1
|
Ryzhkova E, Morgunova T, Potapova E, Ryzhkov I, Fadeyev V. Fluorescence Spectroscopy With Temperature Functional Tests in the Assessment of Markers of Intracellular Energy Metabolism: Spatial Heterogeneity and Reproducibility of Measurements. JOURNAL OF BIOPHOTONICS 2024; 17:e202400294. [PMID: 39198025 DOI: 10.1002/jbio.202400294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
The fluorescence intensities of the cellular respiratory cofactors NADH (reduced nicotinamide adenine dinucleotide) and FAD++ (oxidized flavin adenine dinucleotide) reflect energy metabolism in skin and other tissues and can be quantified in vivo by fluorescence spectroscopy (FS). However, the variability of physiological parameters largely determines the reproducibility of measurement results and the reliability of the diagnostic test. In this prospective study, we evaluated the interday reproducibility of NADH and FAD++ fluorescence intensity measurements in the skin of 51 healthy volunteers assessed by the FS at baseline, after local cooling (10°C) and heating of the skin (35°C). Results showed that the fluorescence amplitude of NADH (AFNADH) in forearm skin was the most reproducible of the FS parameters studied. Assessment of AFNADH in the dorsal forearm in combination with a thermal functional test is the most promising method for clinical use for assessing energy metabolism in the skin.
Collapse
Affiliation(s)
- Ekaterina Ryzhkova
- Department of Endocrinology No.1, Institute of Clinical Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tatyana Morgunova
- Department of Endocrinology No.1, Institute of Clinical Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elena Potapova
- Research and Development Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Ivan Ryzhkov
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Valentin Fadeyev
- Department of Endocrinology No.1, Institute of Clinical Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
2
|
Campbell JM, Gosnell M, Agha A, Handley S, Knab A, Anwer AG, Bhargava A, Goldys EM. Label-Free Assessment of Key Biological Autofluorophores: Material Characteristics and Opportunities for Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403761. [PMID: 38775184 DOI: 10.1002/adma.202403761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/04/2024] [Indexed: 06/13/2024]
Abstract
Autofluorophores are endogenous fluorescent compounds that naturally occur in the intra and extracellular spaces of all tissues and organs. Most have vital biological functions - like the metabolic cofactors NAD(P)H and FAD+, as well as the structural protein collagen. Others are considered to be waste products - like lipofuscin and advanced glycation end products - which accumulate with age and are associated with cellular dysfunction. Due to their natural fluorescence, these materials have great utility for enabling non-invasive, label-free assays with direct ties to biological function. Numerous technologies, with different advantages and drawbacks, are applied to their assessment, including fluorescence lifetime imaging microscopy, hyperspectral microscopy, and flow cytometry. Here, the applications of label-free autofluorophore assessment are reviewed for clinical and health-research applications, with specific attention to biomaterials, disease detection, surgical guidance, treatment monitoring, and tissue assessment - fields that greatly benefit from non-invasive methodologies capable of continuous, in vivo characterization.
Collapse
Affiliation(s)
- Jared M Campbell
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | | | - Adnan Agha
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Shannon Handley
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Aline Knab
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ayad G Anwer
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Akanksha Bhargava
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ewa M Goldys
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| |
Collapse
|
3
|
Bouin A, Wu G, Koyuncu OO, Ye Q, Kim KY, Wu MY, Tong L, Chen L, Phan S, Mackey MR, Ramachandra R, Ellisman MH, Holmes TC, Semler BL, Xu X. New rabies viral resources for multi-scale neural circuit mapping. Mol Psychiatry 2024; 29:1951-1967. [PMID: 38355784 PMCID: PMC11322437 DOI: 10.1038/s41380-024-02451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Comparisons and linkage between multiple imaging scales are essential for neural circuit connectomics. Here, we report 20 new recombinant rabies virus (RV) vectors that we have developed for multi-scale and multi-modal neural circuit mapping tools. Our new RV tools for mesoscale imaging express a range of improved fluorescent proteins. Further refinements target specific neuronal subcellular locations of interest. We demonstrate the discovery power of these new tools including the detection of detailed microstructural changes of rabies-labeled neurons in aging and Alzheimer's disease mouse models, live imaging of neuronal activities using calcium indicators, and automated measurement of infected neurons. RVs that encode GFP and ferritin as electron microscopy (EM) and fluorescence microscopy reporters are used for dual EM and mesoscale imaging. These new viral variants significantly expand the scale and power of rabies virus-mediated neural labeling and circuit mapping across multiple imaging scales in health and disease.
Collapse
Affiliation(s)
- Alexis Bouin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Ginny Wu
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Orkide O Koyuncu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Qiao Ye
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Department Biomedical Engineering, University of California, Irvine, CA, 92697, USA
| | - Keun-Young Kim
- The National Center for Microscopy and Imaging Research (NCMIR) and the Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michele Y Wu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Liqi Tong
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Lujia Chen
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Department Biomedical Engineering, University of California, Irvine, CA, 92697, USA
| | - Sebastien Phan
- The National Center for Microscopy and Imaging Research (NCMIR) and the Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mason R Mackey
- The National Center for Microscopy and Imaging Research (NCMIR) and the Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ranjan Ramachandra
- The National Center for Microscopy and Imaging Research (NCMIR) and the Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mark H Ellisman
- The National Center for Microscopy and Imaging Research (NCMIR) and the Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Todd C Holmes
- Physiology & Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, 92697, USA.
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
| | - Xiangmin Xu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Department Biomedical Engineering, University of California, Irvine, CA, 92697, USA.
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Maslanka R, Przywara M, Janeczko A, Zadrag-Tecza R. Microbial cell autofluorescence as a method for measuring the intracellular content of B2 and B6 vitamins. INT J VITAM NUTR RES 2024; 94:334-341. [PMID: 37859397 DOI: 10.1024/0300-9831/a000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Vitamins are important organic compound required for the proper functioning of cells and organisms. Vitamins of special industrial and pharmaceutical interests include riboflavin (vitamin B2) and pyridoxine (vitamin B6). Commercial production of those biological compounds has increasingly relied on microorganisms and requires simple methods for detecting and estimating their level of synthesis during the biotechnological process. In the case of yeast, methods based on autofluorescence, i.e. natural fluorescence emitted by several cellular compounds, including vitamins, may be useful. Considering that the intensity of emitted light is proportional to the intracellular concentration of riboflavin and pyridoxine, autofluorescence may be a convenient method for their quantification. In this report, we demonstrate a simple, rapid, and sufficiently trustworthy spectrofluorimetric method for determining the content of vitamins B2 and B6 in yeast cells which consists of cells growing, harvesting, washing, and resuspending in a buffer, and then measuring the emitted visible light using specific wavelength of excitation (λex=340 nm and λem=385 nm for pyridoxine; λex=460 nm and λem=535 nm for riboflavin). The limits of detection (LOD) and quantification (LOQ) estimated through measurements of vitamin fluorescence were below 0.005 μg/ml for riboflavin and below 0.05 μg/ml for pyridoxine, respectively. In turn, the smallest credible cell density for measuring autofluorescence was set at 1×108 yeast cells/ml. The relative level of the cell's autofluorescence can be expressed in mass units by applying proper calculation formulas. A comparison of the autofluorescence-based method with the reference HPLC-UV method shows that autofluorescence measurement can be used in the screening analysis of vitamin content (especially riboflavin) in microbial cells.
Collapse
Affiliation(s)
- Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Poland
| | - Michał Przywara
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Poland
| | - Agnieszka Janeczko
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Poland
| |
Collapse
|
5
|
Herrando AI, Castillo-Martin M, Galzerano A, Fernández L, Vieira P, Azevedo J, Parvaiz A, Cicchi R, Shcheslavskiy VI, Silva PG, Lagarto JL. Dual excitation spectral autofluorescence lifetime and reflectance imaging for fast macroscopic characterization of tissues. BIOMEDICAL OPTICS EXPRESS 2024; 15:3507-3522. [PMID: 38867800 PMCID: PMC11166421 DOI: 10.1364/boe.505220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 06/14/2024]
Abstract
Advancements in optical imaging techniques have revolutionized the field of biomedical research, allowing for the comprehensive characterization of tissues and their underlying biological processes. Yet, there is still a lack of tools to provide quantitative and objective characterization of tissues that can aid clinical assessment in vivo to enhance diagnostic and therapeutic interventions. Here, we present a clinically viable fiber-based imaging system combining time-resolved spectrofluorimetry and reflectance spectroscopy to achieve fast multiparametric macroscopic characterization of tissues. An essential feature of the setup is its ability to perform dual wavelength excitation in combination with recording time-resolved fluorescence data in several spectral intervals. Initial validation of this bimodal system was carried out in freshly resected human colorectal cancer specimens, where we demonstrated the ability of the system to differentiate normal from malignant tissues based on their autofluorescence and reflectance properties. To further highlight the complementarity of autofluorescence and reflectance measurements and demonstrate viability in a clinically relevant scenario, we also collected in vivo data from the skin of a volunteer. Altogether, integration of these modalities in a single platform can offer multidimensional characterization of tissues, thus facilitating a deeper understanding of biological processes and potentially advancing diagnostic and therapeutic approaches in various medical applications.
Collapse
Affiliation(s)
- Alberto I. Herrando
- Biophotonics Platform, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
- Digestive Unit, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| | | | - Antonio Galzerano
- Digestive Unit, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| | - Laura Fernández
- Digestive Unit, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| | - Pedro Vieira
- Digestive Unit, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| | - José Azevedo
- Digestive Unit, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| | - Amjad Parvaiz
- Digestive Unit, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| | - Riccardo Cicchi
- National Institute of Optics (CNR-INO), Largo Enrico Fermi 6, 50125 Florence, Italy
| | - Vladislav I. Shcheslavskiy
- Becker and Hickl GmbH, Nunsdorfer Ring 7-9, 12277 Berlin, Germany
- Privolzhsky Research Medical University, Minina and Pozharskogo Sq, 10/1, 603005 Nizhny Novgorod, Russia
| | - Pedro G. Silva
- Biophotonics Platform, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| | - João L. Lagarto
- Biophotonics Platform, Champalimaud Foundation, Avenida Brasilia, 1400-038 Lisbon, Portugal
| |
Collapse
|
6
|
Chandrasekara CMN, Gemikonakli G, Mach J, Sang R, Anwer AG, Agha A, Goldys EM, Hilmer SN, Campbell JM. Ageing and Polypharmacy in Mesenchymal Stromal Cells: Metabolic Impact Assessed by Hyperspectral Imaging of Autofluorescence. Int J Mol Sci 2024; 25:5830. [PMID: 38892017 PMCID: PMC11171960 DOI: 10.3390/ijms25115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The impact of age on mesenchymal stromal cell (MSC) characteristics has been well researched. However, increased age is concomitant with increased prevalence of polypharmacy. This adjustable factor may have further implications for the functionality of MSCs and the effectiveness of autologous MSC procedures. We applied hyperspectral microscopy of cell autofluorescence-a non-invasive imaging technique used to characterise cytometabolic heterogeneity-to identify changes in the autofluorescence signals of MSCs from (1) young mice, (2) old mice, (3) young mice randomised to receive polypharmacy (9-10 weeks of oral therapeutic doses of simvastatin, metoprolol, oxycodone, oxybutynin and citalopram), and (4) old mice randomised to receive polypharmacy. Principal Component Analysis and Logistic Regression Analysis were used to assess alterations in spectral and associated metabolic characteristics. Modelling demonstrated that cells from young mice receiving polypharmacy had less NAD(P)H and increased porphyrin relative to cells from old control mice, allowing for effective separation of the two groups (AUC of ROC curve > 0.94). Similarly, cells from old polypharmacy mice were accurately separated from those from young controls due to lower levels of NAD(P)H (p < 0.001) and higher porphyrin (p < 0.001), allowing for an extremely accurate logistic regression (AUC of ROC curve = 0.99). This polypharmacy regimen may have a more profound impact on MSCs than ageing, and can simultaneously reduce optical redox ratio (ORR) and increase porphyrin levels. This has implications for the use of autologous MSCs for older patients with chronic disease.
