1
|
Huang X, Lowrie DB, Fan XY, Hu Z. Natural products in anti-tuberculosis host-directed therapy. Biomed Pharmacother 2024; 171:116087. [PMID: 38171242 DOI: 10.1016/j.biopha.2023.116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Given that the disease progression of tuberculosis (TB) is primarily related to the host's immune status, it has been gradually realized that chemotherapy that targets the bacteria may never, on its own, wholly eradicate Mycobacterium tuberculosis, the causative agent of TB. The concept of host-directed therapy (HDT) with immune adjuvants has emerged. HDT could potentially interfere with infection and colonization by the pathogens, enhance the protective immune responses of hosts, suppress the overwhelming inflammatory responses, and help to attain a state of homeostasis that favors treatment efficacy. However, the HDT drugs currently being assessed in combination with anti-TB chemotherapy still face the dilemmas arising from side effects and high costs. Natural products are well suited to compensate for these shortcomings by having gentle modulatory effects on the host immune responses with less immunopathological damage at a lower cost. In this review, we first summarize the profiles of anti-TB immunology and the characteristics of HDT. Then, we focus on the rationale and challenges of developing and implementing natural products-based HDT. A succinct report of the medications currently being evaluated in clinical trials and preclinical studies is provided. This review aims to promote target-based screening and accelerate novel TB drug discovery.
Collapse
Affiliation(s)
- Xuejiao Huang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Douglas B Lowrie
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 201508, China.
| |
Collapse
|
2
|
Rasheed H, Ahmed S, Sharma A. Changing Trends Towards Herbal Supplements: An Insight into Safety and Herb-drug Interaction. Curr Pharm Biotechnol 2024; 25:285-300. [PMID: 37464829 DOI: 10.2174/1389201024666230718114606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/20/2023]
Abstract
Herbs have been used as sustenance and medicine for a very long time, often in conjunction with other prescribed medications. Even though they are thought to be natural and secure, many of these herbs can interact with other medications and cause potentially dangerous adverse effects or decrease the benefits of the medication. The complex and diverse pharmacological functions carried out by the active ingredients in herbs unavoidably alter the pharmacokinetics of chemical drugs when administered in vivo. Drug transporter expression has a direct impact on how medications are absorbed, distributed, metabolized, and excreted in living organisms. Changes in substrate pharmacokinetics can affect the effectiveness and toxicity of a drug when the active ingredients of a herb inhibit or stimulate the expression of transporters. By reviewing published clinical and preclinical studies, this review aims to raise awareness of herbdrug interactions and discuss their evidence-based mechanisms and clinical consequences. More clinical information on herb-drug interactions is required to make choices regarding patient safety as the incidence and severity of herb-drug interactions are rising due to an increase in the use of herbal preparations globally.This review seeks to increase understanding of herb-drug interactions and explore their evidence-based mechanisms and clinical implications by reviewing published clinical and preclinical studies. The incidence and severity of herb-drug interactions are on the rise due to an increase in the use of herbal preparations worldwide, necessitating the need for more clinical data on these interactions in order to make decisions regarding patient safety. Healthcare workers and patients will become more alert to potential interactions as their knowledge of pharmacokinetic herb-drug interactions grows. The study's objective is to raise readers' awareness of possible interactions between herbal supplements and prescription medications who regularly take them.
Collapse
Affiliation(s)
- Haamid Rasheed
- Department of Quality Assurance, Indo Soviet Friendship (ISF), College of Pharmacy, Moga, 142001, Punjab, India
| | - Suhail Ahmed
- Department of Quality Assurance, Indo Soviet Friendship (ISF), College of Pharmacy, Moga, 142001, Punjab, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut, 250005, U.P., India
| |
Collapse
|
3
|
Ralli T, Saifi Z, Kumari A, Aeri V, Kohli K. In-silico, in-vitro and ex-vivo evidence of combining silymarin phytopharmaceutical with piperine, and fulvic acid for enhancing its solubility and permeability. Pharm Dev Technol 2023; 28:595-610. [PMID: 37342048 DOI: 10.1080/10837450.2023.2227966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
Non-alcoholic fatty liver disease is one of the leading causes of death worldwide. Even if with such a high mortality there is no definite treatment approved. Thus, there is a need to develop a formulation which can have multiple pharmacological activities. Herbal drugs are among the most promising compounds that act by different pharmacological actions. For increasing the bio-activity of Silymarin we had isolated five active biomarker molecules from silymarin extract (as a Phytopharmaceutical) in our previous work. It possesses lower bioavailability due to poor solubility, lesser permeability and first pass metabolism effect. Therefore, from the literature we had screened two bioavailability enhancers i.e. piperine and fulvic acid for overcoming the drawbacks associated with silymarin. Hence, in this study we had first explored the ADME-T parameters and then evaluated their in-silico activity for different enzymes involved in inflammation and fibrosis. Interestingly, it was found that besides the bioavailability enhancing property, piperine and fulvic acid also shown anti-inflammatory and anti-fibrotic action, particularly more activity was demonstrated by fulvic acid than piperine. Furthermore, the concentration of the bioavailability enhancers i.e. 20% FA and 10% PIP were optimized by QbD assisted solubility studies. Moreover, the percentage release and apparent permeability coefficient of the optimized formulation was found to be 95% and 90%, respectively as compared to 6.54*106 and 1.63*106 respectively by SM suspension alone. Furthermore, it was found that plain rhodamine solution penetrated only up to 10 um whereas, formulation penetrated up to 30 um. Thus, combining these three, can not only increase the bioavailability of silymarin, but might also, increase the physiological action synergistically.
Collapse
Affiliation(s)
- Tanya Ralli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, New Delhi, India
| | - Zoya Saifi
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, New Delhi, India
| | - Amita Kumari
- Indian Patent agent and TIFAC-DST Woman Scientist, Delhi, India
| | - Vidhu Aeri
- Department of Pharmacognosy, School of Pharmaceutical Education & Research, New Delhi, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, New Delhi, India
- Director (Research and publications), Llyod Institute of Management and Technology, Uttar Pradesh, India
| |
Collapse
|
4
|
Choi K, Park SY, Kwon Y, Lee J, Kwon O, Kim JY. Green tea extract and Piper retrofractum attenuate deoxycholic acid-induced damage and enhance the tight junction barrier: An analysis in a Caco-2 cell culture model and a DSS coinduced mouse model. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Telange DR, Pandharinath RR, Pethe AM, Jain SP, Pingale PL. Calcium Ion-Sodium Alginate-Piperine-Based Microspheres: Evidence of Enhanced Encapsulation Efficiency, Bio-Adhesion, Controlled Delivery, and Oral Bioavailability of Isoniazid. AAPS PharmSciTech 2022; 23:99. [PMID: 35338414 DOI: 10.1208/s12249-022-02236-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Isoniazid (INH) is a first-line chemotherapeutic drug employed in the management of tuberculosis. However, its extensive first-pass metabolism, short-life life, and low oral bioavailability confined its medical application. Therefore, the calcium ion-alginate-piperine microspheres (INH-CaSP Ms) was prepared to enhance encapsulation efficiency, controlled delivery, and oral bioavailability of INH. The INH-CaSP Ms was developed using a modified emulsification method and optimized via Box-Behnken design (BBD). Optimized INH-CaSP Ms were characterized for encapsulation efficiency, differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), bio-adhesion, in vitro dissolution, ex vivo permeation, and oral bioavailability studies. Characterization studies confirmed the formation of microspheres. The INH-CaSP Ms showed spherical microspheres with enhanced encapsulation efficiency (~ 93.03 ± 1.54% w/w). The optimized INH-CaSP Ms exhibited higher bio-adhesion around (~ 81.41 ± 1.31%). The INH-CaSP Ms enhanced the dissolution rate of INH (~ 57%) compared to pure INH (~ 57%) and INH-SA Ms (~ 81%) in simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 7.4). The same formulations improved the permeation rate of INH (~ 90%) compared to pure INH (~ 55%) and INH-SA Ms (~ 80%). The oral bioavailability results indicated that INH-CaSP Ms appreciably improved the oral bioavailability of INH via increasing the Cmax, Tmax, t1/2, and AUC parameters compared to pure INH. The study demonstrates that the development of INH-CaSP Ms via cross-linked coordinate bond interaction between divalent cation calcium ion-alginate complex and anion piperine bio-enhancer is an effective approach for enhancing the encapsulation efficiency, bio-adhesion, controlled release, and oral bioavailability of INH.
