1
|
Doucette L, Turnbill V, Carlin K, Cavanagh A, Sollinger B, Kuter N, Flock DL, Robinson S, Chavez-Valdez R, Jantzie L, Martin LJ, Northington FJ. Neocortical cholinergic pathology after neonatal brain injury is increased by Alzheimer's disease-related genes in mice. Neurobiol Dis 2024; 200:106629. [PMID: 39111704 DOI: 10.1016/j.nbd.2024.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/18/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) in neonates causes mortality and neurologic morbidity, including poor cognition with a complex neuropathology. Injury to the cholinergic basal forebrain and its rich innervation of cerebral cortex may also drive cognitive pathology. It is uncertain whether genes associated with adult cognition-related neurodegeneration worsen outcomes after neonatal HIE. We hypothesized that neocortical damage caused by neonatal HI in mice is ushered by persistent cholinergic innervation and interneuron (IN) pathology that correlates with cognitive outcome and is exacerbated by genes linked to Alzheimer's disease. We subjected non-transgenic (nTg) C57Bl6 mice and mice transgenically (Tg) expressing human mutant amyloid precursor protein (APP-Swedish variant) and mutant presenilin (PS1-ΔE9) to the Rice-Vannucci HI model on postnatal day 10 (P10). nTg and Tg mice with sham procedure were controls. Visual discrimination (VD) was tested for cognition. Cortical and hippocampal cholinergic axonal and IN pathology and Aβ plaques, identified by immunohistochemistry for choline acetyltransferase (ChAT) and 6E10 antibody respectively, were counted at P210. Simple ChAT+ axonal swellings were present in all sham and HI groups; Tg mice had more than their nTg counterparts, but HI did not affect the number of axonal swellings in APP/PS1 Tg mice. In contrast, complex ChAT+ neuritic clusters (NC) occurred only in Tg mice; HI increased that burden. The abundance of ChAT+ clusters in specific regions correlated with decreased VD. The frequency of attritional ChAT+ INs in the entorhinal cortex (EC) was increased in Tg shams relative to their nTg counterparts, but HI obviated this difference. Cholinergic IN pathology in EC correlated with NC number. The Aβ deposition in APP/PS1 Tg mice was not exacerbated by HI, nor did it correlate with other metrics. Adult APP/PS1 Tg mice have significant cortical cholinergic axon and EC ChAT+ IN pathologies; some pathology was exacerbated by neonatal HI and correlated with VD. Mechanisms of neonatal HI induced cognitive deficits and cortical neuropathology may be modulated by genetic risk, perhaps accounting for some of the variability in outcomes.
Collapse
Affiliation(s)
- Leslie Doucette
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Victoria Turnbill
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Katherine Carlin
- US Air Force Medical Corps, US Naval Hospital Okinawa, Okinawa, Japan
| | - Andrew Cavanagh
- Department of Neuroscience, Undergraduate Education, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Benjamin Sollinger
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Nazli Kuter
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Debra L Flock
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Shenandoah Robinson
- Phelps Center for Cerebral Palsy and Neurodevelopmental Medicine, Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Raul Chavez-Valdez
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Lauren Jantzie
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Phelps Center for Cerebral Palsy and Neurodevelopmental Medicine, Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Lee J Martin
- Department of Neuroscience, Pathology, and Anesthesiology & Critical Care Medicine, and the Pathobiology Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Frances J Northington
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
2
|
Varma C, Luo E, Bostrom G, Bathini P, Berdnik D, Wyss‐Coray T, Zhao T, Dong X, Ervin FR, Beierschmitt A, Palmour RM, Lemere CA. Plasma and CSF biomarkers of aging and cognitive decline in Caribbean vervets. Alzheimers Dement 2024; 20:5460-5480. [PMID: 38946666 PMCID: PMC11350037 DOI: 10.1002/alz.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Vervets are non-human primates that share high genetic homology with humans and develop amyloid beta (Aβ) pathology with aging. We expand current knowledge by examining Aβ pathology, aging, cognition, and biomarker proteomics. METHODS Amyloid immunoreactivity in the frontal cortex and temporal cortex/hippocampal regions from archived vervet brain samples ranging from young adulthood to old age was quantified. We also obtained cognitive scores, plasma samples, and cerebrospinal fluid (CSF) samples in additional animals. Plasma and CSF proteins were quantified with platforms utilizing human antibodies. RESULTS We found age-related increases in Aβ deposition in both brain regions. Bioinformatic analyses assessed associations between biomarkers and age, sex, cognition, and CSF Aβ levels, revealing changes in proteins related to immune-related inflammation, metabolism, and cellular processes. DISCUSSION Vervets are an effective model of aging and early-stage Alzheimer's disease, and we provide translational biomarker data that both align with previous results in humans and provide a basis for future investigations. HIGHLIGHTS We found changes in immune and metabolic plasma biomarkers associated with age and cognition. Cerebrospinal fluid (CSF) biomarkers revealed changes in cell signaling indicative of adaptative processes. TNFRSF19 (TROY) and Artemin co-localize with Alzheimer's disease pathology. Vervets are a relevant model for translational studies of early-stage Alzheimer's disease.
Collapse
Affiliation(s)
- Curran Varma
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
| | - Eva Luo
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
| | - Gustaf Bostrom
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of Public Health and Caring SciencesGeriatrics, Uppsala UniversityUppsalaSweden
- Centre for Clinical ResearchUppsala UniversityVästmanland County HospitalVästeråsSweden
| | - Praveen Bathini
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Daniela Berdnik
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Tony Wyss‐Coray
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Tingting Zhao
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Xianjun Dong
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Genomics and Bioinformatics HubBrigham and Women's HospitalBostonMassachusettsUSA
| | - Frank R. Ervin
- Behavioral Sciences FoundationSaint Kitts, Eastern CaribbeanMontrealCanada
- Faculty of Medicine and Health SciencesMcGill UniversityMontrealCanada
| | - Amy Beierschmitt
- Behavioral Sciences FoundationSaint Kitts, Eastern CaribbeanMontrealCanada
- Department of Biomedical SciencesRoss University School of Veterinary MedicineSt KittsUK
| | - Roberta M. Palmour
- Behavioral Sciences FoundationSaint Kitts, Eastern CaribbeanMontrealCanada
- Faculty of Medicine and Health SciencesMcGill UniversityMontrealCanada
| | - Cynthia A. Lemere
- Department of NeurologyAnn Romney Center for Neurologic DiseasesBrigham and Women's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
3
|
Kampmann M. Molecular and cellular mechanisms of selective vulnerability in neurodegenerative diseases. Nat Rev Neurosci 2024; 25:351-371. [PMID: 38575768 DOI: 10.1038/s41583-024-00806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
The selective vulnerability of specific neuronal subtypes is a hallmark of neurodegenerative diseases. In this Review, I summarize our current understanding of the brain regions and cell types that are selectively vulnerable in different neurodegenerative diseases and describe the proposed underlying cell-autonomous and non-cell-autonomous mechanisms. I highlight how recent methodological innovations - including single-cell transcriptomics, CRISPR-based screens and human cell-based models of disease - are enabling new breakthroughs in our understanding of selective vulnerability. An understanding of the molecular mechanisms that determine selective vulnerability and resilience would shed light on the key processes that drive neurodegeneration and point to potential therapeutic strategies to protect vulnerable cell populations.
Collapse
Affiliation(s)
- Martin Kampmann
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Sharma H, Chang KA, Hulme J, An SSA. Mammalian Models in Alzheimer's Research: An Update. Cells 2023; 12:2459. [PMID: 37887303 PMCID: PMC10605533 DOI: 10.3390/cells12202459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
A form of dementia distinct from healthy cognitive aging, Alzheimer's disease (AD) is a complex multi-stage disease that currently afflicts over 50 million people worldwide. Unfortunately, previous therapeutic strategies developed from murine models emulating different aspects of AD pathogenesis were limited. Consequently, researchers are now developing models that express several aspects of pathogenesis that better reflect the clinical situation in humans. As such, this review seeks to provide insight regarding current applications of mammalian models in AD research by addressing recent developments and characterizations of prominent transgenic models and their contributions to pathogenesis as well as discuss the advantages, limitations, and application of emerging models that better capture genetic heterogeneity and mixed pathologies observed in the clinical situation.
Collapse
Affiliation(s)
- Himadri Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Guan Y, Zhou H, Luo B, Hussain S, Xiong L. Research progress of neonatal hypoxic-ischemic encephalopathy in nonhuman primate models. IBRAIN 2023; 9:183-194. [PMID: 37786551 PMCID: PMC10528769 DOI: 10.1002/ibra.12097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 10/04/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the important complications of neonatal asphyxia, which not only leads to neurological disability but also seriously threatens the life of neonates. Over the years, animal models of HIE have been a research hotspot to find ways to cope with HIE and thereby reduce the risk of neonatal death or disability in moderate-to-severe HIE. By reviewing the literature related to HIE over the years, it was found that nonhuman primates share a high degree of homology with human gross neural anatomy. The basic data on nonhuman primates are not yet complete, so it is urgent to mine and develop new nonhuman primate model data. In recent years, the research on nonhuman primate HIE models has been gradually enriched and the content is more novel. Therefore, the purpose of this review is to further summarize the methods for establishing the nonhuman primate HIE model and to better elucidate the relevance of the nonhuman primate model to humans by observing the behavioral manifestations, neuropathology, and a series of biomarkers of HIE in primates HIE. Finally, the most popular and desirable treatments studied in nonhuman primate models in the past 5 years are summarized.
