1
|
Więcek S, Paprocka J. Disorders of Copper Metabolism in Children-A Problem too Rarely Recognized. Metabolites 2024; 14:38. [PMID: 38248841 PMCID: PMC10818781 DOI: 10.3390/metabo14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Copper plays an important role in metabolic processes. Both deficiency and excess of this element have a negative effect and lead to pathological conditions. Copper is a cofactor of many enzymatic reactions. Its concentration depends on the delivery in the diet, the absorption in enterocytes, transport with the participation of ATP7A/ATP7B protein, and proper excretion. Copper homeostasis disorders lead to serious medical conditions such as Menkes disease (MD) and Wilson's disease (WD). A mutation in the ATP7A gene is the cause of Menkes disease, it prevents the supply of copper ions to enzymes dependent on them, such as dopamine β-hydroxylase and lysyl oxidase. This leads to progressive changes in the central nervous system and disorders of the connective tissue. In turn, Wilson's disease is an inherited autosomal recessive disease. It is caused by a mutation of the ATP7B gene encoding the ATP7B protein which means excess copper cannot be removed from the body, leading to the pathological accumulation of this element in the liver and brain. The clinical picture is dominated by the liver, neurological, and/or psychiatric symptoms. Early inclusion of zinc preparations and chelating drugs significantly improves the prognosis in this group of patients. The aim of the study is to analyse, based on the latest literature, the following factors: the etiopathogenesis, clinical picture, diagnostic tests, treatment, prognosis, and complications of disease entities associated with copper disturbances: Menkes disease and Wilson's disease. In addition, it is necessary for general practitioners, neurologists, and gastroenterologists to pay attention to these disease entities because they are recognized too late and too rarely, especially in the paediatric population.
Collapse
Affiliation(s)
- Sabina Więcek
- Department of Paediatrics, Faculty of Medical Sciences, Medical University of Silesia, 40-055 Katowice, Poland
| | - Justyna Paprocka
- Department of Paediatric Neurology, Faculty of Medical Sciences, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
2
|
Fang C, Peng Z, Sang Y, Ren Z, Ding H, Yuan H, Hu K. Copper in Cancer: from transition metal to potential target. Hum Cell 2024; 37:85-100. [PMID: 37751026 DOI: 10.1007/s13577-023-00985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
In recent years, with the continuous in-depth exploration of the molecular mechanisms of tumorigenesis, numerous potential new targets for cancer treatment have been identified, some of which have been further developed in clinical practice and have produced positive outcomes. Notably, researchers' initial motivation for studying copper metabolism in cancer stems from the fact that copper is a necessary trace element for organisms and is closely connected to body growth and metabolism. Moreover, over the past few decades, considerable progress has been made in understanding the molecular processes and correlations between copper and cancer. Certain achievements have been made in the development and use of relevant clinical medications. The concept of "cuproptosis," a novel concept that differs from previous forms of cell death, was first proposed by a group of scientists last year, offering fresh perspectives on the targeting capabilities of copper in the treatment of cancer. In this review, we introduced the fundamental physiological functions of copper, the key components of copper metabolism, and a summary of the current research contributions on the connection between copper and cancer. In addition, the development of new copper-based nanomaterials and their associated mechanisms of action are discussed. Finally, we described how the susceptibility of cancer cells to this metallic nutrition could be leveraged to further improve the existing cancer treatment paradigm in the new setting.
Collapse
Affiliation(s)
- Can Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Zhiwei Peng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Yaru Sang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zihao Ren
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Huiming Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Haibo Yuan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Kongwang Hu
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, China.
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
3
|
A novel 3-acetyl coumarin based AIE luminophore for colorimetric recognition of Cu2+ and F− ions. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Tahir N, Ashraf A, Waqar SHB, Rafae A, Kantamneni L, Sheikh T, Khan R. Copper deficiency, a rare but correctable cause of pancytopenia: a review of literature. Expert Rev Hematol 2022; 15:999-1008. [PMID: 36314081 DOI: 10.1080/17474086.2022.2142113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Copper is increasingly being recognized as a vital mineral required by both animals and humans. It plays a vital role in many metabolic processes such as cellular respiration, iron oxidation, and hemoglobin synthesis. Copper deficiency, which can be hereditary or acquired, can lead to a wide spectrum of disease processes such as ringed sideroblastic anemia, myelodysplasia, and pancytopenia. Timely identification and management of copper deficiency is necessary to prevent irreversible complications. AREAS COVERED Our study focuses on prevalence, etiology, pathophysiology, complications, and treatment of copper deficiency. EXPERT OPINION Copper deficiency is frequently underrecognized as the cause of anemia, neutropenia, and bone marrow dysplasia. As it is potentially treatable, it should always be kept in the differentials when patients present with neurological and hematological abnormalities.
Collapse
Affiliation(s)
- Nayha Tahir
- Department of Hematology and Oncology, Kaiser Permanente, San Francisco, CA, USA
| | - Aqsa Ashraf
- Department of Internal Medicine, Zucker School of Medicine, Hofstra/Northwell, Mather Hospital, Port Jefferson, NY, USA
| | - Syed Hamza Bin Waqar
- Department of Internal Medicine, State University of New York, Downstate Medical Center Brooklyn, Brooklyn, NY, USA
| | - Abdul Rafae
- Department of Hematology and Oncology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Leela Kantamneni
- Department of Internal Medicine, Huntsville Regional Medical Campus, University of Alabama, Birmingham, AL, USA
| | - Taha Sheikh
- Department of Hematology and Oncology, University of Toledo, Toledo, OH, USA
| | - Rafiullah Khan
- Division of Hematology Oncology, The Christ Hospital Network Physicians, Cincinnati, OH, USA
| |
Collapse
|
5
|
ATP7A-Regulated Enzyme Metalation and Trafficking in the Menkes Disease Puzzle. Biomedicines 2021; 9:biomedicines9040391. [PMID: 33917579 PMCID: PMC8067471 DOI: 10.3390/biomedicines9040391] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Copper is vital for numerous cellular functions affecting all tissues and organ systems in the body. The copper pump, ATP7A is critical for whole-body, cellular, and subcellular copper homeostasis, and dysfunction due to genetic defects results in Menkes disease. ATP7A dysfunction leads to copper deficiency in nervous tissue, liver, and blood but accumulation in other tissues. Site-specific cellular deficiencies of copper lead to loss of function of copper-dependent enzymes in all tissues, and the range of Menkes disease pathologies observed can now be explained in full by lack of specific copper enzymes. New pathways involving copper activated lysosomal and steroid sulfatases link patient symptoms usually related to other inborn errors of metabolism to Menkes disease. Additionally, new roles for lysyl oxidase in activation of molecules necessary for the innate immune system, and novel adapter molecules that play roles in ERGIC trafficking of brain receptors and other proteins, are emerging. We here summarize the current knowledge of the roles of copper enzyme function in Menkes disease, with a focus on ATP7A-mediated enzyme metalation in the secretory pathway. By establishing mechanistic relationships between copper-dependent cellular processes and Menkes disease symptoms in patients will not only increase understanding of copper biology but will also allow for the identification of an expanding range of copper-dependent enzymes and pathways. This will raise awareness of rare patient symptoms, and thus aid in early diagnosis of Menkes disease patients.