Collapse
|
6
|
Tripathi AK, Ray AK, Mishra SK. Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: evidence from clinical trials. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:16. [PMID: 35127957 PMCID: PMC8796742 DOI: 10.1186/s43088-022-00196-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Piperine is a type of amide alkaloid that exhibits pleiotropic properties like antioxidant, anticancer, anti-inflammatory, antihypertensive, hepatoprotective, neuroprotective and enhancing bioavailability and fertility-related activities. Piperine has the ability to alter gastrointestinal disorders, drug-metabolizing enzymes, and bioavailability of several drugs. The present review explores the available clinical and preclinical data, nanoformulations, extraction process, structure-activity relationships, molecular docking, bioavailability enhancement of phytochemicals and drugs, and brain penetration properties of piperine in the prevention, management, and treatment of various diseases and disorders. MAIN BODY Piperine provides therapeutic benefits in patients suffering from diabetes, obesity, arthritis, oral cancer, breast cancer, multiple myeloma, metabolic syndrome, hypertension, Parkinson's disease, Alzheimer's disease, cerebral stroke, cardiovascular diseases, kidney diseases, inflammatory diseases, and rhinopharyngitis. The molecular basis for the pleiotropic activities of piperine is based on its ability to regulate multiple signaling molecules such as cell cycle proteins, anti-apoptotic proteins, P-glycoprotein, cytochrome P450 3A4, multidrug resistance protein 1, breast cancer resistance protein, transient receptor potential vanilloid 1 proinflammatory cytokine, nuclear factor-κB, c-Fos, cAMP response element-binding protein, activation transcription factor-2, peroxisome proliferator-activated receptor-gamma, Human G-quadruplex DNA, Cyclooxygenase-2, Nitric oxide synthases-2, MicroRNA, and coronaviruses. Piperine also regulates multiple signaling pathways such as Akt/mTOR/MMP-9, 5'-AMP-activated protein kinase-activated NLR family pyrin domain containing-3 inflammasome, voltage-gated K+ current, PKCα/ERK1/2, NF-κB/AP-1/MMP-9, Wnt/β-catenin, JNK/P38 MAPK, and gut microbiota. SHORT CONCLUSION Based on the current evidence, piperine can be the potential molecule for treatment of disease, and its significance of this molecule in the clinic is discussed. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Amit Kumar Tripathi
- Molecular Biology Unit, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 India
- Clinical Research Division, School of Basic and Applied Science, Galgotias University, Gautam Buddha Nagar, UP India
| | - Anup Kumar Ray
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University, Varanasi, 221005 India
- Department of Pharmacognosy, I.T.S College of Pharmacy, Ghaziabad, UP 201206 India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
7
|
Drug-Herb Interactions among Thai Herbs and Anticancer Drugs: A Scoping Review. Pharmaceuticals (Basel) 2022; 15:ph15020146. [PMID: 35215264 PMCID: PMC8880589 DOI: 10.3390/ph15020146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022] Open
Abstract
More than half of Thai patients with cancer take herbal preparations while receiving anticancer therapy. There is no systematic or scoping review on interactions between anticancer drugs and Thai herbs, although several research articles have that Thai herbs inhibit cytochrome P450 (CYP) or efflux transporter. Therefore, we gathered and integrated information related to the interactions between anticancer drugs and Thai herbs. Fifty-two anticancer drugs from the 2020 Thailand National List of Essential Medicines and 75 herbs from the 2020 Thai Herbal Pharmacopoeia were selected to determine potential anticancer drug–herb interactions. The pharmacological profiles of the selected anticancer drugs were reviewed and matched with the herbal pharmacological activities to determine possible interactions. A large number of potential anticancer drug–herb interactions were found; the majority involved CYP inhibition. Efflux transporter inhibition and enzyme induction were also found, which could interfere with the pharmacokinetic profiles of anticancer drugs. However, there is limited knowledge on the pharmacodynamic interactions between anticancer drugs and Thai herbs. Therefore, further research is warranted. Information regarding interactions between anticancer drugs and Thai herbs should provide as a useful resource to healthcare professionals in daily practice. It could enable the prediction of possible anticancer drug–herb interactions and could be used to optimize cancer therapy outcomes.
Collapse
|
8
|
Ashmawy SM, Eltahan DA, Osman MA, Essa EA. Influence of Piperine and Omeprazole on The Regional Absorption of Daclatasvir from Rabbit Intestine. Biopharm Drug Dispos 2022; 43:33-44. [PMID: 34997607 DOI: 10.1002/bdd.2308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/14/2021] [Accepted: 01/02/2022] [Indexed: 11/11/2022]
Abstract
The study assessed the site dependent intestinal absorption of daclatasvir and investigated the effects of piperine and omeprazole on such absorption utilizing in situ rabbit intestinal perfusion technique. The intestinal absorption of daclatasvir was assessed in four segments: duodenum, jejunum, ileum, and colon. The effect of co-perfusion with omeprazole was monitored through the tested anatomical sites. The effect of piperine, a P-glycoprotein (P-gp) inhibitor on daclatasvir absorption from jejunum and ileum was tested. The results showed that daclatasvir was incompletely absorbed from the rabbit small and large intestine. The absorptive clearance per unit length (PeA/L) was site dependent and was ranked as colon > duodenum > jejunum > ileum. This rank is the opposite of the rank of P-gp intestinal content suggesting possible influence for P-gp. Co-perfusion with omeprazole increased PeA/L and this was evidenced also with reduced the L95% of daclatasvir from both small and large intestinal segments. Significant enhancement in daclatasvir absorption through jejunum and ileum was shown in presence of piperine. Daclatasvir showed site dependent intestinal absorption in a manner suggesting its affection by P-gp efflux. This effect was inhibited by piperine. Co-administration of daclatasvir with omeprazole can enhance intestinal absorption a phenomenon which requires extension to human pharmacokinetic investigation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shimaa M Ashmawy
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Dina A Eltahan
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Mohamed A Osman
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Ebtessam A Essa
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| |
Collapse
|
9
|
Yadav SS, Singh MK, Hussain S, Dwivedi P, Khattri S, Singh K. Therapeutic spectrum of piperine for clinical practice: a scoping review. Crit Rev Food Sci Nutr 2022; 63:5813-5840. [PMID: 34996326 DOI: 10.1080/10408398.2021.2024792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of traditional knowledge of herbs into a viable product for clinical use is still an uphill task. Piperine, a pungent alkaloid molecule derived from Piper nigrum and Piper longum possesses diverse pharmacological effects. Traditionally, pepper is used for arthritis, bronchitis, gastritis, diarrhea, snake bite, menstrual pain, fever, and bacterial infections, etc. The anti-inflammatory, antioxidant and immunomodulatory actions of piperine are the possible mechanisms behind its therapeutic potential. Various in-silico and experimental studies have shown piperine as a possible promising molecule in coronavirus disease (COVID-19), ebola, and dengue due to its immunomodulatory and antiviral activities. The other important clinical applications of piperine are due to its bio enhancing effect on drugs, by modulating, absorption in the gastrointestinal tract, altering activities of transporters like p-glycoprotein substrates, and modulating drug metabolism by altering the expression of cytochrome P450 or UDP-glucuronosyltransferase enzymes. Piperine attracted clinicians in treating patients with arthritis, metabolic syndrome, diabetes, skin infections, gastric and liver disorders. This review focused on systematic, evidence-based insight into the use of piperine in clinical settings and mechanistic details behind its therapeutic actions. Also, highlights a number of clinical trials of piperine at various stages exploring its clinical application in cancer, neurological, respiratory, and viral disease, etc.
Collapse
|
10
|
Ziegenhagen R, Heimberg K, Lampen A, Hirsch-Ernst KI. Safety Aspects of the Use of Isolated Piperine Ingested as a Bolus. Foods 2021; 10:foods10092121. [PMID: 34574230 PMCID: PMC8467119 DOI: 10.3390/foods10092121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Piperine is a natural ingredient of Piper nigrum (black pepper) and some other Piper species. Compared to the use of pepper for food seasoning, piperine is used in food supplements in an isolated, concentrated form and ingested as a bolus. The present review focuses on the assessment of the possible critical health effects regarding the use of isolated piperine as a single ingredient in food supplements. In human and animal studies with single or short-term bolus application of isolated piperine, interactions with several drugs, in most cases resulting in increased drug bioavailability, were observed. Depending on the drug and extent of the interaction, such interactions may carry the risk of unintended deleteriously increased or adverse drug effects. Animal studies with higher daily piperine bolus doses than in human interaction studies provide indications of disturbance of spermatogenesis and of maternal reproductive and embryotoxic effects. Although the available human studies rarely reported effects that were regarded as being adverse, their suitability for detailed risk assessment is limited due to an insufficient focus on safety parameters apart from drug interactions, as well as due to the lack of investigation of the potentially adverse effects observed in animal studies and/or combined administration of piperine with other substances. Taken together, it appears advisable to consider the potential health risks related to intake of isolated piperine in bolus form, e.g., when using certain food supplements.
Collapse
|
11
|
Cetin G, Tras B, Uney K. The Effects of P‐glycoprotein Modulators on the Transition of Levofloxacin to Rat Brain, Testicle, and Plasma: In Vivo and In Silico Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202102122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Gul Cetin
- Department of Pharmacology Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24100 Turkey
| | - Bunyamin Tras
- Department of Pharmacology and Toxicology Faculty of Veterinary Medicine Selcuk University Konya 42031 Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology Faculty of Veterinary Medicine Selcuk University Konya 42031 Turkey
| |
Collapse
|
12
|
Truong VL, Jun M, Jeong WS. Phytochemical and Over-The-Counter Drug Interactions: Involvement of Phase I and II Drug-Metabolizing Enzymes and Phase III Transporters. J Med Food 2021; 24:786-805. [PMID: 34382862 DOI: 10.1089/jmf.2021.k.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Consumption of plant-derived natural products and over-the-counter (OTC) drugs is increasing on a global scale, and studies of phytochemical-OTC drug interactions are becoming more significant. The intake of dietary plants and herbs rich in phytochemicals may affect drug-metabolizing enzymes (DMEs) and transporters. These effects may lead to alterations in pharmacokinetics and pharmacodynamics of OTC drugs when concomitantly administered. Some phytochemical-drug interactions benefit patients through enhanced efficacy, but many interactions cause adverse effects. This review discusses possible mechanisms of phytochemical-OTC drug interactions mediated by phase I and II DMEs and phase III transporters. In addition, current information is summarized for interactions between phytochemicals derived from fruits, vegetables, and herbs and OTC drugs, and counseling is provided on appropriate and safe use of OTC drugs.
