1
|
Lavoie O, Turmel A, Mattoon P, Desrosiers WJ, Plamondon J, Michael NJ, Caron A. Hypothalamic GABAergic Neurons Expressing Cellular Retinoic Acid Binding Protein 1 (CRABP1) Are Sensitive to Metabolic Status and Liraglutide in Male Mice. Neuroendocrinology 2024; 114:681-697. [PMID: 38631315 PMCID: PMC11232952 DOI: 10.1159/000538716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Owing to their privileged anatomical location, neurons of the arcuate nucleus of the hypothalamus (ARC) play critical roles in sensing and responding to metabolic signals such as leptin and glucagon-like peptide 1 (GLP-1). In addition to the well-known proopiomelanocortin (POMC)- and agouti-related peptide (AgRP)-expressing neurons, subpopulations of GABAergic neurons are emerging as key regulators of energy balance. However, the precise identity of these metabolic neurons is still elusive. Here, we identified and characterized the molecular signature of a novel population of GABAergic neurons of the ARC expressing Cellular retinoic acid binding protein 1 (Crabp1). METHODS Using a combination of immunohistochemistry and in situ hybridization techniques, we investigated the expression of Crabp1 across the mouse brain and characterized the molecular identity of Crabp1ARC neurons. We also determined whether Crabp1ARC neurons are sensitive to fasting, leptin, and GLP1R agonism by assessing cFOS immunoreactivity as a marker of neuronal activity. RESULTS Crabp1ARC neurons represent a novel GABAergic neuronal population robustly enriched in the ARC and are distinct from the prototypical melanocortin neurons. Crabp1ARC neurons overlap with three subpopulations of yet uncharacterized ARC neurons expressing Htr3b, Tbx19, and Tmem215. Notably, Crabp1ARC neurons express receptors for metabolic hormones and their activity is modulated by the nutritional state and GLP1R agonism. CONCLUSION Crabp1ARC neurons represent a novel heterogeneous population of GABAergic neurons sensitive to metabolic status.
Collapse
Affiliation(s)
- Olivier Lavoie
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Audrey Turmel
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Paige Mattoon
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | | | | | - Natalie Jane Michael
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Quebec City, QC, Canada
| |
Collapse
|
2
|
Abramczyk H, Surmacki JM. Control of Mitochondrial Electron Transport Chain Flux and Apoptosis by Retinoic Acid: Raman Imaging In Vitro Human Bronchial and Lung Cancerous Cells. Cancers (Basel) 2023; 15:4535. [PMID: 37760504 PMCID: PMC10526773 DOI: 10.3390/cancers15184535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The multiple functions of cytochrome c (cyt c) and their regulation in life and death decisions of the mammalian cell go beyond respiration, apoptosis, ROS scavenging, and oxidation of cardiolipine. It has become increasingly evident that cyt c is involved in the propagation of mitogenic signals. It has been proposed that the mitogenic signals occur via the PKCδ-retinoic acid signal complex comprising the protein kinase Cδ, the adapter protein Src homologous collagen homolog (p66Shc), and cyt c. We showed the importance of retinoic acid in regulating cellular processes monitored by the Raman bands of cyt c. To understand the role of retinoids in regulating redox status of cyt c, we recorded the Raman spectra and images of cells receiving redox stimuli by retinoic acid at in vitro cell cultures. For these purposes, we incubated bronchial normal epithelial lung (BEpC) and lung cancer cells (A549) with retinoic acid at concentrations of 1, 10, and 50 µM for 24 and 48 h of incubations. The new role of retinoic acid in a change of the redox status of iron ion in the heme group of cyt c from oxidized Fe3+ to reduced Fe2+ form may have serious consequences on ATPase effectiveness and aborting the activation of the conventional mitochondrial signaling protein-dependent pathways, lack of triggering programmed cell death through apoptosis, and lack of cytokine induction. To explain the effect of retinoids on the redox status of cyt c in the electron transfer chain, we used the quantum chemistry models of retinoid biology. It has been proposed that retinol catalyzes resonance energy transfer (RET) reactions in cyt c. The paper suggests that RET is pivotally important for mitochondrial energy homeostasis by controlling oxidative phosphorylation by switching between activation and inactivation of glycolysis and regulation of electron flux in the electron transport chain. The key role in this process is played by protein kinase C δ (PKCδ), which triggers a signal to the pyruvate dehydrogenase complex. The PKCδ-retinoic acid complex reversibly (at normal physiological conditions) or irreversibly (cancer) responds to the redox potential of cyt c that changes with the electron transfer chain flux.
Collapse
Affiliation(s)
| | - Jakub Maciej Surmacki
- Laboratory of Laser Molecular Spectroscopy, Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
3
|
Plau J, Golczak M, Paik J, Calderon RM, Blaner WS. Retinol-binding protein 2 (RBP2): More than just dietary retinoid uptake. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159179. [PMID: 35533980 PMCID: PMC9191623 DOI: 10.1016/j.bbalip.2022.159179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/28/2022] [Accepted: 04/22/2022] [Indexed: 01/21/2023]
Abstract
Retinol-binding protein 2 (RBP2, also known as cellular retinol-binding protein 2 (CRBP2)) is a member of the fatty acid-binding protein family and has been extensively studied for its role in facilitating dietary vitamin A (retinol) uptake and metabolism within enterocytes of the small intestine. RBP2 is present in highest concentrations in the proximal small intestine where it constitutes approximately 0.1-0.5% of soluble protein. Recent reports have established that RBP2 binds monoacylglycerols (MAGs) with high affinity, including the canonical endocannabinoid 2-arachidonoylglycerol (2-AG). Crystallographic studies reveal that retinol, 2-AG, or other long-chain MAGs alternatively can bind in the retinol-binding pocket of RBP2. It also has been demonstrated recently that Rbp2-deficient mice are more susceptible to developing obesity and associated metabolic phenotypes when exposed to a high fat diet, or as they age when fed a conventional chow diet. When subjected to an oral fat challenge, the Rbp2-deficient mice release into the circulation significantly more, compared to littermate controls, of the intestinal hormone glucose-dependent insulinotropic polypeptide (GIP). These new findings regarding RBP2 structure and actions within the intestine are the focus of this review.
