1
|
Zhang J, Xu C, Wang S, Wang S, Li Y. Variations in Genetic Diversity of Invasive Species Lithobates catesbeianus in China. Animals (Basel) 2024; 14:1287. [PMID: 38731291 PMCID: PMC11083970 DOI: 10.3390/ani14091287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The introduction and subsequent range expansion of the American bullfrog (Lithobates catesbeianus) is part of a rising trend of troublesome biological invasions happening in China. This detrimental amphibious invasive species has strong adaptability. After its introduction and spread, it established its own ecological niche in many provinces of China, and its range has continued to expand to more areas. Previous studies recorded the introduction time of bullfrogs and calculated the changes in their genetic diversity in China using mitochondria, but the specific introduction route in China is still unknown. Expanding upon previous research, we employed whole-genome scans (utilizing 2b-RAD genomic sequencing) to examine single nucleotide polymorphisms (SNPs) and microsatellites within Lithobates catesbeianus to screen the genomes of these invasive amphibian species from eight Chinese provinces and two U.S. states, including Kansas, where bullfrogs originate. A total of 1,336,475 single nucleotide polymorphic loci and 17 microsatellite loci were used to calculate the genetic diversity of bullfrogs and their migration pathways. Our results suggest that the population in Hunan was the first to be introduced and to spread, and there may have been multiple introductions of subpopulations. Additionally, the genetic diversity of both the SNP and microsatellite loci in the Chinese bullfrog population was lower than that of the US population due to bottleneck effects, but the bullfrogs can adapt and spread rapidly. This study will offer crucial insights for preventing and controlling future introductions into the natural habitats in China. Additionally, it will assist in devising more precise strategies to manage the existing populations and curtail their continued expansion, as well as aim to improve clarity and originality while mitigating plagiarism risk.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China; (J.Z.); (C.X.); (S.W.); (S.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxia Xu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China; (J.Z.); (C.X.); (S.W.); (S.W.)
| | - Supen Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China; (J.Z.); (C.X.); (S.W.); (S.W.)
| | - Siqi Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China; (J.Z.); (C.X.); (S.W.); (S.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China; (J.Z.); (C.X.); (S.W.); (S.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
2
|
Zhang S, Lin M, Liu J, Chen J, Liu D, Zhao J, Yao M. A centenary tale: population genetic insights into the introduction history of the oriental fire-bellied toad (Bombina orientalis) in Beijing. BMC Ecol Evol 2022; 22:117. [PMID: 36241967 PMCID: PMC9569074 DOI: 10.1186/s12862-022-02072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022] Open
Abstract
Background The successful establishment of a species population following a single introduction of a few individuals to a non-native area has been limited. Nevertheless, the oriental fire-bellied toad (Bombina orientalis) population in Beijing is purportedly descended from a single introduction of about 200 individuals translocated from Yantai, Shandong Province, China, in 1927. Results To resolve the introduction process and to understand the genetic consequences since that introduction approximately 90 years ago, we investigated the population’s genetic diversity and structure using 261 toads from Beijing and two native Shandong populations and inferred the species’ introduction history using simulation-based approaches. Analysis of mitochondrial DNA (mtDNA) sequences showed the two haplotypes found in Beijing nested within Yantai haplotypes, thus corroborating the historical record of the translocation source. The mtDNA and 11 nuclear microsatellite markers revealed both considerably lower genetic diversity in Beijing than in the source population and strong genetic differentiation between them. Although the current census population in Beijing may be in the range of a few thousand, the effective population size was estimated at only 20–57. Simulations also suggest that this population may have descended from 40–60 founders. Conclusions The Beijing population’s genetic patterns were consistent with the consequences of a severe bottleneck during introduction followed by genetic drift. The introduction trajectory constructed for this B. orientalis population reveals the genetic footprints of a small population sustained in isolation for nearly a century. Our results provide an intriguing example of establishment success from limited founders and may inform ex situ conservation efforts as well as the management of biological invasions. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02072-z.