Collapse
Affiliation(s)
- Van-Long Truong
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Mira Jun
- Brain Busan 21 Plus Program, Department of Food Science and Nutrition, Graduate School, Center for Silver-Targeted Biomaterials, Dong-A University, Busan, Korea
| | - Woo-Sik Jeong
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
13
|
Determination and risk characterisation of bio-active piperine in black pepper and selected food containing black pepper consumed in Korea. Food Sci Biotechnol 2021; 30:209-215. [PMID: 33732511 DOI: 10.1007/s10068-020-00860-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/22/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022] Open
Abstract
Piperine is a bio-active compound found in pepper, including Piper nigrum L. and P. longum L. It has a strong, pungent flavour and several pharmacologic benefits. However, the risks of piperine have not yet been characterized. In this study, piperine in black pepper and some selected foods was determined to characterise the risk of exposure to piperine. Piperine in black pepper, curry and noodle was analysed by high-performance liquid chromatography-ultraviolet detection, which was validated through the measurement of performance parameters. The mean concentrations of piperine in black pepper, powdered curry, retorted curry, instant noodle and cup noodle were 4,418, 28, 3.4, 4.3 and 4.2 mg/100 g, respectively. The estimated dietary exposure to piperine was 123.66 μg/kg body weight/day, and the margin of exposure calculated by the no-observed-adverse-effect level of piperine, was 162. The piperine from food does not cause an adverse health effect to the public in Korea.
Collapse
|
14
|
Singhal S, Hasan N, Nirmal K, Chawla R, Chawla S, Kalra BS, Dhal A. Bioavailable turmeric extract for knee osteoarthritis: a randomized, non-inferiority trial versus paracetamol. Trials 2021; 22:105. [PMID: 33516238 PMCID: PMC7847013 DOI: 10.1186/s13063-021-05053-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To compare the efficacy and safety of bioavailable turmeric extract versus paracetamol in patients with knee osteoarthritis (OA). METHODS In this randomized, non-inferiority, controlled clinical study, patients of knee OA were randomized to receive bioavailable turmeric extract (BCM-95®) 500 mg capsule two times daily or paracetamol 650 mg tablet three times daily for 6 weeks. The primary outcome measure was Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale. The secondary outcome measures were WOMAC total, WOMAC stiffness, and WOMAC physical function scores. Responder analysis of individual patients at different levels (≥ 20%, ≥ 50%, and ≥ 70%) for WOMAC score was calculated. TNF alpha and CRP levels were evaluated and adverse events (AE) were also recorded. RESULTS Seventy-one and seventy-three knee OA patients, respectively in bioavailable turmeric extract and paracetamol groups, completed the study. Non-inferiority (equivalence) test showed that WOMAC scores were equivalent in both the groups (p value < 0.05) in all the domains within the equivalence limit defined by effect size (Cohen's d) of 0.5 whereas CRP and TNF-α were better reduced with turmeric extract than paracetamol. After 6 weeks of treatment, WOMAC total score, pain, stiffness, and function scores got a significant improvement of 23.59, 32.09, 28.5, and 20.25% respectively with turmeric extract. In the turmeric extract group, 18% of patients got more than 50% improvement and 3% of patients got more than 70% improvement in WOMAC pain and function/stiffness score and none of the patients in the paracetamol group met the criteria. CRP and TNF-α got significantly reduced (37.21 and 74.81% respectively) in the turmeric extract group. Adverse events reported were mild and comparatively less in the turmeric extract group (5.48%) than in the paracetamol group (12.68%). CONCLUSION The results of the study suggest that bioavailable turmeric extract is as effective as paracetamol in reducing pain and other symptoms of knee osteoarthritis and found to be safe and more effective in reducing CRP and TNF-α. TRIAL REGISTRATION Clinical Trials Registry - India CTRI/2017/02/007962 . Registered on 27 February 2017.
Collapse
Affiliation(s)
- Shubha Singhal
- Department of Pharmacology, Maulana Azad Medical College, New Delhi, India
| | - Nazer Hasan
- Department of Pharmacology, Maulana Azad Medical College, New Delhi, India
| | - Kirti Nirmal
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India
| | - Rohit Chawla
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India
| | - Shalini Chawla
- Department of Pharmacology, Maulana Azad Medical College, New Delhi, India
| | | | - Anil Dhal
- Department of Orthopedics, Maulana Azad Medical College, Lok Nayak Hospital, Delhi, India
| |
Collapse
|
15
|
Zayed A, Babaresh WM, Darweesh RS, El-Elimat T, Hawamdeh SS. Piperine Alters the Pharmacokinetics and Anticoagulation of Warfarin in Rats. J Exp Pharmacol 2020; 12:169-179. [PMID: 32607007 PMCID: PMC7311098 DOI: 10.2147/jep.s257919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/06/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction Piperine, the bioactive compound of black pepper, and warfarin are metabolized by cytochrome P450 enzymes and are both highly plasma protein-bound compounds. In this study, we evaluated the effect of co-administered piperine on the pharmacokinetics and anticoagulation of warfarin in rats. Methods We studied four Sprague-Dawley rat groups: a negative control group receiving only oral warfarin, a test group receiving warfarin plus piperine, a positive control group receiving warfarin plus sulfaphenazole (CYP2C inhibitor), and another positive control group receiving warfarin plus ketoconazole (CYP3A inhibitor). We also analyzed plasma concentrations of warfarin and its major metabolite, 7-hydoxywarfarin. Blood clotting time, calculated as international normalized ratio (INR), was also measured. Results Our results showed that although co-administration of piperine produced a non-significant decrease in warfarin concentrations, it resulted in significantly lower 7-hydroxywarfarin metabolite concentrations. Piperine significantly decreased, by sixfold, AUC0–∞, by eightfold, Cmax, but significantly increased, by fivefold, CL/F and, by sixfold, Vd/F of 7-hydroxywarfarin. The INR values were consistent with the decrease in warfarin concentration in the presence of piperine and showed a significant decrease at 24 h after warfarin dose. Conclusion We conclude that piperine could be a potent inhibitor of cytochrome P450 metabolism of warfarin in vivo and, contrary to the expectation, may reduce the plasma concentration and anticoagulation of warfarin. This interaction could have a clinical significance and should be investigated in patients.
Collapse
Affiliation(s)
- Aref Zayed
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Wahby M Babaresh
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ruba S Darweesh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Sahar S Hawamdeh
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
16
|
Synergistic Mechanisms of Constituents in Herbal Extracts during Intestinal Absorption: Focus on Natural Occurring Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12020128. [PMID: 32028739 PMCID: PMC7076514 DOI: 10.3390/pharmaceutics12020128] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
The systematic separation strategy has long and widely been applied in the research and development of herbal medicines. However, the pharmacological effects of many bioactive constituents are much weaker than those of the corresponding herbal extracts. Thus, there is a consensus that purer herbal extracts are sometimes less effective. Pharmacological loss of purified constituents is closely associated with their significantly reduced intestinal absorption after oral administration. In this review, pharmacokinetic synergies among constituents in herbal extracts during intestinal absorption were systematically summarized to broaden the general understanding of the pharmaceutical nature of herbal medicines. Briefly, some coexisting constituents including plant-produced primary and secondary metabolites, promote the intestinal absorption of active constituents by improving solubility, inhibiting first-pass elimination mediated by drug-metabolizing enzymes or drug transporters, increasing the membrane permeability of enterocytes, and reversibly opening the paracellular tight junction between enterocytes. Moreover, some coexisting constituents change the forms of bioactive constituents via mechanisms including the formation of natural nanoparticles. This review will focus on explaining this new synergistic mechanism. Thus, herbal extracts can be considered mixtures of bioactive compounds and pharmacokinetic synergists. This review may provide ideas and strategies for further research and development of herbal medicines.
Collapse
|
17
|
Piperine-A Major Principle of Black Pepper: A Review of Its Bioactivity and Studies. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204270] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Piperine is the main compound present in black pepper, and is the carrier of its specific pungent taste, which is responsible for centuries of human dietary utilization and worldwide popularity as a food ingredient. Along with the application as a food ingredient and food preservative, it is used in traditional medicine for many purposes, which has in most cases been justified by modern scientific studies on its biological effects. It has been confirmed that piperine has many bioactive effects, such as antimicrobial action, as well as many physiological effects that can contribute to general human health, including immunomodulatory, hepatoprotective, antioxidant, antimetastatic, antitumor, and many other activities. Clinical studies demonstrated remarkable antioxidant, antitumor, and drug availability-enhancing characteristics of this compound, together with immunomodulatory potential. All these facts point to the therapeutic potential of piperine and the need to incorporate this compound into general health-enhancing medical formulations, as well as into those that would be used as adjunctive therapy in order to enhance the bioavailability of various (chemo)therapeutic drugs.