Collapse
Affiliation(s)
- Yi‐Huan Guan
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Hong‐Su Zhou
- Department of Experimental AnimalsKunming Medical UniversityKunmingChina
| | - Bo‐Yan Luo
- School of PharmacyZunyi Medical UniversityZunyiChina
| | - Sajid Hussain
- NUTECH School of Applied Sciences and HumanitiesNational University of TechnologyIslamabadPakistan
| | - Liu‐Lin Xiong
- School of Pharmacy and Medical Sciences, Faculty of Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
6
|
I F. The unique neuropathological vulnerability of the human brain to aging. Ageing Res Rev 2023; 87:101916. [PMID: 36990284 DOI: 10.1016/j.arr.2023.101916] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD)-related neurofibrillary tangles (NFT), argyrophilic grain disease (AGD), aging-related tau astrogliopathy (ARTAG), limbic predominant TDP-43 proteinopathy (LATE), and amygdala-predominant Lewy body disease (LBD) are proteinopathies that, together with hippocampal sclerosis, progressively appear in the elderly affecting from 50% to 99% of individuals aged 80 years, depending on the disease. These disorders usually converge on the same subject and associate with additive cognitive impairment. Abnormal Tau, TDP-43, and α-synuclein pathologies progress following a pattern consistent with an active cell-to-cell transmission and abnormal protein processing in the host cell. However, cell vulnerability and transmission pathways are specific for each disorder, albeit abnormal proteins may co-localize in particular neurons. All these alterations are unique or highly prevalent in humans. They all affect, at first, the archicortex and paleocortex to extend at later stages to the neocortex and other regions of the telencephalon. These observations show that the phylogenetically oldest areas of the human cerebral cortex and amygdala are not designed to cope with the lifespan of actual humans. New strategies aimed at reducing the functional overload of the human telencephalon, including optimization of dream repair mechanisms and implementation of artificial circuit devices to surrogate specific brain functions, appear promising.
Collapse
Affiliation(s)
- Ferrer I
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain; Biomedical Research Network of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
7
|
Souder DC, Dreischmeier IA, Smith AB, Wright S, Martin SA, Sagar MAK, Eliceiri KW, Salamat SM, Bendlin BB, Colman RJ, Beasley TM, Anderson RM. Rhesus monkeys as a translational model for late-onset Alzheimer's disease. Aging Cell 2021; 20:e13374. [PMID: 33951283 PMCID: PMC8208787 DOI: 10.1111/acel.13374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/22/2021] [Accepted: 04/11/2021] [Indexed: 11/28/2022] Open
Abstract
Age is a major risk factor for late-onset Alzheimer's disease (AD) but seldom features in laboratory models of the disease. Furthermore, heterogeneity in size and density of AD plaques observed in individuals are not recapitulated in transgenic mouse models, presenting an incomplete picture. We show that the amyloid plaque microenvironment is not equivalent between rodent and primate species, and that differences in the impact of AD pathology on local metabolism and inflammation might explain established differences in neurodegeneration and functional decline. Using brain tissue from transgenic APP/PSEN1 mice, rhesus monkeys with age-related amyloid plaques, and human subjects with confirmed AD, we report altered energetics in the plaque microenvironment. Metabolic features included changes in mitochondrial distribution and enzymatic activity, and changes in redox cofactors NAD(P)H that were shared among species. A greater burden of lipofuscin was detected in the brains from monkeys and humans of advanced age compared to transgenic mice. Local inflammatory signatures indexed by astrogliosis and microglial activation were detected in each species; however, the inflamed zone was considerably larger for monkeys and humans. These data demonstrate the advantage of nonhuman primates in modeling the plaque microenvironment, and provide a new framework to investigate how AD pathology might contribute to functional loss.
Collapse
Affiliation(s)
- Dylan C. Souder
- Division of Geriatrics Department of Medicine SMPH Madison WI USA
| | | | - Alex B. Smith
- Division of Geriatrics Department of Medicine SMPH Madison WI USA
| | - Samantha Wright
- Division of Geriatrics Department of Medicine SMPH Madison WI USA
| | - Stephen A. Martin
- Biology of Aging Laboratory Center for American Indian and Rural Health Equity Montana State University Bozeman MT USA
| | - Md Abdul Kader Sagar
- Department of Biomedical Engineering University of Wisconsin Madison Madison WI USA
| | - Kevin W. Eliceiri
- Department of Biomedical Engineering University of Wisconsin Madison Madison WI USA
| | - Shahriar M. Salamat
- Department of Pathology Laboratory Medicine University of Wisconsin Madison Madison WI USA
- Neurological Surgery University of Wisconsin Madison Madison WI USA
| | | | - Ricki J. Colman
- Wisconsin National Primate Research Center University of Wisconsin Madison Madison WI USA
| | - T. Mark Beasley
- Department of Biostatistics University of Alabama Birmingham AL USA
- GRECC Birmingham/Atlanta Veterans Administration Hospital Birmingham AL USA
| | - Rozalyn M. Anderson
- Division of Geriatrics Department of Medicine SMPH Madison WI USA
- GRECC William S. Middleton Memorial Veterans Hospital Madison WI USA
| |
Collapse
|
8
|
Kummrow M. Diagnostic and Therapeutic Guidelines to Abnormal Behavior in Captive Nonhuman Primates. Vet Clin North Am Exot Anim Pract 2020; 24:253-266. [PMID: 33189254 DOI: 10.1016/j.cvex.2020.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abnormal behavior in nonhuman primates is oftentimes prematurely blamed on certain conditions, in the case of captive non-human primates, readily so on their husbandry, largely ignoring the underlying pathophysiological processes in the brain. Each life history shapes an individual's predisposition to develop or resist the development of a psychopathological disorder, which manifests itself in abnormal behavior when triggered by certain situations or conditions. In order to sustainably address the symptoms of psychopathologies, therapeutic approaches must be based on a structured, comprehensive diagnostic procedure, including behavioral and functional analyses, research into life history, and personality assessment..
Collapse
Affiliation(s)
- Maya Kummrow
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich 8057, Switzerland.
| |
Collapse
|
9
|
Li M, Li Y, Jin J, Yang Z, Zhang B, Liu Y, Song M, Freakly C, Weber E, Liu F, Jiang T, Crozier S. A dedicated eight-channel receive RF coil array for monkey brain MRI at 9.4 T. NMR IN BIOMEDICINE 2020; 33:e4369. [PMID: 32729642 DOI: 10.1002/nbm.4369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
The neuroimaging of nonhuman primates (NHPs) realised with magnetic resonance imaging (MRI) plays an important role in understanding brain structures and functions, as well as neurodegenerative diseases and pathological disorders. Theoretically, an ultrahigh field MRI (≥7 T) is capable of providing a higher signal-to-noise ratio (SNR) for better resolution; however, the lack of appropriate radiofrequency (RF) coils for 9.4 T monkey MRI undermines the benefits provided by a higher field strength. In particular, the standard volume birdcage coil at 9.4 T generates typical destructive interferences in the periphery of the brain, which reduces the SNR in the neuroscience-focused cortex region. Also, the standard birdcage coil is not capable of performing parallel imaging. Consequently, extended scan durations may cause unnecessary damage due to overlong anaesthesia. In this work, assisted by numerical simulations, an eight-channel receive RF coil array was specially designed and manufactured for imaging NHPs at 9.4 T. The structure and geometry of the proposed receive array was optimised with numerical simulations, so that the SNR enhancement region was particularly focused on monkey brain. Validated with rhesus monkey and cynomolgus monkey brain images acquired from a 9.4 T MRI scanner, the proposed receive array outperformed standard birdcage coil with higher SNR, mean diffusivity and fractional anisotropy values, as well as providing better capability for parallel imaging.
Collapse
Affiliation(s)
- Mingyan Li
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Yu Li
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Jin Jin
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
- Siemens Healthcare Pty. Ltd., Bowen Hills QLD, 4006, Australia
| | - Zhengyi Yang
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Baogui Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yanyan Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Ming Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Craig Freakly
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Ewald Weber
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Feng Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Stuart Crozier
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Abstract
Neurodegenerative, neurodevelopmental and neuropsychiatric disorders are among the greatest public health challenges, as many lack disease-modifying treatments. A major reason for the absence of effective therapies is our limited understanding of the causative molecular and cellular mechanisms. Genome-wide association studies are providing a growing catalogue of disease-associated genetic variants, and the next challenge is to elucidate how these variants cause disease and to translate this understanding into therapies. This Review describes how new CRISPR-based functional genomics approaches can uncover disease mechanisms and therapeutic targets in neurological diseases. The bacterial CRISPR system can be used in experimental disease models to edit genomes and to control gene expression levels through CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa). These genetic perturbations can be implemented in massively parallel genetic screens to evaluate the functional consequences for human cells. CRISPR screens are particularly powerful in combination with induced pluripotent stem cell technology, which enables the derivation of differentiated cell types, such as neurons and glia, and brain organoids from cells obtained from patients. Modelling of disease-associated changes in gene expression via CRISPRi and CRISPRa can pinpoint causal changes. In addition, genetic modifier screens can be used to elucidate disease mechanisms and causal determinants of cell type-selective vulnerability and to identify therapeutic targets.
