1
|
Hanson GSM, Coxon CR. Fluorinated Tags to Study Protein Conformation and Interactions Using 19F NMR. Chembiochem 2024; 25:e202400195. [PMID: 38744671 DOI: 10.1002/cbic.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The incorporation of fluorine atoms into a biomacromolecule provides a background-free and environmentally sensitive reporter of structure, conformation and interactions using 19F NMR. There are several methods to introduce the 19F reporter - either by synthetic incorporation via solid phase peptide synthesis; by suppressing the incorporation or biosynthesis of a natural amino acid and supplementing the growth media with a fluorinated counterpart during protein expression; and by genetic code expansion to add new amino acids to the amino acid alphabet. This review aims to discuss progress in the field of introducing fluorinated handles into biomolecules for NMR studies by post-translational bioconjugation or 'fluorine-tagging'. We will discuss the range of chemical tagging 'warheads' that have been used, explore the applications of fluorine tags, discuss ways to enhance reporter sensitivity and how the signal to noise ratios can be boosted. Finally, we consider some key challenges of the field and offer some ideas for future directions.
Collapse
Affiliation(s)
- George S M Hanson
- EaStChem School of Chemistry, University of Edinburgh, Joseph Black Building, Kings Buildings, West Mains Road, EH9 3FJ, Edinburgh, UK
| | - Christopher R Coxon
- EaStChem School of Chemistry, University of Edinburgh, Joseph Black Building, Kings Buildings, West Mains Road, EH9 3FJ, Edinburgh, UK
| |
Collapse
|
2
|
Vitali V, Torricella F, Massai L, Messori L, Banci L. Enlarging the scenario of site directed 19F labeling for NMR spectroscopy of biomolecules. Sci Rep 2023; 13:22017. [PMID: 38086881 PMCID: PMC10716153 DOI: 10.1038/s41598-023-49247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
The possibility of using selectively incorporated 19F nuclei for NMR spectroscopic studies has retrieved increasing interest in recent years. The high gyromagnetic ratio of 19F and its absence in native biomolecular systems make this nucleus an interesting alternative to standard 1H NMR spectroscopy. Here we show how we can attach a label, carrying a 19F atom, to protein tyrosines, through the use of a specific three component Mannich-type reaction. To validate the efficacy and the specificity of the approach, we tested it on two selected systems with the aid of ESI MS measurements.
Collapse
Affiliation(s)
- Valentina Vitali
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Francesco Torricella
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Florence, Italy.
| |
Collapse
|
3
|
Maus H, Hammerschmidt SJ, Hinze G, Barthels F, Pérez Carrillo VH, Hellmich UA, Basché T, Schirmeister T. The effects of allosteric and competitive inhibitors on ZIKV protease conformational dynamics explored through smFRET, nanoDSF, DSF, and 19F NMR. Eur J Med Chem 2023; 258:115573. [PMID: 37379675 DOI: 10.1016/j.ejmech.2023.115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Zika and dengue viruses cause mosquito-borne diseases of high epidemic relevance. The viral NS2B-NS3 proteases play crucial roles in the pathogen replication cycle and are validated drug targets. They can adopt at least two conformations depending on the position of the NS2B cofactor. Recently, we reported ligand-induced conformational changes of dengue virus NS2B-NS3 protease by single-molecule Förster resonance energy transfer (smFRET). Here, we investigated the conformational dynamics of the homologous Zika virus protease through an integrated methodological approach combining smFRET, thermal shift assays (DSF and nanoDSF) and 19F NMR spectroscopy. Our results show that allosteric inhibitors favor the open conformation and competitive inhibitors stabilize the closed conformation of the Zika virus protease.
Collapse
Affiliation(s)
- Hannah Maus
- Institute of Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg-University, Mainz, Germany
| | - Stefan J Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg-University, Mainz, Germany
| | - Gerald Hinze
- Department of Chemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg-University, Mainz, Germany
| | - Victor H Pérez Carrillo
- Institute of Organic Chemistry & Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
| | - Ute A Hellmich
- Institute of Organic Chemistry & Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Basché
- Department of Chemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
4
|
G Protein-coupled Receptor (GPCR) Reconstitution and Labeling for Solution Nuclear Magnetic Resonance (NMR) Studies of the Structural Basis of Transmembrane Signaling. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092658. [PMID: 35566006 PMCID: PMC9101874 DOI: 10.3390/molecules27092658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large membrane protein family found in higher organisms, including the human body. GPCRs mediate cellular responses to diverse extracellular stimuli and thus control key physiological functions, which makes them important targets for drug design. Signaling by GPCRs is related to the structure and dynamics of these proteins, which are modulated by extrinsic ligands as well as by intracellular binding partners such as G proteins and arrestins. Here, we review some basics of using nuclear magnetic resonance (NMR) spectroscopy in solution for the characterization of GPCR conformations and intermolecular interactions that relate to transmembrane signaling.