Collapse
Affiliation(s)
- Jacqueline Plau
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Marcin Golczak
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States of America
| | - Rossana M Calderon
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America.
| |
Collapse
|
4
|
Widjaja-Adhi MAK, Golczak M. The molecular aspects of absorption and metabolism of carotenoids and retinoids in vertebrates. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158571. [PMID: 31770587 PMCID: PMC7244374 DOI: 10.1016/j.bbalip.2019.158571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Vitamin A is an essential nutrient necessary for numerous basic physiological functions, including reproduction and development, immune cell differentiation and communication, as well as the perception of light. To evade the dire consequences of vitamin A deficiency, vertebrates have evolved specialized metabolic pathways that enable the absorption, transport, and storage of vitamin A acquired from dietary sources as preformed retinoids or provitamin A carotenoids. This evolutionary advantage requires a complex interplay between numerous specialized retinoid-transport proteins, receptors, and enzymes. Recent advances in molecular and structural biology resulted in a rapid expansion of our understanding of these processes at the molecular level. This progress opened new avenues for the therapeutic manipulation of retinoid homeostasis. In this review, we summarize current research related to the biochemistry of carotenoid and retinoid-processing proteins with special emphasis on the structural aspects of their physiological actions. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Made Airanthi K Widjaja-Adhi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| |
Collapse
|
5
|
Endres K. Retinoic Acid and the Gut Microbiota in Alzheimer's Disease: Fighting Back-to-Back? Curr Alzheimer Res 2020; 16:405-417. [PMID: 30907321 DOI: 10.2174/1567205016666190321163705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND There is growing evidence that the gut microbiota may play an important role in neurodegenerative diseases such as Alzheimer's disease. However, how these commensals influence disease risk and progression still has to be deciphered. OBJECTIVE The objective of this review was to summarize current knowledge on the interplay between gut microbiota and retinoic acid. The latter one represents one of the important micronutrients, which have been correlated to Alzheimer's disease and are used in initial therapeutic intervention studies. METHODS A selective overview of the literature is given with the focus on the function of retinoic acid in the healthy and diseased brain, its metabolism in the gut, and the potential influence that the bioactive ligand may have on microbiota, gut physiology and, Alzheimer's disease. RESULTS Retinoic acid can influence neuronal functionality by means of plasticity but also by neurogenesis and modulating proteostasis. Impaired retinoid-signaling, therefore, might contribute to the development of diseases in the brain. Despite its rather direct impact, retinoic acid also influences other organ systems such as gut by regulating the residing immune cells but also factors such as permeability or commensal microbiota. These in turn can also interfere with retinoid-metabolism and via the gutbrain- axis furthermore with Alzheimer's disease pathology within the brain. CONCLUSION Potentially, it is yet too early to conclude from the few reports on changed microbiota in Alzheimer's disease to a dysfunctional role in retinoid-signaling. However, there are several routes how microbial commensals might affect and might be affected by vitamin A and its derivatives.
Collapse
Affiliation(s)
- Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
6
|
Schulze KJ, Gernand AD, Khan AZ, Wu LSF, Mehra S, Shaikh S, Ali H, Shamim AA, Sungpuag P, Udomkesmalee E, Labrique AB, West KP, Christian P. Newborn micronutrient status biomarkers in a cluster-randomized trial of antenatal multiple micronutrient compared with iron folic acid supplementation in rural Bangladesh. Am J Clin Nutr 2020; 112:1328-1337. [PMID: 32844185 PMCID: PMC7657323 DOI: 10.1093/ajcn/nqaa223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Daily antenatal multiple micronutrient (MM) compared with iron folic acid (IFA) supplementation from early pregnancy improved birth outcomes and maternal micronutrient status in rural Bangladesh, but effects on newborn status are unknown. OBJECTIVE We examined cord blood micronutrient biomarkers in relation to antenatal MM and IFA supplementation and maternal gestational micronutrient status in rural Bangladeshi newborns. DESIGN In a double-blinded, cluster-randomized trial of antenatal IFA or MM (with the same IFA content), we analyzed cord blood plasma from 333 singleton births, and corresponding maternal plasma at 32.5 ± 2.6 wk of gestation, for ferritin (iron stores), folate, cobalamin (vitamin B-12), retinol (vitamin A), 25-hydroxyvitamin D [25(OH)D, vitamin D status], α-tocopherol (vitamin E), zinc, thyroglobulin, and free thyroxine (iodine status). Intervention effects and associations were determined using linear regression, exploring maternal status as a mediator of intervention effects on cord biomarkers. RESULTS The MM intervention increased cord ferritin (mean: +12.4%; 95% CI: 1.3, 24.6%), 25(OH)D (mean: +14.7%; 95% CI: 4.8, 25.6%), and zinc (mean: +5.8%; 95% CI: 1.0, 10.8%). Cord folate (mean: +26.8%; 95% CI: 19.6, 34.5%), cobalamin (mean: +31.3%; 95% CI: 24.6, 38.3%), 25(OH)D (mean: +26.7%; 95% CI: 23.2, 30.3%), α-tocopherol (mean: +8.7%; 95% CI: 3.6, 13.7%), zinc (mean: +2.3%; 95% CI: 0.5, 4.2%), thyroglobulin (mean: +20.1%; 95% CI: 9.0, 32.2%) and thyroxine (mean: +1.5%; 95% CI: 0.0, 3.0%) increased per 1-SD increment in maternal status (all P < 0.05); ferritin and retinol changed by +2.0%; 95% CI: -8.9, 14.3%; P = 0.72; and +3.5%; 95% CI: -0.4, 7.3%; P = 0.07, respectively. Ferritin, folate, cobalamin, zinc, and thyroglobulin averaged 1.57-6.75 times higher and retinol, α-tocopherol, and 25(OH)D 0.30-0.84 times lower in cord than maternal plasma, suggesting preferential maternal-fetal transfer of iron, folate, cobalamin, and zinc; limited transfer of fat-soluble vitamins; and high fetal iodine demand. CONCLUSIONS Antenatal MM supplementation increased newborn ferritin, 25(OH)D, and zinc, while maternal and newborn folate, vitamins B-12, D, and E, zinc, and iodine biomarkers were positively related. Despite limited effects of MM, better maternal micronutrient status was associated with improved micronutrient status of Bangladeshi newborns. This trial was registered at clinicaltrials.gov as NCT00860470.
Collapse
Affiliation(s)
| | - Alison D Gernand
- Present address for ADG: Department of Nutritional Sciences, The Pennsylvania State University, 224 Chandlee Lab, University Park, PA 16802, USA
| | - Afreen Zaman Khan
- Present address for AZK: Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Lee S-F Wu
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sucheta Mehra
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Saijuddin Shaikh
- The JiVitA Project of Johns Hopkins University, Bangladesh, Gaibandha, Bangladesh
| | - Hasmot Ali
- The JiVitA Project of Johns Hopkins University, Bangladesh, Gaibandha, Bangladesh
| | - Abu Ahmed Shamim
- Present address for AAS: BRAC James P Grant School of Public Health, BRAC University, Dhaka, Bangladesh
| | | | | | - Alain B Labrique
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keith P West
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Parul Christian
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
7
|
Fernandes-Silva H, Araújo-Silva H, Correia-Pinto J, Moura RS. Retinoic Acid: A Key Regulator of Lung Development. Biomolecules 2020; 10:biom10010152. [PMID: 31963453 PMCID: PMC7022928 DOI: 10.3390/biom10010152] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Retinoic acid (RA) is a key molecular player in embryogenesis and adult tissue homeostasis. In embryo development, RA plays a crucial role in the formation of different organ systems, namely, the respiratory system. During lung development, there is a spatiotemporal regulation of RA levels that assures the formation of a fully functional organ. RA signaling influences lung specification, branching morphogenesis, and alveolarization by regulating the expression of particular target genes. Moreover, cooperation with other developmental pathways is essential to shape lung organogenesis. This review focuses on the events regulated by retinoic acid during lung developmental phases and pulmonary vascular development; also, it aims to provide a snapshot of RA interplay with other well-known regulators of lung development.
