1
|
Wang Y, Chen Y, Zhang A, Chen K, Ouyang P. Advances in the microbial synthesis of the neurotransmitter serotonin. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12584-3. [PMID: 37326681 DOI: 10.1007/s00253-023-12584-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Serotonin, as a monoamine neurotransmitter, modulates the activity of the nervous system. Due to its importance in the coordination of movement and regulation of mood, impairments in the synthesis and homeostasis of serotonin are involved in numerous disorders, including depression, Parkinson's disease, and anxiety. Currently, serotonin is primarily obtained via natural extraction. But this method is time-consuming and low yield, as well as unstable supply of raw materials. With the development of synthetic biology, researchers have established the method of microbial synthesis of serotonin. Compared with natural extraction, microbial synthesis has the advantages of short production cycle, continuous production, not limited by season and source, and environment-friendly; hence, it has garnered considerable research attention. However, the yield of serotonin is still too low to industrialization. Therefore, this review provides the latest progress and examples that illustrate the synthesis pathways of serotonin as well as proposes strategies for increasing the production of serotonin. KEY POINTS: • Two biosynthesis pathways of serotonin are introduced. • L-tryptophan hydroxylation is the rate-limiting step in serotonin biosynthesis. • Effective strategies are proposed to improve serotonin production.
Collapse
Affiliation(s)
- Yingying Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| |
Collapse
|
2
|
Morais ATDB, Morais STB, Feitor JF, Santos WG, Gomes da Silva Catunda L, Walkling-Ribeiro M, Ahrne L, Cardoso DR. Impact of Physicochemical Modifications in Casein Promoted by UV-C on the Peptide Profile of Gastric Digestion and the Transepithelial Transport of Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7495-7507. [PMID: 37157171 DOI: 10.1021/acs.jafc.3c00392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Caseins are the main proteins in milk, and their structure and spatial conformation are responsible for their slow digestion rate. The release of bioactive and β-casomorphin peptides from casein digestion may induce allergic responses during consumption. Spectroscopic techniques were used to observe the structural changes in casein conformation induced by Ultraviolet light irradiation (UV-C). Raman spectroscopy results showed more pronounced peaks at 618 and 640 cm-1 for phenylalanine and tyrosine moieties of the photolyzed micellar casein, respectively, suggesting changes in the micelle structure. The decrease in the intensity of Raman signals for tryptophan and tyrosine corroborates to the UV-C-induced modifications of the micelle structure. Particle size distribution showed a decrease in the average micelle size after 15 min of UV-C exposure, while low-temperature, long-time (LTLT) pasteurization led to the formation of large aggregates, as observed by atomic force microscopy. UV-C did not impact the formation or transport of peptides, as observed by using the Caco-2 cell as a model for peptide absorption. However, the absence of the opioid peptide SRYPSY from κ-casein and only 20% of the concentration of opioid peptide RYLGY were noted. This work demonstrated that UV-C can be utilized to induce the physicochemical modification of dairy products, promoting a higher digestion rate and reducing allergenicity.
Collapse
Affiliation(s)
- Aline Teixeira do Brasil Morais
- São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador São Carlense 400, CP 780, 13560-470 São Carlos, Brazil
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Sinara T B Morais
- São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador São Carlense 400, CP 780, 13560-470 São Carlos, Brazil
| | - Jessica F Feitor
- São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador São Carlense 400, CP 780, 13560-470 São Carlos, Brazil
| | - Willy Glen Santos
- São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador São Carlense 400, CP 780, 13560-470 São Carlos, Brazil
| | - Lucas Gomes da Silva Catunda
- São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador São Carlense 400, CP 780, 13560-470 São Carlos, Brazil
| | - Markus Walkling-Ribeiro
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Lilia Ahrne
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Daniel R Cardoso
- São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador São Carlense 400, CP 780, 13560-470 São Carlos, Brazil
| |
Collapse
|
3
|
Zhang S, Yang R, Zhao W, Liang Q, Zhang Z. The first ESR observation of radical species generated under pulsed electric fields processing. Lebensm Wiss Technol 2011. [DOI: 10.1016/j.lwt.2010.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Song QH, Guo QX, Yao SD, Lin NY. Comparison of intermediates of tryptophan, tyrosine and their dipeptide induced by UV light and SO. 4 –. RESEARCH ON CHEMICAL INTERMEDIATES 2002. [DOI: 10.1163/15685670260188638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Pietraforte D, Minetti M. Direct ESR detection or peroxynitrite-induced tyrosine-centred protein radicals in human blood plasma. Biochem J 1997; 325 ( Pt 3):675-84. [PMID: 9271088 PMCID: PMC1218611 DOI: 10.1042/bj3250675] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Peroxynitrite, the reaction product of O2.- and .NO, is a toxic compound involved in several oxidative processes that modify proteins. The mechanisms of these oxidative reactions are not completely understood. In this study, using direct ESR at 37 degrees C, we observed that peroxynitrite induced in human blood plasma a long-lived singlet signal at g = 2.004 arising from proteins. This signal was not due to a specific plasma protein, because several purified proteins were able to form a peroxynitrite-induced g = 2.004 signal, but serum albumin and IgG showed the most intense signals. Hydroxyurea, a tyrosyl radical scavenger, strongly inhibited the signal, and horseradish peroxidase/H2O2, a radical-generating system known to induce tyrosyl radicals, induced a similar signal. Furthermore peptides containing a Tyr in the central portion of the molecule were able to form a stable peroxynitrite-dependent g = 2.004 signal, whereas peptides in which Tyr was substituted with Gly, Trp or Phe and peptides with Tyr at the N-terminus or near the C-terminus did not form radicals that were stable at 37 degrees C. We suggest that Tyr residues are at least the major radical sources of the peroxynitrite-dependent g = 2.004 signal at 37 degrees C in plasma or in isolated proteins. Although significantly enhanced by CO2/bicarbonate, the signal was detectable in whole plasma at relatively high peroxynitrite concentrations (>2 mM) but, after removal of ascorbate or urate or in dialysed plasma, it was detectable at lower concentrations (100-1000 microM). Our results suggest that the major role of ascorbate and urate is to reduce or 'repair' the radical(s) centred on Tyr residues and not to scavenge peroxynitrite (or nitrosoperoxycarbonate, the oxidant formed in CO2-containing fluids). This mechanism of inhibition by plasma antioxidants may be a means of preserving the physiological functions of peroxynitrite.