Collapse
Affiliation(s)
- Shan Zhang
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, R312, School of Life Sciences Bldg., 100871 Beijing, China ,grid.11135.370000 0001 2256 9319Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871 China
| | - Meixi Lin
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, R312, School of Life Sciences Bldg., 100871 Beijing, China ,grid.19006.3e0000 0000 9632 6718Department of Ecology and Evolutionary Biology, University of California-Los Angeles, Los Angeles, CA 90095 USA
| | - Jiawei Liu
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, R312, School of Life Sciences Bldg., 100871 Beijing, China ,grid.170205.10000 0004 1936 7822Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637 USA
| | - Jiangce Chen
- grid.63054.340000 0001 0860 4915Mechanical Engineering Department, University of Connecticut, Storrs, CT 06269 USA
| | - Dong Liu
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Jindong Zhao
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, R312, School of Life Sciences Bldg., 100871 Beijing, China ,grid.11135.370000 0001 2256 9319Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871 China
| | - Meng Yao
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, R312, School of Life Sciences Bldg., 100871 Beijing, China ,grid.11135.370000 0001 2256 9319Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
3
|
Cohen O, Ram Y, Hadany L, Gafny S, Geffen E. Annual climatic fluctuations and short-term genetic variation in the eastern spadefoot toad. Sci Rep 2021; 11:13514. [PMID: 34188104 PMCID: PMC8241830 DOI: 10.1038/s41598-021-92696-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/10/2021] [Indexed: 11/15/2022] Open
Abstract
In addition to variations on the spatial scale, short- and long-term temporal variations, too, can impose intense selection on the overall genetic diversity and composition of a population. We hypothesized that the allelic composition in populations of the eastern spadefoot toad (Pelobates syriacus) would change among successive years in accordance with the short-term changes in environmental conditions. Surprisingly, the effect of short-term climate fluctuations on genetic composition have rarely been addressed in the literature, and to our knowledge the effect of annual climatic fluctuations have not been considered meaningful. Our findings show that climatic variation among successive years, primarily the amount of rainfall and rainy days, can significantly alter both microsatellite allelic composition and diversity. We suggest that environmental (i.e. fluctuating) selection is differential across the globe, and that its intensity is expected to be greatest in regions where short-term climatic conditions are least stable.
Collapse
Affiliation(s)
- Orly Cohen
- School of Zoology, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Yoav Ram
- School of Zoology, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Lilach Hadany
- School of Plant Sciences and Food Security, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Sarig Gafny
- Faculty of Marine Sciences, Ruppin Academic Center, 40297, Michmoret, Israel
| | - Eli Geffen
- School of Zoology, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
4
|
Pabijan M, Palomar G, Antunes B, Antoł W, Zieliński P, Babik W. Evolutionary principles guiding amphibian conservation. Evol Appl 2020; 13:857-878. [PMID: 32431739 PMCID: PMC7232768 DOI: 10.1111/eva.12940] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
The Anthropocene has witnessed catastrophic amphibian declines across the globe. A multitude of new, primarily human-induced drivers of decline may lead to extinction, but can also push species onto novel evolutionary trajectories. If these are recognized by amphibian biologists, they can be engaged in conservation actions. Here, we summarize how principles stemming from evolutionary concepts have been applied for conservation purposes, and address emerging ideas at the vanguard of amphibian conservation science. In particular, we examine the consequences of increased drift and inbreeding in small populations and their implications for practical conservation. We then review studies of connectivity between populations at the landscape level, which have emphasized the limiting influence of anthropogenic structures and degraded habitat on genetic cohesion. The rapid pace of environmental changes leads to the central question of whether amphibian populations can cope either by adapting to new conditions or by shifting their ranges. We gloomily conclude that extinction seems far more likely than adaptation or range shifts for most species. That said, conservation strategies employing evolutionary principles, such as selective breeding, introduction of adaptive variants through translocations, ecosystem interventions aimed at decreasing phenotype-environment mismatch, or genetic engineering, may effectively counter amphibian decline in some areas or for some species. The spread of invasive species and infectious diseases has often had disastrous consequences, but has also provided some premier examples of rapid evolution with conservation implications. Much can be done in terms of setting aside valuable amphibian habitat that should encompass both natural and agricultural areas, as well as designing protected areas to maximize the phylogenetic and functional diversity of the amphibian community. We conclude that an explicit consideration and application of evolutionary principles, although certainly not a silver bullet, should increase effectiveness of amphibian conservation in both the short and long term.