Collapse
Affiliation(s)
- Hugo Fernandes-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- PhDOC PhD Program, ICVS/3B’s, School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Henrique Araújo-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital of Braga, 4710-243 Braga, Portugal
| | - Rute S Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Correspondence: ; Tel.: +35-12-5360-4911
| |
Collapse
|
8
|
Silvaroli JA, Widjaja-Adhi MAK, Trischman T, Chelstowska S, Horwitz S, Banerjee S, Kiser PD, Blaner WS, Golczak M. Abnormal Cannabidiol Modulates Vitamin A Metabolism by Acting as a Competitive Inhibitor of CRBP1. ACS Chem Biol 2019; 14:434-448. [PMID: 30721022 DOI: 10.1021/acschembio.8b01070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cellular retinol-binding proteins (CRBPs) facilitate the uptake and intracellular transport of vitamin A. They integrate retinoid metabolism, playing an important role in regulating the synthesis of bioactive vitamin A metabolites. Thus, CRBPs constitute potential pharmacological targets to modulate cellular retinoid status that in turn may have applications in the treatment of certain immunological, metabolic, and ocular disorders. Here we identify abnormal cannabidiol (abn-CBD) as a nonretinoid inhibitor of cellular retinol-binding protein 1 (CRBP1). X-ray crystal structures of CRBP1 in complex with abn-CBD and its derivatives revealed a distinctive mode of protein-ligand interaction and provided a molecular basis for the high affinity and selectivity of this compound. We demonstrated that abn-CBD modulates the flux of retinoids via the retinoid cycle in vivo. Furthermore, the biological activity of abn-CBD was evidenced by its ability to protect against light-induced retinal damage in Balb/cJ mice. Altogether, our findings indicate that targeting selected CRBPs with a small-molecule inhibitor can potentially lead to the development of new therapeutic agents to counteract diseases with etiologies involving imbalance in retinoid metabolism or signaling.
Collapse
Affiliation(s)
| | | | | | | | | | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
- Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, IL, United States
| | - Philip D. Kiser
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - William S. Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | | |
Collapse
|
9
|
Costanza G, Doldo E, Ferlosio A, Tarquini C, Passeri D, Cascella R, Bavetta M, Di Stefani A, Bonifati C, Agostinelli S, Centofanti F, Giardina E, Campione E, Bianchi L, Donati P, Morrone A, Orlandi A. Expression and potential role of cellular retinol binding protein I in psoriasis. Oncotarget 2018; 9:36736-36749. [PMID: 30613363 PMCID: PMC6298411 DOI: 10.18632/oncotarget.26314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022] Open
Abstract
Psoriasis is a diffuse chronic skin disorder characterized from accelerated epidermal turnover and inflammatory cell infiltrate. Retinoids influence keratinocyte proliferation and differentiation as well as inflammatory response. Cellular retinol binding protein (CRBPI) regulates intracellular vitamin A bioavailability and contributes to maintain skin homeostasis. The aim of present study was to investigate the expression of CRBPI and its role in the pathogenesis of skin psoriasis. Immunohistochemistry revealed more diffuse and increased CRBPI expression in all epidermal layers of human psoriatic lesions except in the stratum corneum. An imiquimod-induced psoriatic-like model documented the increase of skin lesional area and severity index score as well as of the severity of microscopic features as parakeratosis, papillomatosis and spongiosis in CRBPI-knockout compared to wild-type mice, associated to the increased keratinocyte CK17 and Ki-67 expression and the reduction of CK1, CRABPII and RXRα. Gene array of imiquimod-induced psoriatic skin documented the greater up-regulation of EGF/PDGF-related genes and down-regulation of EGR1 and pro-inflammatory IL-related genes in CRBPI-knockout compared to wild-type mice. Finally, CRBPI transfection in HaCaT cells increased AKT and NF-κB-related genes and proteins and down-regulated IL-2, IL-6 and IL-8 pro-inflammatory signalling. Although not recognized as a psoriatic susceptibility gene in our cohort of patients, the present data strongly supported the potential role of CRBPI to sustain keratinocyte proliferation and differentiation and to counteract pro-inflammatory genes expression in psoriatic lesions.
Collapse
Affiliation(s)
- Gaetana Costanza
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy.,San Gallicano Dermatology Institute, Rome, Italy
| | - Elena Doldo
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Amedeo Ferlosio
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Chiara Tarquini
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Daniela Passeri
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Raffaella Cascella
- Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Mauro Bavetta
- Dermatology Unit, Tor Vergata University of Rome, Policlinic of Tor Vergata of Rome, Rome, Italy
| | - Alessandro Di Stefani
- Dermatology Unit, Tor Vergata University of Rome, Policlinic of Tor Vergata of Rome, Rome, Italy
| | | | - Sara Agostinelli
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Federica Centofanti
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Emiliano Giardina
- Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Elena Campione
- Dermatology Unit, Tor Vergata University of Rome, Policlinic of Tor Vergata of Rome, Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Tor Vergata University of Rome, Policlinic of Tor Vergata of Rome, Rome, Italy
| | | | - Aldo Morrone
- San Gallicano Dermatology Institute, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy.,Catholic University "Our Lady of Good Counsel", Tirana, Albania
| |
Collapse
|
10
|
Abstract
Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, 119 Morgan Hall, 94720, Berkeley, CA, USA.
| |
Collapse
|
11
|
Venkatachalam AB, Parmar MB, Wright JM. Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes. Mol Genet Genomics 2017; 292:699-727. [PMID: 28389698 DOI: 10.1007/s00438-017-1313-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/15/2017] [Indexed: 12/18/2022]
Abstract
Increasing organismal complexity during the evolution of life has been attributed to the duplication of genes and entire genomes. More recently, theoretical models have been proposed that postulate the fate of duplicated genes, among them the duplication-degeneration-complementation (DDC) model. In the DDC model, the common fate of a duplicated gene is lost from the genome owing to nonfunctionalization. Duplicated genes are retained in the genome either by subfunctionalization, where the functions of the ancestral gene are sub-divided between the sister duplicate genes, or by neofunctionalization, where one of the duplicate genes acquires a new function. Both processes occur either by loss or gain of regulatory elements in the promoters of duplicated genes. Here, we review the genomic organization, evolution, and transcriptional regulation of the multigene family of intracellular lipid-binding protein (iLBP) genes from teleost fishes. Teleost fishes possess many copies of iLBP genes owing to a whole genome duplication (WGD) early in the teleost fish radiation. Moreover, the retention of duplicated iLBP genes is substantially higher than the retention of all other genes duplicated in the teleost genome. The fatty acid-binding protein genes, a subfamily of the iLBP multigene family in zebrafish, are differentially regulated by peroxisome proliferator-activated receptor (PPAR) isoforms, which may account for the retention of iLBP genes in the zebrafish genome by the process of subfunctionalization of cis-acting regulatory elements in iLBP gene promoters.