Collapse
|
6
|
Cao B, Yang X, Chen Y, Huang Q, Wu Y, Gu Q, Xiao J, Yang H, Pan H, Chen J, Sun Y, Ren L, Zhao C, Deng Y, Yang Y, Chang X, Yang Z, Zhang Y, Niu Z, Wang J, Wu X, Wang J, Jiang Y. Identification of novel ATP7A mutations and prenatal diagnosis in Chinese patients with Menkes disease. Metab Brain Dis 2017; 32:1123-1131. [PMID: 28397151 DOI: 10.1007/s11011-017-9985-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/28/2017] [Indexed: 11/28/2022]
Abstract
Menkes disease (MD) is a fatal X-linked multisystem disease caused by mutations in ATP7A. In this study, clinical and genetic analysis was performed in 24 male MD patients. Development delay, seizures, kinky coarse hair, and dystonia were found in 24, 22, 24, and 24 patients, respectively. Serum ceruloplasmin/copper tested in 19 patients was low. Abnormal classic features of MD presented in the MRI/MRA of 19 patients. Seventeen mutations of ATP7A were identified in 22 patients. Twelve were novel mutations including three small deletion/insertion, one missense mutation, two nonsense mutations, three splicing-site mutations, and three gross deletions. Twenty-two patients were genetically diagnosed; neither point mutation nor deletion/duplication was found in two of them. c.2179G > A found in five patients might be a hot-spot mutation. Prenatal molecular diagnosis was performed for five unrelated fetuses (1 female and 4 male), which found four fetuses to be wild type and one male carried the same mutation as the proband. This study of the largest sample of Chinese MD patients examined to date discovered the unique phenotype and genotype spectrum in Chinese patients with 12 novel mutations of ATP7A, and that c.2179G > A might be a hot-spot mutation in MD patients. Five successful prenatal diagnosis contributed important information for MD families.
Collapse
Affiliation(s)
- Binbin Cao
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Xiaoping Yang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Yinyin Chen
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Qionghui Huang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
- Department of Pediatrics, Peking University People's Hospital, Beijing, 100044, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Qiang Gu
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| | - Huixia Yang
- Department of Obstetrics, Peking University First Hospital, Beijing, 100034, China
| | - Hong Pan
- Department of Central Lab, Peking University First Hospital, Beijing, 100034, China
| | - Junya Chen
- Department of Obstetrics, Peking University First Hospital, Beijing, 100034, China
| | - Yu Sun
- Department of Obstetrics, Peking University First Hospital, Beijing, 100034, China
| | - Li Ren
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Chengfeng Zhao
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
- Department of Epilepsy, Central Hospital of Jiamusi, Jiamusi University, Jiamusi, Heilongjiang Province, 154007, China
| | - Yanhua Deng
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Xingzhi Chang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Zhengping Niu
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Juli Wang
- Department of Epilepsy, Central Hospital of Jiamusi, Jiamusi University, Jiamusi, Heilongjiang Province, 154007, China
| | - Xiru Wu
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China.
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China.
| |
Collapse
|
7
|
Ahuja A, Dev K, Tanwar RS, Selwal KK, Tyagi PK. Copper mediated neurological disorder: visions into amyotrophic lateral sclerosis, Alzheimer and Menkes disease. J Trace Elem Med Biol 2015; 29:11-23. [PMID: 24975171 DOI: 10.1016/j.jtemb.2014.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/16/2014] [Accepted: 05/08/2014] [Indexed: 12/31/2022]
Abstract
Copper (Cu) is a vital redox dynamic metal that is possibly poisonous in superfluous. Metals can traditionally or intricately cause propagation in reactive oxygen species (ROS) accretion in cells and this may effect in programmed cell death. Accumulation of Cu causes necrosis that looks to be facilitated by DNA damage, followed by activation of P53. Cu dyshomeostasis has also been concerned in neurodegenerative disorders such as Alzheimer, Amyotrophic lateral sclerosis (ALS) or Menkes disease and is directly related to neurodegenerative syndrome that usually produces senile dementia. These mortal syndromes are closely related with an immense damage of neurons and synaptic failure in the brain. This review focuses on copper mediated neurological disorders with insights into amyotrophic lateral sclerosis, Alzheimer and Menkes disease.
Collapse
Affiliation(s)
- Anami Ahuja
- Department of Biotechnology, NIMS University, Jaipur, India.
| | - Kapil Dev
- Faculty of Medicine in Hradec Kralove, University of Charles, Prague, Czech Republic
| | - Ranjeet S Tanwar
- Department of Biotechnology, N.C. College of Engineering, Israna, India
| | - Krishan K Selwal
- Department of Biotechnology, Deenbandhu Chotu Ram University of Science and Technology, Murthal, India
| | - Pankaj K Tyagi
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut, India
| |
Collapse
|
8
|
Verrotti A, Carelli A, Coppola G. Epilepsy in children with Menkes disease: a systematic review of literature. J Child Neurol 2014; 29:1757-64. [PMID: 25038123 DOI: 10.1177/0883073814541469] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Menkes disease is a lethal multisystemic disorder of copper metabolism characterized by connective tissue abnormalities, progressive neurodegeneration and peculiar "kinky hair." Epilepsy is one of the main clinical features of this disease but it has been described in detail by only a few authors. Most patients develop seizures from 2 to 3 months of age, accompanied by a neurodevelopmental regression. The history of epilepsy is usually characterized by 3 stages: an early stage with focal clonic seizures and status epilepticus, an intermediate stage with infantile spasms, and a late stage with multifocal, myoclonic, and tonic seizures. At the onset, epilepsy can be controlled with anticonvulsant therapy, whereas with the progression of disease, it becomes extremely resistant to all antiepileptic drugs. In this article, we analyze clinical and electroencephalographic (EEG) characteristics of epilepsy in patients with this syndrome.