Collapse
|
11
|
Chang Y, Kim J, Park H, Choi H, Kim J. Modelling neurodegenerative diseases with 3D brain organoids. Biol Rev Camb Philos Soc 2020; 95:1497-1509. [PMID: 32568450 DOI: 10.1111/brv.12626] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases are incurable and debilitating conditions characterized by the deterioration of brain function. Most brain disease models rely on human post-mortem brain tissue, non-human primate tissue, or in vitro two-dimensional (2D) experiments. Resource limitations and the complexity of the human brain are some of the reasons that make suitable human neurodegenerative disease models inaccessible. However, recently developed three-dimensional (3D) brain organoids derived from pluripotent stem cells (PSCs), including embryonic stem cells and induced PSCs, may provide suitable models for the study of the pathological features of neurodegenerative diseases. In this review, we provide an overview of existing 3D brain organoid models and discuss recent advances in organoid technology that have increased our understanding of brain development. Moreover, we explain how 3D organoid models recapitulate aspects of specific neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, and explore the utility of these models, for therapeutic applications.
Collapse
Affiliation(s)
- Yujung Chang
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Junyeop Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hanseul Park
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hwan Choi
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jongpil Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.,Department of Chemistry, Dongguk University, Seoul, 04620, Republic of Korea
| |
Collapse
|
12
|
Moss DE. Improving Anti-Neurodegenerative Benefits of Acetylcholinesterase Inhibitors in Alzheimer's Disease: Are Irreversible Inhibitors the Future? Int J Mol Sci 2020; 21:E3438. [PMID: 32414155 PMCID: PMC7279429 DOI: 10.3390/ijms21103438] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Decades of research have produced no effective method to prevent, delay the onset, or slow the progression of Alzheimer's disease (AD). In contrast to these failures, acetylcholinesterase (AChE, EC 3.1.1.7) inhibitors slow the clinical progression of the disease and randomized, placebo-controlled trials in prodromal and mild to moderate AD patients have shown AChE inhibitor anti-neurodegenerative benefits in the cortex, hippocampus, and basal forebrain. CNS neurodegeneration and atrophy are now recognized as biomarkers of AD according to the National Institute on Aging-Alzheimer's Association (NIA-AA) criteria and recent evidence shows that these markers are among the earliest signs of prodromal AD, before the appearance of amyloid. The current AChE inhibitors (donepezil, rivastigmine, and galantamine) have short-acting mechanisms of action that result in dose-limiting toxicity and inadequate efficacy. Irreversible AChE inhibitors, with a long-acting mechanism of action, are inherently CNS selective and can more than double CNS AChE inhibition possible with short-acting inhibitors. Irreversible AChE inhibitors open the door to high-level CNS AChE inhibition and improved anti-neurodegenerative benefits that may be an important part of future treatments to more effectively prevent, delay the onset, or slow the progression of AD.
Collapse
Affiliation(s)
- Donald E Moss
- Department of Psychology, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
13
|
REVIEW: PSYCHOPATHOLOGIES IN CAPTIVE NONHUMAN PRIMATES AND APPROACHES TO DIAGNOSIS AND TREATMENT. J Zoo Wildl Med 2018; 49:259-271. [PMID: 29900784 DOI: 10.1638/2017-0137.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the growing knowledge and literature on primate medicine, assessment and treatment of behavioral abnormalities in nonhuman primates (NHPs) is an underdeveloped field. There is ample evidence for similarity between humans and great apes, including basic neurologic physiology and emotional processes, and no substantial argument exists against a concept of continuity for abnormal conditions in NHPs that emerge in response to adverse experiences, akin to human psychopathology. NHPs have served as models for human psychopathologies for many decades, but the acquired knowledge has only hesitantly been applied to primates themselves. This review aims to raise awareness among the veterinary community of the wealth of literature on NHP psychopathologies in human medicine and anthropology literature and calls for the necessity to include mental health assessments and professionally structured treatment approaches in NHP medicine. Growing understanding about causes and pathogenesis of abnormal behavior in NHP will not only help to prevent the development of undesirable behaviors but also allow for treatment and management of long-lived, already affected animal patients.
Collapse
|
14
|
Emborg ME. Nonhuman Primate Models of Neurodegenerative Disorders. ILAR J 2017; 58:190-201. [PMID: 28985333 PMCID: PMC5886328 DOI: 10.1093/ilar/ilx021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's (AD), Huntington's (HD), and Parkinson's (PD) disease are age-related neurodegenerative disorders characterized by progressive neuronal cell death. Although each disease has particular pathologies and symptoms, accumulated evidence points to similar mechanisms of neurodegeneration, including inflammation, oxidative stress, and protein aggregation. A significant body of research is ongoing to understand how these pathways affect each other and what ultimately triggers the onset of the disease. Experiments in nonhuman primates (NHPs) account for only 5% of all research in animals. Yet the impact of NHP studies for clinical translation is much greater, especially for neurodegenerative disorders, as NHPs have a complex cognitive and motor functions and highly developed neuroanatomy. New NHP models are emerging to better understand pathology and improve the platform in which to test novel therapies. The goal of this report is to review NHP models of AD, HD, and PD in the context of the current understanding of these diseases and their contribution to the development of novel therapies.
Collapse
Affiliation(s)
- Marina E Emborg
- Marina E. Emborg, MD, PhD, is the director of the Preclinical Parkinson’s Research Program at the Wisconsin National Primate Research Center and an associate professor in the department of Medical Physics at the University of Wisconsin in Madison, Wisconsin.
| |
Collapse
|
15
|
Van Dam D, De Deyn PP. Non human primate models for Alzheimer’s disease-related research and drug discovery. Expert Opin Drug Discov 2016; 12:187-200. [DOI: 10.1080/17460441.2017.1271320] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
- Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
16
|
Camus S, Ko WKD, Pioli E, Bezard E. Why bother using non-human primate models of cognitive disorders in translational research? Neurobiol Learn Mem 2015; 124:123-9. [PMID: 26135120 DOI: 10.1016/j.nlm.2015.06.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/23/2015] [Indexed: 01/24/2023]
Abstract
Although everyone would agree that successful translation of therapeutic candidates for central nervous disorders should involve non-human primate (nhp) models of cognitive disorders, we are left with the paucity of publications reporting either the target validation or the actual preclinical testing in heuristic nhp models. In this review, we discuss the importance of nhps in translational research, highlighting the advances in technological/methodological approaches for 'bridging the gap' between preclinical and clinical experiments. In this process, we acknowledge that nhps remain a vital tool for the investigation of complex cognitive functions, given their resemblance to humans in aspects of behaviour, anatomy and physiology. The recent improvements made for a suitable nhp model in cognitive research, including new surrogates of disease and application of innovative methodological approaches, are continuous strides for reaching efficient translation for human benefit. This will ultimately aid the development of innovative treatments against the current and future threat of neurological and psychiatric disorders to the global population.
Collapse
Affiliation(s)
| | - Wai Kin D Ko
- Motac Neuroscience Ltd, Manchester, United Kingdom
| | - Elsa Pioli
- Motac Neuroscience Ltd, Manchester, United Kingdom
| | - Erwan Bezard
- Motac Neuroscience Ltd, Manchester, United Kingdom; Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
17
|
Toledano A, Álvarez M, López-Rodríguez A, Toledano-Díaz A, Fernández-Verdecia C. Does Alzheimer disease exist in all primates? Alzheimer pathology in non-human primates and its pathophysiological implications (II). NEUROLOGÍA (ENGLISH EDITION) 2014. [DOI: 10.1016/j.nrleng.2011.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
18
|
Cheng XR, Zhou WX, Zhang YX. The behavioral, pathological and therapeutic features of the senescence-accelerated mouse prone 8 strain as an Alzheimer's disease animal model. Ageing Res Rev 2014; 13:13-37. [PMID: 24269312 DOI: 10.1016/j.arr.2013.10.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/10/2013] [Accepted: 10/30/2013] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a widespread and devastating progressive neurodegenerative disease. Disease-modifying treatments remain beyond reach, and the etiology of the disease is uncertain. Animal model are essential for identifying disease mechanisms and developing effective therapeutic strategies. Research on AD is currently being carried out in rodent models. The most common transgenic mouse model mimics familial AD, which accounts for a small percentage of cases. The senescence-accelerated mouse prone 8 (SAMP8) strain is a spontaneous animal model of accelerated aging. Many studies indicate that SAMP8 mice harbor the behavioral and histopathological signatures of AD, namely AD-like cognitive and behavioral alterations, neuropathological phenotypes (neuron and dendrite spine loss, spongiosis, gliosis and cholinergic deficits in the forebrain), β-amyloid deposits resembling senile plaques, and aberrant hyperphosphorylation of Tau-like neurofibrillary tangles. SAMP8 mice are useful in the development of novel therapies, and many pharmacological agents and approaches are effective in SAMP8 mice. SAMP8 mice are considered a robust model for exploring the etiopathogenesis of sporadic AD and a plausible experimental model for developing preventative and therapeutic treatments for late-onset/age-related AD, which accounts for the vast majority of cases.