Collapse
Affiliation(s)
- Chandrasekara M. N. Chandrasekara
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| | - Gizem Gemikonakli
- Laboratory of Ageing and Pharmacology, Kolling Institute, Northern Sydney Local Health District and Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (G.G.); (J.M.); (S.N.H.)
| | - John Mach
- Laboratory of Ageing and Pharmacology, Kolling Institute, Northern Sydney Local Health District and Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (G.G.); (J.M.); (S.N.H.)
| | - Rui Sang
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| | - Ayad G. Anwer
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| | - Adnan Agha
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| | - Ewa M. Goldys
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| | - Sarah N. Hilmer
- Laboratory of Ageing and Pharmacology, Kolling Institute, Northern Sydney Local Health District and Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (G.G.); (J.M.); (S.N.H.)
| | - Jared M. Campbell
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| |
Collapse
|
7
|
Rühl P, Nair AG, Gawande N, Dehiwalage SNCW, Münster L, Schönherr R, Heinemann SH. An Ultrasensitive Genetically Encoded Voltage Indicator Uncovers the Electrical Activity of Non-Excitable Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307938. [PMID: 38526185 PMCID: PMC11132041 DOI: 10.1002/advs.202307938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/10/2024] [Indexed: 03/26/2024]
Abstract
Most animal cell types are classified as non-excitable because they do not generate action potentials observed in excitable cells, such as neurons and muscle cells. Thus, resolving voltage signals in non-excitable cells demands sensors with exceptionally high voltage sensitivity. In this study, the ultrabright, ultrasensitive, and calibratable genetically encoded voltage sensor rEstus is developed using structure-guided engineering. rEstus is most sensitive in the resting voltage range of non-excitable cells and offers a 3.6-fold improvement in brightness change for fast voltage spikes over its precursor ASAP3. Using rEstus, it is uncovered that the membrane voltage in several non-excitable cell lines (A375, HEK293T, MCF7) undergoes spontaneous endogenous alterations on a second to millisecond timescale. Correlation analysis of these optically recorded voltage alterations provides a direct, real-time readout of electrical cell-cell coupling, showing that visually connected A375 and HEK293T cells are also largely electrically connected, while MCF7 cells are only weakly coupled. The presented work provides enhanced tools and methods for non-invasive voltage imaging in living cells and demonstrates that spontaneous endogenous membrane voltage alterations are not limited to excitable cells but also occur in a variety of non-excitable cell types.
Collapse
Affiliation(s)
- Philipp Rühl
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, D-07745, Jena, Germany
| | - Anagha G Nair
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, D-07745, Jena, Germany
| | - Namrata Gawande
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, D-07745, Jena, Germany
| | - Sassrika N C W Dehiwalage
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, D-07745, Jena, Germany
| | - Lukas Münster
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, D-07745, Jena, Germany
| | - Roland Schönherr
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, D-07745, Jena, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, D-07745, Jena, Germany
| |
Collapse
|
8
|
Palandt N, Resch C, Unterlechner P, Voshagen L, Winhart VR, Kunz L. Metabolic response of auditory brainstem neurons to their broad physiological activity range. J Neurochem 2024; 168:663-676. [PMID: 38439211 DOI: 10.1111/jnc.16091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024]
Abstract
Neurons exhibit a high energetic need, and the question arises as how they metabolically adapt to changing activity states. This is relevant for interpreting functional neuroimaging in different brain areas. Particularly, neurons with a broad firing range might exhibit metabolic adaptations. Therefore, we studied MNTB (medial nucleus of the trapezoid body) principal neurons, which generate action potentials (APs) at frequencies up to several hundred hertz. We performed the experiments in acute brainstem slices of the Mongolian gerbil (Meriones unguiculatus) at 22.5-24.5°C. Upon electrical stimulation of afferent MNTB fibres with 400 stimuli at varying frequencies, we monitored autofluorescence levels of NAD(P)H and FAD and determined the extremum amplitudes of their biphasic response. Additionally, we compared these data with alterations in O2 concentrations measured with an electrochemical sensor. These O2 changes are prominent since MNTB neurons rely on oxidative phosphorylation as shown by our pharmacological experiments. We calculated the O2 consumption rate as change in O2 concentration divided by stimulus durations, because these periods varied inversely with stimulus frequency as a result of the constant number of 400 stimuli applied. The O2 consumption rate increased with stimulation frequency up to a constant value at 600 Hz; that is, energy demand depends on temporal characteristics of activity despite the same number of stimuli. The rates showed no correlation with peak amplitudes of NAD(P)H or FAD, whilst the values of the two molecules were linearly correlated. This points at the complexity of analysing autofluorescence imaging for quantitative metabolic studies, because these values report only relative net changes of many superimposed oxidative and reductive processes. Monitoring O2 concentration rates is, thus, an important tool to improve the interpretation of NAD(P)H/FAD autofluorescence data, as they do not under all conditions and in all systems appropriately reflect the metabolic activity or energy demand.
Collapse
Affiliation(s)
- Nicola Palandt
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximillians-Universität (LMU), Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximillians-Universität (LMU), Munich, Germany
| | - Cibell Resch
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximillians-Universität (LMU), Munich, Germany
| | - Patricia Unterlechner
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximillians-Universität (LMU), Munich, Germany
| | - Lukas Voshagen
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximillians-Universität (LMU), Munich, Germany
| | - Valentin R Winhart
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximillians-Universität (LMU), Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximillians-Universität (LMU), Munich, Germany
| | - Lars Kunz
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximillians-Universität (LMU), Munich, Germany
| |
Collapse
|
9
|
Deo BS, Nayak S, Pal M, Panigrahi PK, Pradhan A. Wavelet scattering transform and entropy features in fluorescence spectral signal analysis for cervical cancer diagnosis. Biomed Phys Eng Express 2024; 10:045002. [PMID: 38636479 DOI: 10.1088/2057-1976/ad403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Cervical cancer is a prevalent malignant tumor within the female reproductive system and is regarded as a prominent cause of female mortality on a global scale. Timely and precise detection of various phases of cervical cancer holds the potential to substantially enhance both the rate of successful treatment and the duration of patient survival. Fluorescence spectroscopy is a highly sensitive method for detecting the biochemical changes that arise during cancer progression. In our study, fluorescence spectral data is collected from a diverse group of 110 subjects. The potential of the scattering transform technique for the purpose of cancer detection is explored. The processed signal undergoes an initial decomposition into scattering coefficients using the wavelet scattering transform (WST). Subsequently, the scattering coefficients are subjected to computation for fuzzy entropy, dispersion entropy, phase entropy, and spectral entropy, for effectively characterizing the fluorescence spectral signals. These combined features generated through the proposed approach are then fed to 1D convolutional neural network (CNN) classifier to classify them into normal, pre-cancerous, and cancerous categories, thereby evaluating the effectiveness of the proposed methodology. We obtained mean classification accuracy of 97% using 5-fold cross-validation. This demonstrates the potential of combining WST and entropic features for analyzing fluorescence spectroscopy signals using 1D CNN classifier that enables early cancer detection in contrast to prevailing diagnostic methods.
Collapse
Affiliation(s)
- Bhaswati Singha Deo
- Center for Lasers and Photonics, Indian Institute of Technology, Kanpur, 208016, India
| | - Sidharthenee Nayak
- ABB Ability Innovation Center, Asea Brown Boveri Company, Hyderabad, 500084, Telangana, India
- School of Electrical Sciences, Indian Institute of Technology, Bhubaneswar, 751013, India
| | - Mayukha Pal
- ABB Ability Innovation Center, Asea Brown Boveri Company, Hyderabad, 500084, Telangana, India
| | - Prasanta K Panigrahi
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
- Center for Quantum Science and Technology, Siksha 'O' Anusandhan university, Bhubaneswar, 751030, Odisha, India
| | - Asima Pradhan
- Center for Lasers and Photonics, Indian Institute of Technology, Kanpur, 208016, India
- Department of Physics, Indian Institute of Technology, Kanpur, 208016, India
| |
Collapse
|
10
|
Wong IHM, Chen Z, Shi L, Lo CTK, Kang L, Dai W, Wong TTW. Deep learning-assisted low-cost autofluorescence microscopy for rapid slide-free imaging with virtual histological staining. BIOMEDICAL OPTICS EXPRESS 2024; 15:2187-2201. [PMID: 38633074 PMCID: PMC11019672 DOI: 10.1364/boe.515018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/27/2024] [Accepted: 02/20/2024] [Indexed: 04/19/2024]
Abstract
Slide-free imaging techniques have shown great promise in improving the histological workflow. For example, computational high-throughput autofluorescence microscopy by pattern illumination (CHAMP) has achieved high resolution with a long depth of field, which, however, requires a costly ultraviolet laser. Here, simply using a low-cost light-emitting diode (LED), we propose a deep learning-assisted framework of enhanced widefield microscopy, termed EW-LED, to generate results similar to CHAMP (the learning target). Comparing EW-LED and CHAMP, EW-LED reduces the cost by 85×, shortening the image acquisition time and computation time by 36× and 17×, respectively. This framework can be applied to other imaging modalities, enhancing widefield images for better virtual histology.
Collapse
Affiliation(s)
| | | | - Lulin Shi
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Claudia T. K. Lo
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Lei Kang
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Weixing Dai
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Terence T. W. Wong
- Translational and Advanced Bioimaging Laboratory, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
11
|
Deo BS, Sah AN, Shukla S, Pandey K, Singh S, Pal M, Panigrahi PK, Pradhan A. Cervical pre-cancer classification using entropic features and CNN: In vivo validation with a handheld fluorescence probe. JOURNAL OF BIOPHOTONICS 2024; 17:e202300363. [PMID: 38010318 DOI: 10.1002/jbio.202300363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Cervical cancer is one of the most prevalent forms of cancer, with a lengthy latent period and a gradual onset phase. Conventional techniques are found to be severely lacking in real time detection of disease progression which can greatly enhance the cure rate. Due to their high sensitivity and specificity, optical techniques are emerging as reliable tools, particularly in case of cancer. It has been seen that biochemical changes are better highlighted through intrinsic fluorescence devoid of interference from absorption and scattering. Its effectiveness in in-vivo conditions is affected by the fact that the intrinsic spectral signatures vary from patient to patient, as well as in different population groups. Here, we overcome this limitation by collectively enumerating the subtle changes in the spectral profiles and correlations through an information theory based entropic approach, which significantly amplifies the minute spectral variations. In conjunction with artificial intelligence (AI)/machine learning (ML) tools, it yields high specificity and sensitivity with a small dataset from patients in clinical conditions, without artificial augmentation. We have used an in-house developed handheld probe (i-HHP) for extracting intrinsic fluorescence spectra of human cervix from 110 different subjects drawn from diverse population groups. The average classification accuracy of the proposed methodology using 10-fold cross validation is 93.17%. A combination of polarised fluorescence spectra from i-HHP and the proposed classifier is proven to be minimally invasive with the ability to diagnose patients in real time. This paves the way for effective use of relatively smaller sized sensitive fluorescence data with advanced AI/ML tools for early cervical cancer detection in clinics.