Collapse
Affiliation(s)
- Maciej Pabijan
- Institute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Gemma Palomar
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Bernardo Antunes
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Weronika Antoł
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Piotr Zieliński
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Wiesław Babik
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
5
|
Romagnoli S, Ficetola GF, Manenti R. Invasive crayfish does not influence spawning microhabitat selection of brown frogs. PeerJ 2020; 8:e8985. [PMID: 32328354 PMCID: PMC7166042 DOI: 10.7717/peerj.8985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/25/2020] [Indexed: 11/29/2022] Open
Abstract
Microhabitat selection is a key component of amphibian breeding biology and can be modulated in response to the features of breeding sites and the presence of predators. Despite invasive alien species being among the major threats to amphibians, there is limited information on the role of invasive species in shaping amphibians’ breeding microhabitat choice. The invasive red swamp crayfish (Procambarus clarkii) is a major predator of amphibians’ larvae, including those of the brown frogs Rana dalmatina and Rana latastei. Although qualitative information about the spawning site preferences and breeding microhabitat choice of brown frogs is available in the literature, only a few studies performed quantitative analyses, and the relationship between microhabitat choice and the presence of alien predators has not been investigated yet. The aims of this study were: (1) to characterize the microhabitats selected for clutch deposition by R. dalmatina and R. latastei and (2) to test if the position and the aggregation of egg clutches differ in sites invaded or not invaded by P. clarkii. During spring 2017, we surveyed multiple times 15 breeding sites of both brown frogs in Northern Italy; in each site we assessed the features of the microhabitat where each egg clutch was laid, considering its position (distance from the shore, depth of the water column) and the degree of aggregation of clutches. In each site we also assessed the presence/absence of the invasive crayfish and the relative abundance in the breeding period. We detected egg clutches in all sites; the crayfish occurred in eight ponds. Our results showed substantial differences between the spawning microhabitat features of the two brown frogs: Rana latastei clutches showed a higher degree of aggregation and were associated with deeper areas of the ponds , while Rana dalmatina deposited more spaced out clutches in areas of the ponds that were less deep. For both species, spawning microhabitat features were not significantly different between sites with and without P. clarkii. Although we did not detect behavioural responses to P. clarkii in the choice of spawning microhabitat , additional studies are required to assess whether these frogs modulate other behavioural traits (e.g. during larval development) in response to the invasive predator.
Collapse
Affiliation(s)
- Samuele Romagnoli
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, University of Milan, Milan, Italy.,Laboratoire d'Ecologie Alpine (LECA), Université Grenoble-Alpes, Grenoble, France
| | - Raoul Manenti
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Hinkson KM, Poo S. Inbreeding depression in sperm quality in a critically endangered amphibian. Zoo Biol 2020; 39:197-204. [DOI: 10.1002/zoo.21538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 10/07/2019] [Accepted: 02/21/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Kristin M. Hinkson
- Memphis Zoo, Department of Conservation and ResearchMemphis Zoological SocietyMemphis Tennessee
| | - Sinlan Poo
- Memphis Zoo, Department of Conservation and ResearchMemphis Zoological SocietyMemphis Tennessee
| |
Collapse
|
7
|
Hinkson KM, Richter SC. Temporal trends in genetic data and effective population size support efficacy of management practices in critically endangered dusky gopher frogs (Lithobates sevosus). Ecol Evol 2016; 6:2667-78. [PMID: 27066242 PMCID: PMC4798149 DOI: 10.1002/ece3.2084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 02/14/2016] [Accepted: 02/22/2016] [Indexed: 11/09/2022] Open
Abstract
Monitoring temporal changes in population genetic diversity and effective population size can provide vital information on future viability. The dusky gopher frog, Lithobates sevosus, is a critically endangered species found only in coastal Mississippi, with low genetic variability as a consequence of isolation and population size reduction. Conservation management practices have been implemented, but their efficacy has not been addressed. We genotyped individuals collected 1997-2014 to determine temporal trends in population genetic variation, structure, and effective size. Observed and expected heterozygosity and allelic richness revealed temporally stable, but low, levels of genetic variation. Positive levels of inbreeding were found in each year. There was weak genetic structure among years, which can be attributed to increased effects of genetic drift and inbreeding in small populations. L. sevosus exhibited an increase in effective population size, and currently has an estimated effective size of 33.0-58.6 individuals, which is approximately half the census size. This large ratio could possibly be explained by genetic compensation. We found that management practices have been effective at maintaining and improving effective size and genetic diversity, but that additional strategies need to be implemented to enhance viability of the species.