Collapse
Affiliation(s)
- Xiao-rui Cheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wen-xia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yong-xiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
19
|
A preclinical cognitive test battery to parallel the National Institute of Health Toolbox in humans: bridging the translational gap. Neurobiol Aging 2013; 34:1891-901. [PMID: 23434040 DOI: 10.1016/j.neurobiolaging.2013.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 01/01/2023]
Abstract
A major goal of animal research is to identify interventions that can promote successful aging and delay or reverse age-related cognitive decline in humans. Recent advances in standardizing cognitive assessment tools for humans have the potential to bring preclinical work closer to human research in aging and Alzheimer's disease. The National Institute of Health (NIH) has led an initiative to develop a comprehensive Toolbox for Neurologic Behavioral Function (NIH Toolbox) to evaluate cognitive, motor, sensory and emotional function for use in epidemiologic and clinical studies spanning 3 to 85 years of age. This paper aims to analyze the strengths and limitations of animal behavioral tests that can be used to parallel those in the NIH Toolbox. We conclude that there are several paradigms available to define a preclinical battery that parallels the NIH Toolbox. We also suggest areas in which new tests may benefit the development of a comprehensive preclinical test battery for assessment of cognitive function in animal models of aging and Alzheimer's disease.
Collapse
|
20
|
Abstract
Despite tremendous investments in understanding the complex molecular mechanisms underlying Alzheimer disease (AD), recent clinical trials have failed to show efficacy. A potential problem underlying these failures is the assumption that the molecular mechanism mediating the genetically determined form of the disease is identical to the one resulting in late-onset AD. Here, we integrate experimental evidence outside the 'spotlight' of the genetic drivers of amyloid-β (Aβ) generation published during the past two decades, and present a mechanistic explanation for the pathophysiological changes that characterize late-onset AD. We propose that chronic inflammatory conditions cause dysregulation of mechanisms to clear misfolded or damaged neuronal proteins that accumulate with age, and concomitantly lead to tau-associated impairments of axonal integrity and transport. Such changes have several neuropathological consequences: focal accumulation of mitochondria, resulting in metabolic impairments; induction of axonal swelling and leakage, followed by destabilization of synaptic contacts; deposition of amyloid precursor protein in swollen neurites, and generation of aggregation-prone peptides; further tau hyperphosphorylation, ultimately resulting in neurofibrillary tangle formation and neuronal death. The proposed sequence of events provides a link between Aβ and tau-related neuropathology, and underscores the concept that degenerating neurites represent a cause rather than a consequence of Aβ accumulation in late-onset AD.
Collapse
|
21
|
¿Existe la enfermedad de Alzheimer en todos los primates? Afección de Alzheimer en primates no humanos y sus implicaciones fisiopatológicas (I). Neurologia 2012; 27:354-69. [DOI: 10.1016/j.nrl.2011.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 11/17/2022] Open
|
22
|
Toledano A, Álvarez M, López-Rodríguez A, Toledano-Díaz A, Fernández-Verdecia C. Does Alzheimer's disease exist in all primates? Alzheimer pathology in non-human primates and its pathophysiological implications (I). NEUROLOGÍA (ENGLISH EDITION) 2012. [DOI: 10.1016/j.nrleng.2012.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Sabbagh JJ, Kinney JW, Cummings JL. Animal systems in the development of treatments for Alzheimer's disease: challenges, methods, and implications. Neurobiol Aging 2012; 34:169-83. [PMID: 22464953 DOI: 10.1016/j.neurobiolaging.2012.02.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/25/2012] [Accepted: 02/26/2012] [Indexed: 11/18/2022]
Abstract
Substantial resources and effort have been invested into the development of therapeutic agents for Alzheimer's disease (AD) with mixed and limited success. Research into the etiology of AD with animal models mimicking aspects of the disorder has substantially contributed to the advancement of potential therapies. Although these models have shown utility in testing novel therapeutic candidates, large variability still exists in terms of methodology and how the models are utilized. No model has yet predicted a successful disease-modifying therapy for AD. This report reviews several of the widely accepted transgenic and nontransgenic animal models of AD, highlighting the pathological and behavioral characteristics of each. Methodological considerations for conducting preclinical animal research are discussed, such as which behavioral tasks and histological markers may be associated with the greatest insight into therapeutic benefit. An overview of previous and current therapeutic interventions being investigated in AD models is presented, with an emphasis on factors that may have contributed to failure in past clinical trials. Finally, we propose a multitiered approach for investigating candidate therapies for AD that may reduce the likelihood of inappropriate conclusions from models and failed trials in humans.
Collapse
Affiliation(s)
- Jonathan J Sabbagh
- Behavioral Neuroscience Laboratory, University of Nevada, Las Vegas, NV, USA
| | | | | |
Collapse
|
24
|
Ferrer I. Defining Alzheimer as a common age-related neurodegenerative process not inevitably leading to dementia. Prog Neurobiol 2012; 97:38-51. [DOI: 10.1016/j.pneurobio.2012.03.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/10/2012] [Accepted: 03/13/2012] [Indexed: 01/09/2023]
|
25
|
The Impact of MicroRNAs on Brain Aging and Neurodegeneration. Curr Gerontol Geriatr Res 2012; 2012:359369. [PMID: 22312330 PMCID: PMC3270527 DOI: 10.1155/2012/359369] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/14/2011] [Indexed: 11/18/2022] Open
Abstract
The molecular instructions that govern gene expression regulation are encoded in the genome and ultimately determine the morphology and functional specifications of the human brain. As a consequence, changes in gene expression levels might be directly related to the functional decline associated with brain aging. Small noncoding RNAs, including miRNAs, comprise a group of regulatory molecules that modulate the expression of hundred of genes which play important roles in brain metabolism. Recent comparative studies in humans and nonhuman primates revealed that miRNAs regulate multiple pathways and interconnected signaling cascades that are the basis for the cognitive decline and neurodegenerative disorders during aging. Identifying the roles of miRNAs and their target genes in model organisms combined with system-level studies of the brain would provide more comprehensive understanding of the molecular basis of brain deterioration during the aging process.
Collapse
|
26
|
Malm T, Koistinaho J, Kanninen K. Utilization of APPswe/PS1dE9 Transgenic Mice in Research of Alzheimer's Disease: Focus on Gene Therapy and Cell-Based Therapy Applications. Int J Alzheimers Dis 2011; 2011:517160. [PMID: 22114743 PMCID: PMC3205616 DOI: 10.4061/2011/517160] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/05/2011] [Indexed: 11/20/2022] Open
Abstract
One of the most extensively used transgenic mouse model of Alzheimer's disease (AD) is APPswe/PS1dE9 mice, which over express the Swedish mutation of APP together with PS1 deleted in exon 9. These mice show increase in parenchymal Aβ load with Aβ plaques starting from the age of four months, glial activation, and deficits in cognitive functions at the age of 6 months demonstrated by radial arm water maze and 12-13 months seen with Morris Water Maze test. As gene transfer technology allows the delivery of DNA into target cells to achieve the expression of a protective or therapeutic protein, and stem cell transplantation may create an environment supporting neuronal functions and clearing Aβ plaques, these therapeutic approaches alone or in combination represent potential therapeutic strategies that need to be tested in relevant animal models before testing in clinics. Here we review the current utilization of APPswe/PS1dE9 mice in testing gene transfer and cell transplantation aimed at improving the protection of the neurons against Aβ toxicity and also reducing the brain levels of Aβ. Both gene therapy and cell based therapy may be feasible therapeutic approaches for human AD.
Collapse
Affiliation(s)
- Tarja Malm
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | | | | |
Collapse
|
27
|
Shineman DW, Basi GS, Bizon JL, Colton CA, Greenberg BD, Hollister BA, Lincecum J, Leblanc GG, Lee L(BH, Luo F, Morgan D, Morse I, Refolo LM, Riddell DR, Scearce-Levie K, Sweeney P, Yrjänheikki J, Fillit HM. Accelerating drug discovery for Alzheimer's disease: best practices for preclinical animal studies. Alzheimers Res Ther 2011; 3:28. [PMID: 21943025 PMCID: PMC3218805 DOI: 10.1186/alzrt90] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Animal models have contributed significantly to our understanding of the underlying biological mechanisms of Alzheimer's disease (AD). As a result, over 300 interventions have been investigated and reported to mitigate pathological phenotypes or improve behavior in AD animal models or both. To date, however, very few of these findings have resulted in target validation in humans or successful translation to disease-modifying therapies. Challenges in translating preclinical studies to clinical trials include the inability of animal models to recapitulate the human disease, variations in breeding and colony maintenance, lack of standards in design, conduct and analysis of animal trials, and publication bias due to under-reporting of negative results in the scientific literature. The quality of animal model research on novel therapeutics can be improved by bringing the rigor of human clinical trials to animal studies. Research communities in several disease areas have developed recommendations for the conduct and reporting of preclinical studies in order to increase their validity, reproducibility, and predictive value. To address these issues in the AD community, the Alzheimer's Drug Discovery Foundation partnered with Charles River Discovery Services (Morrisville, NC, USA) and Cerebricon Ltd. (Kuopio, Finland) to convene an expert advisory panel of academic, industry, and government scientists to make recommendations on best practices for animal studies testing investigational AD therapies. The panel produced recommendations regarding the measurement, analysis, and reporting of relevant AD targets, th choice of animal model, quality control measures for breeding and colony maintenance, and preclinical animal study design. Major considerations to incorporate into preclinical study design include a priori hypotheses, pharmacokinetics-pharmacodynamics studies prior to proof-of-concept testing, biomarker measurements, sample size determination, and power analysis. The panel also recommended distinguishing between pilot 'exploratory' animal studies and more extensive 'therapeutic' studies to guide interpretation. Finally, the panel proposed infrastructure and resource development, such as the establishment of a public data repository in which both positive animal studies and negative ones could be reported. By promoting best practices, these recommendations can improve the methodological quality and predictive value of AD animal studies and make the translation to human clinical trials more efficient and reliable.