Collapse
|
18
|
Ren T, Zuo Z. Role of piperine in CNS diseases: pharmacodynamics, pharmacokinetics and drug interactions. Expert Opin Drug Metab Toxicol 2019; 15:849-867. [DOI: 10.1080/17425255.2019.1672658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tianjing Ren
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
19
|
Abstract
Modern society has easy access to a vast informational database. The pursuit of sustainable green and healthy lifestyle leads to a series of food choices. Therefore, it is of importance to provide reliable, comprehensive and up-to-date information about food content including both nutritional and antinutritional elements.
Nutrients are associated with positive effects on human health. Antinutrients, on the other hand, are far less popular for the contemporary man. They are highly bioactive, capable of deleterious effects as well as some beneficial health effects in man, and vastly available in plant-based foods. These compounds are of natural or synthetic origin, interfere with the absorption of nutrients, and can be responsible for some mischievous effects related to the nutrient absorption. Some of the common symptoms exhibited by a large amount of antinutrients in the body can be nausea, bloating, headaches, rashes, nutritional deficiencies, etc. Phytates, oxalates, and lectins are few of the well-known antinutrients.
Science has acknowledged several ways in order to alter the negative influence antinutrients exhibiting on human health. Mechanical, thermal and biochemical approaches act synergistically to provide food with lower antinutritional levels.
The purpose of this review was to synthesize the availability of antinutrients, clear their effect on the human body, and commemorate possible paths to disable them. This review provides links to the available literature as well as enables a systematic view of the recently published research on the topic of plant-based antinutrients.
Collapse
|
20
|
Rashid M, Malik MY, Singh SK, Chaturvedi S, Gayen JR, Wahajuddin M. Bioavailability Enhancement of Poorly Soluble Drugs: The Holy Grail in Pharma Industry. Curr Pharm Des 2019; 25:987-1020. [DOI: 10.2174/1381612825666190130110653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Background:
Bioavailability, one of the prime pharmacokinetic properties of a drug, is defined as the
fraction of an administered dose of unchanged drug that reaches the systemic circulation and is used to describe
the systemic availability of a drug. Bioavailability assessment is imperative in order to demonstrate whether the
drug attains the desirable systemic exposure for effective therapy. In recent years, bioavailability has become
the subject of importance in drug discovery and development studies.
Methods:
A systematic literature review in the field of bioavailability and the approaches towards its enhancement
have been comprehensively done, purely focusing upon recent papers. The data mining was performed
using databases like PubMed, Science Direct and general Google searches and the collected data was exhaustively
studied and summarized in a generalized manner.
Results:
The main prospect of this review was to generate a comprehensive one-stop summary of the numerous
available approaches and their pharmaceutical applications in improving the stability concerns, physicochemical
and mechanical properties of the poorly water-soluble drugs which directly or indirectly augment their bioavailability.
Conclusion:
The use of novel methods, including but not limited to, nano-based formulations, bio-enhancers,
solid dispersions, lipid-and polymer-based formulations which provide a wide range of applications not only
increases the solubility and permeability of the poorly bioavailable drugs but also improves their stability, and
targeting efficacy. Although, these methods have drastically changed the pharmaceutical industry demand for the
newer potential methods with better outcomes in the field of pharmaceutical science to formulate various dosage
forms with adequate systemic availability and improved patient compliance, further research is required.
Collapse
Affiliation(s)
- Mamunur Rashid
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Mohd Yaseen Malik
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Sandeep K. Singh
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Swati Chaturvedi
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Jiaur R Gayen
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | | |
Collapse
|
21
|
Ren T, Yang M, Xiao M, Zhu J, Xie W, Zuo Z. Time-dependent inhibition of carbamazepine metabolism by piperine in anti-epileptic treatment. Life Sci 2019; 218:314-323. [DOI: 10.1016/j.lfs.2018.12.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/31/2018] [Accepted: 12/31/2018] [Indexed: 11/25/2022]
|
22
|
Peterson B, Weyers M, Steenekamp JH, Steyn JD, Gouws C, Hamman JH. Drug Bioavailability Enhancing Agents of Natural Origin (Bioenhancers) that Modulate Drug Membrane Permeation and Pre-Systemic Metabolism. Pharmaceutics 2019; 11:pharmaceutics11010033. [PMID: 30654429 PMCID: PMC6359194 DOI: 10.3390/pharmaceutics11010033] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 12/22/2022] Open
Abstract
Many new chemical entities are discovered with high therapeutic potential, however, many of these compounds exhibit unfavorable pharmacokinetic properties due to poor solubility and/or poor membrane permeation characteristics. The latter is mainly due to the lipid-like barrier imposed by epithelial mucosal layers, which have to be crossed by drug molecules in order to exert a therapeutic effect. Another barrier is the pre-systemic metabolic degradation of drug molecules, mainly by cytochrome P450 enzymes located in the intestinal enterocytes and liver hepatocytes. Although the nasal, buccal and pulmonary routes of administration avoid the first-pass effect, they are still dependent on absorption of drug molecules across the mucosal surfaces to achieve systemic drug delivery. Bioenhancers (drug absorption enhancers of natural origin) have been identified that can increase the quantity of unchanged drug that appears in the systemic blood circulation by means of modulating membrane permeation and/or pre-systemic metabolism. The aim of this paper is to provide an overview of natural bioenhancers and their main mechanisms of action for the nasal, buccal, pulmonary and oral routes of drug administration. Poorly bioavailable drugs such as large, hydrophilic therapeutics are often administered by injections. Bioenhancers may potentially be used to benefit patients by making systemic delivery of these poorly bioavailable drugs possible via alternative routes of administration (i.e., oral, nasal, buccal or pulmonary routes of administration) and may also reduce dosages of small molecular drugs and thereby reduce treatment costs.
Collapse
Affiliation(s)
- Bianca Peterson
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| | - Morné Weyers
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| | - Jan H Steenekamp
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| | - Johan D Steyn
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
23
|
Ashmawy SM, El-Gizawy SA, El Maghraby GM, Osman MA. Regional difference in intestinal drug absorption as a measure for the potential effect of P-glycoprotein efflux transporters. J Pharm Pharmacol 2018; 71:362-370. [PMID: 30362574 DOI: 10.1111/jphp.13036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/29/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this research was to assess regional difference in the intestinal absorption of ranitidine HCl as an indicator for the potential effect of P-glycoprotein (P-gp) efflux transporters. METHODS In situ rabbit intestinal perfusion was used to investigate absorption of ranitidine HCl, a substrate for P-gp efflux from duodenum, jejunum, ileum and colon. This was conducted both in the presence and absence of piperine as P-gp inhibitor. KEY FINDINGS Ranitidine HCl was incompletely absorbed from rabbit intestine. The length normalized absorptive clearance (PeA/L) of ranitidine HCl was ranked as colon > duodenum > jejunum > ileum. This is the reverse order of the magnitude of P-gp expression. Coperfusion of piperine with ranitidine HCl significantly increased the PeA/L of ranitidine HCl from jejunum and ileum with no significant change on the absorption from duodenum and colon. This was confirmed by significant reduction in the length required for complete ranitidine HCl absorption from jejunum and ileum in presence piperine. CONCLUSIONS The results indicate that P-gp transporters play a major role in determining regional difference in intestinal absorption of ranitidine HCl. Thus, the regional absorption of drugs may be taken as an indirect indication for the role of P-gp in intestinal absorption.
Collapse
Affiliation(s)
- Shimaa M Ashmawy
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Sanaa A El-Gizawy
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Mohamed A Osman
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| |
Collapse
|
24
|
Abstract
BACKGROUND Food/Herb-drug interactions have become a major problem in health care. These interactions can lead to loss of therapeutic efficacy or toxic effects of drugs. AREAS OF UNCERTAINTY To probe the clinical relevance of such interactions, the impact of food/herb intake on the clinical effects of drug administration has to be evaluated. Failure to identify and efficiently manage food-drug interactions can lead to serious consequences. A comprehensive knowledge of the mechanisms that underpin variability in disposition will help optimize therapy. DATA SOURCES Electronic search of literatures from relevant databases were conducted. A total of 58 original scientific reports/review articles were obtained with the search strategy; of which 25 were found eligible to be included in the present review. Required data were extracted from these studies, and their methodologies were assessed. RESULTS AND CONCLUSIONS This review updates our knowledge on clinical food-drug interactions with emphasis on mechanism and clinical implications. Results obtained from literature search identified interactions with selected foods/herbs generated from in vivo and in vitro studies. For example, interaction studies in humans revealed a reduction in the bioavailability of mercaptopurine when taken concurrently with substances containing xanthine oxidase (eg, cow milk); a reduction in the bioavailability of quinine with Garcinia kola; increased bioavailability/toxicity of felodipine, nifedipine, saquinavir, sildenafil with grape juice; increased bioavailability of felodipine, cisapride with red wine and diminished bioavailability of fexofenadine with apple. Pharmacokinetic and/or pharmacodynamic mechanisms are implicated in many of these interactions. By evaluating the dietary patterns of patients and use of prescribed medications, health professionals will be well informed of potential interactions and associated adverse effects.