Collapse
Affiliation(s)
- Bhaswati Singha Deo
- Center for Lasers and Photonics, Indian Institute of Technology Kanpur, Kanpur, India
| | - Amar Nath Sah
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Shivam Shukla
- Center for Lasers and Photonics, Indian Institute of Technology Kanpur, Kanpur, India
| | - Kiran Pandey
- Department of Obstetrics and Gynaecology, G.S.V.M Medical College, Kanpur, Uttar Pradesh, India
| | - Sweta Singh
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Mayukha Pal
- ABB Ability Innovation Center, Asea Brown Boveri Company, Hyderabad, India
| | - Prasanta K Panigrahi
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, India
| | - Asima Pradhan
- Center for Lasers and Photonics, Indian Institute of Technology Kanpur, Kanpur, India
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
12
|
Udeneev AM, Kalyagina NA, Efendiev KT, Febenchukova AA, Kulichenko AM, Shiryaev AA, Pisareva TN, Linkov KG, Loshchenov MV. Cost-effective device for locating and circumscribing superficial tumors with contrast enhancement and fluorescence quantification. Photodiagnosis Photodyn Ther 2024; 45:103827. [PMID: 37797909 DOI: 10.1016/j.pdpdt.2023.103827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Two Bispectral contrast enhancement approaches for the fluorescence diagnosis with chlorine-e6 and a wide field-of-view imaging system with fluorescence excitation at 405 nm and time-resolved background suppression were analyzed and compared. METHODS Two techniques for the contrast enhancement of a fluorescent video system (Red/Green (R/G) ratio and Red-Green (R-G)) with time-resolved background suppression for fluorescent diagnosis (FD) were tested in four patients with basal cell carcinoma (BCC). RESULTS The results of both contrast enhancement methods were compared for the diagnostic efficiency for FD of BCC. Both techniques successfully determined the boundaries of the lesions and the fluorescence intensity. CONCLUSIONS Both contrast enhancement modes have proven effective in identifying tumor borders in cases of low contrast in BCC FD with Ce6. While the Red/Green (R/G) mode provides sharper lesion borders, the Red minus Green (R-G) mode visualizes more fluorescent features and makes it easier to assess the lesion margins.
Collapse
Affiliation(s)
- A M Udeneev
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), Kashirskoye shosse 31, Moscow, 115409, Russia.
| | - N A Kalyagina
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), Kashirskoye shosse 31, Moscow, 115409, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str., 38, Moscow, 119991, Russia
| | - K T Efendiev
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), Kashirskoye shosse 31, Moscow, 115409, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str., 38, Moscow, 119991, Russia
| | - A A Febenchukova
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), Kashirskoye shosse 31, Moscow, 115409, Russia
| | - A M Kulichenko
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), Kashirskoye shosse 31, Moscow, 115409, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str., 38, Moscow, 119991, Russia
| | - A A Shiryaev
- Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, Department of Oncology, Radiotherapy and Reconstructive Surgery, University Clinical Hospital No.1, Bolshaya Pirogovskaya Str., 6, Moscow, 119435, Russia
| | - T N Pisareva
- Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, Department of Oncology, Radiotherapy and Reconstructive Surgery, University Clinical Hospital No.1, Bolshaya Pirogovskaya Str., 6, Moscow, 119435, Russia
| | - K G Linkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str., 38, Moscow, 119991, Russia
| | - M V Loshchenov
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), Kashirskoye shosse 31, Moscow, 115409, Russia
| |
Collapse
|
13
|
Schauenburg D, Weil T. Chemical Reactions in Living Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303396. [PMID: 37679060 PMCID: PMC10885656 DOI: 10.1002/advs.202303396] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Indexed: 09/09/2023]
Abstract
The term "in vivo ("in the living") chemistry" refers to chemical reactions that take place in a complex living system such as cells, tissue, body liquids, or even in an entire organism. In contrast, reactions that occur generally outside living organisms in an artificial environment (e.g., in a test tube) are referred to as in vitro. Over the past decades, significant contributions have been made in this rapidly growing field of in vivo chemistry, but it is still not fully understood, which transformations proceed efficiently without the formation of by-products or how product formation in such complex environments can be characterized. Potential applications can be imagined that synthesize drug molecules directly within the cell or confer new cellular functions through controlled chemical transformations that will improve the understanding of living systems and develop new therapeutic strategies. The guiding principles of this contribution are twofold: 1) Which chemical reactions can be translated from the laboratory to the living system? 2) Which characterization methods are suitable for studying reactions and structure formation in complex living environments?
Collapse
Affiliation(s)
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| |
Collapse
|
14
|
Adams AC, Kufcsák A, Lochenie C, Khadem M, Akram AR, Dhaliwal K, Seth S. Fibre-optic based exploration of lung cancer autofluorescence using spectral fluorescence lifetime. BIOMEDICAL OPTICS EXPRESS 2024; 15:1132-1147. [PMID: 38404342 PMCID: PMC10890895 DOI: 10.1364/boe.515609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 02/27/2024]
Abstract
Fibre-optic based time-resolved fluorescence spectroscopy (TRFS) is an advanced spectroscopy technique that generates sample-specific spectral-temporal signature, characterising variations in fluorescence in real-time. As such, it can be used to interrogate tissue autofluorescence. Recent advancements in TRFS technology, including the development of devices that simultaneously measure high-resolution spectral and temporal fluorescence, paired with novel analysis methods extracting information from these multidimensional measurements effectively, provide additional insight into the underlying autofluorescence features of a sample. This study demonstrates, using both simulated data and endogenous fluorophores measured bench-side, that the shape of the spectral fluorescence lifetime, or fluorescence lifetimes estimated over high-resolution spectral channels across a broad range, is influenced by the relative abundance of underlying fluorophores in mixed systems and their respective environment. This study, furthermore, explores the properties of the spectral fluorescence lifetime in paired lung tissue deemed either abnormal or normal by pathologists. We observe that, on average, the shape of the spectral fluorescence lifetime at multiple locations sampled on 14 abnormal lung tissue, compared to multiple locations sampled on the respective paired normal lung tissue, shows more variability; and, while not statistically significant, the average spectral fluorescence lifetime in abnormal tissue is consistently lower over every wavelength than the normal tissue.
Collapse
Affiliation(s)
- Alexandra C. Adams
- Translational Healthcare Technology Group, Institute for Regeneration and Repair, 5 Little France Dr, Edinburgh EH16 4UU, UK
| | - András Kufcsák
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Charles Lochenie
- Translational Healthcare Technology Group, Institute for Regeneration and Repair, 5 Little France Dr, Edinburgh EH16 4UU, UK
| | - Mohsen Khadem
- Translational Healthcare Technology Group, Institute for Regeneration and Repair, 5 Little France Dr, Edinburgh EH16 4UU, UK
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Ahsan R. Akram
- Translational Healthcare Technology Group, Institute for Regeneration and Repair, 5 Little France Dr, Edinburgh EH16 4UU, UK
| | - Kevin Dhaliwal
- Translational Healthcare Technology Group, Institute for Regeneration and Repair, 5 Little France Dr, Edinburgh EH16 4UU, UK
| | - Sohan Seth
- Translational Healthcare Technology Group, Institute for Regeneration and Repair, 5 Little France Dr, Edinburgh EH16 4UU, UK
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| |
Collapse
|
15
|
Hopkinson C, Matheson AB, Finlayson N, Tanner MG, Akram AR, Henderson RK. Combined fluorescence lifetime and surface topographical imaging of biological tissue. BIOMEDICAL OPTICS EXPRESS 2024; 15:212-221. [PMID: 38223190 PMCID: PMC10783922 DOI: 10.1364/boe.504309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 01/16/2024]
Abstract
In this work a combined fluorescence lifetime and surface topographical imaging system is demonstrated. Based around a 126 × 192 time resolved single photon avalanche diode (SPAD) array operating in time correlated single-photon counting (TCSPC) mode, both the fluorescence lifetime and time of flight (ToF) can be calculated on a pixel by pixel basis. Initial tests on fluorescent samples show it is able to provide 4 mm resolution in distance and 0.4 ns resolution in lifetime. This combined modality has potential biomedical applications such as surgical guidance, endoscopy, and diagnostic imaging. The system is demonstrated on both ovine and human pulmonary tissue samples, where it offers excellent fluorescence lifetime contrast whilst also giving a measure of the distance to the sample surface.
Collapse
Affiliation(s)
- Charlotte Hopkinson
- Institute for Integrated Micro and Nano
Systems, School of Engineering, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Andrew B. Matheson
- Institute for Integrated Micro and Nano
Systems, School of Engineering, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Neil Finlayson
- Institute for Integrated Micro and Nano
Systems, School of Engineering, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Michael G. Tanner
- Institute of Photonics and Quantum
Sciences, School of Engineering and Physical Sciences,
Heriot-Watt University, Edinburgh EH14 4AS,
UK
| | - Ahsan R. Akram
- Centre for Inflammation Research, Institute
of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU,
UK
| | - Robert K. Henderson
- Institute for Integrated Micro and Nano
Systems, School of Engineering, University of Edinburgh, Edinburgh EH9 3FF, UK
| |
Collapse
|
16
|
Rabinovich OF, Rabinovich IM, Umarova KV. [Study of the kinetics of accumulation and distribution of the photosensitizer photoditazin in the oral mucosa in patients with lichen planus]. STOMATOLOGIIA 2024; 103:12-15. [PMID: 38372601 DOI: 10.17116/stomat202410301112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
THE AIM OF THE STUDY Was to explore the accumulation and distribution of the photosensitizer Photoditazine in the oral mucosa when applied to pathological lesions in patients with severe forms of lichen planus. MATERIAL AND METHODS A clinical and laboratory examination was carried out in 50 patients with severe forms of lichen planus (bullous and erosive-ulcerative) aged 18 to 70 years, including 6 men and 44 women. For autofluorescent imaging a LED device with a wavelength in the violet region of the spectrum (400±10 nm) was used. Quantitative registration of the kinetics of accumulation and distribution of the photosensitizer was carried out using the method of local fluorescence spectroscopy by measuring the fluorescence spectra. RESULTS The measurements were made before applying the photosensitizer, 10, 20 and 30 minutes after application. The study showed that in most patients with erosive-ulcerative and bullous forms of lichen planus, the accumulation of the photosensitizer in the lesions on the oral mucosa increased as the exposure time increased from 20 to 30 minutes. The fastest accumulation of the photosensitizer occurred in the areas of mucosal lesions with the most pronounced vascularization, namely, in the area of the tongue and the bottom of the oral cavity. CONCLUSION Using the method of local fluorescence spectroscopy, the kinetics of accumulation and destruction of photosensitizer in pathological areas of the oral mucosa was determined, and therefore the optimal time of laser exposure to the lesion was determined.
Collapse
Affiliation(s)
- O F Rabinovich
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| | - I M Rabinovich
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| | - K V Umarova
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| |
Collapse
|
17
|
Måge I, Wubshet SG, Wold JP, Solberg LE, Böcker U, Dankel K, Lintvedt TA, Kafle B, Cattaldo M, Matić J, Sorokina L, Afseth NK. The role of biospectroscopy and chemometrics as enabling technologies for upcycling of raw materials from the food industry. Anal Chim Acta 2023; 1284:342005. [PMID: 37996160 DOI: 10.1016/j.aca.2023.342005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/25/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023]
Abstract
It is important to utilize the entire animal in meat and fish production to ensure sustainability. Rest raw materials, such as bones, heads, trimmings, and skin, contain essential nutrients that can be transformed into high-value products. Enzymatic protein hydrolysis (EPH) is a bioprocess that can upcycle these materials to create valuable proteins and fats. This paper focuses on the role of spectroscopy and chemometrics in characterizing the quality of the resulting protein product and understanding how raw material quality and processing affect it. The article presents recent developments in chemical characterisation and process modelling, with a focus on rest raw materials from poultry and salmon production. Even if some of the technology is relatively mature and implemented in many laboratories and industries, there are still open challenges and research questions. The main challenges are related to the transition of technology and insights from laboratory to industrial scale, and the link between peptide composition and critical product quality attributes.