Collapse
|
5
|
Gimenez D, Phelan A, Murphy CD, Cobb SL. 19F NMR as a tool in chemical biology. Beilstein J Org Chem 2021; 17:293-318. [PMID: 33564338 PMCID: PMC7849273 DOI: 10.3762/bjoc.17.28] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
We previously reviewed the use of 19F NMR in the broad field of chemical biology [Cobb, S. L.; Murphy, C. D. J. Fluorine Chem. 2009, 130, 132-140] and present here a summary of the literature from the last decade that has the technique as the central method of analysis. The topics covered include the synthesis of new fluorinated probes and their incorporation into macromolecules, the application of 19F NMR to monitor protein-protein interactions, protein-ligand interactions, physiologically relevant ions and in the structural analysis of proteins and nucleic acids. The continued relevance of the technique to investigate biosynthesis and biodegradation of fluorinated organic compounds is also described.
Collapse
Affiliation(s)
- Diana Gimenez
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| | - Aoife Phelan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven L Cobb
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| |
Collapse
|
6
|
Overbeck JH, Kremer W, Sprangers R. A suite of 19F based relaxation dispersion experiments to assess biomolecular motions. JOURNAL OF BIOMOLECULAR NMR 2020; 74:753-766. [PMID: 32997265 PMCID: PMC7701166 DOI: 10.1007/s10858-020-00348-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/18/2020] [Indexed: 05/08/2023]
Abstract
Proteins and nucleic acids are highly dynamic bio-molecules that can populate a variety of conformational states. NMR relaxation dispersion (RD) methods are uniquely suited to quantify the associated kinetic and thermodynamic parameters. Here, we present a consistent suite of 19F-based CPMG, on-resonance R1ρ and off-resonance R1ρ RD experiments. We validate these experiments by studying the unfolding transition of a 7.5 kDa cold shock protein. Furthermore we show that the 19F RD experiments are applicable to very large molecular machines by quantifying dynamics in the 360 kDa half-proteasome. Our approach significantly extends the timescale of chemical exchange that can be studied with 19F RD, adds robustness to the extraction of exchange parameters and can determine the absolute chemical shifts of excited states. Importantly, due to the simplicity of 19F NMR spectra, it is possible to record complete datasets within hours on samples that are of very low costs. This makes the presented experiments ideally suited to complement static structural information from cryo-EM and X-ray crystallography with insights into functionally relevant motions.
Collapse
Affiliation(s)
- Jan H Overbeck
- Department of Biophysics I, Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Werner Kremer
- Department of Biophysics I, Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Remco Sprangers
- Department of Biophysics I, Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
7
|
Rose-Sperling D, Tran MA, Lauth LM, Goretzki B, Hellmich UA. 19F NMR as a versatile tool to study membrane protein structure and dynamics. Biol Chem 2020; 400:1277-1288. [PMID: 31004560 DOI: 10.1515/hsz-2018-0473] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/17/2019] [Indexed: 12/25/2022]
Abstract
To elucidate the structures and dynamics of membrane proteins, highly advanced biophysical methods have been developed that often require significant resources, both for sample preparation and experimental analyses. For very complex systems, such as membrane transporters, ion channels or G-protein coupled receptors (GPCRs), the incorporation of a single reporter at a select site can significantly simplify the observables and the measurement/analysis requirements. Here we present examples using 19F nuclear magnetic resonance (NMR) spectroscopy as a powerful, yet relatively straightforward tool to study (membrane) protein structure, dynamics and ligand interactions. We summarize methods to incorporate 19F labels into proteins and discuss the type of information that can be readily obtained for membrane proteins already from relatively simple NMR spectra with a focus on GPCRs as the membrane protein family most extensively studied by this technique. In the future, these approaches may be of particular interest also for many proteins that undergo complex functional dynamics and/or contain unstructured regions and thus are not amenable to X-ray crystallography or cryo electron microscopy (cryoEM) studies.
