1
|
Schwabenland E, Jelen CJ, Weber N, Lamparter T. Photophobotaxis in the filamentous cyanobacterium Phormidium lacuna: Mechanisms and implications for photosynthesis-based light direction sensing. Photochem Photobiol 2024; 100:1290-1309. [PMID: 38269403 DOI: 10.1111/php.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
Cyanobacterium Phormidium lacuna filaments move from dark to illuminated areas by twitching motility. Time-lapse recordings demonstrated that this photophobotaxis response was based on random movements with movement reversion at the light-dark border. The filaments in the illuminated area form a biofilm attached to the surface. The wild-type and the pixJ and cphA mutants were investigated for photophobotaxis at diverse wavelengths and intensities. CphA is a cyanobacterial phytochrome; PixJ is a biliprotein with a methyl-accepting chemotaxis domain and is regarded as a phototaxis photoreceptor in other species. The cphA mutant exhibited reduced biofilm surface binding. The pixJ mutant was characterized as a negative photophobotaxis regulator and not as a light direction sensor. 3-(3,4-dichlorophenyl)1,1-dimethylurea (DCMU) blocks electron transfer in PS II. At concentrations of 100 and 1000 μM DCMU, photophobotaxis was inhibited to a greater extent than motility, suggesting that PSII has a role in photophobotaxis. We argue that the intracellular concentrations of regular photoreceptors, including CphA or PixJ, are too small for a filament to sense rapid light intensity changes in very weak light. Three arguments, specific inhibition by DCMU, broad spectral sensitivity, and sensitivity against weak light, support photosynthesis pigments for use as photophobotaxis sensors.
Collapse
Affiliation(s)
| | | | - Nora Weber
- Karlsruhe Institute of Technology, JKIP, Karlsruhe, Germany
| | | |
Collapse
|
2
|
Lamparter T. Photosystems and photoreceptors in cyanobacterial phototaxis and photophobotaxis. FEBS Lett 2024; 598:1899-1908. [PMID: 38946046 DOI: 10.1002/1873-3468.14968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Cyanobacteria move by gliding motility on surfaces toward the light or away from it. It is as yet unclear how the light direction is sensed on the molecular level. Diverse photoreceptor knockout mutants have a stronger response toward the light than the wild type. Either the light direction is sensed by multiple photoreceptors or by photosystems. In a study on photophobotaxis of the filamentous cyanobacterium Phormidium lacuna, broad spectral sensitivity, inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and a highly sensitive response speaks for photosystems as light direction sensors. Here, it is discussed whether the photosystem theory could hold for phototaxis of other cyanobacteria.
Collapse
Affiliation(s)
- Tilman Lamparter
- Karlsruhe Institute of Technology KIT, Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften, Karlsruhe, Germany
| |
Collapse
|
3
|
Han Y, Hammerl J, Flemming FE, Schuergers N, Wilde A. A cyanobacterial chemotaxis-like system controls phototactic orientation via phosphorylation of two antagonistic response regulators. MICROLIFE 2024; 5:uqae012. [PMID: 38887653 PMCID: PMC11181946 DOI: 10.1093/femsml/uqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Photosynthetic cyanobacteria exhibit phototaxis, utilizing type IV pili (T4P) to navigate either toward or away from a light source. The Tax1 system is a chemotaxis-like signal transduction pathway that controls the switch in cell polarity, which is crucial for positive phototaxis in Synechocystis sp. PCC 6803. The system consists of the blue/green light sensor PixJ, which controls the histidine kinase PixL and two CheY-like response regulators, PixG and PixH. However, the molecular mechanism by which Tax1 regulates T4P activity and polarity is poorly understood. Here, we investigated the phosphotransfer between PixL and its cognate response regulators in vitro and analyzed the localization and function of wild-type and phosphorylation-deficient PixG and PixH during phototaxis. We found that both PixG and PixH are phosphorylated by PixL but have different roles in phototaxis regulation. Only phosphorylated PixG interacts with the T4P motor protein PilB1 and localizes to the leading cell pole under directional light, thereby promoting positive phototaxis. In contrast, PixH is a negative regulator of PixG phosphorylation and inhibits positive phototaxis. We also demonstrated that the C-terminal receiver domain of PixL is essential for positive phototaxis, and modulates the kinase activity of PixL. Our findings reveal the molecular basis of positive phototaxis regulation by the Tax1 system and provide insights into the division of labor between PatA-type and CheY-like response regulators in cyanobacterial chemotaxis-like systems. Furthermore, these findings highlight similarities in the regulation of movement direction during twitching motility in phototactic and chemotactic bacteria.
Collapse
Affiliation(s)
- Yu Han
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Jonas Hammerl
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albertstr. 19A, University of Freiburg, Germany
| | - Felicitas E Flemming
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Nils Schuergers
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Wu S, Gao Y, Zhang Q, Liu F, Hu W. Application of Multi-Omics Technologies to the Study of Phytochromes in Plants. Antioxidants (Basel) 2024; 13:99. [PMID: 38247523 PMCID: PMC10812741 DOI: 10.3390/antiox13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Phytochromes (phy) are distributed in various plant organs, and their physiological effects influence plant germination, flowering, fruiting, and senescence, as well as regulate morphogenesis throughout the plant life cycle. Reactive oxygen species (ROS) are a key regulatory factor in plant systemic responses to environmental stimuli, with an attractive regulatory relationship with phytochromes. With the development of high-throughput sequencing technology, omics techniques have become powerful tools, and researchers have used omics techniques to facilitate the big data revolution. For an in-depth analysis of phytochrome-mediated signaling pathways, integrated multi-omics (transcriptomics, proteomics, and metabolomics) approaches may provide the answer from a global perspective. This article comprehensively elaborates on applying multi-omics techniques in studying phytochromes. We describe the current research status and future directions on transcriptome-, proteome-, and metabolome-related network components mediated by phytochromes when cells are subjected to various stimulation. We emphasize the importance of multi-omics technologies in exploring the effects of phytochromes on cells and their molecular mechanisms. Additionally, we provide methods and ideas for future crop improvement.
Collapse
Affiliation(s)
- Shumei Wu
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Yue Gao
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Qi Zhang
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| |
Collapse
|
5
|
Nakane D. Live Cell Imaging of the Twitching Motility of Cyanobacteria by High-Resolution Microscopy. Methods Mol Biol 2023; 2646:255-263. [PMID: 36842120 DOI: 10.1007/978-1-0716-3060-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Many cyanobacteria show directional movement either toward or away from light sources. The cell movement, also known as twitching motility, is usually driven by type IV pili (T4P), a bacterial molecular machine. The machine generates a propulsion force through repeated cycles of extension and retraction of pilus filaments. Here, I describe a phototaxis assay for observing Synechocystis sp. PCC6803 and Thermosynechococcus vulcanus at the single-cell level with optical microscopy. By adding fluorescent beads, I also describe a method how to visualize the asymmetric activation of T4P during phototaxis.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan.
| |
Collapse
|
6
|
Ritter SPA, Brand LA, Vincent SL, Rosana ARR, Lewis AC, Whitford DS, Owttrim GW. Multiple Light-Dark Signals Regulate Expression of the DEAD-Box RNA Helicase CrhR in Synechocystis PCC 6803. Cells 2022; 11:3397. [PMID: 36359793 PMCID: PMC9655292 DOI: 10.3390/cells11213397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Since oxygenic photosynthesis evolved in the common ancestor of cyanobacteria during the Archean, a range of sensing and response strategies evolved to allow efficient acclimation to the fluctuating light conditions experienced in the diverse environments they inhabit. However, how these regulatory mechanisms are assimilated at the molecular level to coordinate individual gene expression is still being elucidated. Here, we demonstrate that integration of a series of three distinct light signals generate an unexpectedly complex network regulating expression of the sole DEAD-box RNA helicase, CrhR, encoded in Synechocystis sp. PCC 6803. The mechanisms function at the transcriptional, translational and post-translation levels, fine-tuning CrhR abundance to permit rapid acclimation to fluctuating light and temperature regimes. CrhR abundance is enhanced 15-fold by low temperature stress. We initially confirmed that the primary mechanism controlling crhR transcript accumulation at 20 °C requires a light quantity-driven reduction of the redox poise in the vicinity of the plastoquinone pool. Once transcribed, a specific light quality cue, a red light signal, was required for crhR translation, far-red reversal of which indicates a phytochrome-mediated mechanism. Examination of CrhR repression at 30 °C revealed that a redox- and light quality-independent light signal was required to initiate CrhR degradation. The crucial role of light was further revealed by the observation that dark conditions superseded the light signals required to initiate each of these regulatory processes. The findings reveal an unexpected complexity of light-dark sensing and signaling that regulate expression of an individual gene in cyanobacteria, an integrated mechanism of environmental perception not previously reported.