Collapse
Affiliation(s)
- Ananda B Venkatachalam
- Department of Biology, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
| | - Manoj B Parmar
- Department of Biology, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
| | - Jonathan M Wright
- Department of Biology, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
12
|
Topical stabilized retinol treatment induces the expression of HAS genes and HA production in human skin in vitro and in vivo. Arch Dermatol Res 2017; 309:275-283. [PMID: 28247017 DOI: 10.1007/s00403-017-1723-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
Skin Aging manifests primarily with wrinkles, dyspigmentations, texture changes, and loss of elasticity. During the skin aging process, there is a loss of moisture and elasticity in skin resulting in loss of firmness finally leading to skin sagging. The key molecule involved in skin moisture is hyaluronic acid (HA), which has a significant water-binding capacity. HA levels in skin decline with age resulting in decrease in skin moisture, which may contribute to loss of firmness. Clinical trials have shown that topically applied ROL effectively reduces wrinkles and helps retain youthful appearance. In the current study, ROL was shown to induce HA production and stimulates the gene expression of all three forms of hyaluronic acid synthases (HAS) in normal human epidermal keratinocytes monolayer cultures. Moreover, in human skin equivalent tissues and in human skin explants, topical treatment of tissues with a stabilized-ROL formulation significantly induced the gene expression of HAS mRNA concomitant with an increased HA production. Finally, in a vehicle-controlled human clinical study, histochemical analysis confirmed increased HA accumulation in the epidermis in ROL-treated human skin as compared to vehicle. These results show that ROL increases skin expression of HA, a significant contributing factor responsible for wrinkle formation and skin moisture, which decrease during aging. Taken together with the activity to increase collagen, elastin, and cell proliferation, these studies establish that retinol provides multi-functional activity for photodamaged skin.
Collapse
|
13
|
Napoli JL. Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: Effects on retinoid metabolism, function and related diseases. Pharmacol Ther 2017; 173:19-33. [PMID: 28132904 DOI: 10.1016/j.pharmthera.2017.01.004] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular binding-proteins (BP), including CRBP1, CRBP2, CRABP1, CRABP2, and FABP5, shepherd the poorly aqueous soluble retinoids during uptake, metabolism and function. Holo-BP promote efficient use of retinol, a scarce but essential nutrient throughout evolution, by sheltering it and its major metabolite all-trans-retinoic acid from adventitious interactions with the cellular milieu, and by imposing specificity of delivery to enzymes, nuclear receptors and other partners. Apo-BP reflect cellular retinoid status and modify activities of retinoid metabolon enzymes, or exert non-canonical actions. High ligand binding affinities and the nature of ligand sequestration necessitate external factors to prompt retinoid release from holo-BP. One or more of cross-linking, kinetics, and colocalization have identified these factors as RDH, RALDH, CYP26, LRAT, RAR and PPARβ/δ. Michaelis-Menten and other kinetic approaches verify that BP channel retinoids to select enzymes and receptors by protein-protein interactions. Function of the BP and enzymes that constitute the retinoid metabolon depends in part on retinoid exchanges unique to specific pairings. The complexity of these exchanges configure retinol metabolism to meet the diverse functions of all-trans-retinoic acid and its ability to foster contrary outcomes in different cell types, such as inducing apoptosis, differentiation or proliferation. Altered BP expression affects retinoid function, for example, by impairing pancreas development resulting in abnormal glucose and energy metabolism, promoting predisposition to breast cancer, and fostering more severe outcomes in prostate cancer, ovarian adenocarcinoma, and glioblastoma. Yet, the extent of BP interactions with retinoid metabolon enzymes and their impact on retinoid physiology remains incompletely understood.
Collapse
Affiliation(s)
- Joseph L Napoli
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
14
|
Parker RS. Methodological Considerations in Determining Vitamin A and Carotenoid Bioactivity in Humans. Food Nutr Bull 2016. [DOI: 10.1177/156482650002100203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
At present there is little information regarding the quantitative vitamin A value of specific foods or meal patterns. Such information would aid in a more precise determination of the suitability of certain foods or diets to meet minimum and optimal nutritional needs for vitamin A. This knowledge deficit stems largely from the lack of well-developed models to assess the bioavailability of carotenoids, particularly provitamin A carotenoids, from foods. Literature values of carotenoid bioavailability (percent of ingested carotene absorbed) range from 1% to 99%, and variability is often high both within and between treatments. Current models generally fall into two categories: those employing outcomes that reflect efficacy, i.e., that rely on changes in one or more indicators of vitamin A status; and those which provide a more direct estimate of absorption and/or conversion efficiency of single doses of provitamin A carotenoids. the latter include oral–faecal balance models and post-prandial chylomicron retinyl ester response models. Absolute bioavailability, i.e., the mass of newly absorbed vitamin A derived from a given mass of provitamin A carotenoid consumed, is inherently more problematic to assess than relative bioavailability, in which two or more treatments are compared. One missing and key piece of information is the extent of post-absorptive conversion of provitamin A carotenoids to vitamin A in humans. Without such information, the contribution of absorbed β-carotene or plasma β-carotene to vitamin A status will remain clouded. Recent estimates of the vitamin A value of plant foods suggest that in some cases plant-based diets may be insufficient to improve vitamin A status, yet in some circumstances this prediction has proved inaccurate. This paper will contrast several of the more recent methods of assessing the bioavailability of food-borne provitamin A carotenoids to illustrate the potentially complementary nature of the two categories of bioavailability model.
Collapse
Affiliation(s)
- Robert S. Parker
- Division of Nutritional Sciences at Cornell University in Ithaca, New York, USA
| |
Collapse
|
15
|
Everts HB, Suo L, Ghim S, Bennett Jenson A, Sundberg JP. Retinoic acid metabolism proteins are altered in trichoblastomas induced by mouse papillomavirus 1. Exp Mol Pathol 2015; 99:546-51. [PMID: 26416148 DOI: 10.1016/j.yexmp.2015.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022]
Abstract
Skin cancer burden is significant as treatment costs have skyrocketed to $8.1 million annually and some forms metastasize, such as cutaneous squamous cell carcinoma (cSCC) and melanoma. cSCC is caused by altered growth factor signaling induced by chemical carcinogens, ultraviolet light (UV) exposure, and infections with papillomaviruses (PVs). One of the few options for preventing cSCC in high-risk patients is oral retinoids. While much is understood about retinoid treatments and metabolism in mouse models of chemically and UV exposure induced cSCC, little is known about the role of retinoids in PV-induced cSCC. To better understand how retinoid metabolism is altered in cSCC, we examined the expression of this pathway in the newly discovered mouse papillomavirus (MmuPV1), which produces trichoblastomas in dorsal skin but not cSCC. We found significant increases in a rate-limiting enzyme involved in retinoic acid synthesis and retinoic acid binding proteins, suggestive of increased RA synthesis, in MmuPV1-induced tumors in B6.Cg-Foxn1(nu)/J mice. Similar increases in these proteins were seen after acute UVB exposure in Crl:SKH1-Hr(hr) mice and in regressing pre-cancerous lesions in a chemically-induced mouse model, suggesting a common mechanism in limiting the progression of papillomas to full blown cSCC.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Human Sciences (Nutrition), The Ohio State University, Columbus, OH, United States.