Collapse
Affiliation(s)
- Diana W Shineman
- Alzheimer's Drug Discovery Foundation, 57 West 57 Street, Suite 904, New York, NY 10019, USA
| | - Guriqbal S Basi
- Elan Pharmaceuticals, 1000 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Jennifer L Bizon
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, 100 S. Newell Drive, Gainesville, FL 32610-0244, USA
| | - Carol A Colton
- Duke University Medical Center, 201H Bryan Research Building, Research Drive, Durham, NC 27710, USA
| | - Barry D Greenberg
- University Health Network, Toronto Western Research Institute, 399 Bathurst Street, MP 14-328, Toronto, ON, M5T 2S8, Canada
| | - Beth A Hollister
- Charles River Discovery Services, 3300 Gateway Centre Boulevard, Morrisville, NC 27560, USA
| | - John Lincecum
- ALS Therapy Development Institute, 215 First Street, Cambridge, MA 02142, USA
| | | | - Linda (Bobbi) H Lee
- Alzheimer's Drug Discovery Foundation, 57 West 57 Street, Suite 904, New York, NY 10019, USA
- Columbia University, 630 West 168th Street, Building PS 12-510, New York, NY 10032, USA
| | - Feng Luo
- Abbott Neuroscience, AP4-2, 100 Abbott Park Road, Abbott Park, IL 60064-6076, USA
| | - Dave Morgan
- USF Health Byrd Alzheimer Institute, University of South Florida, 4001 E. Fletcher Avenue, MDC Box 36, Tampa FL 33613, USA
| | - Iva Morse
- Genetically Engineered Models and Services/Charles River Laboratories, Inc., 251 Ballardvale Street, Wilmington, MA 01887, USA
| | - Lorenzo M Refolo
- National Institute on Aging, 7201 Wisconsin Avenue, Gateway Building, Suite 350, Bethesda, MD 20892, USA
| | - David R Riddell
- Pfizer Neuroscience Research Unit, MS 8220-3414, Eastern Point Road, Groton, CT 06340, USA
| | | | - Patrick Sweeney
- Cerebricon Ltd./Charles River Discovery Services, Microkatu 1, Kuopio, Finland 70210
| | - Juha Yrjänheikki
- Cerebricon Ltd./Charles River Discovery Services, Microkatu 1, Kuopio, Finland 70210
| | - Howard M Fillit
- Alzheimer's Drug Discovery Foundation, 57 West 57 Street, Suite 904, New York, NY 10019, USA
| |
Collapse
|
28
|
Toledano A, Álvarez MI, López-Rodríguez AB, Toledano-Díaz A, Fernández-Verdecia CI. [Does Alzheimer's disease exist in all primates? Alzheimer pathology in non-human primates and its pathophysiological implications (II)]. Neurologia 2011; 29:42-55. [PMID: 21871692 DOI: 10.1016/j.nrl.2011.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 05/29/2011] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION In the ageing process there are some species of non-human primates which can show some of the defining characteristics of the Alzheimer's disease (AD) of man, both in neuropathological changes and cognitive-behavioural symptoms. The study of these species is of prime importance to understand AD and develop therapies to combat this neurodegenerative disease. DEVELOPMENT In this second part of the study, these AD features are discussed in the most important non-experimental AD models (Mouse Lemur -Microcebus murinus, Caribbean vervet -Chlorocebus aethiops, and the Rhesus and stump-tailed macaque -Macaca mulatta and M. arctoides) and experimental models (lesional, neurotoxic, pharmacological, immunological, etc.) non-human primates. In all these models cerebral amyloid neuropathology can occur in senility, although with different levels of incidence (100% in vervets;<30% in macaques). The differences between normal and pathological (Alzheimer's) senility in these species are difficult to establish due to the lack of cognitive-behavioural studies in the many groups analysed, as well as the controversy in the results of these studies when they were carried out. However, in some macaques, a correlation between a high degree of functional brain impairment and a large number of neuropathological changes ("possible AD") has been found. CONCLUSIONS In some non-human primates, such as the macaque, the existence of a possible continuum between "normal" ageing process, "normal" ageing with no deep neuropathological and cognitive-behavioural changes, and "pathological ageing" (or "Alzheimer type ageing"), may be considered. In other cases, such as the Caribbean vervet, neuropathological changes are constant and quite marked, but its impact on cognition and behaviour does not seem to be very important. This does assume the possible existence in the human senile physiological regression of a stable phase without dementia even if neuropathological changes appeared.
Collapse
|
29
|
Serizawa S, Chambers JK, Une Y. Beta amyloid deposition and neurofibrillary tangles spontaneously occur in the brains of captive cheetahs (Acinonyx jubatus). Vet Pathol 2011; 49:304-12. [PMID: 21712514 DOI: 10.1177/0300985811410719] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer disease is a dementing disorder characterized pathologically by Aβ deposition, neurofibrillary tangles, and neuronal loss. Although aged animals of many species spontaneously develop Aβ deposits, only 2 species (chimpanzee and wolverine) have been reported to develop Aβ deposits and neurofibrillary tangles in the same individual. Here, the authors demonstrate the spontaneous occurrence of Aβ deposits and neurofibrillary tangles in captive cheetahs (Acinonyx jubatus). Among 22 cheetahs examined in this study, Aβ deposits were observed in 13. Immunostaining (AT8) revealed abnormal intracellular tau immunoreactivity in 10 of the cheetahs with Aβ deposits, and they were mainly distributed in the parahippocampal cortex and CA1 in a fashion similar to that in human patients with Alzheimer disease. Ultrastructurally, bundles of straight filaments filled the neuronal somata and axons, consistent with tangles. Interestingly, 2 of the cheetahs with the most severe abnormal tau immunoreactivity showed clinical cognitive dysfunction. The authors conclude that cheetahs spontaneously develop age-related neurodegenerative disease with pathologic changes similar to Alzheimer disease.
Collapse
Affiliation(s)
- S Serizawa
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | | | | |
Collapse
|
30
|
Abstract
Nonhuman primate (NHP) aging research has traditionally relied mainly on the rhesus macaque. But the long lifespan, low reproductive rate, and relatively large body size of macaques and related Old World monkeys make them less than ideal models for aging research. Manifold advantages would attend the use of smaller, more rapidly developing, shorter-lived NHP species in aging studies, not the least of which are lower cost and the ability to do shorter research projects. Arbitrarily defining "small" primates as those weighing less than 500 g, we assess small, relatively short-lived species among the prosimians and callitrichids for suitability as models for human aging research. Using the criteria of availability, knowledge about (and ease of) maintenance, the possibility of genetic manipulation (a hallmark of 21st century biology), and similarities to humans in the physiology of age-related changes, we suggest three species--two prosimians (Microcebus murinus and Galago senegalensis) and one New World monkey (Callithrix jacchus)--that deserve scrutiny for development as major NHP models for aging studies. We discuss one other New World monkey group, Cebus spp., that might also be an effective NHP model of aging as these species are longer-lived for their body size than any primate except humans.
Collapse
Affiliation(s)
| | - Steven N Austad
- Department of Physiology, University of Texas Health Science Center in San Antonio, USA
| |
Collapse
|
31
|
Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med 2010; 16:1210-4. [PMID: 21052075 DOI: 10.1038/nm.2224] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Age-related neurodegenerative diseases are largely limited to humans and rarely occur spontaneously in animals. Genetically engineered mouse models recapitulate aspects of the corresponding human diseases and are instrumental in studying disease mechanisms and testing therapeutic strategies. If considered within the range of their validity, mouse models have been predictive of clinical outcome. Translational failure is less the result of the incomplete nature of the models than of inadequate preclinical studies and misinterpretation of the models. This commentary summarizes current models and highlights key questions we should be asking about animal models, as well as questions that cannot be answered with the current models.