Collapse
Affiliation(s)
- Sean P. A. Ritter
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| | - Logan A. Brand
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Shelby L. Vincent
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | - Allison C. Lewis
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Denise S. Whitford
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - George W. Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
7
|
Ryabchun A, Babu D, Movilli J, Plamont R, Stuart MC, Katsonis N. Run-and-halt motility of droplets in response to light. Chem 2022; 8:2290-2300. [PMID: 36003886 PMCID: PMC9387750 DOI: 10.1016/j.chempr.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Microscopic motility is a property that emerges from systems of interacting molecules. Unraveling the mechanisms underlying such motion requires coupling the chemistry of molecules with physical processes that operate at larger length scales. Here, we show that photoactive micelles composed of molecular switches gate the autonomous motion of oil droplets in water. These micelles switch from large trans-micelles to smaller cis-micelles in response to light, and only the trans-micelles are effective fuel for the motion. Ultimately, it is this light that controls the movement of the droplets via the photochemistry of the molecules composing the micelles used as fuel. Notably, the droplets evolve positive photokinetic movement, and in patchy light environments, they preferentially move toward peripheral areas as a result of the difference in illumination conditions at the periphery. Our findings demonstrate that engineering the interplay between molecular photo-chemistry and microscopic motility allows designing motile systems rationally.
Collapse
Affiliation(s)
- Alexander Ryabchun
- Stratingh Institute of Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Dhanya Babu
- Stratingh Institute of Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Jacopo Movilli
- Stratingh Institute of Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Rémi Plamont
- Stratingh Institute of Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Marc C.A. Stuart
- Stratingh Institute of Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Nathalie Katsonis
- Stratingh Institute of Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
8
|
Salt flat microbial diversity and dynamics across salinity gradient. Sci Rep 2022; 12:11293. [PMID: 35788147 PMCID: PMC9253026 DOI: 10.1038/s41598-022-15347-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022] Open
Abstract
Sabkhas are hypersaline, mineral-rich, supratidal mudflats that harbor microbes that are adapted to high salt concentration. Sabkha microbial diversity is generally studied for their community composition, but less is known about their genetic structure and heterogeneity. In this study, we analyzed a coastal sabkha for its microbial composition using 16S rDNA and whole metagenome, as well as for its population genetic structure. Our 16S rDNA analysis show high alpha diversity in both inner and edge sabkha than outer sabkha. Beta diversity result showed similar kind of microbial composition between inner and edge sabkha, while outer sabkha samples show different microbial composition. At phylum level, Bacteroidetes (~ 22 to 34%), Euryarchaeota (~ 18 to ~ 30%), unclassified bacteria (~ 24 to ~ 35%), Actinobacteria (~ 0.01 to ~ 11%) and Cyanobacteria (less than 1%) are predominantly found in both inside and edge sabkha regions, whereas Proteobacteria (~ 92 to ~ 97%) and Parcubacteria (~ 1 to ~ 2%) are predominately found in outer sabkha. Our 225 metagenomes assembly from this study showed similar bacterial community profile as observed in 16S rDNA-based analysis. From the assembled genomes, we found important genes that are involved in biogeochemical cycles and secondary metabolite biosynthesis. We observed a dynamic, thriving ecosystem that engages in metabolic activity that shapes biogeochemical structure via carbon fixation, nitrogen, and sulfur cycling. Our results show varying degrees of horizontal gene transfers (HGT) and homologous recombination, which correlates with the observed high diversity for these populations. Moreover, our pairwise population differentiation (Fst) for the abundance of species across the salinity gradient of sabkhas identified genes with strong allelic differentiation, lower diversity and elevated nonsynonymous to synonymous ratio of variants, which suggest selective sweeps for those gene variants. We conclude that the process of HGT, combined with recombination and gene specific selection, constitute the driver of genetic variation in bacterial population along a salinity gradient in the unique sabkha ecosystem.
Collapse
|
9
|
Bunbury F, Rivas C, Calatrava V, Shelton AN, Grossman A, Bhaya D. Differential Phototactic Behavior of Closely Related Cyanobacterial Isolates from Yellowstone Hot Spring Biofilms. Appl Environ Microbiol 2022; 88:e0019622. [PMID: 35499327 PMCID: PMC9128501 DOI: 10.1128/aem.00196-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
Phototrophic biofilms in most environments experience major changes in light levels throughout a diel cycle. Phototaxis can be a useful strategy for optimizing light exposure under these conditions, but little is known about its role in cyanobacteria from thermal springs. We examined two closely related Synechococcus isolates (Synechococcus OS-A dominates at 60 to 65°C and OS-B' at 50 to 55°C) from outflows of Octopus Spring in Yellowstone National Park. Both isolates exhibited phototaxis and photokinesis in white light, but with differences in speed and motility bias. OS-B' exhibited phototaxis toward UVA, blue, green, and red wavelengths, while OS-A primarily exhibited phototaxis toward red and green. OS-A also exhibited negative phototaxis under certain conditions. The repertoires of photoreceptors and signal transduction elements in both isolates were quite different from those characterized in other unicellular cyanobacteria. These differences in the photoresponses between OS-A and OS-B' in conjunction with in situ observations indicate that phototactic strategies may be quite versatile and finely tuned to the light and local environment. IMPORTANCE Optimizing light absorption is of paramount importance to photosynthetic organisms. Some photosynthetic microbes have evolved a sophisticated process called phototaxis to move toward or away from a light source. In many hot springs in Yellowstone National Park, cyanobacteria thrive in thick, laminated biofilms or microbial mats, where small movements can result in large changes in light exposure. We quantified the light-dependent motility behaviors in isolates representing two of the most abundant and closely related cyanobacterial species from these springs. We found that they exhibited unexpected differences in their speed, directionality, and responses to different intensities or qualities of light. An examination of their genomes revealed several variations from well-studied phototaxis-related genes. Studying these recently isolated cyanobacteria reveals that diverse phototactic strategies can exist even among close relatives in the same environment. It also provides insights into the importance of phototaxis for growth and survival in microbial biofilm communities.
Collapse
Affiliation(s)
- Freddy Bunbury
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| | - Carlos Rivas
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| | - Victoria Calatrava
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| | - Amanda N. Shelton
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| | - Arthur Grossman
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| | - Devaki Bhaya
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| |
Collapse
|
10
|
Cyanobacteria: Model Microorganisms and Beyond. Microorganisms 2022; 10:microorganisms10040696. [PMID: 35456747 PMCID: PMC9025173 DOI: 10.3390/microorganisms10040696] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
In this review, the general background is provided on cyanobacteria, including morphology, cell membrane structure, and their photosynthesis pathway. The presence of cyanobacteria in nature, and their industrial applications are discussed, and their production of secondary metabolites are explained. Biofilm formation, as a common feature of microorganisms, is detailed and the role of cell diffusion in bacterial colonization is described. Then, the discussion is narrowed down to cyanobacterium Synechocystis, as a lab model microorganism. In this relation, the morphology of Synechocystis is discussed and its different elements are detailed. Type IV pili, the complex multi-protein apparatus for motility and cell-cell adhesion in Synechocystis is described and the underlying function of its different elements is detailed. The phototaxis behavior of the cells, in response to homogenous or directional illumination, is reported and its relation to the run and tumble statistics of the cells is emphasized. In Synechocystis suspensions, there may exist a reciprocal interaction between the cell and the carrying fluid. The effects of shear flow on the growth, doubling per day, biomass production, pigments, and lipid production of Synechocystis are reported. Reciprocally, the effects of Synechocystis presence and its motility on the rheological properties of cell suspensions are addressed. This review only takes up the general grounds of cyanobacteria and does not get into the detailed biological aspects per se. Thus, it is substantially more comprehensive in that sense than other reviews that have been published in the last two decades. It is also written not only for the researchers in the field, but for those in physics and engineering, who may find it interesting, useful, and related to their own research.
Collapse
|
11
|
Abstract
Light is a ubiquitous energy source and environmental signal that broadly impacts the lifestyle of a large number of photosynthetic/nonphotosynthetic microorganisms living in the euphotic layer. However, the responses of deep-sea microbes to light are largely unknown, even though blue light is proposed to be distributed in the deep ocean. Here, we successfully cultured a novel bacterial species, named Spongiibacter nanhainus CSC3.9, from deep-sea cold seep samples by a blue light induction approach. The growth of strain CSC3.9 was obviously promoted by the illumination of blue light. We next determined BLUF (a typical blue light photoreceptor) was the most essential factor directing light sensing of strain CSC3.9 through a combined proteomic and genetic method. The function of light sensing mediated by BLUF was further confirmed by the in vitro-synthesized protein. Notably, homologs of BLUF widely existed across the marine microorganisms (containing Spongiibacter species) derived from different environments, including cold seeps. This strongly indicates that the distribution of light utilization by the nonphototrophic bacteria living in the ocean is broad and has been substantially underestimated. IMPORTANCE Extensive studies have been conducted to explore the mechanisms of light sensing and utilization by microorganisms that live in the photic zone. Strikingly, accumulated evidence shows that light is distributed in the deep biosphere. However, the existence and process of light sensing and utilization by microbes inhabiting the deep ocean have been seldom reported. In the present study, a novel bacterial strain, Spongiibacter nanhainus CSC3.9, was enriched and purified from a deep-sea cold seep sample through a blue light induction method. Combined with genomic, proteomic, genetic, and biochemical approaches, the mechanism of this novel strain sensing blue light through a BLUF-dependent pathway was detailed. Our study provides a good model to study the mechanisms of light sensing mediated by deep-sea nonphototrophic bacteria.