| | - Liye Suo
- Department of Human Sciences (Nutrition), The Ohio State University, Columbus, OH, United States
| | - Shinge Ghim
- The James Graham Brown Cancer Center, The University of Louisville, Louisville, KY, United States
| | - A Bennett Jenson
- The James Graham Brown Cancer Center, The University of Louisville, Louisville, KY, United States
| | | |
Collapse
|
16
|
Gressel KL, Duncan FJ, Oberyszyn TM, La Perle KM, Everts HB. Endogenous Retinoic Acid Required to Maintain the Epidermis Following Ultraviolet Light Exposure in SKH-1 Hairless Mice. Photochem Photobiol 2015; 91:901-8. [PMID: 25715879 DOI: 10.1111/php.12441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/23/2015] [Indexed: 12/22/2022]
Abstract
Ultraviolet light B (UVB) exposure induces cutaneous squamous cell carcinoma (cSCC), one of the most prevalent human cancers. Reoccurrence of cSCC in high-risk patients is prevented by oral retinoids. But oral retinoid treatment causes significant side effects; and patients develop retinoid resistance. Exactly how retinoids prevent UVB-induced cSCC is currently not well understood. Retinoid resistance blocks mechanistic studies in the leading mouse model of cSCC, the UVB-exposed SKH-1 hairless mouse. To begin to understand the role of retinoids in UVB-induced cSCC we first examined the localization pattern of key retinoid metabolism proteins by immunohistochemistry 48 h after UVB treatment of female SKH-1 mice. We next inhibited retinoic acid (RA) synthesis immediately after UVB exposure. Acute UVB increased RA synthesis, signaling and degradation proteins in the stratum granulosum. Some of these proteins changed their localization; while other proteins just increased in intensity. In contrast, acute UVB reduced the retinoid storage protein lectin:retinol acyltransferase (LRAT) in the epidermis. Inhibiting RA synthesis disrupted the epidermis and impaired differentiation. These data suggest that repair of the epidermis after acute UVB exposure requires endogenous RA synthesis.
Collapse
Affiliation(s)
- Katherine L Gressel
- Department of Human Sciences (Nutrition), the Ohio State University, Columbus, OH
| | - F Jason Duncan
- Department of Human Sciences (Nutrition), the Ohio State University, Columbus, OH
| | | | - Krista M La Perle
- Department of Veterinary Biosciences, the Ohio State University, Columbus, OH
| | - Helen B Everts
- Department of Human Sciences (Nutrition), the Ohio State University, Columbus, OH
| |
Collapse
|
17
|
|
18
|
Wang Y, Xiao LH, Zhao XL, Liu YP, Zhu Q. Identification of SNPs in Cellular Retinol Binding Protein 1 and Cellular Retinol Binding Protein 3 Genes and Their Associations with Laying Performance Traits in Erlang Mountainous Chicken. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1075-81. [PMID: 25083100 PMCID: PMC4109862 DOI: 10.5713/ajas.2013.13587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/16/2013] [Accepted: 01/16/2014] [Indexed: 11/27/2022]
Abstract
CRBP1 (cellular retinol binding protein 1) and CRBP3 (cellular retinol binding protein 3), are important components of the retinoid signaling pathway and take part in vitamin A absorption, transport and metabolism. Based on the role of vitamin A in chicken laying performance, we investigated the polymorphism of CRBP1 and CRBP3 genes in 349 chickens using single strand conformation polymorphism and DNA sequencing methods. Only one polymorphism was identified in the third intron of CRBP1, two polymorphisms were detected in CRBP3; they were located in the second intron and the third intron respectively. The association studies between these three SNPs and laying performance traits were performed in Erlang mountainous chicken. Notably, the SNP g.14604G>T of CRBP1 was shown to be significantly associated with body weight at first egg (BWFE), age at first egg (AFE), weight at first egg (WFE) and total number of eggs with 300 age (EN). The CRBP3 polymorphism g.934C>G was associated with AFE, and the g.1324A>G was associated with AFE and BWFE, but none of these polymorphisms were associated with egg quality traits. Haplotype combinations constructed on these two SNPs of CRBP3 gene were associated with BWFE and AFE. In particular, diplotype H2H2 had positive effect on AFE, BWFE, EN, and average egg-laying interval. We herein describe for the first time basic research on the polymorphism of chicken CRBP1 and CRBP3 genes that is predictive of genetic potential for laying performance in chicken.
Collapse
Affiliation(s)
- Yan Wang
- Breed Improving Station of Livestock and Poultry of Zunyi City, Guizhou, 563000, China
| | - Li-Hua Xiao
- Breed Improving Station of Livestock and Poultry of Zunyi City, Guizhou, 563000, China
| | - Xiao-Ling Zhao
- Breed Improving Station of Livestock and Poultry of Zunyi City, Guizhou, 563000, China
| | - Yi-Ping Liu
- Breed Improving Station of Livestock and Poultry of Zunyi City, Guizhou, 563000, China
| | - Qing Zhu
- Breed Improving Station of Livestock and Poultry of Zunyi City, Guizhou, 563000, China
| |
Collapse
|
19
|
A mid-life vitamin A supplementation prevents age-related spatial memory deficits and hippocampal neurogenesis alterations through CRABP-I. PLoS One 2013; 8:e72101. [PMID: 23977218 PMCID: PMC3747058 DOI: 10.1371/journal.pone.0072101] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/04/2013] [Indexed: 12/28/2022] Open
Abstract
Age-related memory decline including spatial reference memory is considered to begin at middle-age and coincides with reduced adult hippocampal neurogenesis. Moreover, a dysfunction of vitamin A hippocampal signalling pathway has been involved in the appearance of age-related memory deficits but also in adult hippocampal neurogenesis alterations. The present study aims at testing the hypothesis that a mid-life vitamin A supplementation would be a successful strategy to prevent age-related memory deficits. Thus, middle-aged Wistar rats were submitted to a vitamin A enriched diet and were tested 4 months later in a spatial memory task. In order to better understand the potential mechanisms mediating the effects of vitamin A supplementation on hippocampal functions, we studied different aspects of hippocampal adult neurogenesis and evaluated hippocampal CRABP-I expression, known to modulate differentiation processes. Here, we show that vitamin A supplementation from middle-age enhances spatial memory and improves the dendritic arborisation of newborn immature neurons probably resulting in a better survival and neuronal differentiation in aged rats. Moreover, our results suggest that hippocampal CRABP-I expression which controls the intracellular availability of retinoic acid (RA), may be an important regulator of neuronal differentiation processes in the aged hippocampus. Thus, vitamin A supplementation from middle-age could be a good strategy to maintain hippocampal plasticity and functions.