Collapse
Affiliation(s)
- Dania Rose-Sperling
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Mai Anh Tran
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Luca M Lauth
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany
| | - Benedikt Goretzki
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| | - Ute A Hellmich
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 30, D-55128 Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
8
|
Wang M, Lu M, Fritz MP, Quinn CM, Byeon IJL, Byeon CH, Struppe J, Maas W, Gronenborn AM, Polenova T. Fast Magic-Angle Spinning 19 F NMR Spectroscopy of HIV-1 Capsid Protein Assemblies. Angew Chem Int Ed Engl 2018; 57:16375-16379. [PMID: 30225969 PMCID: PMC6279522 DOI: 10.1002/anie.201809060] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Indexed: 01/18/2023]
Abstract
19 F NMR spectroscopy is an attractive and growing area of research with broad applications in biochemistry, chemical biology, medicinal chemistry, and materials science. We have explored fast magic angle spinning (MAS) 19 F solid-state NMR spectroscopy in assemblies of HIV-1 capsid protein. Tryptophan residues with fluorine substitution at the 5-position of the indole ring were used as the reporters. The 19 F chemical shifts for the five tryptophan residues are distinct, reflecting differences in their local environment. Spin-diffusion and radio-frequency-driven-recoupling experiments were performed at MAS frequencies of 35 kHz and 40-60 kHz, respectively. Fast MAS frequencies of 40-60 kHz are essential for consistently establishing 19 F-19 F correlations, yielding interatomic distances of the order of 20 Å. Our results demonstrate the potential of fast MAS 19 F NMR spectroscopy for structural analysis in large biological assemblies.
Collapse
Affiliation(s)
- Mingzhang Wang
- Department of Chemistry and Biochemistry, University of Delaware, Brown Laboratories; Newark, DE 19716, United States,
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States,
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Brown Laboratories; Newark, DE 19716, United States,
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States,
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Matthew P. Fritz
- Department of Chemistry and Biochemistry, University of Delaware, Brown Laboratories; Newark, DE 19716, United States,
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States,
| | - Caitlin M. Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Brown Laboratories; Newark, DE 19716, United States,
| | - In-Ja L. Byeon
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States,
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Chang-Hyeock Byeon
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States,
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Werner Maas
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Angela M. Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States,
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Brown Laboratories; Newark, DE 19716, United States,
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States,
| |
Collapse
|
9
|
Wang M, Lu M, Fritz MP, Quinn CM, Byeon IL, Byeon C, Struppe J, Maas W, Gronenborn AM, Polenova T. Fast Magic‐Angle Spinning
19
F NMR Spectroscopy of HIV‐1 Capsid Protein Assemblies. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingzhang Wang
- Department of Chemistry and Biochemistry University of Delaware Brown Laboratories Newark DE 19716 USA
- Pittsburgh Center for HIV Protein Interactions University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
| | - Manman Lu
- Department of Chemistry and Biochemistry University of Delaware Brown Laboratories Newark DE 19716 USA
- Pittsburgh Center for HIV Protein Interactions University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
- Department of Structural Biology University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
| | - Matthew P. Fritz
- Department of Chemistry and Biochemistry University of Delaware Brown Laboratories Newark DE 19716 USA
- Pittsburgh Center for HIV Protein Interactions University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
| | - Caitlin M. Quinn
- Department of Chemistry and Biochemistry University of Delaware Brown Laboratories Newark DE 19716 USA
| | - In‐Ja L. Byeon
- Pittsburgh Center for HIV Protein Interactions University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
- Department of Structural Biology University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
| | - Chang‐Hyeock Byeon
- Pittsburgh Center for HIV Protein Interactions University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
- Department of Structural Biology University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
| | - Jochem Struppe
- Bruker Biospin Corporation 15 Fortune Drive Billerica MA USA
| | - Werner Maas
- Bruker Biospin Corporation 15 Fortune Drive Billerica MA USA
| | - Angela M. Gronenborn
- Pittsburgh Center for HIV Protein Interactions University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