Collapse
|
12
|
Han Y, Jakob A, Engel S, Wilde A, Nils S. PATAN-domain regulators interact with the Type IV pilus motor to control phototactic orientation in the cyanobacterium Synechocystis. Mol Microbiol 2021; 117:790-801. [PMID: 34936151 DOI: 10.1111/mmi.14872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Many prokaryotes show complex behaviors that require the intricate spatial and temporal organization of cellular protein machineries, leading to asymmetrical protein distribution and cell polarity. One such behavior is cyanobacterial phototaxis which relies on the dynamic localization of the Type IV pilus motor proteins in response to light. In the cyanobacterium Synechocystis, various signaling systems encompassing chemotaxis-related CheY- and PatA-like response regulators are critical players in switching between positive and negative phototaxis depending on the light intensity and wavelength. In this study, we show that PatA-type regulators evolved from chemosensory systems. Using fluorescence microscopy and yeast-two-hybrid analysis, we demonstrate that they localize to the inner membrane, where they interact with the N-terminal cytoplasmic domain of PilC and the pilus assembly ATPase PilB1. By separately expressing the subdomains of the response regulator PixE, we confirm that only the N-terminal PATAN domain interacts with PilB1, localizes to the membrane, and is sufficient to reverse phototactic orientation. These experiments established that the PATAN domain is the principal output domain of PatA-type regulators which we presume to modulate pilus extension by binding to the pilus motor components.
Collapse
Affiliation(s)
- Yu Han
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Annik Jakob
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Sophia Engel
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| | - Schuergers Nils
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
13
|
Sugimoto Y, Masuda S. In vivo localization and oligomerization of PixD and PixE for controlling phototaxis in the cyanobacterium Synechocystis sp. PCC 6803. J GEN APPL MICROBIOL 2021; 67:54-58. [PMID: 33342920 DOI: 10.2323/jgam.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phototaxis is a phenomenon where cyanobacteria move toward a light source. Previous studies have shown that the blue-light-using-flavin (BLUF)-type photoreceptor PixD and the response regulator-like protein PixE control the phototaxis in the cyanobacterium Synechocystis sp. PCC 6803. The pixD-null mutant moves away from light, whereas WT, pixE mutant, and pixD pixE double mutant move toward the light. This indicates that PixE functions downstream of PixD and influences the direction of movement. However, it is still unclear how the light signal received by PixD is transmitted to PixE, and then subsequently transmitted to the type IV pili motor mechanism. Here, we investigated intracellular localization and oligomerization of PixD and PixE to elucidate mechanisms of phototaxis regulation. Blue-native PAGE analysis, coupled with western blotting, indicated that most PixD exist as a dimer in soluble fractions, whereas PixE localized in ~250 kDa and ~450 kDa protein complexes in membrane fractions. When blue-native PAGE was performed after illuminating the membrane fractions with blue light, PixE levels in the ~250 kDa and ~450 kDa complexes were reduced and increased, respectively. These results suggest that PixE, localized in the ~450 kDa complex, controls activity of the motor ATPase PilB1 to regulate pilus motility.
Collapse
Affiliation(s)
- Yuki Sugimoto
- Department of Life Science and Technology, Tokyo Institute of Technology
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
14
|
Sui M, Li Y, Jiang Y, Zhang Y, Wang L, Zhang W, Wang X. Light exposure interferes with electroactive biofilm enrichment and reduces extracellular electron transfer efficiency. WATER RESEARCH 2021; 188:116512. [PMID: 33161361 DOI: 10.1016/j.watres.2020.116512] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/18/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Light plays a vital role in shaping the structure of natural biofilms, but the effect of light on electroactive biofilm (EAB) has not been systematically studied. Herein, the influence of light on the formation of EAB was investigated. The EAB grown in darkness was more electroactive (EAB-0) with a peak current of ∼4.5 A/m2, which was 196 and 5556 times higher than EABs formed under light intensities of 600 (EAB-600) and 1200 lux (EAB-1200). A thin EAB (30 μm) with spherical pink aggregates was obtained after 13 days in the darkness, comparing to a dense and flat biofilm grown under light conditions. Although the biomass in EAB-1200 (38.5 ± 1.6 mg/L) was 3 times larger than that in EAB-0 (11.4 ± 1.8 mg/L), the degradation of substrate was not sufficient. EAB-0 contained 85% Geobacter species, while the Rhodopseudomonas species made up 66% and 75% of EAB-600 and EAB-1200, respectively. The polysaccharides produced by EAB-1200 was 4801 ± 253 mg/m2, which were 2.3 times higher than 2073 ± 160 mg/m2 of EAB-0, resulting in lower electro-conductivity of the extracellular polymeric substances (EPS) under light conditions. Our findings confirmed that the light exposure affected EAB performance by altering the microbial components, electron transfer capacity, and biofilm morphology, which can be used in predictions of the formation and properties of engineered EAB in outdoor environments.
Collapse
Affiliation(s)
- Mingrui Sui
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Yiying Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuhang Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
15
|
Conradi FD, Mullineaux CW, Wilde A. The Role of the Cyanobacterial Type IV Pilus Machinery in Finding and Maintaining a Favourable Environment. Life (Basel) 2020; 10:life10110252. [PMID: 33114175 PMCID: PMC7690835 DOI: 10.3390/life10110252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Type IV pili (T4P) are proteinaceous filaments found on the cell surface of many prokaryotic organisms and convey twitching motility through their extension/retraction cycles, moving cells across surfaces. In cyanobacteria, twitching motility is the sole mode of motility properly characterised to date and is the means by which cells perform phototaxis, the movement towards and away from directional light sources. The wavelength and intensity of the light source determine the direction of movement and, sometimes in concert with nutrient conditions, act as signals for some cyanobacteria to form mucoid multicellular assemblages. Formation of such aggregates or flocs represents an acclimation strategy to unfavourable environmental conditions and stresses, such as harmful light conditions or predation. T4P are also involved in natural transformation by exogenous DNA, secretion processes, and in cellular adaptation and survival strategies, further cementing the role of cell surface appendages. In this way, cyanobacteria are finely tuned by external stimuli to either escape unfavourable environmental conditions via phototaxis, exchange genetic material, and to modify their surroundings to fit their needs by forming multicellular assemblies.
Collapse
Affiliation(s)
- Fabian D. Conradi
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (F.D.C.); (C.W.M.)
| | - Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (F.D.C.); (C.W.M.)
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg; Germany
- Correspondence:
| |
Collapse
|
16
|
Menon SN, Varuni P, Menon GI. Information integration and collective motility in phototactic cyanobacteria. PLoS Comput Biol 2020; 16:e1007807. [PMID: 32352961 PMCID: PMC7237038 DOI: 10.1371/journal.pcbi.1007807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/19/2020] [Accepted: 03/20/2020] [Indexed: 11/19/2022] Open
Abstract
Cells in microbial colonies integrate information across multiple spatial and temporal scales while sensing environmental cues. A number of photosynthetic cyanobacteria respond in a directional manner to incident light, resulting in the phototaxis of individual cells. Colonies of such bacteria exhibit large-scale changes in morphology, arising from cell-cell interactions, during phototaxis. These interactions occur through type IV pili-mediated physical contacts between cells, as well as through the secretion of complex polysaccharides (‘slime’) that facilitates cell motion. Here, we describe a computational model for such collective behaviour in colonies of the cyanobacterium Synechocystis. The model is designed to replicate observations from recent experiments on the emergent response of the colonies to varied light regimes. It predicts the complex colony morphologies that arise as a result. We ask if changes in colony morphology during phototaxis can be used to infer if cells integrate information from multiple light sources simultaneously, or respond to these light sources separately at each instant of time. We find that these two scenarios cannot be distinguished from the shapes of colonies alone. However, we show that tracking the trajectories of individual cyanobacteria provides a way of determining their mode of response. Our model allows us to address the emergent nature of this class of collective bacterial motion, linking individual cell response to the dynamics of colony shape. Microbial colonies in the wild often consist of large groups of heterogeneous cells that coordinate and integrate information across multiple spatio-temporal scales. We describe a computational model for one such collective behaviour, phototaxis, in colonies of the cyanobacterium Synechocystis that move in response to light. The model replicates experimental observations of the response of cyanobacterial colonies to varied light regimes, and predicts the complex colony morphologies that arise as a result. The results suggest that tracking the trajectories of individual cyanobacteria may provide a way of determining their mode of information integration. Our model allows us to address the emergent nature of this class of collective bacterial motion, linking individual cell response to the large scale dynamics of the colony.