Collapse
|
20
|
Vitamin A derivatives as treatment options for retinal degenerative diseases. Nutrients 2013; 5:2646-66. [PMID: 23857173 PMCID: PMC3738993 DOI: 10.3390/nu5072646] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/05/2013] [Accepted: 06/13/2013] [Indexed: 11/17/2022] Open
Abstract
The visual cycle is a sequential enzymatic reaction for vitamin A, all-trans-retinol, occurring in the outer layer of the human retina and is essential for the maintenance of vision. The central source of retinol is derived from dietary intake of both retinol and pro-vitamin A carotenoids. A series of enzymatic reactions, located in both the photoreceptor outer segment and the retinal pigment epithelium, transform retinol into the visual chromophore 11-cis-retinal, regenerating visual pigments. Retina specific proteins carry out the majority of the visual cycle, and any significant interruption in this sequence of reactions is capable of causing varying degrees of blindness. Among these important proteins are Lecithin:retinol acyltransferase (LRAT) and retinal pigment epithelium-specific 65-kDa protein (RPE65) known to be responsible for esterification of retinol to all-trans-retinyl esters and isomerization of these esters to 11-cis-retinal, respectively. Deleterious mutations in these genes are identified in human retinal diseases that cause blindness, such as Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP). Herein, we discuss the pathology of 11-cis-retinal deficiency caused by these mutations in both animal disease models and human patients. We also review novel therapeutic strategies employing artificial visual chromophore 9-cis-retinoids which have been employed in clinical trials involving LCA patients.
Collapse
|
21
|
Eroglu A, Harrison EH. Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids. J Lipid Res 2013; 54:1719-30. [PMID: 23667178 PMCID: PMC3679377 DOI: 10.1194/jlr.r039537] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Indexed: 12/22/2022] Open
Abstract
Vitamin A was recognized as an essential nutrient 100 years ago. In the 1930s, it became clear that dietary β-carotene was cleaved at its central double to yield vitamin A (retinal or β-apo-15'-carotenal). Thus a great deal of research has focused on the central cleavage of provitamin A carotenoids to form vitamin A (retinoids). The mechanisms of formation and the physiological role(s) of noncentral (eccentric) cleavage of both provitamin A carotenoids and nonprovitamin A carotenoids has been less clear. It is becoming apparent that the apocarotenoids exert unique biological activities themselves. These compounds are found in the diet and thus may be absorbed in the intestine, or they may form from enzymatic or nonenzymatic cleavage of the parent carotenoids. The mechanism of action of apocarotenoids in mammals is not fully worked out. However, as detailed in this review, they have profound effects on gene expression and work, at least in part, through the modulation of ligand-activated nuclear receptors. Understanding the interactions of apocarotenoids with other lipid-binding proteins, chaperones, and metabolizing enzymes will undoubtedly increase our understanding of the biological roles of these carotenoid metabolites.
Collapse
Affiliation(s)
| | - Earl H. Harrison
- Department of Human Nutrition, Ohio State University, Columbus, OH
| |
Collapse
|
22
|
Yin HD, Wang Y, Zhang ZC, Liu YP, Chen SY, Zhu Q. Characterization of the Expression Profile and Genetic Polymorphism of the Cellular Retinol-Binding Protein (CRBP IV) Gene in Erlang Mountainous Chickens. Int J Mol Sci 2013; 14:4432-43. [PMID: 23439551 PMCID: PMC3634468 DOI: 10.3390/ijms14034432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/06/2013] [Accepted: 02/19/2013] [Indexed: 12/31/2022] Open
Abstract
In this study, we cloned the coding sequence of chicken CRBP IV, quantified the mRNA expression in Erlang Mountainous Chickens, and investigated a polymorphism in this gene and its association with egg production traits among 349 individuals. The cloned fragment contained a 384 bp open reading frame, which encoded a predicted protein of 127 amino acids and was highly conserved among species. Expression of CRBP IV mRNA was detected in all eight tissues (small intestine, heart, liver, kidney, oviduct, ovary, pituitary, and hypothalamus) at different ages (12, 24, 32 and 45 w). High expression was found in small intestine, pituitary, kidney and liver, whereas it was low in the heart (p < 0.05). The CRBP IV mRNA levels changed with age in the various tissues, and were highly expressed in all tissues at 32 w, except for the heart. We identified one nucleotide substitution (c. 826T>C) in the second exon, which caused an amino acid change (p. S49L). Genotypes (TT, TC and CC) had significant effects on the age at first egg (AFE), total eggs for 300 days (TE300) and highest continuous laying days (HCLD). The CC genotype would be genetically advantageous to improve egg production traits due to earlier AFE, more TE300, and longer HCLD.
Collapse
Affiliation(s)
- Hua-Dong Yin
- Laboratory of Animal Genetic and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya’an, Sichuan 625014, China; E-Mails: (H.-D.Y.); (Y.W.); (Z.-C.Z.); (Y.-P.L.); (S.-Y.C.)
| | - Yan Wang
- Laboratory of Animal Genetic and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya’an, Sichuan 625014, China; E-Mails: (H.-D.Y.); (Y.W.); (Z.-C.Z.); (Y.-P.L.); (S.-Y.C.)
| | - Zhi-Chao Zhang
- Laboratory of Animal Genetic and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya’an, Sichuan 625014, China; E-Mails: (H.-D.Y.); (Y.W.); (Z.-C.Z.); (Y.-P.L.); (S.-Y.C.)
| | - Yi-Ping Liu
- Laboratory of Animal Genetic and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya’an, Sichuan 625014, China; E-Mails: (H.-D.Y.); (Y.W.); (Z.-C.Z.); (Y.-P.L.); (S.-Y.C.)
| | - Shi-Yi Chen
- Laboratory of Animal Genetic and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya’an, Sichuan 625014, China; E-Mails: (H.-D.Y.); (Y.W.); (Z.-C.Z.); (Y.-P.L.); (S.-Y.C.)
| | - Qing Zhu
- Laboratory of Animal Genetic and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya’an, Sichuan 625014, China; E-Mails: (H.-D.Y.); (Y.W.); (Z.-C.Z.); (Y.-P.L.); (S.-Y.C.)
| |
Collapse
|
23
|
Ma JJ, Han BC, Yang Y, Peng JP. Retinoic acid synthesis and metabolism are concurrent in the mouse uterus during peri-implantation. Cell Tissue Res 2012; 350:525-37. [PMID: 23053054 DOI: 10.1007/s00441-012-1507-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/18/2012] [Indexed: 11/29/2022]
Abstract
Vitamin A (retinol) and its active metabolite, retinoic acid (RA), serve dual roles in the female reproductive tract. Cytochrome P450 26A1 (Cyp26a1), an RA-metabolizing enzyme, is involved in mammalian early pregnancy. In order to investigate the role of RA synthesis and metabolism during embryo implantation, we first investigated the spatiotemporal expression of RA-signal in the mouse uterus during the peri-implantation period. RA-signal-related molecules, including binding proteins, synthesizing enzymes, catabolizing enzymes and receptors, were all expressed in the mouse uterus during embryo implantation. The locations of the RA synthetic system (Aldh1a1, Aldh1a2, CRBP1) and catabolizing enzyme (Cyp26a1) were distinctive in the mouse uterus during the peri-implantation period. Aldh1a1 was located in the gland epithelium, whereas Aldh1a2 and CRBP1 were located in the stroma and Cyp26a1 was expressed in the luminal and glandular epithelium. These results demonstrate that RA synthesis occurs in the stroma, whereas RA metabolism takes place in the endometrial epithelium. When endometrial epithelial cells were isolated on day 4.5 of pregnancy and treated with E(2) (17beta-estradiol) or a combination of E(2) and progesterone, all-trans-RA (10 μM) significantly down-regulated the expression of LIF, HB-EF and CSF-1 in these cells in vitro. Taken together, these results suggest that the accumulation of RA in the stroma during mouse embryo implantation has an inhibitory effect on the expression of the three implantation-essential genes, LIF, HB-EGF and CSF-1. Therefore, the expression of Cyp26a1 in luminal and glandular epithelium might block the adverse effect of RA in order to promote successful embryo implantation.