Collapse
Affiliation(s)
- Ingrid Måge
- Nofima - Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, 9291, Tromsø, Norway.
| | - Sileshi Gizachew Wubshet
- Nofima - Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, 9291, Tromsø, Norway
| | - Jens Petter Wold
- Nofima - Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, 9291, Tromsø, Norway
| | - Lars Erik Solberg
- Nofima - Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, 9291, Tromsø, Norway
| | - Ulrike Böcker
- Nofima - Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, 9291, Tromsø, Norway
| | - Katinka Dankel
- Nofima - Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, 9291, Tromsø, Norway
| | - Tiril Aurora Lintvedt
- Nofima - Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, 9291, Tromsø, Norway; Norwegian University of Life Sciences, Faculty of Science and Technology, 1432, Ås, Norway
| | - Bijay Kafle
- Nofima - Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, 9291, Tromsø, Norway; Norwegian University of Life Sciences, Faculty of Science and Technology, 1432, Ås, Norway
| | - Marco Cattaldo
- Nofima - Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, 9291, Tromsø, Norway; Universidad Politécnica de Valencia, Department of Applied Statistics, Operations Research and Quality, 46022, Valencia, Spain
| | - Josipa Matić
- Nofima - Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, 9291, Tromsø, Norway
| | - Liudmila Sorokina
- Nofima - Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, 9291, Tromsø, Norway; University of Oslo, Department of Chemistry, 0371, Oslo, Norway
| | - Nils Kristian Afseth
- Nofima - Norwegian Institute for Food, Fisheries and Aquaculture Research, Muninbakken 9-13, Breivika, 9291, Tromsø, Norway
| |
Collapse
|
18
|
Zhang Z, Fan H, Richardson W, Gao BZ, Ye T. Management of autofluorescence in formaldehyde-fixed myocardium: choosing the right treatment. Eur J Histochem 2023; 67:3812. [PMID: 37781779 PMCID: PMC10614721 DOI: 10.4081/ejh.2023.3812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Autofluorescence (AF) poses challenges for detecting proteins of interest in situ when employing immunofluorescence (IF) microscopy. This interference is particularly pronounced in strongly autofluorescent tissues such as myocardium, where tissue AF can be comparable to IF. Although various histochemical methods have been developed to achieve effective AF suppression in different types of tissue, their applications on myocardial samples have not been well validated. Due to inconsistency across different autofluorescent structures in sometypes of tissue, it is unclear if these methods can effectively suppress AF across all autofluorescent structures within the myocardium. Here, we quantitatively evaluated the performance of several commonly used quenching treatments on formaldehyde-fixed myocardial samples, including 0.3 M glycine, 0.3% Sudan Black B (SBB), 0.1% and 1% sodium borohydride (NaBH4), TrueVIEW® and TrueBlack®. We further assessed their quenching performance by employing the pre-treatment and post-treatment protocols, designed to cover two common IF staining scenarios where buffers contained detergents or not. The results suggest that SBB and TrueBlack® outperform other reagents in AF suppression on formaldehyde-fixed myocardial samples in both protocols. Furthermore, we inspected the quenching performance of SBB and TrueBlack® on major autofluorescent myocardial structures and evaluated their influence on IF imaging. The results suggest that SBB outperforms TrueBlack® in quenching major autofluorescent structures, while TrueBlack® excels in preserving IF labeling signal. Surprisingly, we found the treatment of NaBH4 increased AF signal and enhanced the AF contrast of major autofluorescent structures. This finding suggests that NaBH4 has the potential to act as an AF enhancer and may facilitate the interpretation of myocardial structures without the need for counterstaining.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Bioengineering, Clemson University, Clemson, SC.
| | - Hongming Fan
- Department of Bioengineering, Clemson University, Clemson, SC.
| | - William Richardson
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR.
| | - Bruce Z Gao
- Department of Bioengineering, Clemson University, Clemson, SC.
| | - Tong Ye
- Department of Bioengineering, Clemson University, Clemson, SC; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC.
| |
Collapse
|
19
|
Udeneev A, Kulichenko A, Kalyagina N, Shiryaev A, Pisareva T, Plotnikova A, Linkov K, Zavodnov S, Loshchenov M. Comparison of chlorin-e6 detection efficiency by video systems with excitation wavelengths of 405nm and 635nm. Photodiagnosis Photodyn Ther 2023; 43:103729. [PMID: 37517428 DOI: 10.1016/j.pdpdt.2023.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Fluorescence diagnostics with two different wide field-of-view imaging systems with fluorescence excitation at 405 nm and 635 nm, respectively, were compared. Both systems include fluorescence quantification and experimental geometry normalization algorithms. METHODS A newly developed system with an excitation wavelength of 405 nm was tested on intralipid fluorescent tumor phantoms with chlorin-e6. Both, this new system and a second existing system with an excitation wavelength of 635 nm, were used for fluorescent diagnosis in six patients with basal cell carcinoma and cancer of the oral mucosa. For PDT, a red diode laser with a wavelength of 660 nm was used for all 6 patients. One patient received an additional irradiation using the red LED source of the new system RESULTS: The boundaries of the lesions and the fluorescence intensity were successfully determined by both video systems. CONCLUSIONS Both fluorescence imaging approaches showed comparable contrast between diseased and healthy tissues. For oral mucosal cancer, a system with violet fluorescence excitation, bispectral frame analysis, and time-resolved background suppression showed better contrast between the tumor and normal tissue and effective elimination of autofluorescence. Moreover, both systems provided efficient quantification of fluorescence and gave fluorescence indices that were weakly dependent on the distance between the device and the tissue.
Collapse
Affiliation(s)
- Andrei Udeneev
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), Kashirskoye shosse 31, Moscow, 115409 Russia.
| | - Anastasia Kulichenko
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), Kashirskoye shosse 31, Moscow, 115409 Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str., 38, Moscow, 119991 Russia
| | - Nina Kalyagina
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), Kashirskoye shosse 31, Moscow, 115409 Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str., 38, Moscow, 119991 Russia
| | - Artem Shiryaev
- Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, Department of Oncology, Radiotherapy and Reconstructive Surgery, University Clinical Hospital No.1, Bolshaya Pirogovskaya Str., 6, Moscow, 119435, Russia
| | - Tatiana Pisareva
- Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, Department of Oncology, Radiotherapy and Reconstructive Surgery, University Clinical Hospital No.1, Bolshaya Pirogovskaya Str., 6, Moscow, 119435, Russia
| | - Arina Plotnikova
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), Kashirskoye shosse 31, Moscow, 115409 Russia
| | - Kirill Linkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str., 38, Moscow, 119991 Russia
| | - Sergei Zavodnov
- Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, Department of Oncology, Radiotherapy and Reconstructive Surgery, University Clinical Hospital No.1, Bolshaya Pirogovskaya Str., 6, Moscow, 119435, Russia
| | - Maxim Loshchenov
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), Kashirskoye shosse 31, Moscow, 115409 Russia
| |
Collapse
|
20
|
Thakkar RN, Kioutchoukova IP, Griffin I, Foster DT, Sharma P, Valero EM, Lucke-Wold B. Mapping the Glymphatic Pathway Using Imaging Advances. J 2023; 6:477-491. [PMID: 37601813 PMCID: PMC10439810 DOI: 10.3390/j6030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
The glymphatic system is a newly discovered waste-clearing system that is analogous to the lymphatic system in our central nervous system. Furthermore, disruption in the glymphatic system has also been associated with many neurodegenerative disorders (e.g., Alzheimer's disease), traumatic brain injury, and subarachnoid hemorrhage. Thus, understanding the function and structure of this system can play a key role in researching the progression and prognoses of these diseases. In this review article, we discuss the current ways to map the glymphatic system and address the advances being made in preclinical mapping. As mentioned, the concept of the glymphatic system is relatively new, and thus, more research needs to be conducted in order to therapeutically intervene via this system.
Collapse
Affiliation(s)
- Rajvi N. Thakkar
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Ian Griffin
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Devon T. Foster
- College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, 1600 SW Archer Rd., Gainesville, FL 32610, USA
| |
Collapse
|
21
|
Campbell JM, Habibalahi A, Handley S, Agha A, Mahbub SB, Anwer AG, Goldys EM. Emerging clinical applications in oncology for non-invasive multi- and hyperspectral imaging of cell and tissue autofluorescence. JOURNAL OF BIOPHOTONICS 2023; 16:e202300105. [PMID: 37272291 DOI: 10.1002/jbio.202300105] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023]
Abstract
Hyperspectral and multispectral imaging of cell and tissue autofluorescence is an emerging technology in which fluorescence imaging is applied to biological materials across multiple spectral channels. This produces a stack of images where each matched pixel contains information about the sample's spectral properties at that location. This allows precise collection of molecularly specific data from a broad range of native fluorophores. Importantly, complex information, directly reflective of biological status, is collected without staining and tissues can be characterised in situ, without biopsy. For oncology, this can spare the collection of biopsies from sensitive regions and enable accurate tumour mapping. For in vivo tumour analysis, the greatest focus has been on oral cancer, whereas for ex vivo assessment head-and-neck cancers along with colon cancer have been the most studied, followed by oral and eye cancer. This review details the scope and progress of research undertaken towards clinical translation in oncology.
Collapse
Affiliation(s)
- Jared M Campbell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Abbas Habibalahi
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shannon Handley
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Adnan Agha
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Saabah B Mahbub
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ayad G Anwer
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
22
|
Abstract
Endogenous photosensitizers play a critical role in both beneficial and harmful light-induced transformations in biological systems. Understanding their mode of action is essential for advancing fields such as photomedicine, photoredox catalysis, environmental science, and the development of sun care products. This review offers a comprehensive analysis of endogenous photosensitizers in human skin, investigating the connections between their electronic excitation and the subsequent activation or damage of organic biomolecules. We gather the physicochemical and photochemical properties of key endogenous photosensitizers and examine the relationships between their chemical reactivity, location within the skin, and the primary biochemical events following solar radiation exposure, along with their influence on skin physiology and pathology. An important take-home message of this review is that photosensitization allows visible light and UV-A radiation to have large effects on skin. The analysis presented here unveils potential causes for the continuous increase in global skin cancer cases and emphasizes the limitations of current sun protection approaches.
Collapse
Affiliation(s)
- Erick L Bastos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Frank H Quina
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Shanthakumar D, Leiloglou M, Kelliher C, Darzi A, Elson DS, Leff DR. A Comparison of Spectroscopy and Imaging Techniques Utilizing Spectrally Resolved Diffusely Reflected Light for Intraoperative Margin Assessment in Breast-Conserving Surgery: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:cancers15112884. [PMID: 37296847 DOI: 10.3390/cancers15112884] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Up to 19% of patients require re-excision surgery due to positive margins in breast-conserving surgery (BCS). Intraoperative margin assessment tools (IMAs) that incorporate tissue optical measurements could help reduce re-excision rates. This review focuses on methods that use and assess spectrally resolved diffusely reflected light for breast cancer detection in the intraoperative setting. Following PROSPERO registration (CRD42022356216), an electronic search was performed. The modalities searched for were diffuse reflectance spectroscopy (DRS), multispectral imaging (MSI), hyperspectral imaging (HSI), and spatial frequency domain imaging (SFDI). The inclusion criteria encompassed studies of human in vivo or ex vivo breast tissues, which presented data on accuracy. The exclusion criteria were contrast use, frozen samples, and other imaging adjuncts. 19 studies were selected following PRISMA guidelines. Studies were divided into point-based (spectroscopy) or whole field-of-view (imaging) techniques. A fixed-or random-effects model analysis generated pooled sensitivity/specificity for the different modalities, following heterogeneity calculations using the Q statistic. Overall, imaging-based techniques had better pooled sensitivity/specificity (0.90 (CI 0.76-1.03)/0.92 (CI 0.78-1.06)) compared with probe-based techniques (0.84 (CI 0.78-0.89)/0.85 (CI 0.79-0.91)). The use of spectrally resolved diffusely reflected light is a rapid, non-contact technique that confers accuracy in discriminating between normal and malignant breast tissue, and it constitutes a potential IMA tool.
Collapse
Affiliation(s)
- Dhurka Shanthakumar
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
- The Hamlyn Centre, Imperial College London, London SW7 2AZ, UK
| | - Maria Leiloglou
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
- The Hamlyn Centre, Imperial College London, London SW7 2AZ, UK
| | - Colm Kelliher
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
| | - Ara Darzi
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
- The Hamlyn Centre, Imperial College London, London SW7 2AZ, UK
| | - Daniel S Elson
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
- The Hamlyn Centre, Imperial College London, London SW7 2AZ, UK
| | - Daniel R Leff
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
- The Hamlyn Centre, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
24
|
Campbell JM, Mahbub SB, Habibalahi A, Agha A, Handley S, Anwer AG, Goldys EM. Clinical applications of non-invasive multi and hyperspectral imaging of cell and tissue autofluorescence beyond oncology. JOURNAL OF BIOPHOTONICS 2023; 16:e202200264. [PMID: 36602432 DOI: 10.1002/jbio.202200264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Hyperspectral and multispectral imaging of cell and tissue autofluorescence employs fluorescence imaging, without exogenous fluorophores, across multiple excitation/emission combinations (spectral channels). This produces an image stack where each pixel (matched by location) contains unique information about the sample's spectral properties. Analysis of this data enables access to a rich, molecularly specific data set from a broad range of cell-native fluorophores (autofluorophores) directly reflective of biochemical status, without use of fixation or stains. This non-invasive, non-destructive technology has great potential to spare the collection of biopsies from sensitive regions. As both staining and biopsy may be impossible, or undesirable, depending on the context, this technology great diagnostic potential for clinical decision making. The main research focus has been on the identification of neoplastic tissues. However, advances have been made in diverse applications-including ophthalmology, cardiovascular health, neurology, infection, assisted reproduction technology and organ transplantation.