Collapse
Affiliation(s)
- Shakti N. Menon
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, Tamil Nadu, India
| | - P. Varuni
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, Tamil Nadu, India
| | - Gautam I. Menon
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, Tamil Nadu, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, India
- * E-mail:
| |
Collapse
|
17
|
Wallner T, Pedroza L, Voigt K, Kaever V, Wilde A. The cyanobacterial phytochrome 2 regulates the expression of motility-related genes through the second messenger cyclic di-GMP. Photochem Photobiol Sci 2020; 19:631-643. [PMID: 32255440 DOI: 10.1039/c9pp00489k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cyanobacterial phytochrome Cph2 is a light-dependent diguanylate cyclase of the cyanobacterium Synechocystis 6803. Under blue light, Cph2-dependent increase in the cellular c-di-GMP concentration leads to inhibition of surface motility and enhanced flocculation of cells in liquid culture. However, the targets of second messenger signalling in this cyanobacterium and its mechanism of action remained unclear. Here, we determined the cellular concentrations of cAMP and c-di-GMP in wild-type and Δcph2 cells after exposure to blue and green light. Inactivation of cph2 completely abolished the blue-light dependent increase in c-di-GMP content. Therefore, a microarray analysis with blue-light grown wild-type and Δcph2 mutant cells was used to identify c-di-GMP dependent alterations in transcript accumulation. The increase in the c-di-GMP content alters expression of genes encoding putative cell appendages, minor pilins and components of chemotaxis systems. The mRNA encoding the minor pilins pilA5-pilA6 was negatively affected by high c-di-GMP content under blue light, whereas the minor pilin encoding operon pilA9-slr2019 accumulates under these conditions, suggesting opposing functions of the respective gene sets. Artificial overproduction of c-di-GMP leads to similar changes in minor pilin gene expression and supports previous findings that c-di-GMP is important for flocculation via the function of minor pilins. Mutational and gene expression analysis further suggest that SyCRP2, a CRP-like transcription factor, is involved in regulation of minor pilin and putative chaperone usher pili gene expression.
Collapse
Affiliation(s)
- Thomas Wallner
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany.
| | - Laura Pedroza
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Karsten Voigt
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Annegret Wilde
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Chen Z, Li X, Tan X, Zhang Y, Wang B. Recent Advances in Biological Functions of Thick Pili in the Cyanobacterium Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2020; 11:241. [PMID: 32210999 PMCID: PMC7076178 DOI: 10.3389/fpls.2020.00241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/17/2020] [Indexed: 05/05/2023]
Abstract
Cyanobacteria have evolved various strategies to sense and adapt to biotic and abiotic stresses including active movement. Motility in cyanobacteria utilizing the type IV pili (TFP) is useful to cope with changing environmental conditions. The model cyanobacterium Synechocystis sp. PCC 6803 (hereafter named Synechocystis) exhibits motility via TFP called thick pili, and uses it to seek out favorable light/nutrition or escape from unfavorable conditions. Recently, a number of studies on Synechocystis thick pili have been undertaken. Molecular approaches support the role of the pilin in motility, cell adhesion, metal utilization, and natural competence in Synechocystis. This review summarizes the most recent studies on the function of thick pili as well as their formation and regulation in this cyanobacterium.
Collapse
Affiliation(s)
- Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xitong Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yan Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
19
|
Wiltbank LB, Kehoe DM. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat Rev Microbiol 2020; 17:37-50. [PMID: 30410070 DOI: 10.1038/s41579-018-0110-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyanobacteria are an evolutionarily and ecologically important group of prokaryotes. They exist in diverse habitats, ranging from hot springs and deserts to glaciers and the open ocean. The range of environments that they inhabit can be attributed in part to their ability to sense and respond to changing environmental conditions. As photosynthetic organisms, one of the most crucial parameters for cyanobacteria to monitor is light. Cyanobacteria can sense various wavelengths of light and many possess a range of bilin-binding photoreceptors belonging to the phytochrome superfamily. Vital cellular processes including growth, phototaxis, cell aggregation and photosynthesis are tuned to environmental light conditions by these photoreceptors. In this Review, we examine the physiological responses that are controlled by members of this diverse family of photoreceptors and discuss the signal transduction pathways through which these photoreceptors operate. We highlight specific examples where the activities of multiple photoreceptors function together to fine-tune light responses. We also discuss the potential application of these photosensing systems in optogenetics and synthetic biology.
Collapse
Affiliation(s)
- Lisa B Wiltbank
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
20
|
Deuerling S, Kugler S, Klotz M, Zollfrank C, Van Opdenbosch D. A Perspective on Bio-Mediated Material Structuring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703656. [PMID: 29178190 DOI: 10.1002/adma.201703656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/22/2017] [Indexed: 06/07/2023]
Abstract
Bioinspiration, biomorphy, biomimicry, biomimetics, bionics, and biotemplating are terms used to describe the fabrication of materials or, more generally, systems to solve technological problems by abstracting, emulating, using, or transferring structures from biological paradigms. Herein, a brief overview of how the different terminologies are being typically applied is provided. It is proposed that there is a rich field of research that can be expanded by utilizing various novel approaches for the guidance of living organisms for "bio-mediated" material structuring purposes. As examples of contact-based or contact-free guidance, such as substrate patterning, the application of light, magnetic fields, or chemical gradients, potentially interesting methods of creating hierarchically structured monolithic engineering materials, using live patterned biomass, biofilms, or extracellular substances as scaffolds, are presented. The potential advantages of such materials are discussed, and examples of live self-patterning of materials are given.
Collapse
Affiliation(s)
- Steffi Deuerling
- Technical University of Munich Chair of Biogenic Polymers, Schulgasse 16, D-94315, Straubing, Germany
| | - Sabine Kugler
- Technical University of Munich Chair of Biogenic Polymers, Schulgasse 16, D-94315, Straubing, Germany
| | - Moritz Klotz
- Technical University of Munich Chair of Biogenic Polymers, Schulgasse 16, D-94315, Straubing, Germany
| | - Cordt Zollfrank
- Technical University of Munich Chair of Biogenic Polymers, Schulgasse 16, D-94315, Straubing, Germany
| | - Daniel Van Opdenbosch
- Technical University of Munich Chair of Biogenic Polymers, Schulgasse 16, D-94315, Straubing, Germany
| |
Collapse
|
21
|
Varuni P, Menon SN, Menon GI. Phototaxis as a Collective Phenomenon in Cyanobacterial Colonies. Sci Rep 2017; 7:17799. [PMID: 29259320 PMCID: PMC5736714 DOI: 10.1038/s41598-017-18160-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/05/2017] [Indexed: 01/16/2023] Open
Abstract
Cyanobacteria are a diverse group of photosynthetic bacteria that exhibit phototaxis, or motion in response to light. Cyanobacteria such as Synechocystis sp. secrete a mixture of complex polysaccharides that facilitate cell motion, while their type 4 pili allow them to physically attach to each other. Even though cells can respond individually to light, colonies are observed to move collectively towards the light source in dense finger-like projections. We present an agent-based model for cyanobacterial phototaxis that accounts for slime deposition as well as for direct physical links between bacteria, mediated through their type 4 pili. We reproduce the experimentally observed aggregation of cells at the colony boundary as a precursor to finger formation. Our model also describes the changes in colony morphology that occur when the location of the light source is abruptly changed. We find that the overall motion of cells toward light remains relatively unimpaired even if a fraction of them do not sense light, allowing heterogeneous populations to continue to mount a robust collective response to stimuli. Our work suggests that in addition to bio-chemical signalling via diffusible molecules in the context of bacterial quorum-sensing, short-ranged physical interactions may also contribute to collective effects in bacterial motility.
Collapse
Affiliation(s)
- P Varuni
- The Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Gautam I Menon
- The Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai, 600113, Tamil Nadu, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, Maharashtra, India.
| |
Collapse
|
22
|
Wilde A, Mullineaux CW. Light-controlled motility in prokaryotes and the problem of directional light perception. FEMS Microbiol Rev 2017; 41:900-922. [PMID: 29077840 PMCID: PMC5812497 DOI: 10.1093/femsre/fux045] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/12/2017] [Indexed: 12/02/2022] Open
Abstract
The natural light environment is important to many prokaryotes. Most obviously, phototrophic prokaryotes need to acclimate their photosynthetic apparatus to the prevailing light conditions, and such acclimation is frequently complemented by motility to enable cells to relocate in search of more favorable illumination conditions. Non-phototrophic prokaryotes may also seek to avoid light at damaging intensities and wavelengths, and many prokaryotes with diverse lifestyles could potentially exploit light signals as a rich source of information about their surroundings and a cue for acclimation and behavior. Here we discuss our current understanding of the ways in which bacteria can perceive the intensity, wavelength and direction of illumination, and the signal transduction networks that link light perception to the control of motile behavior. We discuss the problems of light perception at the prokaryotic scale, and the challenge of directional light perception in small bacterial cells. We explain the peculiarities and the common features of light-controlled motility systems in prokaryotes as diverse as cyanobacteria, purple photosynthetic bacteria, chemoheterotrophic bacteria and haloarchaea.