Collapse
|
25
|
Izgelov D, Cherniakov I, Aldouby Bier G, Domb AJ, Hoffman A. The Effect of Piperine Pro-Nano Lipospheres on Direct Intestinal Phase II Metabolism: The Raloxifene Paradigm of Enhanced Oral Bioavailability. Mol Pharm 2018. [PMID: 29537855 DOI: 10.1021/acs.molpharmaceut.7b01090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phase II biotransformation reactions have been gaining more attention due to their acknowledged significance in drug bioavailability, drug development, and drug-drug interactions. However, the predominant role of phase I metabolism has always overshadowed phase II metabolism, resulting in insufficient data regarding its mechanisms. In this paper, we investigate the effect of an advanced lipid based formulation on the phase II metabolism process of glucuronidation, occuring in the enterocytes monolayer. The investigated formulation is a self-emulsifying drug delivery system, termed pro-nano lipospheres, which contains the natural absorption enhancer piperine. To evaluate the effect of this formulation on direct glucuronidation we chose the model molecule raloxifene. First, glucuronidation is the main clearance pathway of this compound without involvement of preceding mechanisms. Second, raloxifene's extensive glucuronidation site is primarily at the intestine. Raloxifene's oral bioavailability was determined in a series of pharmacokinetic experiments using the freely moving rat model. In order to test the effect of the formulation on the relevant UGT enzymes reported in the clinic, we used the in vitro method of UGT-Glo Assay. Coadministration of raloxifene and piperine pro-nano lipospheres to rats resulted in a 2-fold increase in the relative oral bioavailability of raloxifene. However, coadministration of raloxifene with blank pro-nano lipospheres had no effect on its oral bioavailability. In contrast to the difference found in vivo between the two vehicles, both formulations extended an inhibitory effect on UGT enzymes in vitro. Ultimately, these findings prove the ability of the formulation to diminish intestinal direct phase II metabolism which serves as an absorption obstacle for many of today's marketed drugs. Pro-nano lipospheres is a formulation that serves as a platform for the simultaneous delivery of the absorption enhancer and a required drug. The discrepancy found between the in vivo and in vitro models demonstrates that the in vitro method may not be sensitive enough to distinguish the difference between the formulations.
Collapse
Affiliation(s)
- Dvora Izgelov
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine , The Hebrew University of Jerusalem , P.O. Box 12065, Jerusalem 91120 , Israel
| | - Irina Cherniakov
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine , The Hebrew University of Jerusalem , P.O. Box 12065, Jerusalem 91120 , Israel
| | - Gefen Aldouby Bier
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine , The Hebrew University of Jerusalem , P.O. Box 12065, Jerusalem 91120 , Israel
| | - Abraham J Domb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine , The Hebrew University of Jerusalem , P.O. Box 12065, Jerusalem 91120 , Israel
| | - Amnon Hoffman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine , The Hebrew University of Jerusalem , P.O. Box 12065, Jerusalem 91120 , Israel
| |
Collapse
|
26
|
Effects of Phytochemical P-Glycoprotein Modulators on the Pharmacokinetics and Tissue Distribution of Doxorubicin in Mice. Molecules 2018; 23:molecules23020349. [PMID: 29414892 PMCID: PMC6017107 DOI: 10.3390/molecules23020349] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/02/2022] Open
Abstract
Pungent spice constituents such as piperine, capsaicin and [6]-gingerol consumed via daily diet or traditional Chinese medicine, have been reported to possess various pharmacological activities. These dietary phytochemicals have also been reported to inhibit P-glycoprotein (P-gp) in vitro and act as an alternative to synthetic P-gp modulators. However, the in vivo effects on P-gp inhibition are currently unknown. This study aimed to test the hypothesis that phytochemical P-gp inhibitors, i.e., piperine, capsaicin and [6]-gingerol, modulate the in vivo tissue distribution of doxorubicin, a representative P-gp substrate. Mice were divided into four groups and each group was pretreated with intraperitoneal injections of control vehicle, piperine, capsaicin, or [6]-gingerol and doxorubicin (1 mg/kg) was administered via the penile vein. The concentrations of the phytochemicals and doxorubicin in the plasma and tissues were determined by LC-MS/MS. The overall plasma concentration-time profiles of doxorubicin were not significantly affected by piperine, capsaicin, or [6]-gingerol. In contrast, doxorubicin accumulation was observed in tissues pretreated with piperine or capsaicin. The tissue to plasma partition coefficients, Kp, for the liver and kidney were higher in the piperine-pretreated group, while the Kp for kidney, brain and liver were higher in the capsaicin-pretreated group. [6]-Gingerol did not affect doxorubicin tissue distribution. The data demonstrated that the phytochemicals modulated doxorubicin tissue distribution, which suggested their potential to induce food-drug interactions and act as a strategy for the delivery of P-gp substrate drugs to target tissues and tumors.
Collapse
|
27
|
Lee SH, Kim HY, Back SY, Han HK. Piperine-mediated drug interactions and formulation strategy for piperine: recent advances and future perspectives. Expert Opin Drug Metab Toxicol 2017; 14:43-57. [PMID: 29250980 DOI: 10.1080/17425255.2018.1418854] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Piperine has various pharmacological effects and can modulate the functional activity of metabolic enzymes and drug transporters. Consequently, there is a great interest in the application of piperine as an alternative medicine or bioavailability enhancer. Areas covered: This review deals with the effects of piperine on metabolizing enzymes and drug transporters. It provides the readers with an update on transporter-mediated and also metabolic enzyme-mediated piperine-drug interactions, with emphasis on its in vivo implications. This article also encompasses recent advances in the formulation approaches and technologies for optimizing the delivery of piperine. Expert opinion: Piperine can influence the pharmacokinetics of coadministered drugs, which may result in a therapeutically beneficial or adverse effect. Given that piperine inhibits or stimulates the activity of metabolic enzymes and transporters depending on the treatment conditions, the clinical significance of piperine-drug interactions should be assessed by varying the dose, dosing frequency, and the duration of treatment. In particular, better understanding the clinical relevance of piperine-drug interactions based on long-term assessments will provide a strong basis for the feasibility and applicability of piperine as a bioenhancer or a health-promoting agent. The development of effective formulations is also critical to facilitate the therapeutic applications of piperine.
Collapse
Affiliation(s)
- Sang Hoon Lee
- a College of Pharmacy , Dongguk University-Seoul , Goyang , Korea
| | - Hyeon Young Kim
- a College of Pharmacy , Dongguk University-Seoul , Goyang , Korea
| | - Seung Yun Back
- a College of Pharmacy , Dongguk University-Seoul , Goyang , Korea
| | - Hyo-Kyung Han
- a College of Pharmacy , Dongguk University-Seoul , Goyang , Korea
| |
Collapse
|
28
|
Dubey RK, Leeners B, Imthurn B, Merki-Feld GS, Rosselli M. Piperine Decreases Binding of Drugs to Human Plasma and Increases Uptake by Brain Microvascular Endothelial Cells. Phytother Res 2017; 31:1868-1874. [DOI: 10.1002/ptr.5929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/09/2017] [Accepted: 08/18/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Raghvendra K. Dubey
- Department for Reproductive Endocrinology; University Hospital Zurich; Schlieren Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP); University of Zurich; Zurich Switzerland
- Department of Pharmacology and Chemical Biology; University of Pittsburgh School of Medicine; Pittsburgh PA USA
| | - Brigitte Leeners
- Department for Reproductive Endocrinology; University Hospital Zurich; Schlieren Switzerland
| | - Bruno Imthurn
- Department for Reproductive Endocrinology; University Hospital Zurich; Schlieren Switzerland
| | | | - Marinella Rosselli
- Department for Reproductive Endocrinology; University Hospital Zurich; Schlieren Switzerland
| |
Collapse
|
29
|
Hithamani G, Srinivasan K. Bioavailability of finger millet ( Eleusine coracana ) phenolic compounds in rat as influenced by co-administered piperine. FOOD BIOSCI 2017. [DOI: 10.1016/j.fbio.2017.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
McClements DJ, Xiao H, Demokritou P. Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Adv Colloid Interface Sci 2017; 246:165-180. [PMID: 28552424 DOI: 10.1016/j.cis.2017.05.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022]
Abstract
Inorganic nanoparticles, such as titanium dioxide, silicon dioxide, iron oxide, zinc oxide, or silver nanoparticles, are added to some food products and food packaging materials to obtain specific functional attributes, such as lightening, powder flow, nutrition, or antimicrobial properties. These engineered nanomaterials (ENMs) all have dimensions below 100nm, but may still vary considerably in composition, morphology, charge, surface properties and aggregation state, which effects their gastrointestinal fate and potential toxicity. In addition to their intrinsic physicochemical and morphological properties, the extrinsic properties of the media they are suspended in also affects their biotransformation, gastrointestinal fate and bioactivity. For instance, inorganic nanoparticles are usually consumed as part of a food or meal that contains numerous other components, such as lipids, proteins, carbohydrates, surfactants, minerals, and water, which may alter their gastrointestinal fate. This review article provides an overview of the potential effects of food components on the behavior of ENMs in the gastrointestinal tract (GIT), and highlights some important physicochemical and colloidal mechanisms by which the food matrix may alter the properties of inorganic nanoparticles. This information is essential for developing appropriate test methods to establish the potential toxicity and biokinetics of inorganic nanoparticles in foods.