Collapse
Affiliation(s)
- Jared M Campbell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Saabah B Mahbub
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Abbas Habibalahi
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Adnan Agha
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Shannon Handley
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Ayad G Anwer
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Sydney, Australia
| |
Collapse
|
25
|
Zaki Ewiss MA, Mahmoud MA, Steiner R. Effect of femtosecond laser interaction with human fibroblasts: a preliminary study. Lasers Med Sci 2023; 38:83. [PMID: 36867297 PMCID: PMC9984333 DOI: 10.1007/s10103-023-03740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/18/2023] [Indexed: 03/04/2023]
Abstract
In in vitro methods and cell culture models, femtosecond (fs) laser interaction has been employed to assess its effect on the proliferation and morphology of human skin fibroblasts. We cultured a primary human skin fibroblast cell line on a glass plate, passages 17-23. The cells were irradiated with a 90-fs laser at a wavelength of 800 nm and a repetition rate of 82 MHz. The target received an average power of 320 mW for 5, 20, and 100 s, corresponding to the radiation exposures of 22.6, 90.6, and 452.9 J/cm2, respectively. Using a laser scanning microscopy technique, the photon densities were measured to be 6.4 × 1018, 2.6 × 1019, and 1.3 × 1020 photons/cm2 in a spot area of 0.07 cm2; the recorded spectra were obtained from the laser interaction after 0.00, 1.00, 25.00, and 45.00 h. The cell count and morphological changes showed that the cultured cells were affected by laser irradiation under photon stress; some fibroblasts were killed, while others were injured and survived. We discovered evidence of the formation of several coenzyme compounds, such as flavin (500-600 nm), lipopigments (600-750 nm), and porphyrin (500-700 nm). This study is motivated by the future development of a novel, ultra-short fs laser system and the need to develop a basic in vitro understanding of photon-human cell interaction. The cell proliferation indicated that cells are partly killed or wounded. The exposure of fibroblasts to fs laser fluence up to 450 J/cm2 accelerates cell growth of the viable residual cell.
Collapse
Affiliation(s)
- M A Zaki Ewiss
- Department of Physics, Faculty of Science, Cairo University, Giza, 12630, Egypt.
| | - M A Mahmoud
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - R Steiner
- Institute of Laser Technologies in Medicine and Metrology at the University of Ulm, 89081, Ulm, Germany
| |
Collapse
|
26
|
Baria E, Giordano F, Guerrini R, Caporalini C, Buccoliero AM, Cicchi R, Pavone FS. Dysplasia and tumor discrimination in brain tissues by combined fluorescence, Raman, and diffuse reflectance spectroscopies. BIOMEDICAL OPTICS EXPRESS 2023; 14:1256-1275. [PMID: 36950232 PMCID: PMC10026567 DOI: 10.1364/boe.477035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Identification of neoplastic and dysplastic brain tissues is of paramount importance for improving the outcomes of neurosurgical procedures. This study explores the combined application of fluorescence, Raman and diffuse reflectance spectroscopies for the detection and classification of brain tumor and cortical dysplasia with a label-free modality. Multivariate analysis was performed to evaluate classification accuracies of these techniques-employed both in individual and multimodal configuration-obtaining high sensitivity and specificity. In particular, the proposed multimodal approach allowed discriminating tumor/dysplastic tissues against control tissue with 91%/86% sensitivity and 100%/100% specificity, respectively, whereas tumor from dysplastic tissues were discriminated with 89% sensitivity and 86% specificity. Hence, multimodal optical spectroscopy allows reliably differentiating these pathologies using a non-invasive, label-free approach that is faster than the gold standard technique and does not require any tissue processing, offering the potential for the clinical translation of the technology.
Collapse
Affiliation(s)
- Enrico Baria
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Flavio Giordano
- Division of Neurosurgery, Department of Neuroscience I, "A. Meyer" Children's Hospital, Viale Gaetano Pieraccini 24, Florence 50141, Italy
| | - Renzo Guerrini
- Division of Neurosurgery, Department of Neuroscience I, "A. Meyer" Children's Hospital, Viale Gaetano Pieraccini 24, Florence 50141, Italy
| | - Chiara Caporalini
- Division of Pathology, Department of Critical Care Medicine and Surgery, University of Florence, Viale Giovanni Battista Morgagni 85, Florence 50134, Italy
| | - Anna Maria Buccoliero
- Division of Pathology, Department of Critical Care Medicine and Surgery, University of Florence, Viale Giovanni Battista Morgagni 85, Florence 50134, Italy
| | - Riccardo Cicchi
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
| | - Francesco Saverio Pavone
- National Institute of Optics, National Research Council, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Via Nello Carrara 1, Sesto Fiorentino 50019, Italy
- Department of Physics and Astrophysics, University of Florence, Via Sansone 1, Sesto Fiorentino 50019, Italy
| |
Collapse
|
27
|
Chiang HJ, Koo DES, Kitano M, Burkitt S, Unruh JR, Zavaleta C, Trinh LA, Fraser SE, Cutrale F. HyU: Hybrid Unmixing for longitudinal in vivo imaging of low signal-to-noise fluorescence. Nat Methods 2023; 20:248-258. [PMID: 36658278 PMCID: PMC9911352 DOI: 10.1038/s41592-022-01751-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/13/2022] [Indexed: 01/21/2023]
Abstract
The expansion of fluorescence bioimaging toward more complex systems and geometries requires analytical tools capable of spanning widely varying timescales and length scales, cleanly separating multiple fluorescent labels and distinguishing these labels from background autofluorescence. Here we meet these challenging objectives for multispectral fluorescence microscopy, combining hyperspectral phasors and linear unmixing to create Hybrid Unmixing (HyU). HyU is efficient and robust, capable of quantitative signal separation even at low illumination levels. In dynamic imaging of developing zebrafish embryos and in mouse tissue, HyU was able to cleanly and efficiently unmix multiple fluorescent labels, even in demanding volumetric timelapse imaging settings. HyU permits high dynamic range imaging, allowing simultaneous imaging of bright exogenous labels and dim endogenous labels. This enables coincident studies of tagged components, cellular behaviors and cellular metabolism within the same specimen, providing more accurate insights into the orchestrated complexity of biological systems.
Collapse
Affiliation(s)
- Hsiao Ju Chiang
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Daniel E S Koo
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Masahiro Kitano
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Sean Burkitt
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Le A Trinh
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Scott E Fraser
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Francesco Cutrale
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Kumosa LS. Commonly Overlooked Factors in Biocompatibility Studies of Neural Implants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205095. [PMID: 36596702 PMCID: PMC9951391 DOI: 10.1002/advs.202205095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Biocompatibility of cutting-edge neural implants, surgical tools and techniques, and therapeutic technologies is a challenging concept that can be easily misjudged. For example, neural interfaces are routinely gauged on how effectively they determine active neurons near their recording sites. Tissue integration and toxicity of neural interfaces are frequently assessed histologically in animal models to determine tissue morphological and cellular changes in response to surgical implantation and chronic presence. A disconnect between histological and efficacious biocompatibility exists, however, as neuronal numbers frequently observed near electrodes do not match recorded neuronal spiking activity. The downstream effects of the myriad surgical and experimental factors involved in such studies are rarely examined when deciding whether a technology or surgical process is biocompatible. Such surgical factors as anesthesia, temperature excursions, bleed incidence, mechanical forces generated, and metabolic conditions are known to have strong systemic and thus local cellular and extracellular consequences. Many tissue markers are extremely sensitive to the physiological state of cells and tissues, thus significantly impacting histological accuracy. This review aims to shed light on commonly overlooked factors that can have a strong impact on the assessment of neural biocompatibility and to address the mismatch between results stemming from functional and histological methods.
Collapse
Affiliation(s)
- Lucas S. Kumosa
- Neuronano Research CenterDepartment of Experimental Medical ScienceMedical FacultyLund UniversityMedicon Village, Byggnad 404 A2, Scheelevägen 8Lund223 81Sweden
| |
Collapse
|
29
|
Characterization of conidial autofluorescence in powdery mildew. Heliyon 2022; 8:e12084. [PMID: 36544848 PMCID: PMC9761720 DOI: 10.1016/j.heliyon.2022.e12084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/06/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Autofluorescence is produced by endogenous fluorophores, such as NAD(P)H, lipofuscin, melanin, and riboflavin, indicating the accumulation of substances and the state of energy metabolism in organisms. As an obligate parasite, powdery mildew is wildly spread by air and parasitic crops. However, most identification studies have been based on morphology and molecular biology which were far too time- and labor-consuming, thus lacking characteristic, simple, and effective means. Using microscopy under the blue and cyan channels, we elaborated visible conidial autofluorescence in three powdery mildew species, Erysiphe quercicola, E. cichoracearum, and Podosphaera hibiscicola, with a sharp increase during the conidia senescence in E. quercicola. Additionally, the main spectral excitation detected by fluorescence spectrometery was 375 nm for these species, with a common emission peak at approximately 458-463 nm, and an additional trend at 487 nm for P. hibiscicola. Because NAD(P)H has a similar spectral feature, we further investigated the relation between NAD(P)H and conidial autofluorescence by fluorescence spectra. We observed that the reduced coenzymes prominently contributed to conidial autofluorescence; however, the conidial autofluorescence in P. hibiscicola displayed a different trend that may be affected by the oxidized coenzyme -NAD. Finally, the normalized average spectra of these three powdery mildew species and standard samples showed that the spectral trend of each species was similar but that the features in detail were specific and distinct based on principal component analysis. In conclusion, we showed and characterized conidial autofluorescence in three powdery mildew species for the first time. The specific conidial autofluorescence in these species provides a new idea for the development of field spore capture and identification devices for the discrimination of powdery mildew at the species level.
Collapse
|
30
|
Development of an Endoscopic Auto-Fluorescent Sensing Device to Aid in the Detection of Breast Cancer and Inform Photodynamic Therapy. Metabolites 2022; 12:metabo12111097. [PMID: 36422237 PMCID: PMC9697641 DOI: 10.3390/metabo12111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most diagnosed cancer type in women, with it being the second most deadly cancer in terms of total yearly mortality. Due to the prevalence of this disease, better methods are needed for both detection and treatment. Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent biomarkers that lend insight into cell and tissue metabolism. As such, we developed an endoscopic device to measure these metabolites in tissue to differentiate between malignant tumors and normal tissue. We performed initial validations in liquid phantoms as well as compared to a previously validated redox imaging system. We also imaged ex vivo tissue samples after modulation with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) and a combination of rotenone and antimycin A. We then imaged the rim and the core of MDA-MB-231 breast cancer tumors, with our results showing that the core of a cancerous lesion has a significantly higher optical redox ratio ([FAD]/([FAD] + [NADH])) than the rim, which agrees with previously published results. The mouse muscle tissues exhibited a significantly lower FAD, higher NADH, and lower redox ratio compared to the tumor core or rim. We also used the endoscope to measure NADH and FAD after photodynamic therapy treatment, a light-activated treatment methodology. Our results found that the NADH signal increases in the malignancy rim and core, while the core of cancers demonstrated a significant increase in the FAD signal.