Collapse
Affiliation(s)
| | - Alessia Carelli
- Department of Pediatrics, Perugia University, Perugia, Italy
| | | |
Collapse
|
9
|
Verrotti A, Cusmai R, Darra F, Martelli P, Accorsi P, Bergamo S, Bevivino E, Coppola G, Freri E, Grosso S, Matricardi S, Parisi P, Sartori S, Spalice A, Specchio N, Carelli A, Zini D, Dalla Bernardina B, Giordano L. Epilepsy in Menkes disease: an electroclinical long-term study of 28 patients. Epilepsy Res 2014; 108:1597-603. [PMID: 25218893 DOI: 10.1016/j.eplepsyres.2014.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/24/2014] [Accepted: 08/21/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Epilepsy is a frequent and severe feature of Menkes disease (MD) but only few studies described the long-term evolution of these children. We report a series of 28 epileptic MD patients, with clinical characteristics, EEG abnormalities, brain malformations and long-term outcome. METHODS EEG, clinical characteristics and neuroimaging features in 28 MD patients were analyzed at the onset of epilepsy and after long-term follow-up (at least 4 years). We subdivided the patients into two groups: Group 1, 16 patients who received a subcutaneous copper-histidine treatment, and Group 2 including 12 patients who did not get any therapies. RESULTS The large majority of our patients presented at the onset of epilepsy focal seizures (FS) and infantile spasms (IS). Five patients had recurrent status epilepticus (SE). During the follow-up, patients showed multiple seizure types: 6 patients had generalized tonic clonic seizures (GCT), 6 patients presented IS, 10 children had FS, 11 had myoclonic jerks and 3 had SE. Therapy with various antiepileptic drugs had poor efficacy, except in three patients who showed seizure disappearance with consequent discontinuation of antiepileptic therapy. There was no difference of neurological outcome among the two groups analyzed. CONCLUSIONS Epilepsy in MD is a difficult to treat problem. At the onset, the most frequent type of seizures are FC and IS; in the next months, other kinds of seizures can appear. Many children are drug resistant. Institution of replacement therapy with copper-histidine seems to be not beneficial for epilepsy.
Collapse
Affiliation(s)
| | - Raffaella Cusmai
- Division of Neurology, Metabolic Unit "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | | | - Paola Martelli
- Child Neuropsychiatry, Regional Epilepsy Center, Brescia, Italy
| | | | - Silvia Bergamo
- Pediatric Neurology Unit, Department of Women's and Children's Health, University and City Hospital of Padua, Italy
| | - Elsa Bevivino
- Division of Neurology, Metabolic Unit "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Giangennaro Coppola
- Child and Adolescent Neuropsychiatry, Faculty of Medicine and Surgery, University of Salerno, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Carlo Besta Neurological Institute, Milan, Italy
| | - Salvatore Grosso
- Pediatric Neurology-Immunology and Endocrinology Unit, Department of Pediatrics, University of Siena, Siena, Italy
| | - Sara Matricardi
- Department of Pediatric Neuroscience, Carlo Besta Neurological Institute, Milan, Italy
| | - Pasquale Parisi
- Child Neurology, Chair of Pediatrics, II Faculty of Medicine, "La Sapienza" University, Rome, Italy
| | - Stefano Sartori
- Pediatric Neurology Unit, Department of Women's and Children's Health, University and City Hospital of Padua, Italy
| | - Alberto Spalice
- Department of Pediatrics, University of Rome "La Sapienza", Rome, Italy
| | - Nicola Specchio
- Division of Neurology, Metabolic Unit "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | | | - Daniela Zini
- Child Neuropsychiatry, University of Verona, Verona, Italy
| | | | - Lucio Giordano
- Child Neuropsychiatry, Regional Epilepsy Center, Brescia, Italy
| |
Collapse
|
10
|
|
11
|
Russo AJ, Bazin AP, Bigega R, Carlson RS, Cole MG, Contreras DC, Galvin MB, Gaydorus SS, Holik SD, Jenkins GP, Jones BM, Languell PA, Lyman PJ, March KP, Meuer KA, Peterson SR, Piedmonte MT, Quinn MG, Smaranda NC, Steves PL, Taylor HP, Waddingham TE, Warren JS. Plasma copper and zinc concentration in individuals with autism correlate with selected symptom severity. Nutr Metab Insights 2012; 5:41-7. [PMID: 23882147 PMCID: PMC3698472 DOI: 10.4137/nmi.s8761] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM To assess plasma zinc and copper concentration in individuals with autism and correlate these levels with symptom severity. SUBJECTS AND METHODS Plasma from 102 autistic individuals, and 18 neurotypical controls, were tested for plasma zinc and copper using inductively-coupled plasma-mass spectrometry. Copper and zinc levels and Cu/Zn were analyzed for possible correlation with severity of 19 symptoms. RESULTS Autistic individuals had elevated plasma levels of copper and Cu/Zn and lower, but not significantly lower, plasma Zn compared to neurotypical controls. There was a correlation between Cu/Zn and expressive language, receptive language, focus attention, hyperactivity, fine motor skills, gross motor skills and Tip Toeing. There was a negative correlation between plasma zinc concentration and hyperactivity, and fine motor skills severity. DISCUSSION These results suggest an association between plasma Cu/Zn and severity of symptoms associated with autism.
Collapse
|
12
|
Russo A, deVito R. Analysis of Copper and Zinc Plasma Concentration and the Efficacy of Zinc Therapy in Individuals with Asperger's Syndrome, Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS) and Autism. Biomark Insights 2011; 6:127-33. [PMID: 22174567 PMCID: PMC3235993 DOI: 10.4137/bmi.s7286] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM To assess plasma zinc and copper concentration in individuals with Asperger's Syndrome, Pervasive Developmental Disorder-Not Otherwise Specified (PDD-NOS) and autistic disorder, and to analyze the efficacy of zinc therapy on the normalization of zinc and copper levels and symptom severity in these disorders. SUBJECTS AND METHODS Plasma from 79 autistic individuals, 52 individuals with PDD-NOS, 21 individuals with Asperger's Syndrome (all meeting DSM-IV diagnostic criteria), and 18 age and gender similar neurotypical controls, were tested for plasma zinc and copper using inductively-coupled plasma-mass spectrometry. RESULTS Autistic and PDD-NOS individuals had significantly elevated plasma levels of copper. None of the groups (autism, Asperger's or PDD-NOS) had significantly lower plasma zinc concentrations. Post zinc and B-6 therapy, individuals with autism and PDD-NOS had significantly lower levels of copper, but individuals with Asperger's did not have significantly lower copper. Individuals with autism, PDD-NOS and Asperger's all had significantly higher zinc levels. Severity of symptoms decreased in autistic individuals following zinc and B-6 therapy with respect to awareness, receptive language, focus and attention, hyperactivity, tip toeing, eye contact, sound sensitivity, tactile sensitivity and seizures. None of the measured symptoms worsened after therapy. None of the symptoms in the Asperger's patients improved after therapy. DISCUSSION These results suggest an association between copper and zinc plasma levels and individuals with autism, PDD-NOS and Asperger's Syndrome. The data also indicates that copper levels normalize (decrease to levels of controls) in individuals with autism and PDD-NOS, but not in individuals with Asperger's. These same Asperger's patients do not improve with respect to symptoms after therapy, whereas many symptoms improved in the autism group. This may indicate an association between copper levels and symptom severity.