Collapse
|
31
|
Li Y, Revalde J, Paxton JW. The effects of dietary and herbal phytochemicals on drug transporters. Adv Drug Deliv Rev 2017; 116:45-62. [PMID: 27637455 DOI: 10.1016/j.addr.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022]
Abstract
Membrane transporter proteins (the ABC transporters and SLC transporters) play pivotal roles in drug absorption and disposition, and thus determine their efficacy and safety. Accumulating evidence suggests that the expression and activity of these transporters may be modulated by various phytochemicals (PCs) found in diets rich in plants and herbs. PC absorption and disposition are also subject to the function of membrane transporter and drug metabolizing enzymes. PC-drug interactions may involve multiple major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. This review summarizes the reported in vitro and in vivo interactions between common dietary PCs and the major drug transporters. The oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs and PCs are considered, along with their possible interactions with the ABC and SLC transporters which influence these processes.
Collapse
|
32
|
Di Minno A, Frigerio B, Spadarella G, Ravani A, Sansaro D, Amato M, Kitzmiller JP, Pepi M, Tremoli E, Baldassarre D. Old and new oral anticoagulants: Food, herbal medicines and drug interactions. Blood Rev 2017; 31:193-203. [PMID: 28196633 DOI: 10.1016/j.blre.2017.02.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 02/02/2017] [Indexed: 12/21/2022]
Abstract
The most commonly prescribed oral anticoagulants worldwide are the vitamin K antagonists (VKAs) such as warfarin. Factors affecting the pharmacokinetics of VKAs are important because deviations from their narrow therapeutic window can result in bleedings due to over-anticoagulation or thrombosis because of under-anticoagulation. In addition to pharmacodynamic interactions (e.g., augmented bleeding risk for concomitant use of NSAIDs), interactions with drugs, foods, herbs, and over-the-counter medications may affect the risk/benefit ratio of VKAs. Direct oral anticoagulants (DOACs) including Factor Xa inhibitors (rivaroxaban, apixaban and edoxaban) and thrombin inhibitor (dabigatran) are poised to replace warfarin. Phase-3 studies and real-world evaluations have established that the safety profile of DOACs is superior to those of VKAs. However, some pharmacokinetic and pharmacodynamic interactions are expected. Herein we present a critical review of VKAs and DOACs with focus on their potential for interactions with drugs, foods, herbs and over-the-counter medications.
Collapse
Affiliation(s)
| | | | - Gaia Spadarella
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Naples, Italy.
| | | | | | - Mauro Amato
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.
| | | | - Mauro Pepi
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.
| | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Damiano Baldassarre
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
33
|
Bedada SK, Appani R, Boga PK. Capsaicin pretreatment enhanced the bioavailability of fexofenadine in rats by P-glycoprotein modulation: in vitro, in situ and in vivo evaluation. Drug Dev Ind Pharm 2017; 43:932-938. [DOI: 10.1080/03639045.2017.1285310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Satish Kumar Bedada
- Drug Metabolism and Pharmacokinetics Division, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, India
| | - Ramgopal Appani
- Department of Pharmaceutical Chemistry, Nethaji Institute of Pharmaceutical Sciences, Kakatiya University, Warangal, India
| | - Praveen Kumar Boga
- Drug Metabolism and Pharmacokinetics Division, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, India
| |
Collapse
|
34
|
Zeng X, Cai D, Zeng Q, Chen Z, Zhong G, Zhuo J, Gan H, Huang X, Zhao Z, Yao N, Huang D, Zhang C, Sun D, Chen Y. Selective reduction in the expression of UGTs and SULTs, a novel mechanism by which piperine enhances the bioavailability of curcumin in rat. Biopharm Drug Dispos 2017; 38:3-19. [DOI: 10.1002/bdd.2049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/10/2016] [Accepted: 11/16/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaohui Zeng
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
| | - Dake Cai
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
| | - Qiaohuang Zeng
- Department of Nephrology, The Second Clinical College; Guangzhou University of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences; Guangzhou Guangdong PR China
- Guangzhou University of Chinese Medicine; Guangzhou Guangdong 510006 PR China
| | - Zhao Chen
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
| | - Guoping Zhong
- School of Pharmaceutical Science, Sun Yat-sen University; Guangzhou 510006 PR China
| | - Juncheng Zhuo
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
- Guangzhou University of Chinese Medicine; Guangzhou Guangdong 510006 PR China
| | - Haining Gan
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
| | - Xuejun Huang
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
| | - Ziming Zhao
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
| | - Nan Yao
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
| | - Dane Huang
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
| | - Chengzhe Zhang
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
- Guangzhou University of Chinese Medicine; Guangzhou Guangdong 510006 PR China
| | - Dongmei Sun
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
| | - Yuxing Chen
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine; Guangzhou Guangdong 510095 PR China
| |
Collapse
|
35
|
Practical considerations when designing and conducting clinical pharmacokinetic herb–drug interaction studies. ACTA ACUST UNITED AC 2017. [DOI: 10.4155/ipk-2016-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pharmacokinetic herb–drug interaction (HDI) research has been ongoing for almost two decades and a significant body of information has been published on the subject, yet much of it is contradictory. Some of this disparity stems from the botanical dosage form itself, as product quality and dosage form performance can vary significantly among brands. Unless products are adequately characterized, HDI study results can be misleading. The purpose of this report is to identify several common weaknesses inherent in many prospective clinical HDI studies and to provide guidance in addressing these shortcomings. Topics such as study design, pharmacokinetic end points, product quality, dosage form performance, gauging clinical relevance, and efforts to minimize dietary influences while improving compliance are discussed.
Collapse
|
36
|
The influence of piperine on the pharmacokinetics of fexofenadine, a P-glycoprotein substrate, in healthy volunteers. Eur J Clin Pharmacol 2016; 73:343-349. [DOI: 10.1007/s00228-016-2173-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
|
37
|
McClements DJ, Saliva-Trujillo L, Zhang R, Zhang Z, Zou L, Yao M, Xiao H. Boosting the bioavailability of hydrophobic nutrients, vitamins, and nutraceuticals in natural products using excipient emulsions. Food Res Int 2016; 88:140-152. [DOI: 10.1016/j.foodres.2015.11.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023]
|
38
|
Enhancing nutraceutical bioavailability by controlling the composition and structure of gastrointestinal contents: Emulsion-based delivery and excipient systems. FOOD STRUCTURE-NETHERLANDS 2016. [DOI: 10.1016/j.foostr.2016.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Solomon KR, Wilks MF, Bachman A, Boobis A, Moretto A, Pastoor TP, Phillips R, Embry MR. Problem formulation for risk assessment of combined exposures to chemicals and other stressors in humans. Crit Rev Toxicol 2016; 46:835-844. [PMID: 27685317 DOI: 10.1080/10408444.2016.1211617] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
When the human health risk assessment/risk management paradigm was developed, it did not explicitly include a "problem formulation" phase. The concept of problem formulation was first introduced in the context of ecological risk assessment (ERA) for the pragmatic reason to constrain and focus ERAs on the key questions. However, this need also exists for human health risk assessment, particularly for cumulative risk assessment (CRA), because of its complexity. CRA encompasses the combined threats to health from exposure via all relevant routes to multiple stressors, including biological, chemical, physical and psychosocial stressors. As part of the HESI Risk Assessment in the 21st Century (RISK21) Project, a framework for CRA was developed in which problem formulation plays a critical role. The focus of this effort is primarily on a chemical CRA (i.e., two or more chemicals) with subsequent consideration of non-chemical stressors, defined as "modulating factors" (ModFs). Problem formulation is a systematic approach that identifies all factors critical to a specific risk assessment and considers the purpose of the assessment, scope and depth of the necessary analysis, analytical approach, available resources and outcomes, and overall risk management goal. There are numerous considerations that are specific to multiple stressors, and proper problem formulation can help to focus a CRA to the key factors in order to optimize resources. As part of the problem formulation, conceptual models for exposures and responses can be developed that address these factors, such as temporal relationships between stressors and consideration of the appropriate ModFs.