- Department of Structural Biology University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry University of Delaware Brown Laboratories Newark DE 19716 USA
- Pittsburgh Center for HIV Protein Interactions University of Pittsburgh School of Medicine 1051 Biomedical Science Tower 3, 3501 Fifth Avenue Pittsburgh PA 15261 USA
| |
Collapse
|
10
|
Lu M, Sarkar S, Wang M, Kraus J, Fritz M, Quinn CM, Bai S, Holmes ST, Dybowski C, Yap GPA, Struppe J, Sergeyev IV, Maas W, Gronenborn AM, Polenova T. 19F Magic Angle Spinning NMR Spectroscopy and Density Functional Theory Calculations of Fluorosubstituted Tryptophans: Integrating Experiment and Theory for Accurate Determination of Chemical Shift Tensors. J Phys Chem B 2018; 122:6148-6155. [PMID: 29756776 DOI: 10.1021/acs.jpcb.8b00377] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 19F chemical shift is a sensitive NMR probe of structure and electronic environment in organic and biological molecules. In this report, we examine chemical shift parameters of 4F-, 5F-, 6F-, and 7F-substituted crystalline tryptophan by magic angle spinning (MAS) solid-state NMR spectroscopy and density functional theory. Significant narrowing of the 19F lines was observed under fast MAS conditions, at spinning frequencies above 50 kHz. The parameters characterizing the 19F chemical shift tensor are sensitive to the position of the fluorine in the aromatic ring and, to a lesser extent, the chirality of the molecule. Accurate calculations of 19F magnetic shielding tensors require the PBE0 functional with a 50% admixture of a Hartree-Fock exchange term, as well as taking account of the local crystal symmetry. The methodology developed will be beneficial for 19F-based MAS NMR structural analysis of proteins and protein assemblies.
Collapse
Affiliation(s)
- Manman Lu
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Sucharita Sarkar
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Mingzhang Wang
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Jodi Kraus
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Matthew Fritz
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Shi Bai
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Sean T Holmes
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Cecil Dybowski
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Jochem Struppe
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Ivan V Sergeyev
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Werner Maas
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States.,Department of Structural Biology , University of Pittsburgh School of Medicine , 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| |
Collapse
|
11
|
Howard RJ, Carnevale V, Delemotte L, Hellmich UA, Rothberg BS. Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:927-942. [PMID: 29258839 DOI: 10.1016/j.bbamem.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022]
Abstract
Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Rebecca J Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, 17121 Solna, Sweden.
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Theoretical Physics, KTH Royal Institute of Technology, Box 1031, 17121 Solna, Sweden.
| | - Ute A Hellmich
- Johannes Gutenberg University Mainz, Institute for Pharmacy and Biochemistry, Johann-Joachim-Becherweg 30, 55128 Mainz, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| | - Brad S Rothberg
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
12
|
Ullrich SJ, Hölper S, Glaubitz C. Paramagnetic doping of a 7TM membrane protein in lipid bilayers by Gd³⁺-complexes for solid-state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2014; 58:27-35. [PMID: 24306181 DOI: 10.1007/s10858-013-9800-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/26/2013] [Indexed: 06/02/2023]
Abstract
A considerable limitation of NMR spectroscopy is its inherent low sensitivity. Approximately 90 % of the measuring time is used by the spin system to return to its Boltzmann equilibrium after excitation, which is determined by (1)H-T1 in cross-polarized solid-state NMR experiments. It has been shown that sample doping by paramagnetic relaxation agents such as Cu(2+)-EDTA accelerates this process considerably resulting in enhanced sensitivity. Here, we extend this concept to Gd(3+)-complexes. Their effect on (1)H-T1 has been assessed on the membrane protein proteorhodopsin, a 7TM light-driven proton pump. A comparison between Gd(3+)-DOTA, Gd(3+)-TTAHA, covalently attached Cu(2+)-EDTA-tags and Cu(2+)-EDTA reveals a 3.2-, 2.6-, 2.4- and 2-fold improved signal-to-noise ratio per unit time due to longitudinal paramagnetic relaxation enhancement. Furthermore, Gd(3+)-DOTA shows a remarkably high relaxivity, which is 77-times higher than that of Cu(2+)-EDTA. Therefore, an order of magnitude lower dopant concentration can be used. In addition, no line-broadening effects or peak shifts have been observed on proteorhodopsin in the presence of Gd(3+)-DOTA. These favourable properties make it very useful for solid-state NMR experiments on membrane proteins.