Collapse
Affiliation(s)
- A.J. Russo
- Health Research Institute, Warrenville, Illinois
- Visiting Assistant Professor of Biology, Hartwick College, Oneonta, New York
| | | |
Collapse
|
13
|
Russo AJ. Increased Copper in Individuals with Autism Normalizes Post Zinc Therapy More Efficiently in Individuals with Concurrent GI Disease. Nutr Metab Insights 2011; 4:49-54. [PMID: 23946661 PMCID: PMC3738468 DOI: 10.4137/nmi.s6827] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIM To assess plasma zinc and copper concentration in individuals with autism. SUBJECTS AND METHODS Plasma from 79 autistic individuals, and 18 age and gender similar neurotypical controls, were tested for plasma zinc and copper using inductively-coupled plasma-mass spectrometry. RESULTS Autistic individuals had significantly elevated plasma levels of copper and Cu/Zn and lower, but not significantly lower, plasma Zn compared to neurotypical controls. Zn levels increased significantly in autistic individuals with and without GI disease after zinc therapy. Cu decreased significantly after zinc therapy in the GI disease group but not in the autistic group without GI disease. Autistic children significantly improved with respect to hyperactivity and stimming after zinc therapy in autistic children with GI disease. Autistic children without GI disease did not improve in these symptoms after the same therapy. DISCUSSION These results suggest an association between zinc and copper plasma levels and autism, and they suggest that zinc therapy may be most effective at lowering copper levels in autistic children with GI disease.
Collapse
Affiliation(s)
- Anthony J. Russo
- Visiting Assistant Professor of Biology, Hartwick College, Oneonta, NY 13820. Research Director Health Research Institute/Pfeiffer Treatment Center 4575 Weaver Parkway Warrenville, Illinois 60555
| |
Collapse
|
14
|
Kaler SG, Liew CJ, Donsante A, Hicks JD, Sato S, Greenfield JC. Molecular correlates of epilepsy in early diagnosed and treated Menkes disease. J Inherit Metab Dis 2010; 33:583-9. [PMID: 20652413 PMCID: PMC3113468 DOI: 10.1007/s10545-010-9118-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/14/2010] [Accepted: 04/20/2010] [Indexed: 01/18/2023]
Abstract
Epilepsy is a major feature of Menkes disease, an X-linked recessive infantile neurodegenerative disorder caused by mutations in ATP7A, which produces a copper-transporting ATPase. Three prior surveys indicated clinical seizures and electroencephalographic (EEG) abnormalities in a combined 27 of 29 (93%) symptomatic Menkes disease patients diagnosed at 2 months of age or older. To assess the influence of earlier, presymptomatic diagnosis and treatment on seizure semiology and brain electrical activity, we evaluated 71 EEGs in 24 Menkes disease patients who were diagnosed and treated with copper injections in early infancy (≤6 weeks of age), and whose ATP7A mutations we determined. Clinical seizures were observed in only 12.5% (3/24) of these patients, although 46% (11/24) had at least one abnormal EEG tracing, including 50% of patients with large deletions in ATP7A, 50% of those with small deletions, 60% of those with nonsense mutations, and 57% of those with canonical splice junction mutations. In contrast, five patients with mutations shown to retain partial function, either via some correct RNA splicing or residual copper transport capacity, had neither clinical seizures nor EEG abnormalities. Our findings suggest that early diagnosis and treatment improve brain electrical activity and decrease seizure occurrence in classical Menkes disease irrespective of the precise molecular defect. Subjects with ATP7A mutations that retain some function seem particularly well protected by early intervention against the possibility of epilepsy.
Collapse
Affiliation(s)
- Stephen G Kaler
- Unit on Human Copper Metabolism, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1853, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Mototani Y, Miyoshi I, Okamura T, Moriya T, Meng Y, Yuan Pei X, Kameo S, Kasai N. Phenotypic and genetic characterization of the Atp7a(Mo-Tohm) mottled mouse: a new murine model of Menkes disease. Genomics 2005; 87:191-9. [PMID: 16338116 DOI: 10.1016/j.ygeno.2005.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 08/23/2005] [Accepted: 09/20/2005] [Indexed: 10/25/2022]
Abstract
Mottled Tohoku (Atp7a(Mo-Tohm) or Mo(Tohm)) is an X-linked mutation with mottled pigmentation in heterozygous (Mo(Tohm)/+) females and is embryonic lethal at E11 in hemizygous (Mo(Tohm)/Y) males. Copper levels were low in the brain and high in the intestine of Mo(Tohm) mice. Two congenic strains with ICR or C57BL/6 (B6) background were produced for genetic and phenotypic analyses and revealed that Mo(Tohm)/+ females with ICR background survived until adulthood, while most with B6 background died within 2 days after birth. The Mo(Tohm)/Y males with both backgrounds died at around E11. Massive hemorrhage was shown in the yolk sac cavity with irregular attachment between the mesoderm and the endothelial cells of blood vessels in the embryos at E10.5, suggesting that this irregular attachment causes embryonic lethality. The Mo(Tohm) mutant had a 1440-bp deletion between intron 22 and exon 23 of the Atp7a gene. Mo(Tohm)/Y males with the wild-type Atp7a cDNA transgene were rescued from embryonic lethality, confirming that the Mo(Tohm) mutant is caused by the defect in the Atp7a gene. This mutant mouse is the most severe model of human Menkes disease in mottled mice established to date and one of the useful models for understanding the gene function of Menkes disease.
Collapse
Affiliation(s)
- Yasumasa Mototani
- Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-7585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Copper (Cu), a redox active metal, is an essential nutrient for all species studied to date. During the past decade, there has been increasing interest in the concept that marginal deficits of this element can contribute to the development and progression of a number of disease states including cardiovascular disease and diabetes. Deficits of this nutrient during pregnancy can result in gross structural malformations in the conceptus, and persistent neurological and immunological abnormalities in the offspring. Excessive amounts of Cu in the body can also pose a risk. Acute Cu toxicity can result in a number of pathologies, and in severe cases, death. Chronic Cu toxicity can result in liver disease and severe neurological defects. The concept that elevated ceruloplasmin is a risk factor for certain diseases is discussed. In this paper, we will review recent literature on the potential causes of Cu deficiency and Cu toxicity, and the pathological consequences associated with the above. Finally, we will review some of the potential biochemical lesions that might underlie these pathologies. Given that oxidative stress is a characteristic of Cu deficiency, the role of Cu in the oxidative defense system will receive special attention. The concept that excess Cu may be a precipitating factor in Alzheimer's disease is discussed.