Collapse
Affiliation(s)
- Keith R Solomon
- a Centre for Toxicology, School of Environmental Sciences , University of Guelph , Guelph , Canada
| | - Martin F Wilks
- b Swiss Centre for Applied Human Toxicology , University of Basel , Basel , Switzerland
| | - Ammie Bachman
- c ExxonMobil Biomedical Sciences, Inc , Annandale , NJ , USA
| | | | - Angelo Moretto
- e Dipartimento di Scienze Biomediche e Cliniche, and International Centre for Pesticides and Health Risks Prevention (ICPS), ASST Fatebenefratelli Sacco, Luigi Sacco Hospital , University of Milan , Milan , Italy
| | | | | | - Michelle R Embry
- g ILSI Health and Environmental Sciences Institute , Washington , DC , USA
| |
Collapse
|
40
|
Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives. NANOMATERIALS 2016; 6:nano6010017. [PMID: 28344274 PMCID: PMC5302540 DOI: 10.3390/nano6010017] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 12/13/2022]
Abstract
The oral bioavailability of many hydrophobic bioactive compounds found in natural food products (such as vitamins and nutraceuticals in fruits and vegetables) is relatively low due to their low bioaccessibility, chemical instability, or poor absorption. Most previous research has therefore focused on the design of delivery systems to incorporate isolated bioactive compounds into food products. However, a more sustainable and cost-effect approach to enhancing the functionality of bioactive compounds is to leave them within their natural environment, but specifically design excipient foods that enhance their bioavailability. Excipient foods typically do not have functionality themselves but they have the capacity to enhance the functionality of nutrients present in natural foods by altering their bioaccessibility, absorption, and/or chemical transformation. In this review article we present the use of excipient nanoemulsions for increasing the bioavailability of bioactive components from fruits and vegetables. Nanoemulsions present several advantages over other food systems for this application, such as the ability to incorporate hydrophilic, amphiphilic, and lipophilic excipient ingredients, high physical stability, and rapid gastrointestinal digestibility. The design, fabrication, and application of nanoemulsions as excipient foods will therefore be described in this article.
Collapse
|
41
|
Singh S, Tripathi JS, Rai NP. An appraisal of the bioavailability enhancers in Ayurveda in the light of recent pharmacological advances. Ayu 2016; 37:3-10. [PMID: 28827948 PMCID: PMC5541464 DOI: 10.4103/ayu.ayu_11_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The concept of bioavailability enhancer is new to the modern system of medicine. Basically, this concept originated in Ayurveda and being used in this system of medicine since centuries. Bio-enhancers augment the bioavailability or biological activity of drugs when co-administered with principal drug at low doses. Ayurveda is using several drugs such as Piper longum Linn., Zingiber officinale Rosc., and Glycyrhhiza glabra Linn. as bio-enhancers and different methods for bio-enhancing since centuries. The bio-enhancement leads to reduction in therapeutic dose of principal drug, thus reducing the possibilities of toxicity and side effects of drug, potentiating the efficacy, reducing the resistance, decreasing the requirement of raw material for drug manufacture, and ultimately benefitting to the world economy by reducing the treatment cost. This review article attempts to consolidate different drugs as well as methods being used traditionally for enhancing bioavailability in Ayurvedic system of medicine and to discuss their possible mechanism of action. Authentic subject material has been reviewed from different Ayurvedic texts and from different related research and review articles. Thus, it is a humble effort to explore the different aspects of bio-enhancers including therapeutic techniques such as Shodhana, the drugs such as Pippali, and properties such as Yogavahi and Rasayana, which have been described in Ayurveda along with their mechanism of action and uses wherever available.
Collapse
Affiliation(s)
- Satyapal Singh
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - J S Tripathi
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - N P Rai
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
42
|
Chavarria D, Silva T, Magalhães e Silva D, Remião F, Borges F. Lessons from black pepper: piperine and derivatives thereof. Expert Opin Ther Pat 2015; 26:245-64. [PMID: 26560940 DOI: 10.1517/13543776.2016.1118057] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Piperine is a simple and pungent alkaloid found in the seeds of black pepper (Piper nigrum). Following its isolation and full characterization, the biological properties of piperine have been extensively studied, and piperine-like derivatives have shown an interesting range of pharmacological activities. In this context, significant advances have been made in the discovery of new chemical entities based on the piperine scaffold endowed with therapeutic potential. AREAS COVERED The aim of this review is to provide a thorough inquiry on the therapeutic potential of piperine and related derivatives. It provides an overview of recent developments in patented processes and applications thereof between 2000 and 2015. EXPERT OPINION Cumulative evidence shows that piperine is currently paving its way to become a privileged scaffold for the development of bioactive compounds with therapeutic application in multiple human diseases. In particular, piperine derivatives were shown to modulate the activity of several targets related to neurological disorders, including epilepsy, Parkinson's disease, depression and pain related disorders. Moreover, the efflux pump inhibitory ability of piperine and its analogues tackles important drug resistance mechanisms and may improve the clinical efficacy of antibiotic and anticancer drugs. Although the use of piperine as a scaffold for bioactive compounds is still in its early stages, the continuous exploration of this structure may lead to remarkable advances in drug discovery programs.
Collapse
Affiliation(s)
- D Chavarria
- a CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| | - T Silva
- a CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| | - D Magalhães e Silva
- a CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| | - F Remião
- b UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
| | - F Borges
- a CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , Porto , Portugal
| |
Collapse
|
43
|
McClements DJ, Zou L, Zhang R, Salvia-Trujillo L, Kumosani T, Xiao H. Enhancing Nutraceutical Performance Using Excipient Foods: Designing Food Structures and Compositions to Increase Bioavailability. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12170] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- David Julian McClements
- Biopolymers and Colloids Laboratory, Dept. of Food Science; Univ. of Massachusetts Amherst; Amherst Mass 01003 U.S.A
- Biochemistry Dept., Faculty of Science, Production of Bioproducts for Industrial Applications Research Group and Experimental Biochemistry Unit; King Fahd Medical Research Center, King Abdulaziz Univ; Jeddah Saudi Arabia
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology; Nanchang Univ; Nanchang, No. 235 Nanjing East Road Nanchang 330047 Jiangxi China
| | - Ruojie Zhang
- State Key Laboratory of Food Science and Technology; Nanchang Univ; Nanchang, No. 235 Nanjing East Road Nanchang 330047 Jiangxi China
| | - Laura Salvia-Trujillo
- State Key Laboratory of Food Science and Technology; Nanchang Univ; Nanchang, No. 235 Nanjing East Road Nanchang 330047 Jiangxi China
| | - Taha Kumosani
- Biochemistry Dept., Faculty of Science, Production of Bioproducts for Industrial Applications Research Group and Experimental Biochemistry Unit; King Fahd Medical Research Center, King Abdulaziz Univ; Jeddah Saudi Arabia
| | - Hang Xiao
- Biopolymers and Colloids Laboratory, Dept. of Food Science; Univ. of Massachusetts Amherst; Amherst Mass 01003 U.S.A
| |
Collapse
|
44
|
Bedada SK, Yellu NR, Neerati P. Effect of resveratrol on the pharmacokinetics of fexofenadine in rats: Involvement of P-glycoprotein inhibition. Pharmacol Rep 2015; 68:338-43. [PMID: 26922536 DOI: 10.1016/j.pharep.2015.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Resveratrol (RSV) is a natural occurring antioxidant has been found to possess P-glycoprotein (P-gp) inhibition activity in vitro and in vivo, which may have the potential to cause drug-phytochemical interactions. The purpose of the present study was to evaluate the effect of RSV on the pharmacokinetics of fexofenadine (FEX), P-gp substrate in rats. METHODS A mechanistic evaluation was undertaken using in vitro non-everted sac and in situ intestinal perfusion studies to determine the FEX intestinal transport and permeability. These results were confirmed by an in vivo pharmacokinetic study of oral administered FEX (10mg/kg) in rats. RESULTS The intestinal transport and apparent permeability (Papp) of FEX were increased significantly in duodenum, jejunum and ileum of RSV and verapamil (VER) pretreated groups when compared to FEX alone group. Similarly absorption rate constant (Ka), fraction absorbed (Fab) and effective permeability (Peff) of FEX were increased significantly in ileum of RSV and VER pretreated groups when compared to FEX alone group. In comparison with FEX alone, RSV pretreatment significantly increased maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC), while there was no significant change was observed in T1/2 and Tmax of FEX. CONCLUSIONS RSV significantly enhanced the exposure of FEX in rats likely by the inhibition of P-glycoprotein (P-gp) mediated efflux during the intestinal absorption, suggesting that there is a potential pharmacokinetic interaction between RSV and FEX. Therefore, further studies are recommended to evaluate the potential drug-phytochemical interactions in humans.