Collapse
|
31
|
Potapov AL, Sirotkina MA, Matveev LA, Dudenkova VV, Elagin VV, Kuznetsov SS, Karabut MM, Komarova AD, Vagapova NN, Safonov IK, Kuznetsova IA, Radenska-Lopovok SG, Zagaynova EV, Gladkova ND. Multiphoton microscopy assessment of the structure and variability changes of dermal connective tissue in vulvar lichen sclerosus: A pilot study. JOURNAL OF BIOPHOTONICS 2022; 15:e202200036. [PMID: 35652856 DOI: 10.1002/jbio.202200036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/17/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In this article, we offer a novel classification of progressive changes in the connective tissue of dermis in vulvar lichen sclerosus (VLS) relying on quantitative assessment of the second harmonic generation (SHG) signal received from formalin fixed and deparaffinized tissue sections. We formulate criteria for distinguishing four degrees of VLS development: Initial-Mild-Moderate-Severe. Five quantitative characteristics (length and thickness type I Collagen fibers, Mean SHG signal intensity, Skewness and Coherence SHG signal) are used to describe the sequential degradation of connective tissue (changes in the structure, orientation, shape and density of collagen fibers) up to the formation of specific homogeneous masses. Each of the degrees has a characteristic set of quantitatively expressed features. We focus on the identification and description of early, initial changes of the dermis as the least specific. The results obtained by us and the proposed classification of the degrees of the disease can be used to objectify the dynamics of tissue changes during treatment.
Collapse
Affiliation(s)
| | | | - Lev A Matveev
- Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia
| | | | - Vadim V Elagin
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Sergey S Kuznetsov
- N.A. Semashko Nizhny Novgorod Regional Clinical Hospital, Nizhny Novgorod, Russia
| | - Maria M Karabut
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Anastasia D Komarova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Nailya N Vagapova
- N.A. Semashko Nizhny Novgorod Regional Clinical Hospital, Nizhny Novgorod, Russia
| | - Ivan K Safonov
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Irina A Kuznetsova
- N.A. Semashko Nizhny Novgorod Regional Clinical Hospital, Nizhny Novgorod, Russia
| | | | - Elena V Zagaynova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | | |
Collapse
|
32
|
Secchi V, Monguzzi A, Villa I. Design Principles of Hybrid Nanomaterials for Radiotherapy Enhanced by Photodynamic Therapy. Int J Mol Sci 2022; 23:8736. [PMID: 35955867 PMCID: PMC9369190 DOI: 10.3390/ijms23158736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Radiation (RT) remains the most frequently used treatment against cancer. The main limitation of RT is its lack of specificity for cancer tissues and the limited maximum radiation dose that can be safely delivered without damaging the surrounding healthy tissues. A step forward in the development of better RT is achieved by coupling it with other treatments, such as photodynamic therapy (PDT). PDT is an anti-cancer therapy that relies on the light activation of non-toxic molecules-called photosensitizers-to generate ROS such as singlet oxygen. By conjugating photosensitizers to dense nanoscintillators in hybrid architectures, the PDT could be activated during RT, leading to cell death through an additional pathway with respect to the one activated by RT alone. Therefore, combining RT and PDT can lead to a synergistic enhancement of the overall efficacy of RT. However, the involvement of hybrids in combination with ionizing radiation is not trivial: the comprehension of the relationship among RT, scintillation emission of the nanoscintillator, and therapeutic effects of the locally excited photosensitizers is desirable to optimize the design of the hybrid nanoparticles for improved effects in radio-oncology. Here, we discuss the working principles of the PDT-activated RT methods, pointing out the guidelines for the development of effective coadjutants to be tested in clinics.
Collapse
Affiliation(s)
- Valeria Secchi
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
- NANOMIB, Center for Biomedical Nanomedicine, University of Milano-Bicocca, P.zza Ateneo Nuovo 1, 20126 Milan, Italy
| | - Angelo Monguzzi
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
- NANOMIB, Center for Biomedical Nanomedicine, University of Milano-Bicocca, P.zza Ateneo Nuovo 1, 20126 Milan, Italy
| | - Irene Villa
- Institute of Physics of the Czech Academy of Sciences, FZU, Cukrovarnická 10/112, 16200 Prague, Czech Republic
| |
Collapse
|
33
|
Bavali A, Amani M. LIF spectroscopy of epithelial tissues: Assay of structural changeover due to the cancer progression. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112482. [PMID: 35660311 DOI: 10.1016/j.jphotobiol.2022.112482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Most of the human cancers occur in epithelial tissues containing basic cells with different shapes, and not only do the spectral properties of the tissue pigments alter due to cancer, but the cellular architecture also change. However, in optical diagnosis of the cancerous tissues, attention has been paid to the spectral changeover of native chromophores as bio-markers. Here, we have attempted to assay the structural alterations of the epithelial tissues during the cancer progression utilizing Laser induced fluorescence (LIF) spectroscopy as a fast, sensitive and easy-to-use method. In this regard, angular dependence of the LIF spectral features of the healthy and cancerous epithelial tissues (soaked in Rhodamine 6G solution) from three different human organs i. e. uterus, colon and kidney with distinct microstructures have been examined. In general, both wavelength and intensity at the peak of the LIF spectra depend on the tissue orientation and the angle of detection respect to the laser beam direction. Those optical parameters also demonstrate distinctive alterations in different tissues that is explicated based on the morphological alteration of the epithelial cells in each carcinoma type provided by pathology data.
Collapse
Affiliation(s)
- Ali Bavali
- Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), Iran.
| | - Marzieh Amani
- Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), Iran
| |
Collapse
|
34
|
Tajima S, Nakata E, Sakaguchi R, Saimura M, Mori Y, Morii T. A two-step screening to optimize the signal response of an auto-fluorescent protein-based biosensor. RSC Adv 2022; 12:15407-15419. [PMID: 35693243 PMCID: PMC9121230 DOI: 10.1039/d2ra02226e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022] Open
Abstract
Auto-fluorescent protein (AFP)-based biosensors transduce the structural change in their embedded recognition modules induced by recognition/reaction events to fluorescence signal changes of AFP. The lack of detailed structural information on the recognition module often makes it difficult to optimize AFP-based biosensors. To enhance the signal response derived from detecting the putative structural change in the nitric oxide (NO)-sensing segment of transient receptor potential canonical 5 (TRPC5) fused to enhanced green fluorescent protein (EGFP), EGFP-TRPC5, a facile two-step screening strategy, in silico first and in vitro second, was applied to variants of EGFP-TRPC5 deletion-mutated within the recognition module. In in silico screening, the structural changes of the recognition modules were evaluated as root-mean-square-deviation (RMSD) values, and 10 candidates were efficiently selected from 47 derivatives. Through in vitro screening, four mutants were identified that showed a larger change in signal response than the parent EGFP-TRPC5. One mutant in particular, 551-575, showed four times larger change upon reaction with NO and H2O2. Furthermore, mutant 551-575 also showed a signal response upon reaction with H2O2 in mammalian HEK293 cells, indicating that the mutant has the potential to be applied as a biosensor for cell measurement. Therefore, this two-step screening method effectively allows the selection of AFP-based biosensors with sufficiently enhanced signal responses for application in mammalian cells. A two-step screening procedure allows optimization of the optical response of an auto-fluorescent protein-based biosensor for nitric oxide without structural information.![]()
Collapse
Affiliation(s)
- Shunsuke Tajima
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| | - Reiko Sakaguchi
- School of Medicine, University of Occupational and Environmental Health 1-1 Iseigaoka, Yahatanishi-ku Kitakyushu Fukuoka 807-8555 Japan
| | - Masayuki Saimura
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyotodaigakukatsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
35
|
Habibalahi A, Allende A, Michael J, Anwer AG, Campbell J, Mahbub SB, Bala C, Coroneo MT, Goldys EM. Pterygium and Ocular Surface Squamous Neoplasia: Optical Biopsy Using a Novel Autofluorescence Multispectral Imaging Technique. Cancers (Basel) 2022; 14:1591. [PMID: 35326744 PMCID: PMC8946656 DOI: 10.3390/cancers14061591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, differentiation of pterygium vs. ocular surface squamous neoplasia based on multispectral autofluorescence imaging technique was investigated. Fifty (N = 50) patients with histopathological diagnosis of pterygium (PTG) and/or ocular surface squamous neoplasia (OSSN) were recruited. Fixed unstained biopsy specimens were imaged by multispectral microscopy. Tissue autofluorescence images were obtained with a custom-built fluorescent microscope with 59 spectral channels, each with specific excitation and emission wavelength ranges, suitable for the most abundant tissue fluorophores such as elastin, flavins, porphyrin, and lipofuscin. Images were analyzed using a new classification framework called fused-classification, designed to minimize interpatient variability, as an established support vector machine learning method. Normal, PTG, and OSSN regions were automatically detected and delineated, with accuracy evaluated against expert assessment by a specialist in OSSN pathology. Signals from spectral channels yielding signals from elastin, flavins, porphyrin, and lipofuscin were significantly different between regions classified as normal, PTG, and OSSN (p < 0.01). Differential diagnosis of PTG/OSSN and normal tissue had accuracy, sensitivity, and specificity of 88 ± 6%, 84 ± 10% and 91 ± 6%, respectively. Our automated diagnostic method generated maps of the reasonably well circumscribed normal/PTG and OSSN interface. PTG and OSSN margins identified by our automated analysis were in close agreement with the margins found in the H&E sections. Such a map can be rapidly generated on a real time basis and potentially used for intraoperative assessment.
Collapse
Affiliation(s)
- Abbas Habibalahi
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| | - Alexandra Allende
- Douglass Hanly Moir Pathology, Macquarie Park, NSW 2113, Australia;
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jesse Michael
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| | - Ayad G. Anwer
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| | - Jared Campbell
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| | - Saabah B. Mahbub
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| | - Chandra Bala
- Department of Ophthalmology, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Minas T. Coroneo
- Department of Ophthalmology, University of New South Wales at Prince of Wales Hospital, High Street, Randwick, NSW 2031, Australia;
| | - Ewa M. Goldys
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia; (J.M.); (A.G.A.); (J.C.); (S.B.M.); (E.M.G.)
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia
| |
Collapse
|
36
|
Wu M, Wang Y, Liu Y, Peng C, Shen Y. Luminescence Properties of Cr3+ Doped LiGa5O8 Prepared by Solid-State Synthesis. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
An Engineered Nanocomplex with Photodynamic and Photothermal Synergistic Properties for Cancer Treatment. Int J Mol Sci 2022; 23:ijms23042286. [PMID: 35216400 PMCID: PMC8874418 DOI: 10.3390/ijms23042286] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) are promising therapeutic methods for cancer treatment; however, as single modality therapies, either PDT or PTT is still limited in its success rate. A dual application of both PDT and PTT, in a combined protocol, has gained immense interest. In this study, gold nanoparticles (AuNPs) were conjugated with a PDT agent, meso-tetrahydroxyphenylchlorin (mTHPC) photosensitizer, designed as nanotherapeutic agents that can activate a dual photodynamic/photothermal therapy in SH-SY5Y human neuroblastoma cells. The AuNP-mTHPC complex is biocompatible, soluble, and photostable. PDT efficiency is high because of immediate reactive oxygen species (ROS) production upon mTHPC activation by the 650-nm laser, which decreased mitochondrial membrane potential (∆ψm). Likewise, the AuNP-mTHPC complex is used as a photoabsorbing (PTA) agent for PTT, due to efficient plasmon absorption and excellent photothermal conversion characteristics of AuNPs under laser irradiation at 532 nm. Under the laser irradiation of a PDT/PTT combination, a twofold phototoxicity outcome follows, compared to PDT-only or PTT-only treatment. This indicates that PDT and PTT have synergistic effects together as a combined therapeutic method. Our study aimed at applying the AuNP-mTHPC approach as a potential treatment of cancer in the biomedical field.