Collapse
Affiliation(s)
- Janet Y Uriu-Adams
- Department of Nutrition, One Shields Ave., University of California-Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
17
|
El Meskini R, Cline LB, Eipper BA, Ronnett GV. The developmentally regulated expression of Menkes protein ATP7A suggests a role in axon extension and synaptogenesis. Dev Neurosci 2005; 27:333-48. [PMID: 16137991 DOI: 10.1159/000086713] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 02/09/2005] [Indexed: 11/19/2022] Open
Abstract
Menkes disease (MD) is a neurodegenerative disorder caused by mutation of the copper transporter ATP7A. While several enzymes expressed in mature neurons require copper, MD neurodegenerative changes cannot be explained by known requirements for ATP7A in neuronal development. To investigate additional roles for ATP7A during development, we characterized its pattern of expression using the olfactory system as a neurodevelopmental model. ATP7A expression in neurons was developmentally regulated rather than constitutively. Initially expressed in the cell bodies of developing neurons, ATP7A protein later shifted to extending axons, peaking prior to synaptogenesis. Similarly, after injury-stimulated neurogenesis, ATP7A expression increased in neurons and axons preceding synaptogenesis. Interestingly, copper-transport-deficient ATP7A still exhibits axonal localization. These results support a role for ATP7A in axon extension, which may contribute to the severe neurodegeneration characteristic of MD.
Collapse
Affiliation(s)
- Rajaâ El Meskini
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Conn., USA
| | | | | | | |
Collapse
|
18
|
Poulsen L, Møller LB, Plunkett K, Belmont J, Tümer Z, Horn N. X-Linked Menkes Disease: First Documented Report of Germ-Line Mosaicism. ACTA ACUST UNITED AC 2004; 8:286-91. [PMID: 15727253 DOI: 10.1089/gte.2004.8.286] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work investigated a three-generation Menkes disease family, where germ-line mosaicism was suspected in the maternal grandmother of the index patient. She had given birth to 2 boys who died of suspected Menkes disease on the basis of clinical and photographic evidence. Biochemical analysis of the index patient confirmed the diagnosis of Menkes disease, and DNA analysis established a partial gene deletion (EX11_EX23del), involving exons 11-23 and the 3'-untranslated region (UTR) of ATP7A. A junction fragment was detectable by Southern blot analysis, which enabled carrier analysis. The mother was demonstrated to be a carrier, whereas analysis of lymphoblasts and skin fibroblasts from the maternal grandmother gave no indication of a partial gene deletion. No materials were available from the possibly affected maternal uncles. Further genetic analyses, including biochemical testing of the grandmother and haplotype analysis using four intragenic markers on DNA from selected members of the family, corroborated this finding. The combined results from DNA analyses showed that the grandmother had transmitted three different ATP7A haplotypes to her offspring: (1) the at-risk allele (CA(B))-1 and the deletion; (2) the at-risk allele (CA(B))-1 without deletion; and (3) the second allele (CAB)-2 without deletion. In conclusion, our study demonstrated segregation of Menkes disease within the family investigated that can best be explained by extensive germ-line mosaicism in the maternal grandmother. The finding of germ-line mosaicism has obvious implications for genetic counseling of Menkes disease families.
Collapse
Affiliation(s)
- Lena Poulsen
- Medical Genetics Laboratory Center, The John F. Kennedy Institute, Glostrup, Denmark
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE To report the prevalence and clinical significance of ocular findings in 20 patients with Menkes' syndrome recruited for a clinical trial at the National Institute of Child Health and Human Development (NICHHD). DESIGN Retrospective observational case series. PARTICIPANTS Twenty patients with Menkes' syndrome enrolled in a clinical trial at the NICHHD, who underwent ophthalmic evaluation at the National Eye Institute from 1990 through 1997. METHODS Review of clinical ophthalmic examination records, photographs, and visual evoked potential recordings. MAIN OUTCOME MEASURES Prevalence of ophthalmic signs of unusual frequency in patients with Menkes' syndrome. RESULTS There was a high prevalence of very poor visual acuity (8 patients), myopia at 21 months old or younger (5 of 9 patients this age who underwent cycloplegic refraction), strabismus (11 of 18 patients whose motility was evaluated), blue irides (15 of 16 patients whose iris color was documented), iris stromal hypoplasia and bilateral peripheral transillumination (7 and 3 patients, respectively), peripheral retinal hypopigmentation (7 of 18 patients whose retinal periphery was noted at the initial examination), and aberrant eyelashes (5 patients). CONCLUSIONS Patients with Menkes' syndrome exhibit a high prevalence of several ocular findings, including some (very poor visual acuity, myopia, strabismus) that may warrant special care. Early ocular examination is thus indicated for patients with Menkes' syndrome, particularly those with mild variants of the disease, whose neurologic status is better and lifespan is longer.
Collapse
Affiliation(s)
- Alice T Gasch
- Washington National Eye Center, Washington Hospital Center, DC, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Occipital horn syndrome, formerly known as Ehlers-Danlos syndrome type IX or X-linked cutis laxa, is an allelic variant of Menkes' syndrome. Although the clinical symptomatology and systemic pathology findings have been well described in occipital horn syndrome, the neuropathology has not previously been reported. A kindred affected by the X-linked occipital horn syndrome is followed at the University of Alabama at Birmingham. A severely mentally retarded dysmorphic man, who died at the age of 26 years, never gained the ability to walk or talk. Among other findings at autopsy, the patient had the skeletal anomalies previously described with occipital horn syndrome. Neuropathologic findings included neovascularization and extreme reduplication of the cerebral arteries, in conjunction with cystic medial degeneration; bilateral cerebellar hypoplasia; focal cortical dysplasia, and cerebellar heterotopias. These findings are similar to those seen in the brains of patients with Menkes' syndrome, which is not surprising, given the known phenotypic overlap and the proven allelism of occipital horn syndrome with classic Menkes' syndrome.
Collapse
Affiliation(s)
- C A Palmer
- Department of Neurology, University of Alabama at Birmingham, 35294, USA.
| | | |
Collapse
|
21
|
Abstract
This article reviews chromosomal and genetic disorders in the context of male fertility. Particular emphasis is on those disorders, which are encountered, in clinical practice including Klinefelter's syndrome, Kallman's syndrome, Androgen insensitivity, Y microdeletions, Y fertility gene deletions, and cystic fibrosis gene mutations. These disorders are discussed in relation to the aetiology of male fertility and also risks to children who are born of fathers with these disorders. A list of fathers' categories is proposed for outcome studies for children born after IVF-ICSI. Finally a question is proposed to catalyse debate about germ line therapy.