Collapse
Affiliation(s)
- Kristin M. Hinkson
- Department of Biological SciencesEastern Kentucky UniversityRichmondKentucky40475
| | - Stephen C. Richter
- Department of Biological SciencesEastern Kentucky UniversityRichmondKentucky40475
- Division of Natural AreasEastern Kentucky UniversityRichmondKentucky40475
| |
Collapse
|
8
|
Peterman W, Brocato ER, Semlitsch RD, Eggert LS. Reducing bias in population and landscape genetic inferences: the effects of sampling related individuals and multiple life stages. PeerJ 2016; 4:e1813. [PMID: 26989639 PMCID: PMC4793335 DOI: 10.7717/peerj.1813] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/24/2016] [Indexed: 11/20/2022] Open
Abstract
In population or landscape genetics studies, an unbiased sampling scheme is essential for generating accurate results, but logistics may lead to deviations from the sample design. Such deviations may come in the form of sampling multiple life stages. Presently, it is largely unknown what effect sampling different life stages can have on population or landscape genetic inference, or how mixing life stages can affect the parameters being measured. Additionally, the removal of siblings from a data set is considered best-practice, but direct comparisons of inferences made with and without siblings are limited. In this study, we sampled embryos, larvae, and adult Ambystoma maculatum from five ponds in Missouri, and analyzed them at 15 microsatellite loci. We calculated allelic richness, heterozygosity and effective population sizes for each life stage at each pond and tested for genetic differentiation (F ST and D C ) and isolation-by-distance (IBD) among ponds. We tested for differences in each of these measures between life stages, and in a pooled population of all life stages. All calculations were done with and without sibling pairs to assess the effect of sibling removal. We also assessed the effect of reducing the number of microsatellites used to make inference. No statistically significant differences were found among ponds or life stages for any of the population genetic measures, but patterns of IBD differed among life stages. There was significant IBD when using adult samples, but tests using embryos, larvae, or a combination of the three life stages were not significant. We found that increasing the ratio of larval or embryo samples in the analysis of genetic distance weakened the IBD relationship, and when using D C , the IBD was no longer significant when larvae and embryos exceeded 60% of the population sample. Further, power to detect an IBD relationship was reduced when fewer microsatellites were used in the analysis.
Collapse
Affiliation(s)
- William Peterman
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, United States; Division of Biological Sciences, University of Missouri - Columbia, Columbia, MO, United States
| | - Emily R Brocato
- Division of Biological Sciences, University of Missouri - Columbia , Columbia, MO , United States
| | - Raymond D Semlitsch
- Division of Biological Sciences, University of Missouri - Columbia , Columbia, MO , United States
| | - Lori S Eggert
- Division of Biological Sciences, University of Missouri - Columbia , Columbia, MO , United States
| |
Collapse
|
9
|
Roth S, Jehle R. High genetic diversity of common toad (Bufo bufo) populations under strong natural fragmentation on a Northern archipelago. Ecol Evol 2016; 6:1626-36. [PMID: 27087930 PMCID: PMC4801968 DOI: 10.1002/ece3.1957] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 02/02/2023] Open
Abstract
The last decades have shown a surge in studies focusing on the interplay between fragmented habitats, genetic variation, and conservation. In the present study, we consider the case of a temperate pond-breeding anuran (the common toad Bufo bufo) inhabiting a naturally strongly fragmented habitat at the Northern fringe of the species' range: islands offshore the Norwegian coast. A total of 475 individuals from 19 populations (three mainland populations and 16 populations on seven adjacent islands) were genetically characterized using nine microsatellite markers. As expected for a highly fragmented habitat, genetic distances between populations were high (pairwise F st values ranging between 0.06 and 0.33), with however little differences between populations separated by ocean and populations separated by terrestrial habitat (mainland and on islands). Despite a distinct cline in genetic variation from mainland populations to peripheral islands, the study populations were characterized by overall high genetic variation, in line with effective population sizes derived from single-sample estimators which were on average about 20 individuals. Taken together, our results reinforce the notion that spatial and temporal scales of fragmentation need to be considered when studying the interplay between landscape fragmentation and genetic erosion.