Collapse
Affiliation(s)
- D Pietraforte
- Laboratorio di Biologia Cellulare, Istituto Superiore di Sanità, V. Regina Elena 299, 00161 Roma, Italy
| | | |
Collapse
|
6
|
Walden SE, Wheeler RA. Distinguishing Features of Indolyl Radical and Radical Cation: Implications for Tryptophan Radical Studies. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp951838p] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Susan E. Walden
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, Oklahoma 73019
| | - Ralph A. Wheeler
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, Oklahoma 73019
| |
Collapse
|
7
|
Gunther MR, Kelman DJ, Corbett JT, Mason RP. Self-peroxidation of metmyoglobin results in formation of an oxygen-reactive tryptophan-centered radical. J Biol Chem 1995; 270:16075-81. [PMID: 7608169 DOI: 10.1074/jbc.270.27.16075] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In the reaction between hydrogen peroxide and metmyoglobin, the heme iron is oxidized to its ferryl-oxo form and the globin to protein radicals, at least one of which reacts with dioxygen to form a peroxyl radical. To identify the residue(s) that forms the oxygen-reactive radical, we utilized electron spin resonance (ESR) spectroscopy and the spin traps 2-methyl-2-nitrosopropane and 3,5-dibromo-4-nitrosobenzenesulfonic acid (DB-NBS). Metmyoglobin radical adducts had spectra typical of immobilized nitroxides that provided little structural information, but subsequent nonspecific protease treatment resulted in the detection of isotropic three-line spectra, indicative of a radical adduct centered on a tertiary carbon with no bonds to nitrogen or hydrogen. Similar isotropic three-line ESR spectra were obtained by spin trapping the oxidation product of tryptophan reacting with catalytic metmyoglobin and hydrogen peroxide. High resolution ESR spectra of DBNBS/.trp and of the protease-treated DBNBS/.metMb were simulated using superhyperfine coupling to a nitrogen and three non-equivalent hydrogens, consistent with a radical adduct formed at C-3 of the indole ring. Oxidation of tryptophan by catalytic metMb and hydrogen peroxide resulted in spin trap-inhibitable oxygen consumption, consistent with formation of a peroxyl radical. The above results support self-peroxidation of a tryptophan residue in the reaction between metMb and hydrogen peroxide.
Collapse
Affiliation(s)
- M R Gunther
- Laboratory of Molecular Biophysics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
8
|
Affiliation(s)
- E Cadenas
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90033, USA
| |
Collapse
|
9
|
Kosaka H, Katsuki Y, Shiga T. Spin trapping study on the kinetics of Fe2+ autoxidation: formation of spin adducts and their destruction by superoxide. Arch Biochem Biophys 1992; 293:401-8. [PMID: 1311166 DOI: 10.1016/0003-9861(92)90412-p] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The oxidation of Fe2+ was investigated by electron spin resonance spin trapping techniques with N-t-butyl-alpha-phenylnitrone (PBN) and dimethyl sulfoxide. Under pure oxygen, the spin adduct PBN/.OCH3 was rapidly generated by the addition of Fe2+ (0.2-1.2 mM) into phosphate buffer containing ethylenediaminetetraacetate (EDTA), dimethyl sulfoxide, and PBN at pH 7.4, but it decayed. The decay process of PBN/.OCH3 consists of two components. The fast decay was dependent on Fe2+ concentration. Another was due to destruction of the spin adduct by superoxide anion (.O2-), because superoxide dismutase (SOD) markedly prevented the decay. Catalase decreased the yield of PBN/.OCH3. When EDTA was replaced by diethylenetriaminepentaacetic acid (DTPA), both the generation and decay process of PBN/.OCH3 were slow. SOD and catalase effects were similar to those in EDTA. Fe2+ produced PBN/.OCH3 even in the absence of chelators. We could estimate the kinetic parameters by computer simulation, comparing the Fe2+ oxidation in EDTA with that in DTPA. These results demonstrate that Fe2+ reacts with O2 to generate .O2- and then H2O2, which produces .CH3 by reaction with Fe2+ and dimethyl sulfoxide.(.)OCH3 results from the reaction between .CH3 and O2. The adduct PBN/.OCH3 decays by reaction with Fe2+ and .O2-.