Collapse
Affiliation(s)
- T B Hargreave
- Department of Urology, Western General Hospital, Edinburgh, Scotland, UK
| |
Collapse
|
22
|
Abusaad I, Mohammed SN, Ogilvie CM, Ritchie J, Pohl KR, Docherty Z. Clinical expression of Menkes disease in a girl with X;13 translocation. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1096-8628(19991203)87:4<354::aid-ajmg14>3.0.co;2-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Francis MJ, Jones EE, Levy ER, Martin RL, Ponnambalam S, Monaco AP. Identification of a di-leucine motif within the C terminus domain of the Menkes disease protein that mediates endocytosis from the plasma membrane. J Cell Sci 1999; 112 ( Pt 11):1721-32. [PMID: 10318764 DOI: 10.1242/jcs.112.11.1721] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein encoded by the Menkes disease gene (MNK) is localised to the Golgi apparatus and cycles between the trans-Golgi network and the plasma membrane in cultured cells on addition and removal of copper to the growth medium. This suggests that MNK protein contains active signals that are involved in the retention of the protein to the trans-Golgi network and retrieval of the protein from the plasma membrane. Previous studies have identified a signal involved in Golgi retention within transmembrane domain 3 of MNK. To identify a motif sufficient for retrieval of MNK from the plasma membrane, we analysed the cytoplasmic domain, downstream of transmembrane domain 7 and 8. Chimeric constructs containing this cytoplasmic domain fused to the reporter molecule CD8 localised the retrieval signal(s) to 62 amino acids at the C terminus. Further studies were performed on putative internalisation motifs, using site-directed mutagenesis, protein expression, chemical treatment and immunofluorescence. We observed that a di-leucine motif (L1487L1488) was essential for rapid internalisation of chimeric CD8 proteins and the full-length Menkes cDNA from the plasma membrane. We suggest that this motif mediates the retrieval of MNK from the plasma membrane into the endocytic pathway, via the recycling endosomes, but is not sufficient on its own to return the protein to the Golgi apparatus. These studies provide a basis with which to identify other motifs important in the sorting and delivery of MNK from the plasma membrane to the Golgi apparatus.
Collapse
Affiliation(s)
- M J Francis
- Wellcome Trust Centre for Human Genetics, Windmill Road, Headington, Oxford, OX3 7BN, UK
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Affiliation(s)
- T B Hargreave
- Department of Urology, Fertility Problems Clinic, Western General Hospital, UK
| | | | | |
Collapse
|
26
|
Christodoulou J, Danks DM, Sarkar B, Baerlocher KE, Casey R, Horn N, T�mer Z, Clarke JT. Early treatment of Menkes disease with parenteral Cooper-Histidine: Long-term follow-up of four treated patients. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1096-8628(19980305)76:2<154::aid-ajmg9>3.0.co;2-t] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Yoshimura N. Cytochemical components of mitochondrial dense bodies in the brain in Menkes disease: Electron microscopic cytochemistry and X-ray microanalysis. Neuropathology 1997. [DOI: 10.1111/j.1440-1789.1997.tb00059.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Masson W, Hughes H, Papworth D, Boyd Y, Horn N. Abnormalities of copper accumulation in cell lines established from nine different alleles of mottled are the same as those found in Menkes disease. J Med Genet 1997; 34:729-32. [PMID: 9321757 PMCID: PMC1051055 DOI: 10.1136/jmg.34.9.729] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Menkes disease (MD) is caused by a defect in copper homeostasis and has a recognised mouse model, mottled (Atp7aMo). Copper uptake and retention assays performed on fibroblast cultures have been used successfully for pre- and postnatal diagnosis of Menkes disease. We report here the results of these assays applied to primary fibroblast cultures established from nine independent mottled alleles associated with phenotypes of varying severity maintained on identical genetic backgrounds. No significant differences were found between the different alleles, or between the mottled cultures and fibroblasts established from MD patients. Thus, in the mouse, the data obtained for copper retention/uptake at the cellular level do not correlate with the severity of the phenotype.
Collapse
Affiliation(s)
- W Masson
- MRC Mammalian Genetics Unit, Oxon, UK
| | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Z Tümer
- John F Kennedy Institute, Glostrup, Denmark
| | | |
Collapse
|
30
|
Reed V, Boyd Y. Mutation analysis provides additional proof that mottled is the mouse homologue of Menkes' disease. Hum Mol Genet 1997; 6:417-23. [PMID: 9147645 DOI: 10.1093/hmg/6.3.417] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Menkes' disease (MD) and occipital horn syndrome (OHS) are allelic X-linked disorders caused by mutations in the copper ion transporting ATPase, ATP7A. Genetic, phenotypic and biochemical data suggest that mottled mutants in the mouse, which range in severity and phenotype, are caused by mutations in Atp7a, the mouse homologue of ATP7A. As the only causal mutation in Atp7a has been reported in one very mild allele thought to be a model for OHS, Atp7aMo-blo (mottled blotchy), we sequenced the entire 4.5 kb coding region of three other mottled mutants, two of which are thought to be models for classical MD (AtpaMo-br, AtpaMo-13H) and one with a slightly milder phenotype (Atp7aMo-vbr). Although no causal mutation was found in Atp7aMo-13H, mutations which can be predicted to affect Atp7a function were identified in Atp7aMo-br and Atp7aMo-vbr. A 6 bp deletion of nucleotides 2478-2483, which can be predicted to affect the correct processing of the protein, was found in Atp7aMo-br and an A3189-->C nucleotide change, which results in lysine-->threonine amino acid substitution in the phosphorylation domain, was found in Atp7aMo-vbr. Thus we provide further proof that mottled mutants will provide excellent models for MD as well as OHS.
Collapse
Affiliation(s)
- V Reed
- MRC Mammalian Genetics Unit, Harwell, Oxon, UK
| | | |
Collapse
|
31
|
Masson W, Holt S, Reed V, Boyd Y. The use of compound heterozygotes and Hprt selection to analyze X-linked mottled alleles associated with prenatal lethality. Mamm Genome 1996; 7:486-9. [PMID: 8672124 DOI: 10.1007/s003359900148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
X-linked mutant alleles associated with prenatal male lethality are difficult to analyze because only heterozygous females are readily available for study. Genomic analysis of the mutant allele is facilitated by the construction of somatic cell hybrids because this enables the segregation of the X Chromosomes (Chrs) that carry the mutant and wild-type alleles. We describe here a method that ensures that the X Chr carrying the mutant allele is retained in somatic cell hybrids in an active selectable state. This is achieved by mating heterozygous females to males that carry a mutation at the hypoxanthine phosphoribosyl transferase (Hprt) locus. The resultant F1 females are compound heterozygotes, and when cells from these females are fused to HPRT- Chinese hamster cells and subjected to selection in HAT medium, the only survivors are those hybrid cells that retain an active X Chr carrying the mutant allele together with the wild-type Hprt allele. We use hybrids constructed by this method to demonstrate that there are no gross deletions or genomic rearrangements present in three mottled alleles associated with prenatal male lethality.