Collapse
Affiliation(s)
- Jing-jing Ma
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China.
| | | | | | | |
Collapse
|
24
|
Kawaguchi R, Zhong M, Kassai M, Ter-Stepanian M, Sun H. STRA6-catalyzed vitamin A influx, efflux, and exchange. J Membr Biol 2012; 245:731-45. [PMID: 22815070 DOI: 10.1007/s00232-012-9463-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/23/2012] [Indexed: 11/26/2022]
Abstract
Vitamin A has diverse biological functions and is essential for human survival. STRA6 is the high-affinity membrane receptor for plasma retinol binding protein (RBP), the principle and specific carrier of vitamin A (retinol) in the blood. It was previously shown that STRA6 couples to lecithin retinol acyltransferase (LRAT) and cellular retinol binding protein I (CRBP-I), but poorly to CRBP-II, for retinol uptake from holo-RBP. STRA6 catalyzes both retinol release from holo-RBP, which is responsible for its retinol uptake activity, and the loading of free retinol into apo-RBP, which can cause retinol efflux. Although STRA6-catalyzed retinol efflux into apo-RBP can theoretically deplete cells of retinoid, it is unclear to what extent this efflux happens and in what context. We show here that STRA6 can couple strongly to both CRBP-I and CRBP-II for retinol efflux to apo-RBP. Strikingly, pure apo-RBP can cause almost complete depletion of retinol taken up by CRBP-I in a STRA6-dependent manner. However, if STRA6 encounters both holo-RBP and apo-RBP (as in blood), holo-RBP blocks STRA6-mediated retinol efflux by competing with apo-RBP's binding to STRA6 and by counteracting retinol efflux with influx. We also found that STRA6 catalyzes efficient retinol exchange between intracellular CRBP-I and extracellular RBP, even in the presence of holo-RBP. STRA6's retinol exchange activity may serve to refresh the intracellular retinoid pool. This exchange is also a previously unknown function of CRBP-I and distinguishes CRBP-I from LRAT.
Collapse
Affiliation(s)
- Riki Kawaguchi
- Department of Physiology, Jules Stein Eye Institute and Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
25
|
Venkatachalam AB, Lall SP, Denovan-Wright EM, Wright JM. Tissue-specific differential induction of duplicated fatty acid-binding protein genes by the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio). BMC Evol Biol 2012; 12:112. [PMID: 22776158 PMCID: PMC3483278 DOI: 10.1186/1471-2148-12-112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/31/2012] [Indexed: 01/03/2023] Open
Abstract
Background Force, Lynch and Conery proposed the duplication-degeneration-complementation (DDC) model in which partitioning of ancestral functions (subfunctionalization) and acquisition of novel functions (neofunctionalization) were the two primary mechanisms for the retention of duplicated genes. The DDC model was tested by analyzing the transcriptional induction of the duplicated fatty acid-binding protein (fabp) genes by clofibrate in zebrafish. Clofibrate is a specific ligand of the peroxisome proliferator-activated receptor (PPAR); it activates PPAR which then binds to a peroxisome proliferator response element (PPRE) to induce the transcriptional initiation of genes primarily involved in lipid homeostasis. Zebrafish was chosen as our model organism as it has many duplicated genes owing to a whole genome duplication (WGD) event that occurred ~230-400 million years ago in the teleost fish lineage. We assayed the steady-state levels of fabp mRNA and heterogeneous nuclear RNA (hnRNA) transcripts in liver, intestine, muscle, brain and heart for four sets of duplicated fabp genes, fabp1a/fabp1b.1/fabp1b.2, fabp7a/fabp7b, fabp10a/fabp10b and fabp11a/fabp11b in zebrafish fed different concentrations of clofibrate. Result Electron microscopy showed an increase in the number of peroxisomes and mitochondria in liver and heart, respectively, in zebrafish fed clofibrate. Clofibrate also increased the steady-state level of acox1 mRNA and hnRNA transcripts in different tissues, a gene with a functional PPRE. These results demonstrate that zebrafish is responsive to clofibrate, unlike some other fishes. The levels of fabp mRNA and hnRNA transcripts for the four sets of duplicated fabp genes was determined by reverse transcription, quantitative polymerase chain reaction (RT-qPCR). The level of hnRNA coded by a gene is an indirect estimate of the rate of transcriptional initiation of that gene. Clofibrate increased the steady-state level of fabp mRNAs and hnRNAs for both the duplicated copies of fabp1a/fabp1b.1, and fabp7a/fabp7b, but in different tissues. Clofibrate also increased the steady-state level of fabp10a and fabp11a mRNAs and hnRNAs in liver, but not for fabp10b and fabp11b. Conclusion Some duplicated fabp genes have, most likely, retained PPREs, but induction by clofibrate is over-ridden by an, as yet, unknown tissue-specific mechanism(s). Regardless of the tissue-specific mechanism(s), transcriptional control of duplicated zebrafish fabp genes by clofibrate has markedly diverged since the WGD event.
Collapse
|
26
|
Yu M, Ishibashi-Ueda H, Ohta-Ogo K, Gabbiani G, Yamagishi M, Hayashi K, Hirota S, Bochaton-Piallat ML, Hao H. Transient expression of cellular retinol-binding protein-1 during cardiac repair after myocardial infarction. Pathol Int 2012; 62:246-53. [PMID: 22449228 DOI: 10.1111/j.1440-1827.2012.02802.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retinoic acid (RA) is a vitamin A derivative that exerts pleiotropic biological effects. Intracellular transport and metabolism of RA are regulated by cellular retinol-binding proteins (CRBP). CRBP-1 is transiently expressed in granulation tissue fibroblasts during wound healing; however, its role in cardiac remodeling remains unknown. A rat myocardial infarction (MI) model was established by ligation of the left coronary artery, and hearts were obtained at 3, 6, 15, 30 and 45 days after operation. Heart sections were examined immunohistochemically using anti-vimentin, anti-α-smooth muscle actin (α-SMA), anti-matrix metalloproteinase (MMP)-2, anti-MMP-9 and anti-CRBP-1 antibodies. Infarction involved 48.8 ± 3.6% of the left ventricle and was followed by an important cardiac remodeling. Vimentin-positive fibroblastic cells including α-SMA-positive myofibroblasts expressed CRBP-1 at 3-, 6-, and 15-days after MI. Expression of CRBP-1 reached a maximum at 6-days after infarction. Thereafter, CRBP-1 expression was dramatically decreased, showing a similar tendency to MMP expression. Human heart specimens of individuals with a recent myocardial infarction demonstrated presence of CRBP-1-positive fibroblasts by immunohistochemistry. We have demonstrated that CRBP-1 is transiently expressed by fibroblasts during cardiac remodeling. Our results suggest that CRBP-1 plays a role in ventricular remodeling after MI allegedly through its RA binding activity.