Collapse
Affiliation(s)
- Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
32
|
Cai Y, Xiong K, Zhang XM, Cai H, Luo XG, Feng JC, Clough RW, Struble RG, Patrylo PR, Chu Y, Kordower JH, Yan XX. β-Secretase-1 elevation in aged monkey and Alzheimer's disease human cerebral cortex occurs around the vasculature in partnership with multisystem axon terminal pathogenesis and β-amyloid accumulation. Eur J Neurosci 2010; 32:1223-38. [PMID: 20726888 DOI: 10.1111/j.1460-9568.2010.07376.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia-causing disorder in the elderly; it may be related to multiple risk factors, and is characterized pathologically by cerebral hypometabolism, paravascular β-amyloid peptide (Aβ) plaques, neuritic dystrophy, and intra-neuronal aggregation of phosphorylated tau. To explore potential pathogenic links among some of these lesions, we examined β-secretase-1 (BACE1) alterations relative to Aβ deposition, neuritic pathology and vascular organization in aged monkey and AD human cerebral cortex. Western blot analyses detected increased levels of BACE1 protein and β-site-cleavage amyloid precursor protein C-terminal fragments in plaque-bearing human and monkey cortex relative to controls. In immunohistochemistry, locally elevated BACE1 immunoreactivity (IR) occurred in AD but not in control human cortex, with a trend for increased overall density among cases with greater plaque pathology. In double-labeling preparations, BACE1 IR colocalized with immunolabeling for Aβ but not for phosphorylated tau. In perfusion-fixed monkey cortex, locally increased BACE1 IR co-existed with intra-axonal and extracellular Aβ IR among virtually all neuritic plaques, ranging from primitive to typical cored forms. This BACE1 labeling localized to swollen/sprouting axon terminals that might co-express one or another neuronal phenotype markers (GABAergic, glutamatergic, cholinergic, or catecholaminergic). Importantly, these BACE1-labeled dystrophic axons resided near to or in direct contact with blood vessels. These findings suggest that plaque formation in AD or normal aged primates relates to a multisystem axonal pathogenesis that occurs in partnership with a potential vascular or metabolic deficit. The data provide a mechanistic explanation for why senile plaques are present preferentially near the cerebral vasculature.
Collapse
Affiliation(s)
- Yan Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Härtig W, Goldhammer S, Bauer U, Wegner F, Wirths O, Bayer TA, Grosche J. Concomitant detection of beta-amyloid peptides with N-terminal truncation and different C-terminal endings in cortical plaques from cases with Alzheimer's disease, senile monkeys and triple transgenic mice. J Chem Neuroanat 2010; 40:82-92. [PMID: 20347032 DOI: 10.1016/j.jchemneu.2010.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/26/2022]
Abstract
The disturbed metabolism of beta-amyloid peptides generated from amyloid precursor protein is widely considered as a main factor during the pathogenesis of Alzheimer's disease. A neuropathological hallmark in the brains from cases with Alzheimer's disease are senile plaques mainly composed of hardly soluble beta-amyloid peptides comprising up to 43 amino acids. Age-dependent cortical beta-amyloidosis was also shown in several transgenic mice and old individuals from various mammalian species, e.g., non-human primates. Beta-amyloid(1-42) is believed to be the main component in the core of senile plaques, whereas less hydrophobic beta-amyloid(1-40) predominantly occurs in the outer rim of plaques. Amino-terminally truncated pyroglutamyl-beta-amyloid(pE3-x) was recently found to be a beta-amyloid species of high relevance to the progression of the disease. While a few biochemical studies provided data on the co-occurrence of several beta-amyloid forms, their concomitant histochemical detection is still lacking. Here, we present a novel triple immunofluorescence labelling of amino- and differently carboxy-terminally truncated beta-amyloid peptides in cortical plaques from a case with Alzheimer's disease, senile macaques and baboons, and triple transgenic mice with age-dependent beta-amyloidosis and tau hyperphosphorylation. Additionally, beta-amyloid(pE3-x) and total beta-amyloid were concomitantly detected with beta-amyloid peptides ending with amino acid 40 or 42, respectively. Simultaneous staining of several beta-amyloid species reveals for instance vascular amyloid containing beta-amyloid(pE3-x) in Alzheimer's disease and monkeys, and may contribute to the further elucidation of beta-amyloidosis in neurodegenerative disorders and animal models.
Collapse
Affiliation(s)
- Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, Faculty of Medicine, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Non-human primates have a small but important role in basic and translational biomedical research, owing to similarities with human beings in physiology, cognitive capabilities, neuroanatomy, social complexity, reproduction, and development. Although non-human primates have contributed to many areas of biomedical research, we review here their unique contributions to work in neuroscience, and focus on four domains: Alzheimer's disease, neuroAIDS, Parkinson's disease, and stress. Our discussion includes, for example, the role of non-human primates in development of new treatments (eg, stem cells, gene transfer) before phase I clinical trials in patients; basic research on disease pathogenesis; and understanding neurobehavioural outcomes resulting from genotype-environment interactions.
Collapse
Affiliation(s)
- John P Capitanio
- California National Primate Research Center and Department of Psychology, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
35
|
Duyckaerts C, Potier MC, Delatour B. Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 2008; 115:5-38. [PMID: 18038275 PMCID: PMC2100431 DOI: 10.1007/s00401-007-0312-8] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Revised: 10/13/2007] [Accepted: 10/14/2007] [Indexed: 12/02/2022]
Abstract
Animal models aim to replicate the symptoms, the lesions or the cause(s) of Alzheimer disease. Numerous mouse transgenic lines have now succeeded in partially reproducing its lesions: the extracellular deposits of Abeta peptide and the intracellular accumulation of tau protein. Mutated human APP transgenes result in the deposition of Abeta peptide, similar but not identical to the Abeta peptide of human senile plaque. Amyloid angiopathy is common. Besides the deposition of Abeta, axon dystrophy and alteration of dendrites have been observed. All of the mutations cause an increase in Abeta 42 levels, except for the Arctic mutation, which alters the Abeta sequence itself. Overexpressing wild-type APP alone (as in the murine models of human trisomy 21) causes no Abeta deposition in most mouse lines. Doubly (APP x mutated PS1) transgenic mice develop the lesions earlier. Transgenic mice in which BACE1 has been knocked out or overexpressed have been produced, as well as lines with altered expression of neprilysin, the main degrading enzyme of Abeta. The APP transgenic mice have raised new questions concerning the mechanisms of neuronal loss, the accumulation of Abeta in the cell body of the neurons, inflammation and gliosis, and the dendritic alterations. They have allowed some insight to be gained into the kinetics of the changes. The connection between the symptoms, the lesions and the increase in Abeta oligomers has been found to be difficult to unravel. Neurofibrillary tangles are only found in mouse lines that overexpress mutated tau or human tau on a murine tau -/- background. A triply transgenic model (mutated APP, PS1 and tau) recapitulates the alterations seen in AD but its physiological relevance may be discussed. A number of modulators of Abeta or of tau accumulation have been tested. A transgenic model may be analyzed at three levels at least (symptoms, lesions, cause of the disease), and a reading key is proposed to summarize this analysis.
Collapse
Affiliation(s)
- Charles Duyckaerts
- Laboratoire de Neuropathologie Raymond Escourolle, Hôpital de La Salpêtrière, 47 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France.
| | | | | |
Collapse
|
36
|
Fiala JC. Mechanisms of amyloid plaque pathogenesis. Acta Neuropathol 2007; 114:551-71. [PMID: 17805553 DOI: 10.1007/s00401-007-0284-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 08/12/2007] [Accepted: 08/13/2007] [Indexed: 12/25/2022]
Abstract
The first ultrastructural investigations of Alzheimer's disease noted the prominence of degenerating mitochondria in the dystrophic neurites of amyloid plaques, and speculated that this degeneration might be a major contributor to plaque pathogenesis. However, the fate of these organelles has received scant consideration in the intervening decades. A number of hypotheses for the formation and progression of amyloid plaques have since been suggested, including glial secretion of amyloid, somal and synaptic secretion of amyloid-beta protein from neurons, and endosomal-lysosomal aggregation of amyloid-beta protein in the cell bodies of neurons, but none of these hypotheses fully account for the focal accumulation of amyloid in plaques. In addition to Alzheimer's disease, amyloid plaques occur in a variety of conditions, and these conditions are all accompanied by dystrophic neurites characteristic of disrupted axonal transport. The disruption of axonal transport results in the autophagocytosis of mitochondria without normal lysosomal degradation, and recent evidence from aging, traumatic injury, Alzheimer's disease and transgenic mice models of Alzheimer's disease, suggests that the degeneration of these autophagosomes may lead to amyloid production within dystrophic neurites. The theory of amyloid plaque pathogenesis has thus come full circle, back to the intuitions of the very first researchers in the field.
Collapse
Affiliation(s)
- John C Fiala
- Department of Health Sciences, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
37
|
Behrends A, Scheiner R, Baker N, Amdam GV. Cognitive aging is linked to social role in honey bees (Apis mellifera). Exp Gerontol 2007; 42:1146-53. [PMID: 17976939 DOI: 10.1016/j.exger.2007.09.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 08/10/2007] [Accepted: 09/18/2007] [Indexed: 11/15/2022]
Abstract
Aging is associated with cognitive impairment in numerous animal species. Across taxa, decline in learning performance is linked to chronological age. The honey bee (Apis mellifera), in contrast, offers an opportunity to study such aspects of aging largely independent of age per se. This is because foraging onset can be decoupled from chronological age, although workers typically first perform tasks inside the nest and later forage outside the hive. Further, early phases of foraging are characterized by growth of specific brain neuropiles, whereas late phases of the forager life-stage are accompanied by accelerated rates of physiological senescence. Yet, it is unclear if these patterns of senescence include cognitive function. The flexibility of worker ontogeny, however, suggests that the bee can become an attractive model for studies of plasticity in cognitive aging that ultimately may lead to insight into mechanisms that govern age-related cognitive decline. To address this potential, we studied effects of honey bee chronological age and of social role on sensory sensitivity and associative olfactory learning performance. Our results show a decline in olfactory acquisition performance that is linked to social role, but not to chronological age. This decline occurs only in foragers with long foraging duration, but at the same time the foragers show less generalization of odors, which is indicative of more precise learning. Foragers that are reversed from foraging to nest tasks, furthermore, do not show deficits in olfactory acquisition. These results point to complex effects of aging on associative learning in honey bees.