Collapse
Affiliation(s)
- W Masson
- Genetics Division, MRC Mammalian Genetics Unit, Harwell, Oxon OX11 ORD, England, UK
| | | | | | | |
Collapse
|
32
|
Abstract
Copper is a trace element necessary for the normal function of several important enzymes but copper homeostasis is still poorly understood. In recent years remarkable progress has been made in this field following the isolation of the gene defective in Menkes disease. Menkes disease and occipital horn syndrome are X-linked recessive disorders, demonstrating the vital importance of copper, which is also highly toxic in excessive amounts. Its destructive effects are reflected in the autosomal recessive Wilson's disease. Progressive neurodegeneration and connective tissue disturbances are the main manifestations of Menkes disease. Although many patients present a severe clinical course, variable forms can be distinguished, and the occipital horn syndrome has been suggested to be a mild allelic form. The Menkes locus is mapped to Xq13.3 and the gene defective in Menkes disease has been isolated by positional cloning. The gene is predicted to encode an energy-dependent copper-binding protein, the first intracellular copper transporter described in eukaryotes. Isolation of the gene and subsequent characterization of the exon-intron organization now enables the establishment of DNA-based diagnostic methods. Furthermore, identification of the Menkes disease gene led to other important findings, such as isolation of its mouse homologue, confirming the allelic relationship between Menkes disease and occipital horn syndrome, and isolation of the defective genes in Wilson's disease and its rat homologue.
Collapse
Affiliation(s)
- Z Tümer
- John F. Kennedy Institute, Glostrup, Denmark
| | | |
Collapse
|
33
|
Tümer Z, Horn N, Tønnesen T, Christodoulou J, Clarke JT, Sarkar B. Early copper-histidine treatment for Menkes disease. Nat Genet 1996; 12:11-3. [PMID: 8528242 DOI: 10.1038/ng0196-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
Shibata N, Hirano A, Kobayashi M, Umahara T, Kawanami T, Asayama K. Cerebellar superoxide dismutase expression in Menkes' kinky hair disease: an immunohistochemical investigation. Acta Neuropathol 1995; 90:198-202. [PMID: 7484097 DOI: 10.1007/bf00294321] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This comparative immunohistochemical study deals with the expression of the cytosolic Cu/Zn-binding and mitochondrial Mn-dependent superoxide dismutases (SODs) in the cerebella of five patients with Menkes' kinky hair disease (MKHD) and five age-matched controls. Several cell types, including Purkinje cells and reactive astrocytes, of all MKHD patients examined were intensely stained by an antibody to Mn SOD, but not by an anti-Cu/Zn SOD antibody. By contrast, the cells of the five controls reacted very weakly or not at all with the anti-Mn SOD antibody, but were strongly reactive with the antibody to Cu/Zn SOD. These results suggest that the increased Mn SOD immunoreactivity in MKHD reflects enzyme induction as a protective mechanism against the highly toxic superoxide anion generated under the disease conditions.
Collapse
Affiliation(s)
- N Shibata
- Department of Pathology, Montefiore Medical Center, Bronx, NY 10467, USA
| | | | | | | | | | | |
Collapse
|
35
|
Haerslev T, Jacobsen GK, Horn N, Damsgaard E. Metallothionein expression in placental tissue in Menkes' disease. An immunohistochemical study. APMIS 1995; 103:568-73. [PMID: 7576574 DOI: 10.1111/j.1699-0463.1995.tb01407.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Menkes' disease is a recessive X-linked disturbance of copper metabolism, resulting in accumulation of copper in several extra-hepatic tissues including the placenta. Metallothionein (MT) is a low-molecular weight protein with a high affinity for group II metal ions, such as copper. Its synthesis is induced by the presence of the ions. The aim of this study was to investigate the pattern of the MT immunoreactivity in placental tissue obtained from women at-risk of Menkes' disease in order to examine whether the MT occurrence and distribution may reflect the copper content. Placental tissue from six women with a family history of Menkes' disease, from 4 women without a family history, and from 2 hydatiform moles was studied. Positive MT immunostaining was found to be independent of the length of fixation, whether the tissue samples were fixed in 4% buffered formaldehyde or Bouin's fixative. The avidin-biotin-complex (ABC)-technique was used. The copper content was measured by neutron activation analysis (NAA). In all placental tissue sections positive MT immunostaining appeared only in the trophoblast and only in proliferating cells. In placental tissue sections obtained from foetuses and children affected by Menkes' disease an additional MT immunostaining appeared in the Hofbauer cells of the chorionic villi. This staining was associated with an increased content of copper as measured by NAA. We conclude that the immunohistochemical demonstration of MT reflects the copper content and may be useful in pre- and postnatal diagnosis of Menkes' disease.
Collapse
Affiliation(s)
- T Haerslev
- Department of Pathology, Sundby Hospital, Copenhagen, Denmark
| | | | | | | |
Collapse
|
36
|
Tümer Z, Vural B, Tønnesen T, Chelly J, Monaco AP, Horn N. Characterization of the exon structure of the Menkes disease gene using vectorette PCR. Genomics 1995; 26:437-42. [PMID: 7607665 DOI: 10.1016/0888-7543(95)80160-n] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The gene defective in Menkes disease, an X-linked recessive disturbance of copper metabolism, has been isolated and predicted to encode a copper-binding P-type ATPase. We determined the complete exon-intron structure of the Menkes disease gene, which spans about 150 kb of genomic DNA. The gene contains 23 exons, and the ATG start codon is in the second exon. All of the exon-intron boundaries were sequenced and conformed to the GT/AT rule, except for the 5' splice site of intron 9. A preliminary comparison demonstrated a striking similarity between the exon structures of the Menkes and Wilson disease genes, giving insight into their evolution.
Collapse
Affiliation(s)
- Z Tümer
- Danish Centre for Human Genome Research, John F. Kennedy Institute, Glostrup
| | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- A P Monaco
- Imperial Cancer Research Fund Laboratories, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | | |
Collapse
|
38
|
Beck J, Enders H, Schliephacke M, Buchwald-Saal M, Tümer Z. X;1 translocation in a female Menkes patient: characterization by fluorescence in situ hybridization. Clin Genet 1994; 46:295-8. [PMID: 7834894 DOI: 10.1111/j.1399-0004.1994.tb04163.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Menkes disease is an X-linked recessive disorder of copper metabolism, characterized by progressive neurological degeneration, abnormal hair and connective tissue manifestations. We present a female Menkes patient, with classical Menkes features, carrying a de novo balanced translocation 46,X,t(X;1)(q13;q12). The breakpoint on the X chromosome was narrowed down to Xq13.3 within a 1 Mb YAC contig containing the Menkes gene, using fluorescence in situ hybridization. The translocated X chromosome was of paternal origin and non-randomly active leading to the expression of the disease. This was additional evidence for paternal origin of de novo chromosome rearrangements, including all the X; autosomal translocations examined so far.