Collapse
|
38
|
Benoit C, Rodrigues A, Calderaro J, Charpy C, Simonin S, Deybach JC, Gouya L, Puy H, Schmitt C, Farcy R, Vilgrain V, Paradis V, Pote N, Lafdil F, Mule S, Itti E, Luciani A. Autofluorescence imaging within the liver: a promising tool for the detection and characterization of primary liver tumors. Eur Radiol 2021; 32:2481-2491. [PMID: 34694452 DOI: 10.1007/s00330-021-08307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To assess the performance of 405 nm-induced autofluorescence for the characterization of primary liver nodules on ex vivo resected specimens. MATERIALS AND METHODS Forty resected liver specimens bearing 53 primary liver nodules were included in this IRB-approved prospective study. Intratissular spectroscopic measurements were performed using a 25-G fibered-needle on all ex vivo specimens: 5 autofluorescence measurements were performed in both nodules and adjacent parenchyma. The spectra derivatives of the 635 and 670 nm autofluorescence peaks observed in nodules and in adjacent liver parenchyma were compared (Kruskal-Wallis and Mann-Whitney when appropriate). RESULTS A total of 42 potentially evolutive primary liver nodules-34 hepatocellular carcinomas, 4 intrahepatic cholangiocarcinomas, 4 hepatocellular adenomas-and 11 benign nodules-5 focal nodular hyperplasias, 6 regenerative nodules-were included. Both 635 and 670 nm Δderivatives were significantly higher in benign as compared to potentially evolutive (PEV) nodules (respectively 32.9 ± 4.5 vs 15.3 ± 1.4; p < 0.0001 and 5.7 ± 0.6 vs 2.5 ± 0.1; p < 0.0001) with respective sensitivity and specificity of 78% and 91% for distinguishing PEV from benign nodules. CONCLUSION 405 nm-induced autofluorescence enables the discrimination of benign from PEV primary liver nodules, suggesting that autofluorescence imaging could be used to optimize US targeted liver biopsies. KEY POINTS • 405 nm-induced autofluorescence can distinguish liver tumors from the adjacent liver parenchyma. • The analysis of autofluorescence imaging observed within primary liver tumors can discriminate benign tumors from those requiring follow-up or targeted liver biopsy. • In current practice, autofluorescence imaging could be embedded within biopsy needle, to enable, in addition to ultrasound guidance, optimal targeting of liver nodules which could optimize tissue sampling.
Collapse
Affiliation(s)
- Charlotte Benoit
- Nodea Medical, 1 mail du Pr Georges Mathé, 94800, Villejuif, France
| | - Aurélie Rodrigues
- Nodea Medical, 1 mail du Pr Georges Mathé, 94800, Villejuif, France.,INSERM IMRB U955, Equipe 18, Créteil, France
| | - Julien Calderaro
- Faculté de Santé de Créteil, UPEC, Créteil, France.,Département de Pathologie, Hôpitaux Universitaires Henri Mondor, AP-HP, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Créteil Cedex, France
| | - Cécile Charpy
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, AP-HP, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Créteil Cedex, France
| | - Sylvie Simonin
- Centre Français Des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes, France
| | - Jean-Charles Deybach
- Centre Français Des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes, France.,UMR1149 INSERM, Centre de Recherche Sur L'Inflammation (CRI), Université Paris Diderot, Site Bichat, Laboratory of Excellence, GR-Ex, Paris, France
| | - Laurent Gouya
- Centre Français Des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes, France.,UMR1149 INSERM, Centre de Recherche Sur L'Inflammation (CRI), Université Paris Diderot, Site Bichat, Laboratory of Excellence, GR-Ex, Paris, France
| | - Hervé Puy
- Centre Français Des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes, France.,UMR1149 INSERM, Centre de Recherche Sur L'Inflammation (CRI), Université Paris Diderot, Site Bichat, Laboratory of Excellence, GR-Ex, Paris, France
| | - Caroline Schmitt
- Centre Français Des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes, France.,UMR1149 INSERM, Centre de Recherche Sur L'Inflammation (CRI), Université Paris Diderot, Site Bichat, Laboratory of Excellence, GR-Ex, Paris, France
| | - René Farcy
- Laboratoire Aimé Cotton, Université Paris-Sud, ENS Cachan, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France
| | | | | | - Nicolas Pote
- Anatomopathologie, Hôpital Beaujon, APHP, Clichy, France
| | - Fouad Lafdil
- INSERM IMRB U955, Equipe 18, Créteil, France.,Faculté de Santé de Créteil, UPEC, Créteil, France.,Institut Universitaire de France (IUF), Cedex 05 75231, Paris, France
| | - Sébastien Mule
- INSERM IMRB U955, Equipe 18, Créteil, France.,Faculté de Santé de Créteil, UPEC, Créteil, France.,Service d'Imagerie Médicale, Hôpitaux Universitaires Henri Mondor, AP-HP, Créteil, France
| | - Emmanuel Itti
- Faculté de Santé de Créteil, UPEC, Créteil, France.,Service de Médecine Nucléaire, Hôpitaux Universitaires Henri Mondor, AP-HP, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Créteil Cedex, France
| | - Alain Luciani
- INSERM IMRB U955, Equipe 18, Créteil, France. .,Faculté de Santé de Créteil, UPEC, Créteil, France. .,Service d'Imagerie Médicale, Hôpitaux Universitaires Henri Mondor, AP-HP, Créteil, France.
| |
Collapse
|
39
|
Imaging intracellular protein interactions/activity in neurons using 2-photon fluorescence lifetime imaging microscopy. Neurosci Res 2021; 179:31-38. [PMID: 34666101 DOI: 10.1016/j.neures.2021.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022]
Abstract
Through the decades, 2-photon fluorescence microscopy has allowed visualization of microstructures, such as synapses, with high spatial resolution in deep brain tissue. However, signal transduction, such as protein activity and protein-protein interaction in neurons in tissues and in vivo, has remained elusive because of the technical difficulty of observing biochemical reactions at the level of subcellular resolution in light-scattering tissues. Recently, 2-photon fluorescence microscopy combined with fluorescence lifetime imaging microscopy (2pFLIM) has enabled visualization of various protein activities and protein-protein interactions at submicrometer resolution in tissue with a reasonable temporal resolution. Thus far, 2pFLIM has been extensively applied for imaging kinase and small GTPase activation in dendritic spines of hippocampal neurons in slice cultures. However, it has been recently applied to various subcellular structures, such as axon terminals and nuclei, and has increased our understanding of spatially organized molecular dynamics. One of the future directions of 2pFLIM utilization is to combine various optogenetic tools for manipulating protein activity. This combination allows the activation of specific proteins with light and visualization of its readout as the activation of downstream molecules. Here, we have introduced the recent application of 2pFLIM for neurons and present the utilization of a new optogenetic tool in combination with 2pFLIM.
Collapse
|
40
|
Shrirao AB, Schloss RS, Fritz Z, Shrirao MV, Rosen R, Yarmush ML. Autofluorescence of blood and its application in biomedical and clinical research. Biotechnol Bioeng 2021; 118:4550-4576. [PMID: 34487351 DOI: 10.1002/bit.27933] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/05/2022]
Abstract
Autofluorescence of blood has been explored as a label free approach for detection of cell types, as well as for diagnosis and detection of infection, cancer, and other diseases. Although blood autofluorescence is used to indicate the presence of several physiological abnormalities with high sensitivity, it often lacks disease specificity due to use of a limited number of fluorophores in the detection of several abnormal conditions. In addition, the measurement of autofluorescence is sensitive to the type of sample, sample preparation, and spectroscopy method used for the measurement. Therefore, while current blood autofluorescence detection approaches may not be suitable for primary clinical diagnosis, it certainly has tremendous potential in developing methods for large scale screening that can identify high risk groups for further diagnosis using highly specific diagnostic tests. This review discusses the source of blood autofluorescence, the role of spectroscopy methods, and various applications that have used autofluorescence of blood, to explore the potential of blood autofluorescence in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Anil B Shrirao
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Zachary Fritz
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Mayur V Shrirao
- Department of pathology, Government Medical College, Nagpur, India
| | - Robert Rosen
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
41
|
Out-of-Phase Imaging after Optical Modulation (OPIOM) for Multiplexed Fluorescence Imaging Under Adverse Optical Conditions. Methods Mol Biol 2021; 2350:191-227. [PMID: 34331287 DOI: 10.1007/978-1-0716-1593-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescence imaging has become a powerful tool for observations in biology. Yet it has also encountered limitations to overcome optical interferences of ambient light, autofluorescence, and spectrally interfering fluorophores. In this account, we first examine the current approaches which address these limitations. Then we more specifically report on Out-of-Phase Imaging after Optical Modulation (OPIOM), which has proved attractive for highly selective multiplexed fluorescence imaging even under adverse optical conditions. After exposing the OPIOM principle, we detail the protocols for successful OPIOM implementation.
Collapse
|
42
|
Stewart HL, Birch DJS. Fluorescence Guided Surgery. Methods Appl Fluoresc 2021; 9. [PMID: 34399409 DOI: 10.1088/2050-6120/ac1dbb] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/16/2021] [Indexed: 01/22/2023]
Abstract
Fluorescence guided surgery (FGS) is an imaging technique that allows the surgeon to visualise different structures and types of tissue during a surgical procedure that may not be as visible under white light conditions. Due to the many potential advantages of fluorescence guided surgery compared to more traditional clinical imaging techniques such as its higher contrast and sensitivity, less subjective use, and ease of instrument operation, the research interest in fluorescence guided surgery continues to grow over various key aspects such as fluorescent probe development and surgical system development as well as its potential clinical applications. This review looks to summarise some of the emerging opportunities and developments that have already been made in fluorescence guided surgery in recent years while highlighting its advantages as well as limitations that need to be overcome in order to utilise the full potential of fluorescence within the surgical environment.
Collapse
Affiliation(s)
- Hazel L Stewart
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - David J S Birch
- Department of Physics, The Photophysics Research Group, University of Strathclyde, SUPA, John Anderson Building, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| |
Collapse
|
43
|
Vasquez D, Knorr F, Hoffmann F, Ernst G, Marcu L, Schmitt M, Guntinas-Lichius O, Popp J, Schie IW. Multimodal Scanning Microscope Combining Optical Coherence Tomography, Raman Spectroscopy and Fluorescence Lifetime Microscopy for Mesoscale Label-Free Imaging of Tissue. Anal Chem 2021; 93:11479-11487. [PMID: 34380310 DOI: 10.1021/acs.analchem.1c01637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multimodal optical imaging of tissue has significant potential to become an indispensable diagnostic tool in clinical pathology. Conventional bright-field microscopy provides contrast based on attenuation or reflectance of light, having no depth-related information and no molecular specificity. Recent developments in biomedical optics have introduced a variety of optical modalities, such as Raman spectroscopy (RS), fluorescence lifetime imaging microscopy (FLIM) of endogenous fluorophores, optical coherence tomography (OCT), and others, which provide a distinct characteristic, i.e., molecular, chemical, and morphological information, of the sample. To harvest the full analytical potential of those modalities, we have developed a novel multimodal imaging system, which allows the co-registered acquisition of OCT/FLIM/RS on a single device. The present implementation allows the investigation of biological tissues in the mesoscale range, 0.1-5 mm in a correlated manner. Due to the co-registered acquisition of the modalities, it is possible to directly compare and evaluate the corresponding information between the three modalities. Moreover, by additionally preparing and characterizing entire pathological hematoxylin and eosin (H&E) slides of head and neck biopsies, it is also possible to correlate the multimodal spectroscopic information to any location of the ground truth H&E information. To the best of our knowledge, this is the first development and implementation of a compact and clinically applicable multimodal scanning microscope, which combines OCT, FLIM, and RS together with the possibility for co-registering H&E information for a morpho-chemical tissue characterization and a correlation with the pathological ground truth (H&E) of the underlying signal origin directly in a clinical environment.