Collapse
Affiliation(s)
- Andreas Behrends
- Technische Universität Berlin, Institut für Okologie, Franklinstrasse 28/29, FR 1-1, D-10587 Berlin, Germany
| | | | | | | |
Collapse
|
38
|
Roth GS, Mattison JA, Ottinger MA, Chachich ME, Lane MA, Ingram DK. Aging in Rhesus Monkeys: Relevance to Human Health Interventions. Science 2004; 305:1423-6. [PMID: 15353793 DOI: 10.1126/science.1102541] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Progress in gerontological research has been promoted through the use of numerous animal models, which have helped identify possible mechanisms of aging and age-related chronic diseases and evaluate possible interventions with potential relevance to human aging and disease. Further development of nonhuman primate models, particularly rhesus monkeys, could accelerate this progress, because their closer genetic relationship to humans produces a highly similar aging phenotype. Because the relatively long lives of primates increase the administrative and economic demands on research involving them, new emphasis has emerged on increasing the efficient use of these valuable resources through cooperative, interdisciplinary research.
Collapse
Affiliation(s)
- George S Roth
- Laboratory of Experimental Gerontology, Intramural Research Program, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
39
|
Finch CE, Stanford CB. Meat‐Adaptive Genes and the Evolution of Slower Aging in Humans. QUARTERLY REVIEW OF BIOLOGY 2004; 79:3-50. [PMID: 15101252 DOI: 10.1086/381662] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The chimpanzee life span is shorter than that of humans, which is consistent with a faster schedule of aging. We consider aspects of diet that may have selected for genes that allowed the evolution of longer human life spans with slower aging. Diet has changed remarkably during human evolution. All direct human ancestors are believed to have been largely herbivorous. Chimpanzees eat more meat than other great apes, but in captivity are sensitive to hypercholesterolemia and vascular disease. We argue that this dietary shift to increased regular consumption of fatty animal tissues in the course of hominid evolution was mediated by selection for "meat-adaptive" genes. This selection conferred resistance to disease risks associated with meat eating also increased life expectancy. One candidate gene is apolipoprotein E (apoE), with the E3 allele evolved in the genus Homo that reduces the risks for Alzheimer's and vascular disease, as well as influencing inflammation, infection, and neuronal growth. Other evolved genes mediate lipid metabolism and host defense. The timing of the evolution of apoE and other candidates for meat-adaptive genes is discussed in relation to key events in human evolution.
Collapse
Affiliation(s)
- Caleb E Finch
- Andrus Gerontology Center, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA.
| | | |
Collapse
|
40
|
Marvanová M, Ménager J, Bezard E, Bontrop RE, Pradier L, Wong G. Microarray analysis of nonhuman primates: validation of experimental models in neurological disorders. FASEB J 2003; 17:929-31. [PMID: 12626435 DOI: 10.1096/fj.02-0681fje] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nonhuman primates (NHPs) have provided robust experimental animal models for many human-related diseases due to their similar physiologies. Nonetheless, profound differences remain in the acquisition, progression, and outcome of important diseases such as AIDS and Alzheimer's, for which the underlying basis remains obscure. We explored the utility of human high-density oligonucleotide arrays to survey the transcription profile of NHP genomes. Total RNA from prefrontal cortices of human (Homo sapiens), common chimpanzee (Pan troglodytes), cynomolgous macaque (Macaca fascicularis), and common marmoset (Callithrix jacchus) was labeled and hybridized to Affymetrix U95A GeneChip probe arrays. Corresponding data obtained previously from common chimpanzee and orangutan (Pongo pygmaeus) were added for comparison. Qualitative (present or not detected) and quantitative (expression level) analysis indicated that many genes known to be involved in human neurological disorders were present and regulated in NHPs. A gene involved in dopamine metabolism (catechol-O-methyltransferase) was absent in macaque and marmoset. Glutamate receptor 2 was up-regulated, and transcription-associated genes were down-regulated in NHPs compared with humans. We demonstrate that transcript profiling of NHPs could provide comparative genomic data to validate and better focus experimental animal models of human neurological disorders.
Collapse
Affiliation(s)
- Markéta Marvanová
- Functional Genomics and Bioinformatics Laboratory, Department of Neurobiology, A. I. Virtanen Institute, University of Kuopio, 70211 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The rapid pace of neurobiology research has increased the prospects of developing drugs to prevent neurodegenerative disorders. Although the goal of delaying the onset of brain disorders may be within the grasp of modern medicine, there are several critical barriers to progress. Among these is the lack of appropriate models and modeling systems for specific neurodegenerative diseases. Traditionally, in drug discovery, testing, and development, a combination of models is used. These include in vitro, in vivo, transgenic, and other animal models. However, each of these models has limitations. In this article, the author advocates the use of "in silico" modeling systems, which could complement currently available models and enable investigators to simulate alternative strategies to modulate neural function in a dynamic interactive mode. Advances in computer technology, including increasing speed and memory, and ready access to parallel processing systems have made it easier for investigators to develop databases for computer abstractions of neural function and dysfunction and to begin to develop prototypes for use in complex systems modeling environments. Multimodeling systems have been widely used in other areas of science to study emergent behavior of complex systems, such as the impact of atmospheric changes on weather, flight patterns of birds in a flock, and the behavior of traders in a commodities market. Adoption of such approaches should increase understanding of the complexities of signal transduction pathways in neural networks and accelerate the drug discovery process.
Collapse
|
42
|
Mackic JB, Bading J, Ghiso J, Walker L, Wisniewski T, Frangione B, Zlokovic BV. Circulating amyloid-beta peptide crosses the blood-brain barrier in aged monkeys and contributes to Alzheimer's disease lesions. Vascul Pharmacol 2002; 38:303-13. [PMID: 12529925 DOI: 10.1016/s1537-1891(02)00198-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
1. We studied cerebrovascular sequestration and blood-brain barrier (BBB) permeability to [125I]- or [123I]-labeled amyloid-beta peptides (A beta) in aged rhesus and aged squirrel monkey, the nonhuman primate models of cerebral beta-amyloidosis and cerebrovascular amyloid angiopathy (CAA), respectively. 2. In aged rhesus, the half-time of elimination of [125I]A beta 1-40, t1/2e, was faster by 1.34 h, the systemic clearance, Clss, increased by 4.21 ml/min/kg and the mean residence time of intact peptide in the circulation shortened by 2 h. 3. Cerebrovascular sequestration of [125I]A beta 1-40 was significant in aged squirrel monkey (20.8 ml/g x 10(2)), but undetectable in the rhesus. 4. The permeability surface area product, PS, for [14C]inulin was low in both species (0.11-0.18 ml/g/s x 10(6)) indicating an intact barrier. 5. The BBB permeability to A beta 1-40 was 34.8- and 13.7-fold higher than for [14C]inulin in aged squirrel and rhesus, respectively, suggesting a specialized A beta transport across the BBB. 6. The single photon computed emission tomography studies confirmed a saturable [123I]A beta 1-40 transport at the BBB in primates (Km = 40 nM). 7. Brain autoradiographic analysis of [125I]A beta 1-42 or [125I]A beta 1-40 after intracarotid infusions of radiotracers confirmed co-localization of the signal with A beta-immunoreactive plaques in rhesus monkeys. 8. Metabolism of [125I]A beta 1-40 in brain and plasma was slower in aged squirrel compared to aged rhesus, by 2.9- and 2.6-fold, respectively. 9. Thus, transport of circulating A beta across the BBB contributes to brain parenchymal accumulation of amyloid in aged nonhuman primates. Negligible capillary binding, rapid systemic and brain degradation, and accelerated body elimination of blood-borne A beta, may prevent the development of CAA in rhesus in contrast to squirrel monkeys.
Collapse
Affiliation(s)
- Jasmina B Mackic
- Department of Neurological Surgery, USC School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
We examined aged and young monkeys using a multiple position reversal task to investigate declines in cognitive functions with aging. The task consisted of an original learning task (simple position discrimination task) and a reversal learning task. While the performance of the aged monkeys was not different from that of the young monkeys in the original learning task, the aged monkeys showed a poorer performance than the young monkeys in the reversal learning task. According to our response analysis, the poor performance of aged monkeys in the reversal learning was not caused mainly by repetition of error responses, but rather by the impairment of understanding of the association between stimulus and reward. These results suggest that the prefrontal cortex, particularly the medial orbital cortex, is impaired with aging.
Collapse
Affiliation(s)
- Junko Tsuchida
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan.
| | | | | |
Collapse
|
44
|
Janson CG, McPhee SW, Leone P, Freese A, During MJ. Viral-based gene transfer to the mammalian CNS for functional genomic studies. Trends Neurosci 2001; 24:706-12. [PMID: 11718875 DOI: 10.1016/s0166-2236(00)01954-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A fundamental problem in neuroscience has been the creation of suitable in vivo model systems to study basic neurological phenomena and pathology of the central nervous system (CNS). Somatic cell genetic engineering with viral vectors provides a versatile tool to model normal brain physiology and a variety of neurological diseases.