Collapse
Affiliation(s)
- Annegret Wilde
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre of Biological Signalling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
23
|
Asymmetric distribution of type IV pili triggered by directional light in unicellular cyanobacteria. Proc Natl Acad Sci U S A 2017; 114:6593-6598. [PMID: 28584115 DOI: 10.1073/pnas.1702395114] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The type IV pili (T4P) system is a supermolecular machine observed in prokaryotes. Cells repeat the cycle of T4P extension, surface attachment, and retraction to drive twitching motility. Although the properties of T4P as a motor have been scrutinized with biophysics techniques, the mechanism of regulation remains unclear. Here we provided the framework of the T4P dynamics at the single-cell level in Synechocystis sp. PCC6803, which can recognize light direction. We demonstrated that the dynamics was detected by fluorescent beads under an optical microscope and controlled by blue light that induces negative phototaxis; extension and retraction of T4P was activated at the forward side of lateral illumination to move away from the light source. Additionally, we directly visualized each pilus by fluorescent labeling, allowing us to quantify their asymmetric distribution. Finally, quantitative analyses of cell tracking indicated that T4P was generated uniformly within 0.2 min after blue-light exposure, and within the next 1 min the activation became asymmetric along the light axis to achieve directional cell motility; this process was mediated by the photo-sensing protein, PixD. This sequential process provides clues toward a general regulation mechanism of T4P system, which might be essentially common between archaella and other secretion apparatuses.
Collapse
|
24
|
Abstract
Environmental cues can stimulate a variety of single-cell responses, as well as collective behaviors that emerge within a bacterial community. These responses require signal integration and transduction, which can occur on a variety of time scales and often involve feedback between processes, for example, between growth and motility. Here, we investigate the dynamics of responses of the phototactic, unicellular cyanobacterium Synechocystis sp. PCC6803 to complex light inputs that simulate the natural environments that cells typically encounter. We quantified single-cell motility characteristics in response to light of different wavelengths and intensities. We found that red and green light primarily affected motility bias rather than speed, while blue light inhibited motility altogether. When light signals were simultaneously presented from different directions, cells exhibited phototaxis along the vector sum of the light directions, indicating that cells can sense and combine multiple signals into an integrated motility response. Under a combination of antagonistic light signal regimes (phototaxis-promoting green light and phototaxis-inhibiting blue light), the ensuing bias was continuously tuned by competition between the wavelengths, and the community response was dependent on both bias and cell growth. The phototactic dynamics upon a rapid light shift revealed a wavelength dependence on the time scales of photoreceptor activation/deactivation. Thus, Synechocystis cells achieve exquisite integration of light inputs at the cellular scale through continuous tuning of motility, and the pattern of collective behavior depends on single-cell motility and population growth. The photosynthetic cyanobacterium Synechocystis sp. exhibits phototaxis that is dependent on the incident light wavelength through the action of various photoreceptors. In natural environments, cells experience a set of highly dynamic and complex light inputs, yet how cells transduce multiple or dynamic inputs into motion is unknown. In this study, we measured the phototactic behaviors of single cells and communities as a function of light intensity or when illuminated by combinations of lights of different wavelengths or incidence directions. Responses to a spectrum of light regimes revealed that Synechocystis sp. integrates information about the light environment to tune its phototactic response, which is likely generated by competition among photoreceptors and the degree of wavelength-regulated growth to sensitively control the direction and degree of movement.
Collapse
|
25
|
Schuergers N, Lenn T, Kampmann R, Meissner MV, Esteves T, Temerinac-Ott M, Korvink JG, Lowe AR, Mullineaux CW, Wilde A. Cyanobacteria use micro-optics to sense light direction. eLife 2016; 5:12620. [PMID: 26858197 PMCID: PMC4758948 DOI: 10.7554/elife.12620] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/26/2015] [Indexed: 01/08/2023] Open
Abstract
Bacterial phototaxis was first recognized over a century ago, but the method by which such small cells can sense the direction of illumination has remained puzzling. The unicellular cyanobacterium Synechocystis sp. PCC 6803 moves with Type IV pili and measures light intensity and color with a range of photoreceptors. Here, we show that individual Synechocystis cells do not respond to a spatiotemporal gradient in light intensity, but rather they directly and accurately sense the position of a light source. We show that directional light sensing is possible because Synechocystis cells act as spherical microlenses, allowing the cell to see a light source and move towards it. A high-resolution image of the light source is focused on the edge of the cell opposite to the source, triggering movement away from the focused spot. Spherical cyanobacteria are probably the world's smallest and oldest example of a camera eye.
Collapse
Affiliation(s)
- Nils Schuergers
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Tchern Lenn
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Ronald Kampmann
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Markus V Meissner
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tiago Esteves
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto, , Portugal
| | - Maja Temerinac-Ott
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alan R Lowe
- London Centre for Nanotechnology, London, United Kingdom.,Institute for Structural and Molecular Biology, University College London and Birkbeck College London, London, United Kingdom
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
Chau RMW, Ursell T, Wang S, Huang KC, Bhaya D. Maintenance of motility bias during cyanobacterial phototaxis. Biophys J 2016; 108:1623-1632. [PMID: 25863054 DOI: 10.1016/j.bpj.2015.01.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/23/2014] [Accepted: 01/02/2015] [Indexed: 11/20/2022] Open
Abstract
Signal transduction in bacteria is complex, ranging across scales from molecular signal detectors and effectors to cellular and community responses to stimuli. The unicellular, photosynthetic cyanobacterium Synechocystis sp. PCC6803 transduces a light stimulus into directional movement known as phototaxis. This response occurs via a biased random walk toward or away from a directional light source, which is sensed by intracellular photoreceptors and mediated by Type IV pili. It is unknown how quickly cells can respond to changes in the presence or directionality of light, or how photoreceptors affect single-cell motility behavior. In this study, we use time-lapse microscopy coupled with quantitative single-cell tracking to investigate the timescale of the cellular response to various light conditions and to characterize the contribution of the photoreceptor TaxD1 (PixJ1) to phototaxis. We first demonstrate that a community of cells exhibits both spatial and population heterogeneity in its phototactic response. We then show that individual cells respond within minutes to changes in light conditions, and that movement directionality is conferred only by the current light directionality, rather than by a long-term memory of previous conditions. Our measurements indicate that motility bias likely results from the polarization of pilus activity, yielding variable levels of movement in different directions. Experiments with a photoreceptor (taxD1) mutant suggest a supplementary role of TaxD1 in enhancing movement directionality, in addition to its previously identified role in promoting positive phototaxis. Motivated by the behavior of the taxD1 mutant, we demonstrate using a reaction-diffusion model that diffusion anisotropy is sufficient to produce the observed changes in the pattern of collective motility. Taken together, our results establish that single-cell tracking can be used to determine the factors that affect motility bias, which can then be coupled with biophysical simulations to connect changes in motility behaviors at the cellular scale with group dynamics.
Collapse
Affiliation(s)
| | - Tristan Ursell
- Department of Bioengineering, Stanford University, Stanford, California
| | - Shuo Wang
- Department of Bioengineering, Stanford University, Stanford, California
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, California; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California.
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California.
| |
Collapse
|
27
|
Schuergers N, Nürnberg DJ, Wallner T, Mullineaux CW, Wilde A. PilB localization correlates with the direction of twitching motility in the cyanobacterium Synechocystis sp. PCC 6803. MICROBIOLOGY-SGM 2015; 161:960-966. [PMID: 25721851 DOI: 10.1099/mic.0.000064] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/20/2014] [Indexed: 01/05/2023]
Abstract
Twitching motility depends on the adhesion of type IV pili (T4P) to a substrate, with cell movement driven by extension and retraction of the pili. The mechanism of twitching motility, and the events that lead to a reversal of direction, are best understood in rod-shaped bacteria such as Myxococcus xanthus. In M. xanthus, the direction of movement depends on the unipolar localization of the pilus extension and retraction motors PilB and PilT to opposite cell poles. Reversal of direction results from relocalization of PilB and PilT. Some cyanobacteria utilize twitching motility for phototaxis. Here, we examine twitching motility in the cyanobacterium Synechocystis sp. PCC 6803, which has a spherical cell shape without obvious polarity. We use a motile Synechocystis sp. PCC 6803 strain expressing a functional GFP-tagged PilB1 protein to show that PilB1 tends to localize in 'crescents' adjacent to a specific region of the cytoplasmic membrane. Crescents are more prevalent under the low-light conditions that favour phototactic motility, and the direction of motility strongly correlates with the orientation of the crescent. We conclude that the direction of twitching motility in Synechocystis sp. PCC 6803 is controlled by the localization of the T4P apparatus, as it is in M. xanthus. The PilB1 crescents in the spherical cells of Synechocystis can be regarded as being equivalent to the leading pole in the rod-shaped cells.