Collapse
Affiliation(s)
- Satish Kumar Bedada
- Drug Metabolism and Clinical Pharmacokinetics Division, Department of Pharmacology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, India
| | - Narsimha Reddy Yellu
- Drug Metabolism and Clinical Pharmacokinetics Division, Department of Pharmacology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, India
| | - Prasad Neerati
- Drug Metabolism and Clinical Pharmacokinetics Division, Department of Pharmacology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, India.
| |
Collapse
|
45
|
Hu D, Wang Y, Chen Z, Ma Z, You Q, Zhang X, Liang Q, Tan H, Xiao C, Tang X, Gao Y. The protective effect of piperine on dextran sulfate sodium induced inflammatory bowel disease and its relation with pregnane X receptor activation. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:109-123. [PMID: 25907981 DOI: 10.1016/j.jep.2015.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 04/03/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is associated with chronic inflammation of the intestinal tract. Piperine (1-peperoylpiperidine), the primary lipophilic component in black pepper (Piper nigrum) and long pepper (Piper longum), has been reported to be effective for anti-inflammatory. Rencently, several ethnopharmacological purity compounds, such as baicalin and artemisinin, are reported to have potentially therapeutic role in treating IBD. In the present study, the effects of piperine on pregnane X receptor (PXR)-mediated CYP3A expression and its therapeutic role in IBD were investigated. MATERIALS AND METHODS LS174T cells and C57BL/6J mice were treated by the piperine. Gene expressions were analyzed by real-time PCR, Western blot analysis, transient transfections assay and histological analysis. RESULTS Data indicated that treatment of LS174T cells with piperine markedly increased both CYP3A4 and PXR mRNA and protein. Transient transfection experiments indicated that transcriptional activation of the CYP3A4 gene via piperine was PXR-dependent. Data show that pre-administration of piperine decreased clinical hallmarks of colitis in DSS-treated PXR mice as measured by body weight loss and assessment of diarrhea, rectal bleeding, colon length, and histology. Inflammatory mediators (CCR2, ICAM-1, IL-1β, IL-6, IL-10, iNOS, MCP-1, and TNFα) after DSS treatment were significantly decreased in mice pretreated with piperine but corresponding conditions did not occur in mice with down-regulation of PXR by small interfering RNA (siRNA). CONCLUSION Piperine is a potential agonist of PXR and an inducer of PXR, which may induce CYP3A4 gene expression at the mRNA and protein levels. These results establish that piperine may contribute to prevention or reduction of colonic inflammation.
Collapse
Affiliation(s)
- Donghua Hu
- Department of Pharmacology, Anhui Medical University, Hefei 230032, China; Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Yuguang Wang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhiwu Chen
- Department of Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Zengchun Ma
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Qing You
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xianxie Zhang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Qiande Liang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hongling Tan
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chengrong Xiao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xianglin Tang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yue Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
46
|
Neerati P, Bedada SK. Effect of diosmin on the intestinal absorption and pharmacokinetics of fexofenadine in rats. Pharmacol Rep 2015; 67:339-44. [DOI: 10.1016/j.pharep.2014.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 11/29/2022]
|
47
|
McClements DJ, Li F, Xiao H. The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting their Oral Bioavailability. Annu Rev Food Sci Technol 2015; 6:299-327. [PMID: 25705933 DOI: 10.1146/annurev-food-032814-014043] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The oral bioavailability of a health-promoting dietary component (nutraceutical) may be limited by various physicochemical and physiological phenomena: liberation from food matrices, solubility in gastrointestinal fluids, interaction with gastrointestinal components, chemical degradation or metabolism, and epithelium cell permeability. Nutraceutical bioavailability can therefore be improved by designing food matrices that control their bioaccessibility (B*), absorption (A*), and transformation (T*) within the gastrointestinal tract (GIT). This article reviews the major factors influencing the gastrointestinal fate of nutraceuticals, and then uses this information to develop a new scheme to classify the major factors limiting nutraceutical bioavailability: the nutraceutical bioavailability classification scheme (NuBACS). This new scheme is analogous to the biopharmaceutical classification scheme (BCS) used by the pharmaceutical industry to classify drug bioavailability, but it contains additional factors important for understanding nutraceutical bioavailability in foods. The article also highlights potential strategies for increasing the oral bioavailability of nutraceuticals based on their NuBACS designation (B*A*T*).
Collapse
|
48
|
Stöllberger C, Finsterer J. Relevance of P-glycoprotein in stroke prevention with dabigatran, rivaroxaban, and apixaban. Herz 2015; 40 Suppl 2:140-5. [PMID: 25616425 DOI: 10.1007/s00059-014-4188-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 01/16/2023]
Abstract
BACKGROUND The new oral anticoagulants (NOAC) dabigatran etexilate, rivaroxaban, and apixaban show similar efficacy for stroke prevention in patients with atrial fibrillation (AF) as the vitamin K antagonist warfarin. Absorption of NOACs is dependent on the intestinal P-glycoprotein (P-gp) system and P-gp activity is modulated by a variety of drugs and food components. OBJECTIVE The aim of this review is to give an overview of P-gp-associated drug-drug and drug-food interactions with NOACs in AF patients. METHODS A literature search was carried out by screening MEDLINE for the terms dabigatran, rivaroxaban, apixaban, P-glycoprotein, and atrial fibrillation from 1998 to 2013. Randomized clinical trials, longitudinal studies, case series, and case reports were included. RESULTS Concomitant medication with proton pump inhibitors, amiodarone, clarithromycin, and verapamil increased bioavailability whereas rifampicin decreased the bioavailability of dabigatran. Coadministration of erythromycin, clarithromycin, fluconazole, ketoconazole, and ritonavir increased rivaroxaban plasma concentrations. No data were found on apixaban and P-gp-modulating drugs or on NOACs and food components modulating P-gp. The clinical relevance of interactions between NOACs and P-gp-modulating drugs or food components is largely unknown as bleeding complications under NOACs and P-gp-inhibiting drugs are mainly reported from patients with concomitant renal failure. CONCLUSION There is an urgent need to investigate the role of P-gp-modulating substances as potential sources of drug-drug and drug-food interactions. A thorough analysis of the data accumulated in the three large NOAC trials regarding the role of P-gp-modulating drugs in bleeding and embolic events is desirable. Pharmacological studies should investigate the influence of P-gp-modulating drugs and food on NOAC plasma concentrations and coagulation parameters. When prescribing NOACs, patients should be informed about the potential interactions with drugs and herbal drugs. Patients who develop bleeding or embolic events under treatment with NOACs should be investigated for co-medications as well as for over-the-counter drugs and dietary habits. In post-marketing surveillance of NOACs, the association with drug or food intake with complications, bleeding, and embolic events should be registered.
Collapse
Affiliation(s)
- C Stöllberger
- 2. Medizinische Abteilung, Krankenanstalt Rudolfstiftung, Juchgasse 25, 1030, Vienna, Austria,
| | | |
Collapse
|
49
|
Abstract
Coenzyme Q10 (CoQ10), also known as ubiquinone or ubidecarenone, is a powerful, endogenously produced, intracellularly existing lipophilic antioxidant. It combats reactive oxygen species (ROS) known to be responsible for a variety of human pathological conditions. Its target site is the inner mitochondrial membrane (IMM) of each cell. In case of deficiency and/or aging, CoQ10 oral supplementation is warranted. However, CoQ10 has low oral bioavailability due to its lipophilic nature, large molecular weight, regional differences in its gastrointestinal permeability and involvement of multitransporters. Intracellular delivery and mitochondrial target ability issues pose additional hurdles. To maximize CoQ10 delivery to its biopharmaceutical target, numerous approaches have been undertaken. The review summaries the current research on CoQ10 bioavailability and highlights the headways to obtain a satisfactory intracellular and targeted mitochondrial delivery. Unresolved questions and research gaps were identified to bring this promising natural product to the forefront of therapeutic agents for treatment of different pathologies.
Collapse
Affiliation(s)
- Noha M Zaki
- a Toronto Health Economics and Technology Assessment (THETA) Collaborative Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
50
|
Ajazuddin, Alexander A, Qureshi A, Kumari L, Vaishnav P, Sharma M, Saraf S, Saraf S. Role of herbal bioactives as a potential bioavailability enhancer for Active Pharmaceutical Ingredients. Fitoterapia 2014; 97:1-14. [PMID: 24862064 DOI: 10.1016/j.fitote.2014.05.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 01/21/2023]
Abstract
The current review emphasizes on the herbal bioenhancers which themselves do not possess inherent pharmacological activity of their own but when co-administered with Active Pharmaceutical Ingredients (API), enhances their bioavailability and efficacy. Herbal bioenhancers play a crucial role in enhancing the bioavailability and bioefficacy of different classes of drugs, such as antihypertensives, anticancer, antiviral, antitubercular and antifungal drugs at low doses. This paper highlights various natural compounds that can be utilized as an efficient bioenhancer. Several herbal compounds including piperine, quercetin, genistein, naringin, sinomenine, curcumin, and glycyrrhizin have demonstrated capability to improve the pharmacokinetic parameters of several potent API. This article also focuses on various United States patents on herbal bioenhancers, which has proved to be beneficial in improving oral absorption of nutraceuticals like vitamins, minerals, amino acids and certain herbal compounds. The present paper also describes proposed mechanism of action, which mainly includes absorption process, drug metabolism, and action on drug target. The herbal bioenhancers are easily available, safe, free from side effects, minimizes drug toxicity, shortens the duration of treatment, lowers the drug resistance problems and minimizes the cost of treatment. Inspite of the fact that herbal bioenhancers provide an innovative concept for enhancing the bioavailability of several potent drugs, there are numerous bioenhancers of herbal origin that are yet to be explored in several vital areas. These bioenhancers must also be implied to enhance the bioavailability and bioefficacy through routes other than the oral route of drug delivery. There is a vast array of unexploited plants which can be investigated for their drug bioenhancing potency. The toxicity profiles of these herbal bioenhancers must not be overlooked. Researches must be carried out to solve these issues and to deliver a safe and effective dose of drugs to attain desired pharmacological response.
Collapse
Affiliation(s)
- Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Amit Alexander
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Azra Qureshi
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Leena Kumari
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Pramudita Vaishnav
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Mukesh Sharma
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|