Collapse
Affiliation(s)
- Steffen Roth
- The Natural History Collections University Museum of Bergen Bergen N-5020 Norway
| | - Robert Jehle
- School of Environment and Life Sciences University of Salford Salford M5 4WT UK
| |
Collapse
|
10
|
McCartney-Melstad E, Shaffer HB. Amphibian molecular ecology and how it has informed conservation. Mol Ecol 2015; 24:5084-109. [PMID: 26437125 DOI: 10.1111/mec.13391] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 02/02/2023]
Abstract
Molecular ecology has become one of the key tools in the modern conservationist's kit. Here we review three areas where molecular ecology has been applied to amphibian conservation: genes on landscapes, within-population processes, and genes that matter. We summarize relevant analytical methods, recent important studies from the amphibian literature, and conservation implications for each section. Finally, we include five in-depth examples of how molecular ecology has been successfully applied to specific amphibian systems.
Collapse
Affiliation(s)
- Evan McCartney-Melstad
- Department of Ecology and Evolutionary Biology, La Kretz Center for California Conservation Science, and Institute of the Environment and Sustainability, University of California, Los Angeles, 610 Charles E Young Drive South, Los Angeles, CA, USA
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, La Kretz Center for California Conservation Science, and Institute of the Environment and Sustainability, University of California, Los Angeles, 610 Charles E Young Drive South, Los Angeles, CA, USA
| |
Collapse
|
11
|
Richter SC, Nunziata SO. Survival to metamorphosis is positively related to genetic variability in a critically endangered amphibian species. Anim Conserv 2013. [DOI: 10.1111/acv.12088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- S. C. Richter
- Department of Biological Sciences; Eastern Kentucky University; Richmond KY USA
| | - S. O. Nunziata
- Department of Biological Sciences; Eastern Kentucky University; Richmond KY USA
| |
Collapse
|
12
|
Population and Conservation Genetics of Crawfish Frogs,Lithobates areolatus, at Their Northeastern Range Limit. J HERPETOL 2013. [DOI: 10.1670/12-034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Within- and among-population impact of genetic erosion on adult fitness-related traits in the European tree frog Hyla arborea. Heredity (Edinb) 2012; 110:347-54. [PMID: 23250010 DOI: 10.1038/hdy.2012.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Assessing in wild populations how fitness is impacted by inbreeding and genetic drift is a major goal for conservation biology. An approach to measure the detrimental effects of inbreeding on fitness is to estimate correlations between molecular variation and phenotypic performances within and among populations. Our study investigated the effect of individual multilocus heterozygosity on body size, body condition and reproductive investment of males (that is, chorus attendance) and females (that is, clutch mass and egg size) in both small fragmented and large non-fragmented populations of European tree frog (Hyla arborea). Because adult size and/or condition and reproductive investment are usually related, genetic erosion may have detrimental effects directly on reproductive investment, and also on individual body size and condition that in turn may affect reproductive investment. We confirmed that the reproductive investment was highly size-dependent for both sexes. Larger females invested more in offspring production, and larger males attended the chorus in the pond more often. Our results did not provide evidence for a decline in body size, condition and reproductive effort with decreased multilocus heterozygosity both within and among populations. We showed that the lack of heterozygosity-fitness correlations within populations probably resulted from low inbreeding levels (inferior to ca. 20% full-sib mating rate), even in the small fragmented populations. The detrimental effects of fixation load were either low in adults or hidden by environmental variation among populations. These findings will be useful to design specific management actions to improve population persistence.