Collapse
Affiliation(s)
- Nils Schuergers
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| | - Dennis J Nürnberg
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.,School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Thomas Wallner
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| | - Conrad W Mullineaux
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany.,School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Annegret Wilde
- Molecular Genetics, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
28
|
Genetic analysis reveals the identity of the photoreceptor for phototaxis in hormogonium filaments of Nostoc punctiforme. J Bacteriol 2014; 197:782-91. [PMID: 25488296 DOI: 10.1128/jb.02374-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In cyanobacterial Nostoc species, substratum-dependent gliding motility is confined to specialized nongrowing filaments called hormogonia, which differentiate from vegetative filaments as part of a conditional life cycle and function as dispersal units. Here we confirm that Nostoc punctiforme hormogonia are positively phototactic to white light over a wide range of intensities. N. punctiforme contains two gene clusters (clusters 2 and 2i), each of which encodes modular cyanobacteriochrome-methyl-accepting chemotaxis proteins (MCPs) and other proteins that putatively constitute a basic chemotaxis-like signal transduction complex. Transcriptional analysis established that all genes in clusters 2 and 2i, plus two additional clusters (clusters 1 and 3) with genes encoding MCPs lacking cyanobacteriochrome sensory domains, are upregulated during the differentiation of hormogonia. Mutational analysis determined that only genes in cluster 2i are essential for positive phototaxis in N. punctiforme hormogonia; here these genes are designated ptx (for phototaxis) genes. The cluster is unusual in containing complete or partial duplicates of genes encoding proteins homologous to the well-described chemotaxis elements CheY, CheW, MCP, and CheA. The cyanobacteriochrome-MCP gene (ptxD) lacks transmembrane domains and has 7 potential binding sites for bilins. The transcriptional start site of the ptx genes does not resemble a sigma 70 consensus recognition sequence; moreover, it is upstream of two genes encoding gas vesicle proteins (gvpA and gvpC), which also are expressed only in the hormogonium filaments of N. punctiforme.
Collapse
|
29
|
Ansong C, Sadler NC, Hill EA, Lewis MP, Zink EM, Smith RD, Beliaev AS, Konopka AE, Wright AT. Characterization of protein redox dynamics induced during light-to-dark transitions and nutrient limitation in cyanobacteria. Front Microbiol 2014; 5:325. [PMID: 25071738 PMCID: PMC4080843 DOI: 10.3389/fmicb.2014.00325] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/13/2014] [Indexed: 12/17/2022] Open
Abstract
Protein redox chemistry constitutes a major void in knowledge pertaining to photoautotrophic system regulation and signaling processes. We have employed a chemical biology approach to analyze redox sensitive proteins in live Synechococcus sp. PCC 7002 cells in both light and dark periods, and to understand how cellular redox balance is disrupted during nutrient perturbation. The present work identified 300 putative redox-sensitive proteins that are involved in the generation of reductant, macromolecule synthesis, and carbon flux through central metabolic pathways, and may be involved in cell signaling and response mechanisms. Furthermore, our research suggests that dynamic redox changes in response to specific nutrient limitations, including carbon and nitrogen limitations, contribute to the regulatory changes driven by a shift from light to dark. Taken together, these results contribute to a high-level understanding of post-translational mechanisms regulating flux distributions and suggest potential metabolic engineering targets for redirecting carbon toward biofuel precursors.
Collapse
Affiliation(s)
- Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Natalie C Sadler
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Eric A Hill
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Michael P Lewis
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Erika M Zink
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Alexander S Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Allan E Konopka
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| |
Collapse
|
30
|
Hess WR, Berghoff BA, Wilde A, Steglich C, Klug G. Riboregulators and the role of Hfq in photosynthetic bacteria. RNA Biol 2014; 11:413-26. [PMID: 24651049 PMCID: PMC4152350 DOI: 10.4161/rna.28035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/29/2014] [Indexed: 12/25/2022] Open
Abstract
Anoxygenic and oxygenic bacteria directly convert solar energy into biomass using photosynthesis. The formation and composition of photosynthetic complexes has to be tightly controlled in response to environmental conditions, as exposure to sunlight can be harmful due to the generation of reactive oxygen species and the damaging effects of UV irradiation. Therefore, photosynthetic bacteria are exposed to a particular set of regulatory challenges in addition to those that also affect other bacteria, requiring sophisticated regulatory systems. Indeed, hundreds of potential regulatory RNAs have been identified in photosynthetic model bacteria as well as antisense RNAs (asRNAs) of up to several kb in length that protect certain mRNAs from degradation. The trans-acting small non-coding RNAs (sRNAs), PcrZ and PsrR1, control pigment and photosystem biogenesis in Rhodobacter sphaeroides and cyanobacteria, respectively. The asRNAs IsrR and As1_flv4 act as negative regulators and the asRNAs PsbA2R and PsbA3R as positive effectors of photosynthesis gene expression in Synechocystis 6803.
Collapse
Affiliation(s)
- Wolfgang R Hess
- Faculty of Biology; Institute for Biology III; University of Freiburg; Freiburg, Germany
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology; University of Giessen; Giessen, Germany
| | - Annegret Wilde
- Faculty of Biology; Institute for Biology III; University of Freiburg; Freiburg, Germany
| | - Claudia Steglich
- Faculty of Biology; Institute for Biology III; University of Freiburg; Freiburg, Germany
| | - Gabriele Klug
- Institute for Microbiology and Molecular Biology; University of Giessen; Giessen, Germany
| |
Collapse
|
31
|
Ursell T, Chau RMW, Wisen S, Bhaya D, Huang KC. Motility enhancement through surface modification is sufficient for cyanobacterial community organization during phototaxis. PLoS Comput Biol 2013; 9:e1003205. [PMID: 24039562 PMCID: PMC3763999 DOI: 10.1371/journal.pcbi.1003205] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 07/16/2013] [Indexed: 12/21/2022] Open
Abstract
The emergent behaviors of communities of genotypically identical cells cannot be easily predicted from the behaviors of individual cells. In many cases, it is thought that direct cell-cell communication plays a critical role in the transition from individual to community behaviors. In the unicellular photosynthetic cyanobacterium Synechocystis sp. PCC 6803, individual cells exhibit light-directed motility ("phototaxis") over surfaces, resulting in the emergence of dynamic spatial organization of multicellular communities. To probe this striking community behavior, we carried out time-lapse video microscopy coupled with quantitative analysis of single-cell dynamics under varying light conditions. These analyses suggest that cells secrete an extracellular substance that modifies the physical properties of the substrate, leading to enhanced motility and the ability for groups of cells to passively guide one another. We developed a biophysical model that demonstrates that this form of indirect, surface-based communication is sufficient to create distinct motile groups whose shape, velocity, and dynamics qualitatively match our experimental observations, even in the absence of direct cellular interactions or changes in single-cell behavior. Our computational analysis of the predicted community behavior, across a matrix of cellular concentrations and light biases, demonstrates that spatial patterning follows robust scaling laws and provides a useful resource for the generation of testable hypotheses regarding phototactic behavior. In addition, we predict that degradation of the surface modification may account for the secondary patterns occasionally observed after the initial formation of a community structure. Taken together, our modeling and experiments provide a framework to show that the emergent spatial organization of phototactic communities requires modification of the substrate, and this form of surface-based communication could provide insight into the behavior of a wide array of biological communities.
Collapse
Affiliation(s)
- Tristan Ursell
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Rosanna Man Wah Chau
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Carnegie Institution for Science, Department of Plant Biology, Stanford University, Stanford, California, United States of America
| | - Susanne Wisen
- Carnegie Institution for Science, Department of Plant Biology, Stanford University, Stanford, California, United States of America
| | - Devaki Bhaya
- Carnegie Institution for Science, Department of Plant Biology, Stanford University, Stanford, California, United States of America
- * E-mail: (DB); (KCH)
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (DB); (KCH)
| |
Collapse
|
32
|
Farías ME, Rascovan N, Toneatti DM, Albarracín VH, Flores MR, Poiré DG, Collavino MM, Aguilar OM, Vazquez MP, Polerecky L. The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic lake Socompa, Argentinean Andes. PLoS One 2013; 8:e53497. [PMID: 23308236 PMCID: PMC3538587 DOI: 10.1371/journal.pone.0053497] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/29/2012] [Indexed: 11/24/2022] Open
Abstract
We describe stromatolites forming at an altitude of 3570 m at the shore of a volcanic lake Socompa, Argentinean Andes. The water at the site of stromatolites formation is alkaline, hypersaline, rich in inorganic nutrients, very rich in arsenic, and warm (20-24°C) due to a hydrothermal input. The stromatolites do not lithify, but form broad, rounded and low-domed bioherms dominated by diatom frustules and aragonite micro-crystals agglutinated by extracellular substances. In comparison to other modern stromatolites, they harbour an atypical microbial community characterized by highly abundant representatives of Deinococcus-Thermus, Rhodobacteraceae, Desulfobacterales and Spirochaetes. Additionally, a high proportion of the sequences that could not be classified at phylum level showed less than 80% identity to the best hit in the NCBI database, suggesting the presence of novel distant lineages. The primary production in the stromatolites is generally high and likely dominated by Microcoleus sp. Through negative phototaxis, the location of these cyanobacteria in the stromatolites is controlled by UV light, which greatly influences their photosynthetic activity. Diatoms, dominated by Amphora sp., are abundant in the anoxic, sulfidic and essentially dark parts of the stromatolites. Although their origin in the stromatolites is unclear, they are possibly an important source of anaerobically degraded organic matter that induces in situ aragonite precipitation. To the best of our knowledge, this is so far the highest altitude with documented actively forming stromatolites. Their generally rich, diverse and to a large extent novel microbial community likely harbours valuable genetic and proteomic reserves, and thus deserves active protection. Furthermore, since the stromatolites flourish in an environment characterized by a multitude of extremes, including high exposure to UV radiation, they can be an excellent model system for studying microbial adaptations under conditions that, at least in part, resemble those during the early phase of life evolution on Earth.