Collapse
Affiliation(s)
- David Vasquez
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Florian Knorr
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Franziska Hoffmann
- Department of Otorhinolaryngology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Günther Ernst
- Department of Otorhinolaryngology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Laura Marcu
- Department of Biomedical Engineering, University of California Davis, One Shields Ave, Davis, California 95616, United States
| | - Michael Schmitt
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Iwan W Schie
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Department for Medical Engineering and Biotechnology, University of Applied Sciences-Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| |
Collapse
|
44
|
Raman, near-infrared and fluorescence spectroscopy for determination of collagen content in ground meat and poultry by-products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Identifying metastatic ability of prostate cancer cell lines using native fluorescence spectroscopy and machine learning methods. Sci Rep 2021; 11:2282. [PMID: 33500529 PMCID: PMC7838178 DOI: 10.1038/s41598-021-81945-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
Metastasis is the leading cause of mortalities in cancer patients due to the spreading of cancer cells to various organs. Detecting cancer and identifying its metastatic potential at the early stage is important. This may be achieved based on the quantification of the key biomolecular components within tissues and cells using recent optical spectroscopic techniques. The aim of this study was to develop a noninvasive label-free optical biopsy technique to retrieve the characteristic molecular information for detecting different metastatic potentials of prostate cancer cells. Herein we report using native fluorescence (NFL) spectroscopy along with machine learning (ML) to differentiate prostate cancer cells with different metastatic abilities. The ML algorithms including principal component analysis (PCA) and nonnegative matrix factorization (NMF) were used for dimension reduction and feature detection. The characteristic component spectra were used to identify the key biomolecules that are correlated with metastatic potentials. The relative concentrations of the molecular spectral components were retrieved and used to classify the cancer cells with different metastatic potentials. A multi-class classification was performed using support vector machines (SVMs). The NFL spectral data were collected from three prostate cancer cell lines with different levels of metastatic potentials. The key biomolecules in the prostate cancer cells were identified to be tryptophan, reduced nicotinamide adenine dinucleotide (NADH) and hypothetically lactate as well. The cancer cells with different metastatic potentials were classified with high accuracy using the relative concentrations of the key molecular components. The results suggest that the changes in the relative concentrations of these key fluorophores retrieved from NFL spectra may present potential criteria for detecting prostate cancer cells of different metastatic abilities.
Collapse
|
46
|
Spatially-Resolved Multiply-Excited Autofluorescence and Diffuse Reflectance Spectroscopy: SpectroLive Medical Device for Skin In Vivo Optical Biopsy. ELECTRONICS 2021. [DOI: 10.3390/electronics10030243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This contribution presents the development of an optical spectroscopy device, called SpectroLive, that allows spatially-resolved multiply-excited autofluorescence and diffuse reflectance measurements. Besides describing the device, this study aims at presenting the metrological and safety regulation validations performed towards its aimed application to skin carcinoma in vivo diagnosis. This device is made of six light sources and four spectrometers for detection of the back-scattered intensity spectra collected through an optical probe (made of several optical fibers) featuring four source-to-detector separations (from 400 to 1000 µm). In order to be allowed by the French authorities to be evaluated in clinics, the SpectroLive device was successfully checked for electromagnetic compatibility and electrical and photobiological safety. In order to process spectra, spectral correction and metrological calibration were implemented in the post-processing software. Finally, we characterized the device’s sensitivity to autofluorescence detection: excitation light irradiance at the optical probe tip in contact with skin surface ranges from 2 to 11 W/m², depending on the light source. Such irradiances combined to sensitive detectors allow the device to acquire a full spectroscopic sequence within 6 s which is a short enough duration to be compatible with optical-guided surgery. All these results about sensitivity and safety make the SpectroLive device mature enough to be evaluated through a clinical trial that aims at evaluating its diagnostic accuracy for skin carcinoma diagnosis.
Collapse
|
47
|
Non-Invasive Early Detection of Oral Cancers Using Fluorescence Visualization with Optical Instruments. Cancers (Basel) 2020; 12:cancers12102771. [PMID: 32992486 PMCID: PMC7601016 DOI: 10.3390/cancers12102771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Oral cancer has a high mortality rate. Then, oral cancer screening is needed for early detection and treatment. Fluorescence visualization is non-invasive, convenient, and in real-time, and examinations can be repeated. Our study aimed to show the usefulness of oral cancer screening with fluorescence visualization. A total of 502 patients were performed using fluorescence visualization that was analyzed using subjective and objective evaluation. Results of this study, subjective evaluation for detection oral cancer was high sensitivity and low specificity, while objective evaluation using imaging processing analysis was high sensitivity and high specificity. Therefore, oral cancer screening using fluorescence visualization is useful for the detection of oral cancer. The widespread use of this screening can reduce the mortality rate of oral cancer. Abstract Background: Oral cancer screening is important for early detection and early treatment, which help improve survival rates. Biopsy is the gold standard for a definitive diagnosis but is invasive and painful, while fluorescence visualization is non-invasive, convenient, and real-time, and examinations can be repeated using optical instruments. The purpose of this study was to clarify the usefulness of fluorescence visualization in oral cancer screening. Methods: A total of 502 patients, who were examined using fluorescence visualization with optical instruments in our hospitals between 2014 and 2019, were enrolled in this study. The final diagnosis was performed by pathological examination. Fluorescence visualization was analyzed using subjective and objective evaluations. Results: Subjective evaluations for detecting oral cancer offered 96.8% sensitivity and 48.4% specificity. Regarding the objective evaluations, sensitivity and specificity were 43.7% and 84.6% for mean green value, 55.2% and 67.0% for median green value, 82.0% and 44.2% for coefficient of variation of value, 59.6% and 45.3% for skewness, and 85.1% and 75.8% for value ratio. For the sub-analysis of oral cancer, all factors on objective and subjective evaluation showed no significant difference. Conclusions: Fluorescence visualization with subjective and objective evaluation is useful for oral cancer screening.
Collapse
|
48
|
Antibody-Based Immunotherapy: Alternative Approaches for the Treatment of Metastatic Melanoma. Biomedicines 2020; 8:biomedicines8090327. [PMID: 32899183 PMCID: PMC7555584 DOI: 10.3390/biomedicines8090327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the least common form of skin cancer and is associated with the highest mortality. Where melanoma is mostly unresponsive to conventional therapies (e.g., chemotherapy), BRAF inhibitor treatment has shown improved therapeutic outcomes. Photodynamic therapy (PDT) relies on a light-activated compound to produce death-inducing amounts of reactive oxygen species (ROS). Their capacity to selectively accumulate in tumor cells has been confirmed in melanoma treatment with some encouraging results. However, this treatment approach has not reached clinical fruition for melanoma due to major limitations associated with the development of resistance and subsequent side effects. These adverse effects might be bypassed by immunotherapy in the form of antibody–drug conjugates (ADCs) relying on the ability of monoclonal antibodies (mAbs) to target specific tumor-associated antigens (TAAs) and to be used as carriers to specifically deliver cytotoxic warheads into corresponding tumor cells. Of late, the continued refinement of ADC therapeutic efficacy has given rise to photoimmunotherapy (PIT) (a light-sensitive compound conjugated to mAbs), which by virtue of requiring light activation only exerts its toxic effect on light-irradiated cells. As such, this review aims to highlight the potential clinical benefits of various armed antibody-based immunotherapies, including PDT, as alternative approaches for the treatment of metastatic melanoma.
Collapse
|
49
|
Chen LC, Kuo S, Lloyd WR, Kim HM, Marcelo CL, Feinberg SE, Mycek MA. Optical Metric Assessed Engineered Tissues Over a Range of Viability States. Tissue Eng Part C Methods 2020; 25:305-313. [PMID: 30973066 DOI: 10.1089/ten.tec.2018.0344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Many conventional methods to assess engineered tissue morphology and viability are destructive techniques with limited utility for tissue constructs intended for implantation in patients. Sterile label-free optical molecular imaging methods analyzed tissue endogenous fluorophores without staining, noninvasively and quantitatively assessing engineered tissue, in lieu of destructive assessment methods. The objective of this study is to further investigate label-free optical metrics and their correlation with destructive methods. Tissue-engineered constructs (n = 33 constructs) fabricated with primary human oral keratinocytes (n = 10 patients) under control, thermal stress, and rapamycin treatment manufacturing conditions exhibited a range of tissue viability states, as evaluated by quantitative histology scoring, WST-1 assay, Ki-67 immunostaining imaging, and label-free optical molecular imaging methods. Both histology sections of fixed tissues and cross-sectioned label-free optical images of living tissues provided quantitative spatially selective information on local tissue morphology, but optical methods noninvasively characterized both local tissue morphology and cellular viability at the same living tissue site. Furthermore, optical metrics noninvasively assessed living tissue viability with a statistical significance consistent with the destructive tissue assays WST-1 and histology. Over the range of cell viability states created experimentally, optical metrics noninvasively and quantitatively characterized living tissue viability and correlated with the destructive WST-1 tissue assay. By providing, under sterile conditions, noninvasive metrics that were comparable with conventional destructive tissue assays, label-free optical molecular imaging has the potential to monitor and assess engineered tissue construct viability before surgical implantation.
Collapse
Affiliation(s)
- Leng-Chun Chen
- 1 Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor, Michigan
| | - Shiuhyang Kuo
- 2 Department of Oral and Maxillofacial Surgery, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - William R Lloyd
- 1 Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor, Michigan
| | - Hyungjin Myra Kim
- 3 Center for Statistical Consultation and Research, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Cynthia L Marcelo
- 4 Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Stephen E Feinberg
- 2 Department of Oral and Maxillofacial Surgery, University of Michigan School of Dentistry, Ann Arbor, Michigan.,4 Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Mary-Ann Mycek
- 1 Department of Biomedical Engineering, University of Michigan College of Engineering and Medical School, Ann Arbor, Michigan
| |
Collapse
|
50
|
Habibalahi A, Moghari MD, Campbell JM, Anwer AG, Mahbub SB, Gosnell M, Saad S, Pollock C, Goldys EM. Non-invasive real-time imaging of reactive oxygen species (ROS) using auto-fluorescence multispectral imaging technique: A novel tool for redox biology. Redox Biol 2020; 34:101561. [PMID: 32526699 PMCID: PMC7287272 DOI: 10.1016/j.redox.2020.101561] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Detecting reactive oxygen species (ROS) that play a critical role as redox modulators and signalling molecules in biological systems currently requires invasive methods such as ROS -specific indicators for imaging and quantification. We developed a non-invasive, real-time, label-free imaging technique for assessing the level of ROS in live cells and thawed cryopreserved tissues that is compatible with in-vivo imaging. The technique is based on autofluorescence multispectral imaging (AFMI) carried out in an adapted fluorescence microscope with an expanded number of spectral channels spanning specific excitation (365 nm-495 nm) and emission (420 nm-700 nm) wavelength ranges. We established a strong quantitative correlation between the spectral information obtained from AFMI and the level of ROS obtained from CellROX staining. The results were obtained in several cell types (HeLa, PANC1 and mesenchymal stem cells) and in live kidney tissue. Additioanly,two spectral regimes were considered: with and without UV excitation (wavelengths > 400 nm); the latter being suitable for UV-sensitive systems such as the eye. Data were analyzed by linear regression combined with an optimization method of swarm intelligence. This allowed the calibration of AFMI signals to the level of ROS with excellent correlation (R = 0.84, p = 0.00) in the entire spectral range and very good correlation (R = 0.78, p = 0.00) in the limited, UV-free spectral range. We also developed a strong classifier which allowed us to distinguish moderate and high levels of ROS in these two regimes (AUC = 0.91 in the entire spectral range and AUC = 0.78 for UV-free imaging). These results indicate that ROS in cells and tissues can be imaged non-invasively, which opens the way to future clinical applications in conditions where reactive oxygen species are known to contribute to progressive disease such as in ophthalmology, diabetes, kidney disease, cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Abbas Habibalahi
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia.
| | - Mahdieh Dashtbani Moghari
- School of Biomedical Engineering, Faculty of Engineering, Darlington Campus, The University of Sydney, NSW, 2006, Australia
| | - Jared M Campbell
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia
| | - Ayad G Anwer
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia
| | - Saabah B Mahbub
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia
| | | | - Sonia Saad
- Kolling Institute of Medical Research, University of Sydney, Camperdown, 2006, NSW, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, University of Sydney, Camperdown, 2006, NSW, Australia
| | - Ewa M Goldys
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia
| |
Collapse
|