Collapse
Affiliation(s)
- H Kosaka
- Department of Physiology, Medical School, Osaka University, Japan
| | | | | |
Collapse
|
10
|
Sarna T. Properties and function of the ocular melanin--a photobiophysical view. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1992; 12:215-58. [PMID: 1635010 DOI: 10.1016/1011-1344(92)85027-r] [Citation(s) in RCA: 275] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper reviews the biosynthesis and physicochemical properties of the ocular melanin. Age-related changes of melanin granules and the corresponding formation of lipofuscin pigments in the retinal pigment epithelium (RPE) are also described. Adverse photoreactions of the eye and, in particular, light-induced damage to the RPE-retina are reviewed in relation to the ocular pigmentation. A hypothesis on the photoprotective role of the RPE melanin is presented that is based on the ability of the cellular melanin to bind redoxactive metal ions. Since bound-to-melanin metal ions are expected to be less damaging to the pigment cells, it is proposed that sequestration of heavy metal ions by the RPE melanin is an efficient detoxifying mechanism. It is postulated that oxidative degradation of RPE melanin may lower its metal-binding capability and decrease its anti-oxidant efficiency. Cellular and environmental factors that may contribute to possible oxidative damage of the RPE melanin are discussed in connection with the etiology of age-related macular degeneration.
Collapse
Affiliation(s)
- T Sarna
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
11
|
Kjeldstad B, Melø TB, Johnsson A. Near-UV-induced radicals in Propionibacterium acnes, studied by electron spin resonance spectrometry at 77 K. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1991; 9:181-7. [PMID: 1650821 DOI: 10.1016/1011-1344(91)80150-g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Suspensions of Propionibacterium acnes were UV irradiated and the induced radicals were measured at 77 K by electron spin resonance (ESR) spectrometry. Two types of radical were formed during irradiation and stabilized in the frozen suspensions. The relative yield of each radical was studied as a function of irradiation wavelength. The first radical, which was a singlet with a peak-to-peak width of 20 G, was insensitive to the deoxygenation of the samples and to the exchange of solvent water by heavy water. The action spectrum was similar to the absorption spectrum of NADPH. The second type of radical was not formed in deoxygenated samples and the shape of the ESR spectrum was characteristic of the superoxide radical. This radical was only formed at wavelengths below 340 nm.
Collapse
Affiliation(s)
- B Kjeldstad
- Department of Physics/AVH, University of Trondheim, Dragvoll, Norway
| | | | | |
Collapse
|
12
|
Berger JW, Vanderkooi JM. The anaerobic photolysis of lens alpha-crystallin: evidence for triplet state mediated photodamage. Photochem Photobiol 1990; 52:855-60. [PMID: 2089435 DOI: 10.1111/j.1751-1097.1990.tb08693.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Anaerobic solutions of lens alpha-crystallin were subjected to near-UV (greater than 295 nm) irradiation, and the photoproducts were analyzed by fluorescence and room-temperature phosphorescence spectroscopy. The principal photoproduct was excited maximally at 340 nm, fluoresced maximally at 430 nm, and phosphoresced with an emission maximum at 510 nm. The phosphorescence intensity decay of this species was well fit by a sum of two exponentials with lifetimes of 9.2 ms (78%) and 61 ms (22%); this report is the first demonstration of a long-lived triplet state associated with a protein photolysis product. As reported previously, 3trp* is also long-lived in deoxygenated alpha-crystallin solution at room-temperature (Berger and Vanderkooi, 1989, Biochemistry 28, 5501-5508), hence both tryptophan and photoproduct triplet states are good candidates to mediate photodamage. Photolysis experiments in the presence of agents known to alter the tryptophan triplet yield provide evidence for the importance of triplet-state-mediated photodamage of lens crystallins in anaerobic solution. In 30 mM acrylamide where 3trp*, but not 1trp*, is efficiently quenched, anaerobic solutions exhibited marked resistance to protein photodamage, whereas the photoprotection in aerobic solution was minimal. In D2O, where photoionization is suppressed but triplet states are longer-lived, photodamage was accelerated in anaerobic solution but reduced in aerobic solutions. Finally, the anaerobic photodestruction rate was increased in 500 mM Cs+ solution where the triplet yield is increased by a heavy atom effect.
Collapse
Affiliation(s)
- J W Berger
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia 19104-6089
| | | |
Collapse
|