Collapse
Affiliation(s)
- C G Janson
- CNG Gene Therapy Center, Jefferson Medical College, 1025 Walnut Street, Suite 511, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
45
|
Ghashghaei HT, Barbas H. Neural interaction between the basal forebrain and functionally distinct prefrontal cortices in the rhesus monkey. Neuroscience 2001; 103:593-614. [PMID: 11274781 DOI: 10.1016/s0306-4522(00)00585-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prefrontal cortex in rhesus monkeys is a heterogeneous region by structure, connections and function. Caudal medial and orbitofrontal cortices receive input from cortical and subcortical structures associated with emotions, autonomic function and long-term memory, while lateral prefrontal cortices are linked with structures associated with working memory. With the aid of neural tracers we investigated whether functionally distinct orbitofrontal, medial and lateral prefrontal cortices have specific or common connections with an ascending modulatory system, the basal forebrain. Ascending projections originated in the diagonal band and the basalis nuclei of the basal forebrain in regions demarcated by choline acetyltransferase. Although the origin of projections from the basal forebrain to lateral, medial and orbitofrontal cortices partially overlapped, projections showed a general topography. The posterior part of the nucleus basalis projected preferentially to lateral prefrontal areas while its rostrally adjacent sectors projected to medial and orbitofrontal cortices. The diagonal band nuclei projected to orbitofrontal and medial prefrontal areas. Cortical and subcortical structures that are interconnected appear to have a similar pattern of connections with the basal forebrain. In comparison to the ascending projections, the descending projections were specific, originating mostly in the posterior (limbic) component of medial and orbitofrontal cortices and terminating in the diagonal band nuclei and in the anterior part of the nucleus basalis. In addition, prefrontal limbic areas projected to two other systems of the basal forebrain, the ventral pallidum and the extended amygdala, delineated with the striatal-related markers dopamine, adenosine 3':5'-monophosphate regulated phosphoprotein of M(r) 32kDa, and the related phosphoprotein Inhibitor-1. These basal forebrain systems project to autonomic nuclei in the hypothalamus and brainstem. We interpret these results to indicate that lateral prefrontal areas, which have a role in working memory, receive input from, but do not issue feedback projections to the basal forebrain. In contrast, orbitofrontal and medial prefrontal areas, which have a role in emotions and long-term memory, have robust bidirectional connections with the basal forebrain. Moreover, orbitofrontal and medial prefrontal cortices target the ventral pallidum and the extended amygdala, through which high-order association areas may activate motor autonomic structures for the expression of emotions.
Collapse
Affiliation(s)
- H T Ghashghaei
- Department of Health Sciences, Boston University, 635 Commonwealth Ave., Boston, MA 02215, USA
| | | |
Collapse
|
46
|
Kubis N, Faucheux BA, Ransmayr G, Damier P, Duyckaerts C, Henin D, Forette B, Le Charpentier Y, Hauw JJ, Agid Y, Hirsch EC. Preservation of midbrain catecholaminergic neurons in very old human subjects. Brain 2000; 123 ( Pt 2):366-73. [PMID: 10648443 DOI: 10.1093/brain/123.2.366] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Parkinson's disease is characterized by a progressive degeneration of dopaminergic neurons in the midbrain, yet the cause of this neuronal loss is still unknown. It has been hypothesized that Parkinson's disease could be the consequence of accelerated ageing. In order to reveal a possible common process during ageing and Parkinson's disease neurodegeneration, catecholaminergic neurons of five anatomical regions of the brainstem (substantia nigra, central grey substance, ventral tegmental area, peri- and retrorubral area, and locus coeruleus) have been quantified using immunohistochemical staining for tyrosine hydroxylase (TH) on regularly spaced sections, between the rostral and caudal poles of the mesencephalon and in the rostral pole of the pons, in post-mortem samples of 21 control subjects who died at ages 44-110 years. No statistically significant loss of TH positive neurons was observed in the older subjects, either in the substantia nigra or in the other midbrain regions that are known to degenerate to a lesser degree in Parkinson's disease. Furthermore, in the later regions no neuronal loss was observed from age 44 to 80 years, indicating that this result is not dependent on the inclusion of 'supernormal' very old people. These results suggest that from age 44 to 110 years, ageing in control adults is not, or is scarcely, accompanied by catecholaminergic cell loss in the midbrain and hence Parkinson's disease is probably not caused by an acceleration of a degenerative process during ageing.
Collapse
Affiliation(s)
- N Kubis
- INSERM U289 Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Beck M, Brückner MK, Holzer M, Kaap S, Pannicke T, Arendt T, Bigl V. Guinea-pig primary cell cultures provide a model to study expression and amyloidogenic processing of endogenous amyloid precursor protein. Neuroscience 2000; 95:243-54. [PMID: 10619481 DOI: 10.1016/s0306-4522(99)00390-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Until now guinea-pigs have been rarely used to investigate formation and deposition of Alzheimer's disease-associated amyloid beta peptides despite the sequence identity of human and guinea-pig amyloid beta peptides being known, and the overall similarity of human and guinea-pig amyloid precursor protein. We now describe a primary cell culture system of mixed fetal guinea-pig brain cells, which we have applied to characterize endogenous amyloid precursor protein processing and amyloid beta formation. These cell cultures were established at embryonic day 24 of guinea-pigs after comparison of selected stages of guinea-pig ontogenetic development with the known ontogeny of rats, and were characterized by immunocytochemical detection of neuronal and glial marker proteins. Amyloid precursor protein expression, processing and amyloid beta formation increased in parallel with cellular maturation during cultivation and reached a stable phase after approximately 14 days in vitro therefore providing a suitable time for analysis. Aged cultures display strong neuronal amyloid precursor protein immunoreactivity and an altered profile of amyloid precursor protein isoform messenger RNA expression due to glial proliferation as single neurons were shown to retain their typical pattern of amyloid precursor protein expression. We show that amyloid precursor protein in guinea-pig cells is processed by different protease activities which most likely represent alpha- and beta-secretase, leading to the generation of soluble amyloid precursor protein derivatives. Furthermore, endogenous amyloid precursor protein processing leads to production of substantial amounts of amyloid beta-peptides which accumulate in conditioned culture medium. Amyloid beta was readily detectable by western blot analysis and was shown to consist of approximately 80-90% amyloid beta(1-40). We suggest that primary guinea-pig cell cultures provide a valuable tool in amyloid research that resembles amyloid precursor protein processing under physiological concentrations and, therefore, the situation in humans more closely than current rodent models. It should be especially useful in screening experiments for secretase inhibiting compounds.
Collapse
Affiliation(s)
- M Beck
- Department of Neurochemistry, Paul Flechsig Institute for Brain Research, University of Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Finch CE, Sapolsky RM. The evolution of Alzheimer disease, the reproductive schedule, and apoE isoforms. Neurobiol Aging 1999; 20:407-28. [PMID: 10604433 DOI: 10.1016/s0197-4580(99)00053-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer disease (AD)-like neuropathology increases progressively during aging in most primates, and, in some species, is concurrent with reproductive decline in females and cognitive impairments. We consider how the schedule of AD may have evolved in early humans in relation to the apolipoprotein E (apoE) allele system, which is not found in other primates, and to the increasing duration of postnatal care. The delay of independence and the increasing length of maturation required that the schedule of AD-like neurodegeneration be slowed, otherwise parental caregivers would already have become impaired. We hypothesize that the uniquely human apoE epsilon3 allele evolved from the epsilon4 of primate ancestors during human evolution in relation to the rapid increases of brain size and the emergence of grandmothering. In discussing theses possibilities, we review the diverse bioactivities of apoE, which include involvement in hormone systems. The evolution of menopause is also considered in relation to the protective effect of estrogen on AD.
Collapse
Affiliation(s)
- C E Finch
- Neurogerontology Division, Andrus Gerontology Center and University of Southern California, Los Angeles 90089-0191, USA.
| | | |
Collapse
|
49
|
|
50
|
Allain H, Bentué-Ferrer D, Zekri O, Schück S, Lebreton S, Reymann JM. Experimental and clinical methods in the development of anti-Alzheimer drugs. Fundam Clin Pharmacol 1998; 12:13-29. [PMID: 9523180 DOI: 10.1111/j.1472-8206.1998.tb00919.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methodology used for the development of anti-Alzheimer's disease (AD) drugs raises specific problems which are rarely examined in the literature. While the general development scheme is similar to that required for most drugs, some specific aspects must be analyzed, highly dominated by the dual goal of pharmacology, i.e., to obtain both symptomatic and etiopathogenic drugs. During preclinical studies, aged or lesioned animals are mainly useful for symptomatic drugs, whereas transgenic models or neurodegeneration-induced techniques would probably lead to etiopathogenic drugs potentially slowing down the process of AD. The first administrations of a new compound to human beings raise the question of the activity measurement techniques. Psychometry remains the most informative procedure to detect and analyze the activity of the drugs on the different components of cognition. Electrophysiology and neuroimaging need some complementary studies before they can be proposed as surrogate criteria in phase III trials. At this stage of development, American and the recently published European guidelines are of great help while insisting on long-term (6 months) placebo controlled trials with the use of the triple efficacy criterion: an objective cognition scale, a global assessment, and the opinion of the caregiver. In the long term, pharmacoepidemiology and pharmacoeconomy will have to confirm the rationale of this recent progress in the methodology of anti-AD drug development.
Collapse
Affiliation(s)
- H Allain
- Laboratoire de Pharmacologie Expérimentale et Clinique, Faculté de Médecine, Rennes, France
| | | | | | | | | | | |
Collapse
|