Collapse
Affiliation(s)
- J Beck
- Department of Developmental Medicine, Children's Hospital, University of Tübingen, Germany
| | | | | | | | | |
Collapse
|
39
|
Tümer Z, Tønnesen T, Böhmann J, Marg W, Horn N. First trimester prenatal diagnosis of Menkes disease by DNA analysis. J Med Genet 1994; 31:615-7. [PMID: 7815418 PMCID: PMC1050022 DOI: 10.1136/jmg.31.8.615] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Menkes disease is an X linked recessive disorder of copper metabolism characterised by neurological symptoms and connective tissue manifestations. The defective gene in Menkes disease has recently been isolated and the gene product is predicted to be a copper transporting ATPase. The diagnosis of Menkes disease has hitherto been performed by biochemical analysis, based on intracellular accumulation of copper. Cloning the gene opened up the possibility of establishing precise and reliable carrier and prenatal diagnosis by defining the molecular defect. In this report we describe the partial deletion of the Menkes gene in a patient who had inherited the mutation from his phenotypically normal mother. This information enabled us to perform prenatal diagnosis by direct mutation analysis of the mother's sixth pregnancy and we detected the same deletion, indicating that the male fetus was affected. This first prenatal diagnosis of Menkes disease by direct mutation analysis shows some advantages of DNA analysis compared to biochemical diagnosis.
Collapse
Affiliation(s)
- Z Tümer
- Danish Centre for Human Genome Research, John F. Kennedy Institute, Glostrup
| | | | | | | | | |
Collapse
|
40
|
Levinson B, Vulpe C, Elder B, Martin C, Verley F, Packman S, Gitschier J. The mottled gene is the mouse homologue of the Menkes disease gene. Nat Genet 1994; 6:369-73. [PMID: 8054976 DOI: 10.1038/ng0494-369] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mottled mouse has been proposed as an animal model for Menkes disease, an X-linked disorder of copper transport. The recent isolation of a copper-transporting ATPase gene responsible for Menkes disease has allowed us to test this hypothesis. Here we report the isolation and sequence of the mouse homologue of this gene. We show that two mottled (Mo) alleles, dappled (Modp) and blotchy (Moblo), have abnormalities in the murine mRNA and that Modp has a partial gene deletion. These studies prove that the mottled mouse is the murine model for Menkes disease, providing the basis for future biochemical and therapeutic studies.
Collapse
Affiliation(s)
- B Levinson
- Department of Medicine, University of California, San Francisco 94143-0724
| | | | | | | | | | | | | |
Collapse
|
41
|
Tümer Z, Tønnesen T, Horn N. Detection of genetic defects in Menkes disease by direct mutation analysis and its implications in carrier diagnosis. J Inherit Metab Dis 1994; 17:267-70. [PMID: 7807930 DOI: 10.1007/bf00711804] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Z Tümer
- John F. Kennedy Institute, Glostrup, Denmark
| | | | | |
Collapse
|
42
|
Kreuder J, Otten A, Fuder H, Tümer Z, Tønnesen T, Horn N, Dralle D. Clinical and biochemical consequences of copper-histidine therapy in Menkes disease. Eur J Pediatr 1993; 152:828-32. [PMID: 8223785 DOI: 10.1007/bf02073380] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Menkes disease (MD) is an X-linked recessively inherited neurodegenerative disorder of copper (Cu) metabolism leading to death in early childhood. Symptoms are attributed to deficient activity of Cu-dependent enzymes. Limited experience has been reported concerning clinical and biochemical consequences of parenteral treatment with copper-(histidine)2-complex (Cu-His) in MD. Cu-His was administered in a 13-week-old boy with MD by daily intramuscular injections. After 6 weeks of therapy, Cu and caeruloplasmin in serum and Cu in CSF were normalized. The excessive dopamine level in CSF was corrected after 3 months of treatment. After 6 weeks of Cu supplementation, complete reduction of epileptic discharges, improved muscular tone and increased motor activities were observed. Developmental regression stopped and was replaced by a slight progression. Death at the age of 19 months was caused by septicaemia due to a fulminant urinary tract infection; there was no evidence of chronic Cu toxicity. These findings suggest that Cu-His supplementation may be a promising palliative treatment in MD.
Collapse
Affiliation(s)
- J Kreuder
- Children's Hospital, Justus Liebig University, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Sparaco M, Hirano A, Hirano M, DiMauro S, Bonilla E. Cytochrome C oxidase deficiency and neuronal involvement in Menkes' kinky hair disease: immunohistochemical study. Brain Pathol 1993; 3:349-54. [PMID: 8293191 DOI: 10.1111/j.1750-3639.1993.tb00762.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Antibodies against subunits II and IV of cytochrome c oxidase (COX) and against complex III of the respiratory chain were used to study the expression of these proteins in the cerebellum, spinal cord, and other regions of the central nervous system in an autoptic case of Menkes' kinky hair disease (MKHD). We found a reduced expression of COX subunits in all examined areas whereas staining for complex III appeared normal. Immunostaining was altered in morphologically well-preserved neurons, suggesting that COX deficiency may have a pathogenetic role in the neuronal degeneration of MKHD.
Collapse
Affiliation(s)
- M Sparaco
- Department of Neurology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | | | | | | | | |
Collapse
|
44
|
Chelly J, Tümer Z, Tønnesen T, Petterson A, Ishikawa-Brush Y, Tommerup N, Horn N, Monaco AP. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet 1993; 3:14-9. [PMID: 8490646 DOI: 10.1038/ng0193-14] [Citation(s) in RCA: 484] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Menkes disease is a lethal-X linked recessive disorder associated with copper metabolism disturbance. We have recently mapped two chromosome breakpoints related to this disease in a 1 megabase yeast artificial chromosome contig at Xq13.3. We now report the construction of a phage contig and the isolation of candidate partial cDNAs for the Menkes disease gene. The candidate gene expresses an 8 kb message in all investigated tissues, and deletions were detected in 16% of 100 unrelated Menkes patients. The deduced partial protein sequence shared the GMTCXXC motif with bacterial metal resistance operons, suggesting a potential heavy metal binding protein. These findings should lead to more accurate prenatal diagnosis of this severe disease and a better understanding of the cellular homeostasis of essential heavy metals.
Collapse
Affiliation(s)
- J Chelly
- ICRF Laboratories, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|