Collapse
Affiliation(s)
- María E. Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Nicolás Rascovan
- Instituto de Agrobiotecnologia Rosario (INDEAR), Rosario, Santa Fe, Argentina
| | - Diego M. Toneatti
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Virginia H. Albarracín
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
- Max-Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - María R. Flores
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Daniel G. Poiré
- Centro de Investigaciones Geológicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Mónica M. Collavino
- Instituto de Biotecnología y Biología Molecular (IBBM), Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - O. Mario Aguilar
- Instituto de Biotecnología y Biología Molecular (IBBM), Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Martin P. Vazquez
- Instituto de Agrobiotecnologia Rosario (INDEAR), Rosario, Santa Fe, Argentina
| | - Lubos Polerecky
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
33
|
Abstract
Ultraviolet (UV) radiation can cause stresses or act as a photoregulatory signal depending on its wavelengths and fluence rates. Although the most harmful effects of UV on living cells are generally attributed to UV-B radiation, UV-A radiation can also affect many aspects of cellular processes. In cyanobacteria, most studies have concentrated on the damaging effect of UV and defense mechanisms to withstand UV stress. However, little is known about the activation mechanism of signaling components or their pathways which are implicated in the process following UV irradiation. Motile cyanobacteria use a very precise negative phototaxis signaling system to move away from high levels of solar radiation, which is an effective escape mechanism to avoid the detrimental effects of UV radiation. Recently, two different UV-A-induced signaling systems for regulating cyanobacterial phototaxis were characterized at the photophysiological and molecular levels. Here, we review the current understanding of the UV-A mediated signaling pathways in the context of the UV-A perception mechanism, early signaling components, and negative phototactic responses. In addition, increasing evidences supporting a role of pterins in response to UV radiation are discussed. We outline the effect of UV-induced cell damage, associated signaling molecules, and programmed cell death under UV-mediated oxidative stress.
Collapse
|
34
|
Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium Synechocystis sp. PCC 6803. Proc Natl Acad Sci U S A 2011; 108:10780-5. [PMID: 21670284 DOI: 10.1073/pnas.1104242108] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Positive phototaxis systems have been well studied in bacteria; however, the photoreceptor(s) and their downstream signaling components that are responsible for negative phototaxis are poorly understood. Negative phototaxis sensory systems are important for cyanobacteria, oxygenic photosynthetic organisms that must contend with reactive oxygen species generated by an abundance of pigment photosensitizers. The unicellular cyanobacterium Synechocystis sp. PCC6803 exhibits type IV pilus-dependent negative phototaxis in response to unidirectional UV-A illumination. Using a reverse genetic approach, together with biochemical, molecular genetic, and RNA expression profiling analyses, we show that the cyanobacteriochrome locus (slr1212/uirS) of Synechocystis and two adjacent response regulator loci (slr1213/uirR and the PatA-type regulator slr1214/lsiR) encode a UV-A-activated signaling system that is required for negative phototaxis. We propose that UirS, which is membrane-associated via its ETR1 domain, functions as a UV-A photosensor directing expression of lsiR via release of bound UirR, which targets the lsiR promoter. Constitutive expression of LsiR induces negative phototaxis under conditions that normally promote positive phototaxis. Also induced by other stresses, LsiR thus integrates light inputs from multiple photosensors to determine the direction of movement.
Collapse
|
35
|
Moon YJ, Park YM, Chung YH, Choi JS. Calcium Is Involved in Photomovement of Cyanobacterium Synechocystis sp. PCC 6803¶. Photochem Photobiol 2011. [DOI: 10.1111/j.1751-1097.2004.tb09865.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Moon YJ, Kim SY, Jung KH, Choi JS, Park YM, Chung YH. Cyanobacterial phytochrome Cph2 is a negative regulator in phototaxis toward UV-A. FEBS Lett 2010; 585:335-40. [DOI: 10.1016/j.febslet.2010.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/03/2010] [Accepted: 12/05/2010] [Indexed: 11/25/2022]
|
37
|
The Role of Cyanopterin in UV/Blue Light Signal Transduction of Cyanobacterium Synechocystis sp. PCC 6803 Phototaxis. ACTA ACUST UNITED AC 2010; 51:969-80. [DOI: 10.1093/pcp/pcq059] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
38
|
Abstract
Phototaxis in the broadest sense means positive or negative displacement along a light gradient or vector. Prokaryotes most often use a biased random walk strategy, employing type I sensory rhodopsin photoreceptors and two-component signalling to regulate flagellar reversal. This strategy only allows phototaxis along steep light gradients, as found in microbial mats or sediments. Some filamentous cyanobacteria evolved the ability to steer towards a light vector. Even these cyanobacteria, however, can only navigate in two dimensions, gliding on a surface. In contrast, eukaryotes evolved the capacity to follow a light vector in three dimensions in open water. This strategy requires a polarized organism with a stable form, helical swimming with cilia and a shading or focusing body adjacent to a light sensor to allow for discrimination of light direction. Such arrangement and the ability of three-dimensional phototactic navigation evolved at least eight times independently in eukaryotes. The origin of three-dimensional phototaxis often followed a transition from a benthic to a pelagic lifestyle and the acquisition of chloroplasts either via primary or secondary endosymbiosis. Based on our understanding of the mechanism of phototaxis in single-celled eukaryotes and animal larvae, it is possible to define a series of elementary evolutionary steps, each of potential selective advantage, which can lead to pelagic phototactic navigation. We can conclude that it is relatively easy to evolve phototaxis once cell polarity, ciliary swimming and a stable cell shape are present.
Collapse
Affiliation(s)
- Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
| |
Collapse
|
39
|
Kim YH, Kim JY, Kim SY, Lee JH, Lee JS, Chung YH, Yoo JS, Park YM. Alteration in the glycan pattern of pilin in a nonmotile mutant of Synechocystis sp. PCC 6803. Proteomics 2009; 9:1075-86. [PMID: 19180537 DOI: 10.1002/pmic.200800372] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pilus-mediated motility is essential for the optimization of photosynthesis and environmental adaptation in the cyanobacterium Synechocystis sp. PCC 6803 (Syn6803). To identify the genes required for pilus-mediated motility in Syn6803, we applied a forward genetic approach using a Tn5 mutant library and reverse genetics using interposon mutagenesis. One of the identified genes, sll0899, bears sequence similarity to acyltransferases and nucleotidyltransferases. The sll0899 gene product is not involved in the transcription or translation of pilA1, which encodes pilin, the major component of pili. Instead, the sll0899::Cm(r) mutant produced pilins with increased molecular mass, suggesting the existence of different PTMs. Using MS, we found that the wild-type (WT) and mutant pilins were glycosylated between amino acids 67 and 75. Analyses by quantitative MS and high-pH anion exchange chromatography (HPAEC) revealed that the glycan in WT pilin is composed of xylose and fucose, whereas an additional sugar, rhamnose, was found in the glycan of sll0899::Cm(r). Our findings suggest that an alteration in the O-linked glycan of pilin is responsible for the loss of pilus-mediated motility in sll0899::Cm(r).
Collapse
Affiliation(s)
- Young Hye Kim
- Mass Spectrometry Research Center, Korea Basic Science Institute, Daejeon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Shin BJ, Oh J, Kang S, Chung YH, Park YM, Kim YH, Kim S, Bhak J, Choi JS. Cyanobacterial hybrid kinase Sll0043 regulates phototaxis by suppressing pilin and twitching motility protein. J Microbiol 2008; 46:300-8. [DOI: 10.1007/s12275-007-0212-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 03/14/2008] [Indexed: 10/21/2022]
|
41
|
Burriesci M, Bhaya D. Tracking phototactic responses and modeling motility of Synechocystis sp. strain PCC6803. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 91:77-86. [PMID: 18343151 DOI: 10.1016/j.jphotobiol.2008.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 01/23/2008] [Accepted: 01/25/2008] [Indexed: 11/16/2022]
Affiliation(s)
- Matthew Burriesci
- Department of Plant Biology, The Carnegie Institution, 260 Panama Street, Stanford, CA 94305, United States
| | | |
Collapse
|
42
|
Kondou Y, Nakazawa M, Higashi SI, Watanabe M, Manabe K. Equal-quantum Action Spectra Indicate Fluence-rate-selective Action of Multiple Photoreceptors for Photomovement of the Thermophilic Cyanobacterium Synechococcus elongatus¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730090eqasif2.0.co2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Barker M, de Vries R, Nield J, Komenda J, Nixon PJ. The deg proteases protect Synechocystis sp. PCC 6803 during heat and light stresses but are not essential for removal of damaged D1 protein during the photosystem two repair cycle. J Biol Chem 2006; 281:30347-55. [PMID: 16912048 DOI: 10.1074/jbc.m601064200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the DegP/HtrA (or Deg) family of proteases are found widely in nature and play an important role in the proteolysis of misfolded and damaged proteins. As yet, their physiological role in oxygenic photosynthetic organisms is unclear, although it has been widely speculated that they participate in the degradation of the photodamaged D1 subunit in the photosystem two complex (PSII) repair cycle, which is needed to maintain PSII activity in both cyanobacteria and chloroplasts. We have examined the role of the three Deg proteases found in the cyanobacterium Synechocystis sp. PCC 6803 through analysis of double and triple insertion mutants. We have discovered that these proteases show overlap in function and are involved in a number of key physiological responses ranging from protection against light and heat stresses to phototaxis. In previous work, we concluded that the Deg proteases played either a direct or an indirect role in PSII repair in a glucose-tolerant version of Synechocystis 6803 (Silva, P., Choi, Y. J., Hassan, H. A., and Nixon, P. J. (2002) Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 1461-1467). In this work, we have now been able to demonstrate unambiguously, using a triple deg mutant created in the wild type strain of Synechocystis 6803, that the Deg proteases are not obligatory for PSII repair and D1 degradation. We therefore conclude that although the Deg proteases are needed for photoprotection of Synechocystis sp. PCC 6803, they do not play an essential role in D1 turnover and PSII repair in vivo.