Collapse
|
14
|
Ringler E, Ringler M, Jehle R, Hödl W. The female perspective of mating in A. femoralis, a territorial frog with paternal care--a spatial and genetic analysis. PLoS One 2012; 7:e40237. [PMID: 22768260 PMCID: PMC3386955 DOI: 10.1371/journal.pone.0040237] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/03/2012] [Indexed: 11/25/2022] Open
Abstract
The adaptive significance of sequential polyandry is a challenging question in evolutionary and behavioral biology. Costs and benefits of different mating patterns are shaped by the spatial distribution of individuals and by genetic parameters such as the pairwise relatedness between potential mating partners. Thus, females should become less choosy as costs of mating and searching for mates increase. We used parentage assignments to investigate spatial and genetic patterns of mating across a natural population of the Neotropical frog Allobates femoralis, a species characterized by male territoriality and care and female iteroparity. There was no correlation between genetic and spatial distances between adult individuals across the population. In 72% of cases, females mated with males available within a radius of 20 m. Mean pairwise relatedness coefficients of successful reproducers did not differ from random mating but had a lower variance than expected by chance, suggesting maximal reproductive output at intermediate genetic divergence. We also found evidence for selection in favor of more heterozygous individuals between the embryo and adult stage. The level of sequential polyandry significantly increased with the number of spatially available males. Females that had more candidate males also produced more adult progeny. We hypothesize that the benefits associated with female multiple mating outweigh the costs of in- and outbreeding depression, and consequently precluded the evolution of 'choosy' mate selection in this species.
Collapse
Affiliation(s)
- Eva Ringler
- University of Vienna, Department of Evolutionary Biology, Vienna, Austria.
| | | | | | | |
Collapse
|
15
|
Bai C, Ke Z, Consuegra S, Liu X, Li Y. The role of founder effects on the genetic structure of the invasive bullfrog (Lithobates catesbeianaus) in China. Biol Invasions 2012. [DOI: 10.1007/s10530-012-0189-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Kirk H, Freeland JR. Applications and implications of neutral versus non-neutral markers in molecular ecology. Int J Mol Sci 2011; 12:3966-88. [PMID: 21747718 PMCID: PMC3131602 DOI: 10.3390/ijms12063966] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 11/17/2022] Open
Abstract
The field of molecular ecology has expanded enormously in the past two decades, largely because of the growing ease with which neutral molecular genetic data can be obtained from virtually any taxonomic group. However, there is also a growing awareness that neutral molecular data can provide only partial insight into parameters such as genetic diversity, local adaptation, evolutionary potential, effective population size, and taxonomic designations. Here we review some of the applications of neutral versus adaptive markers in molecular ecology, discuss some of the advantages that can be obtained by supplementing studies of molecular ecology with data from non-neutral molecular markers, and summarize new methods that are enabling researchers to generate data from genes that are under selection.
Collapse
Affiliation(s)
- Heather Kirk
- Department of Biology, Trent University, Peterborough, Ontario K9J 7B8, Canada; E-Mail:
| | - Joanna R. Freeland
- Department of Biology, Trent University, Peterborough, Ontario K9J 7B8, Canada; E-Mail:
| |
Collapse
|
17
|
Munwes I, Geffen E, Friedmann A, Tikochinski Y, Gafny S. Variation in repeat length and heteroplasmy of the mitochondrial DNA control region along a core-edge gradient in the eastern spadefoot toad (Pelobates syriacus). Mol Ecol 2011; 20:2878-87. [PMID: 21645158 DOI: 10.1111/j.1365-294x.2011.05134.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peripheral populations are those situated at the distribution margins of a species and are often subjected to more extreme abiotic and biotic conditions than those at the core. Here, we hypothesized that shorter repeat length and fewer heteroplasmic mitochondrial DNA (mtDNA) copies, which are associated with more efficient mitochondrial function, may be related to improved survival under extreme environmental conditions. We sampled eastern spadefoot toads (mostly as tadpoles) from 43 rain pools distributed along a 300-km gradient from core to edge of the species' distribution. We show that mean pool tandem repeat length and heteroplasmy increase from edge to core, even after controlling for body size. We evaluate several alternative hypotheses and propose the Fisher hypothesis as the most likely explanation. However, additional sequential sampling and experimental studies are required to determine whether selection under extreme conditions, or alternative mechanisms, could account for the gradient in heteroplasmy and repeat length in the mtDNA control region.
Collapse
Affiliation(s)
- Inbar Munwes
- School of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel
| | | | | | | | | |
Collapse
|
18
|
Ficetola GF, Visaggi B, Bonardi A, Padoa-Schioppa E, De Bernardi F. Starting size and tadpole performance in the frog Rana latastei. J Zool (1987) 2010. [DOI: 10.1111/j.1469-7998.2010.00770.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|