Collapse
Affiliation(s)
- Sandra J Ullrich
- Institute for Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
| | | | | |
Collapse
|
13
|
G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy. Biochem J 2013; 450:443-57. [DOI: 10.1042/bj20121644] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
GPCRs (G-protein-coupled receptors) are versatile signalling molecules at the cell surface and make up the largest and most diverse family of membrane receptors in the human genome. They convert a large variety of extracellular stimuli into intracellular responses through the activation of heterotrimeric G-proteins, which make them key regulatory elements in a broad range of normal and pathological processes, and are therefore one of the most important targets for pharmaceutical drug discovery. Knowledge of a GPCR structure enables us to gain a mechanistic insight into its function and dynamics, and further aid rational drug design. Despite intensive research carried out over the last three decades, resolving the structural basis of GPCR function is still a major activity. The crystal structures obtained in the last 5 years provide the first opportunity to understand how protein structure dictates the unique functional properties of these complex signalling molecules. However, owing to the intrinsic hydrophobicity, flexibility and instability of membrane proteins, it is still a challenge to crystallize GPCRs, and, when this is possible, it is no longer in its native membrane environment and no longer without modification. Furthermore, the conformational change of the transmembrane α-helices associated with the structure activation increases the difficulty of capturing the activation state of a GPCR to a higher resolution by X-ray crystallography. On the other hand, solid-state NMR may offer a unique opportunity to study membrane protein structure, ligand binding and activation at atomic resolution in the native membrane environment, as well as described functionally significant dynamics. In the present review, we discuss some recent achievements of solid-state NMR for understanding GPCRs, the largest mammalian proteome at ~1% of the total expressed proteins. Structural information, details of determination, details of ligand conformations and the consequences of ligand binding to initiate activation can all be explored with solid-state NMR.
Collapse
|
14
|
A lipid-dependent link between activity and oligomerization state of the M. tuberculosis SMR protein TBsmr. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:561-7. [PMID: 23103507 DOI: 10.1016/j.bbamem.2012.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/04/2012] [Accepted: 10/19/2012] [Indexed: 02/06/2023]
Abstract
TBsmr is a secondary active multidrug transporter from Mycobacterium tuberculosis that transports a plethora of compounds including antibiotics and fluorescent dyes. It belongs to the small multidrug resistance (SMR) superfamily and is structurally and functionally related to E. coli EmrE. Of particular importance is the link between protein function, oligomeric state and lipid composition. By freeze fracture EM, we found three different size distributions in three different lipid environments for TBsmr indicating different oligomeric states. The link of these states with protein activity has been probed by fluorescence spectroscopy revealing significant differences. The drug binding site has been probed further by (19)F-MAS NMR through chemical labeling of native cysteine residues showing a water accessible environment in agreement with the alternating access model.
Collapse
|
15
|
Kitevski-LeBlanc JL, Prosser RS. Current applications of 19F NMR to studies of protein structure and dynamics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2012; 62:1-33. [PMID: 22364614 DOI: 10.1016/j.pnmrs.2011.06.003] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 07/01/2011] [Indexed: 05/20/2023]
Affiliation(s)
- Julianne L Kitevski-LeBlanc
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Rd., North Mississauga, Ontario, Canada
| | | |
Collapse
|
16
|
|
17
|
Affiliation(s)
- Shi Bai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
18
|
Abstract
AbstractIn order to fulfill their function, membrane transport proteins have to cycle through a number of conformational and/or energetic states. Thus, understanding the role of conformational dynamics seems to be the key for elucidation of the functional mechanism of these proteins. However, membrane proteins in general are often difficult to express heterologously and in sufficient amounts for structural studies. It is especially challenging to trap a stable energy minimum, e.g., for crystallographic analysis. Furthermore, crystallization is often only possible by subjecting the protein to conditions that do not resemble its native environment and crystals can only be snapshots of selected conformational states. Nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy are complementary methods that offer unique possibilities for studying membrane proteins in their natural membrane environment and for investigating functional conformational changes, lipid interactions, substrate-lipid and substrate-protein interactions, oligomerization states and overall dynamics of membrane transporters. Here, we review recent progress in the field including studies from primary and secondary active transporters.
Collapse
|
19
|
Solid-state NMR and functional studies on proteorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:697-705. [DOI: 10.1016/j.bbabio.2009.02.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 11/19/2022]
|