Collapse
Affiliation(s)
- Myles Barker
- Divisions of Biology and Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Okajima K, Yoshihara S, Fukushima Y, Geng X, Katayama M, Higashi S, Watanabe M, Sato S, Tabata S, Shibata Y, Itoh S, Ikeuchi M. Biochemical and functional characterization of BLUF-type flavin-binding proteins of two species of cyanobacteria. J Biochem 2005; 137:741-50. [PMID: 16002996 DOI: 10.1093/jb/mvi089] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BLUF (a sensor of Blue-Light Using FAD) is a novel putative photoreceptor domain that is found in many bacteria and some eukaryotic algae. As found on genome analysis, certain cyanobacteria have BLUF proteins with a short C-terminal extension. As typical examples, Tll0078 from thermophilic Thermosynechococcus elongatus BP-1 and Slr1694 from mesophilic Synechocystis sp. PCC 6803 were comparatively studied. FAD of both proteins was hardly reduced by exogenous reductants or mediators except methylviologen but showed a typical spectral shift to a longer wavelength upon excitation with blue light. In particular, freshly prepared Tll0078 protein showed slow but reversible aggregation, indicative of light-induced conformational changes in the protein structure. Tll0078 is far more stable as to heat treatment than Slr1694, as judged from flavin fluorescence. The slr1694-disruptant showed phototactic motility away from the light source (negative phototaxis), while the wild type Synechocystis showed positive phototaxis toward the source. Yeast two-hybrid screening with slr1694 showed self-interaction of Slr1694 (PixD) with itself and interaction with a novel PatA-like response regulator, Slr1693 (PixE). These results were discussed in relation to the signaling mechanism of the "short" BLUF proteins in the regulation of cyanobacterial phototaxis.
Collapse
Affiliation(s)
- Koji Okajima
- Department of Life Sciences (Biology), The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yoshihara S, Katayama M, Geng X, Ikeuchi M. Cyanobacterial Phytochrome-like PixJ1 Holoprotein Shows Novel Reversible Photoconversion Between Blue- and Green-absorbing Forms. ACTA ACUST UNITED AC 2004; 45:1729-37. [PMID: 15653792 DOI: 10.1093/pcp/pch214] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The gene, pixJ1 (formerly pisJ1), is predicted to encode a phytochrome-like photoreceptor that is essential for positive phototaxis in the unicellular cyanobacterium Synechocystis sp. PCC 6803 [Yoshihara et al. (2000) Plant Cell Physiol. 41: 1299]. The PixJ1 protein was overexpressed as a fusion with a poly-histidine tag (His-PixJ1) and isolated from Synechocystis cells. A zinc-fluorescence assay suggested that a linear tetrapyrrole was covalently attached to the His-PixJ1 protein as a chromophore. His-PixJ1 showed novel photoreversible conversion between a blue light-absorbing form (Pb, lambdaAmax=425-435 nm) and a green light-absorbing form (Pg, lambdaAmax=535 nm). Dark incubation led Pg to revert to Pb, indicative of stability of the Pb form in darkness. Red or far-red light irradiation, which is effective for photochemical conversion of the known phytochromes, produced no change in the spectra of Pb and Pg forms. Site-directed mutagenesis revealed that a Cys-His motif in the second GAF domain of PixJ1 is responsible for binding of the chromophore. Possible chromophore species are discussed with regard to the novel photoconversion spectrum.
Collapse
Affiliation(s)
- Shizue Yoshihara
- Department of Life Sciences (Biology), University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902 Japan
| | | | | | | |
Collapse
|
46
|
Abstract
Many photosynthetic microorganisms have evolved the ability to sense light quality and/or quantity and can steer themselves into optimal conditions within the environment. Phototaxis and gliding motility in unicellular cyanobacteria require type IV pili, which are multifunctional cell surface appendages. Screens for cells exhibiting aberrant motility uncovered several non-motile mutants as well as some that had lost positive phototaxis (consequently, they were negatively phototactic). Several negatively phototactic mutants mapped to the tax1 locus, which contains five chemotaxis-like genes. This locus includes a gene that encodes a putative photoreceptor (TaxD1) for positive phototaxis. A second chemotaxis-like cluster (tax3 locus) appears to be involved in pilus biogenesis. The biosynthesis and regulation of type IV pilus-based motility as well as the communication between the pilus motor and photosensory molecules appear to be complex and tightly regulated. Furthermore, the discovery that cyclic AMP and novel gene products are necessary for phototaxis/motility suggests that there might be additional levels of communication and signal processing.
Collapse
Affiliation(s)
- Devaki Bhaya
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305, USA.
| |
Collapse
|
47
|
Terauchi K, Ohmori M. Blue light stimulates cyanobacterial motility via a cAMP signal transduction system. Mol Microbiol 2004; 52:303-9. [PMID: 15049828 DOI: 10.1111/j.1365-2958.2003.03980.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The participation of cAMP in photosignal transduction in cyanobacteria was investigated. When cells of the cyanobacterium Synechocystis sp. PCC 6803 were exposed to light, cellular cAMP contents increased within a few minutes. Among incident monochromatic lights, blue light (450 nm) markedly increased cellular cAMP content, while red (630 nm) and far-red (720 nm) lights did not. Disruption of the cya1 gene encoding an adenylate cyclase caused the insensitivity of cellular cAMP level to blue light. Treatment of wild-type cells with the flavin antagonist phenylacetic acid inhibited this blue light effect. The motility of wild-type cells was enhanced by blue light, whereas that of cya1 mutant cells was not. Based on these results, we concluded that a blue light-cAMP signal transduction system stimulates the motility of Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Kazuki Terauchi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | | |
Collapse
|
48
|
Kim YH, Park YM, Kim SJ, Park YI, Choi JS, Chung YH. The role of Slr1443 in pilus biogenesis in Synechocystis sp. PCC 6803: involvement in post-translational modification of pilins. Biochem Biophys Res Commun 2004; 315:179-86. [PMID: 15013443 DOI: 10.1016/j.bbrc.2004.01.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Indexed: 11/29/2022]
Abstract
We isolated a transposon-induced nonmotile mutant of the cyanobacterium Synechocystis sp. PCC 6803. The mutant was revealed to have a Tn5 insertion in the slr1443 gene that showed sequence similarity to a eukaryotic-type protein kinase. Thick pili were not observed on the mutant cell surface under the electron microscope. The slr1443 gene was not involved in transcription or translation of the pilA1 gene encoding pilin, the major component of thick pili. In the mutant, lower molecular mass pilin peptides were detected than in the wild-type. The pilin variant was not truncated at the N- or C-terminus of mature PilA1. The reduced molecular mass may have resulted from insufficient post-translational modification. The amounts of pilin variants were remarkably reduced in the periplasmic and surface fractions. The pilin variants were released into liquid media without being assembled into pili. Our finding suggests that Slr1443 plays an important role in pilus biogenesis at the level of the post-translational modification of pilin.
Collapse
Affiliation(s)
- Young Hye Kim
- Proteome Analysis Team, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | | | | | | | | | | |
Collapse
|
49
|
Moon YJ, Park YM, Chung YH, Choi JS. Calcium Is Involved in Photomovement of Cyanobacterium Synechocystis sp. PCC 6803¶. Photochem Photobiol 2004. [DOI: 10.1562/0031-8655(2004)79<114:ciiipo>2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Choi JS, Ahn MC, Chung YH, Kwon O, Suh KH, Park YM. Light-induced dephosphorylation of a 65-kDa protein in the cyanobacterium Synechocystis sp. PCC6803. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:1259-1261. [PMID: 14610895 DOI: 10.1078/0176-1617-01155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We found that a 65-kDa protein (p65) of Synechocystis sp. PCC 6803 is dephosphorylated in a light-dependent manner. In darkness, p65 was specifically phosphorylated and then completely dephosphorylated within 2 min upon exposure to high-intensity light. The phosphorylation of p65 recurred after 8 hours incubated in the dark following light exposure. Green (540-560 nm) and red (660 nm) light dephosphorylated p65 efficiently, with the efficiency being greater with green light. These results suggest that p65 is a novel substrate involved in the quantity and quality of light-dependent dephosphorylation in cyanobacteria.
Collapse
Affiliation(s)
- Jong-Soon Choi
- Proteome Analysis Team, Korea Basic Science Institute, Daejeon 305-333, Korea
| | | | | | | | | | | |
Collapse
|