma level and immune fingerprint characterized by an expansion of Th17 cells and T cells lacking the costimulatory molecule CD28, accompanied by a decrease of regulatory populations (Tregs and transitional B cells) and NK cells. Decreased numbers of regulatory T cells and transitional B cells were shown to be linked to activation of the AAV disease while the increased suPAR plasma level-to AAV-related deterioration of kidney function. The observed immune fingerprint might be a reflection of peripheral tolerance failure responsible for development and progression of ANCA-associated vasculitides.
Collapse
Affiliation(s)
- Marcelina Żabińska
- Department of Nephrology and Transplantation Medicine, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland; (K.K.-K.); (D.B.); (H.A.-B.); (M.K.)
| | - Katarzyna Kościelska-Kasprzak
- Department of Nephrology and Transplantation Medicine, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland; (K.K.-K.); (D.B.); (H.A.-B.); (M.K.)
| | - Joanna Krajewska
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland;
| | - Dorota Bartoszek
- Department of Nephrology and Transplantation Medicine, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland; (K.K.-K.); (D.B.); (H.A.-B.); (M.K.)
| | - Hanna Augustyniak-Bartosik
- Department of Nephrology and Transplantation Medicine, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland; (K.K.-K.); (D.B.); (H.A.-B.); (M.K.)
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland; (K.K.-K.); (D.B.); (H.A.-B.); (M.K.)
| |
Collapse
|
46
|
Chong AS, Sage PT, Alegre ML. Regulation of Alloantibody Responses. Front Cell Dev Biol 2021; 9:706171. [PMID: 34307385 PMCID: PMC8297544 DOI: 10.3389/fcell.2021.706171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
The control of alloimmunity is essential to the success of organ transplantation. Upon alloantigen encounter, naïve alloreactive T cells not only differentiate into effector cells that can reject the graft, but also into T follicular helper (Tfh) cells that promote the differentiation of alloreactive B cells that produce donor-specific antibodies (DSA). B cells can exacerbate the rejection process through antibody effector functions and/or B cell antigen-presenting functions. These responses can be limited by immune suppressive mechanisms mediated by T regulatory (Treg) cells, T follicular regulatory (Tfr) cells, B regulatory (Breg) cells and a newly described tolerance-induced B (TIB) cell population that has the ability to suppress de novo B cells in an antigen-specific manner. Transplantation tolerance following costimulation blockade has revealed mechanisms of tolerance that control alloreactive T cells through intrinsic and extrinsic mechanisms, but also inhibit alloreactive B cells. Thus, the control of both arms of adaptive immunity might result in more robust tolerance, one that may withstand more severe inflammatory challenges. Here, we review new findings on the control of B cells and alloantibody production in the context of transplant rejection and tolerance.
Collapse
Affiliation(s)
- Anita S. Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Peter T. Sage
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
47
|
Yang S, Park JS, Hwang SH, Cho KH, Na HS, Choi J, Jhun J, Kim SJ, Lee BI, Park SH, Cho ML. Metformin-Inducible Small Heterodimer Partner Interacting Leucine Zipper Protein Ameliorates Intestinal Inflammation. Front Immunol 2021; 12:652709. [PMID: 34211461 PMCID: PMC8239434 DOI: 10.3389/fimmu.2021.652709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/07/2021] [Indexed: 12/02/2022] Open
Abstract
Small heterodimer partner interacting leucine zipper protein (SMILE) is an orphan nuclear receptor and a member of the bZIP family of proteins. We investigated the mechanism by which SMILE suppressed the development of inflammatory bowel disease (IBD) using a DSS-induced colitis mouse model and peripheral blood mononuclear cells (PBMCs) from patients with ulcerative colitis (UC). Metformin, an antidiabetic drug and an inducer of AMPK, upregulated the level of SMILE in human intestinal epithelial cells and the number of SMILE-expressing cells in colon tissues from DSS-induced colitis mice compared to control mice. Overexpression of SMILE using a DNA vector reduced the severity of DSS-induced colitis and colitis-associated intestinal fibrosis compared to mock vector. Furthermore, SMILE transgenic mice showed ameliorated DSS-induced colitis compared with wild-type mice. The mRNA levels of SMILE and Foxp3 were downregulated and SMILE expression was positively correlated with Foxp3 in PBMCs from patients with UC and an inflamed mucosa. Metformin increased the levels of SMILE, AMPK, and Foxp3 but decreased the number of interleukin (IL)-17–producing T cells among PBMCs from patients with UC. These data suggest that SMILE exerts a therapeutic effect on IBD by modulating IL-17 production.
Collapse
Affiliation(s)
- SeungCheon Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sun-Hee Hwang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Keun-Hyung Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jooyeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Jun Kim
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Bo-In Lee
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
48
|
Holloman JP, Axtell RC, Monson NL, Wu GF. The Role of B Cells in Primary Progressive Multiple Sclerosis. Front Neurol 2021; 12:680581. [PMID: 34163430 PMCID: PMC8215437 DOI: 10.3389/fneur.2021.680581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
The success of ocrelizumab in reducing confirmed disability accumulation in primary progressive multiple sclerosis (PPMS) via CD20-targeted depletion implicates B cells as causal agents in the pathogenesis of PPMS. This review explores the possible mechanisms by which B cells contribute to disease progression in PPMS, specifically exploring cytokine production, antigen presentation, and antibody synthesis. B cells may contribute to disease progression in PPMS through cytokine production, specifically GM-CSF and IL-6, which can drive naïve T-cell differentiation into pro-inflammatory Th1/Th17 cells. B cell production of the cytokine LT-α may induce follicular dendritic cell production of CXCL13 and lead indirectly to T and B cell infiltration into the CNS. In contrast, production of IL-10 by B cells likely induces an anti-inflammatory effect that may play a role in reducing neuroinflammation in PPMS. Therefore, reduced production of IL-10 may contribute to disease worsening. B cells are also capable of potent antigen presentation and may induce pro-inflammatory T-cell differentiation via cognate interactions. B cells may also contribute to disease activity via antibody synthesis, although it's unlikely the benefit of ocrelizumab in PPMS occurs via antibody decrement. Finally, various B cell subsets likely promulgate pro- or anti-inflammatory effects in MS.
Collapse
Affiliation(s)
- Jameson P Holloman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, United States
| | - Robert C Axtell
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK, United States
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern, Dallas, TX, United States.,Department of Immunology, University of Texas Southwestern, Dallas, TX, United States
| | - Gregory F Wu
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, United States.,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
49
|
Kader HA, Azeem M, Jwayed SA, Al-Shehhi A, Tabassum A, Ayoub MA, Hetta HF, Waheed Y, Iratni R, Al-Dhaheri A, Muhammad K. Current Insights into Immunology and Novel Therapeutics of Atopic Dermatitis. Cells 2021; 10:cells10061392. [PMID: 34200009 PMCID: PMC8226506 DOI: 10.3390/cells10061392] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most prevalent inflammatory disease among non-fatal skin diseases, affecting up to one fifth of the population in developed countries. AD is characterized by recurrent pruritic and localized eczema with seasonal fluctuations. AD initializes the phenomenon of atopic march, during which infant AD patients are predisposed to progressive secondary allergies such as allergic rhinitis, asthma, and food allergies. The pathophysiology of AD is complex; onset of the disease is caused by several factors, including strong genetic predisposition, disrupted epidermal barrier, and immune dysregulation. AD was initially characterized by defects in the innate immune system and a vigorous skewed adaptive Th2 response to environmental agents; there are compelling evidences that the disorder involves multiple immune pathways. Symptomatic palliative treatment is the only strategy to manage the disease and restore skin integrity. Researchers are trying to more precisely define the contribution of different AD genotypes and elucidate the role of various immune axes. In this review, we have summarized the current knowledge about the roles of innate and adaptive immune responsive cells in AD. In addition, current and novel treatment strategies for the management of AD are comprehensively described, including some ongoing clinical trials and promising therapeutic agents. This information will provide an asset towards identifying personalized targets for better therapeutic outcomes.
Collapse
Affiliation(s)
- Hidaya A. Kader
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Muhammad Azeem
- Department of Pathology, University of Würzburg, 97080 Würzburg, Germany;
| | - Suhib A. Jwayed
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Aaesha Al-Shehhi
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Attia Tabassum
- Department of Dermatology, Mayo Hospital, Lahore 54000, Pakistan;
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| | - Rabah Iratni
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Ahmed Al-Dhaheri
- Department of Dermatology, Tawam Hospital, Al Ain 15551, United Arab Emirates;
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
- Correspondence:
| |
Collapse
|
50
|
TCL1A, B Cell Regulation and Tolerance in Renal Transplantation. Cells 2021; 10:cells10061367. [PMID: 34206047 PMCID: PMC8230170 DOI: 10.3390/cells10061367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/31/2022] Open
Abstract
Despite much progress in the management of kidney transplantation, the need for life-long immunosuppressive therapies remains a major issue representing many risks for patients. Operational tolerance, defined as allograft acceptance without immunosuppression, has logically been subject to many investigations with the aim of a better understanding of post-transplantation mechanisms and potentially how it would be induced in patients. Among proposed biomarkers, T-cell Leukemia/Lymphoma protein 1A (TCL1A) has been observed as overexpressed in the peripheral blood of operational tolerant patients in several studies. TCL1A expression is restricted to early B cells, also increased in the blood of tolerant patients, and showing regulatory properties, notably through IL-10 secretion for some subsets. TCL1A has first been identified as an oncogene, overexpression of which is associated to the development of T and B cell cancer. TCL1A acts as a coactivator of the serine threonine kinase Akt and through other interactions favoring cell survival, growth, and proliferation. It has also been identified as interacting with others major actors involved in B cells differentiation and regulation, including IL-10 production. Herein, we reviewed known interactions and functions of TCL1A in B cells which could involve its potential role in the set up and maintenance of renal allograft tolerance.
Collapse
|