Collapse
Affiliation(s)
- Mengyue Yu
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Harrison EH. Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:70-7. [PMID: 21718801 PMCID: PMC3525326 DOI: 10.1016/j.bbalip.2011.06.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/29/2011] [Accepted: 06/01/2011] [Indexed: 01/15/2023]
Abstract
Vitamin A is an essential nutrient for humans and is converted to the visual chromophore, 11-cis-retinal, and to the hormone, retinoic acid. Vitamin A in animal-derived foods is found as long chain acyl esters of retinol and these are digested to free fatty acids and retinol before uptake by the intestinal mucosal cell. The retinol is then reesterified to retinyl esters for incorporation into chlylomicrons and absorbed via the lymphatics or effluxed into the portal circulation facilitated by the lipid transporter, ABCA1. Provitamin A carotenoids such as β-carotene are found in plant-derived foods. These and other carotenoids are transported into the mucosal cell by scavenger receptor class B type I (SR-BI). Provitamin A carotenoids are partly converted to retinol by oxygenase and reductase enzymes and the retinol so produced is available for absorption via the two pathways described above. The efficiency of vitamin A and carotenoid intestinal absorption is determined by the regulation of a number of proteins involved in the process. Polymorphisms in genes for these proteins lead to individual variability in the metabolism and transport of vitamin A and carotenoids. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Earl H Harrison
- Department of Human Nutrition, The Ohio State University, 350 Campell Hall, 1787 Neil Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
28
|
Scott O, Goez HR. Three cases of cerebellar hypoplasia and vitamin a deficiency: a case report and a possible pathophysiology. J Child Neurol 2011; 26:1311-5. [PMID: 21464234 DOI: 10.1177/0883073811402202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Studies in animal models have established that intra-uterine vitamin A deficiency can hinder hindbrain formation; however, reports of such a phenomenon in humans had not been published until recently, when our group presented the case of an infant diagnosed with pontocerebellar hypoplasia and vitamin A deficiency. We currently report the cases of 3 infants with cerebellar hypoplasia and hypovitaminosis A, whose vitamin A consumption was determined to be adequate, and whose mothers had no such deficiency. We suggest a possible pathophysiology whereby a mutation in the gene coding for cytoplasmic retinol-binding protein II, which is expressed both in the placenta and the yolk sac (during fetal development) and in the absorptive intestinal cells, can cause vitamin A deficiency, forming hindbrain anomalies. Validation of our hypothesis will require further research, including fetal vitamin A measurements and hindbrain examination in cytoplasmic retinol-binding protein II knockout animals.
Collapse
Affiliation(s)
- Ori Scott
- University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
29
|
Kane MA. Analysis, occurrence, and function of 9-cis-retinoic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:10-20. [PMID: 21983272 DOI: 10.1016/j.bbalip.2011.09.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/09/2011] [Accepted: 09/23/2011] [Indexed: 01/06/2023]
Abstract
Metabolic conversion of vitamin A (retinol) into retinoic acid (RA) controls numerous physiological processes. 9-cis-retinoic acid (9cRA), an active metabolite of vitamin A, is a high affinity ligand for retinoid X receptor (RXR) and also activates retinoic acid receptor (RAR). Despite the identification of candidate enzymes that produce 9cRA and the importance of RXRs as established by knockout experiments, in vivo detection of 9cRA in tissue was elusive until recently when 9cRA was identified as an endogenous pancreas retinoid by validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology. This review will discuss the current status of the analysis, occurrence, and function of 9cRA. Understanding both the nuclear receptor-mediated and non-genomic mechanisms of 9cRA will aid in the elucidation of disease physiology and possibly lead to the development of new retinoid-based therapeutics. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
30
|
Yamamori T. Selective gene expression in regions of primate neocortex: implications for cortical specialization. Prog Neurobiol 2011; 94:201-22. [PMID: 21621585 DOI: 10.1016/j.pneurobio.2011.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 03/30/2011] [Accepted: 04/13/2011] [Indexed: 01/17/2023]
Abstract
The neocortex, which is characteristic of mammals, has evolved to play important roles in cognitive and perceptual functions. The localization of different functions in different regions of the neocortex was well established within the last century. Studies on the formation of the neocortex have advanced at the molecular level, thus clarifying the mechanisms that control neural or glial cell differentiation and sensory projections. However, mechanisms that underlie cortical area specialization remain unsolved. To address this problem, our approach has been to isolate and characterize the genes that are selectively expressed in particular subsets of neocortical areas in primates; these areas are most distinctive among mammals. By differential display and restriction landmark cDNA scanning (RLCS) methods, we have identified two major classes of genes that are specifically expressed in the adult macaque monkey neocortical areas: one is expressed in the primary sensory areas, particularly, in the primary visual cortex (V1) and the other is expressed in the association areas. The genes that show these specific expression patterns are limited to only several gene families among our large-scale screening. In this review, I first describe the isolation and characterization of these genes, along with another class of genes specifically expressed in motor areas. Then, I discuss their functional significance in the primate neocortex. Finally, I discuss the implication of these gene expression patterns in neocortical specialization in primates and possible future research directions.
Collapse
Affiliation(s)
- Tetsuo Yamamori
- Brain Biology, National Institute for Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
31
|
Kane MA, Bright FV, Napoli JL. Binding affinities of CRBPI and CRBPII for 9-cis-retinoids. Biochim Biophys Acta Gen Subj 2011; 1810:514-8. [PMID: 21382444 DOI: 10.1016/j.bbagen.2011.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cellular retinol binding-protein I (CRBPI) and cellular retinol binding-protein II (CRBPII) serve as intracellular retinoid chaperones that bind retinol and retinal with high affinity and facilitate substrate delivery to select enzymes that catalyze retinoic acid (RA) and retinyl ester biosynthesis. Recently, 9-cis-RA has been identified in vivo in the pancreas, where it contributes to regulating glucose-stimulated insulin secretion. In vitro, 9-cis-RA activates RXR (retinoid × receptors), which serve as therapeutic targets for treating cancer and metabolic diseases. Binding affinities and structure-function relationships have been well characterized for CRBPI and CRBPII with all-trans-retinoids, but not for 9-cis-retinoids. This study extended current knowledge by establishing binding affinities for CRBPI and CRBPII with 9-cis-retinoids. METHODS We have determined apparent dissociation constants, K'(d), through monitoring binding of 9-cis-retinol, 9-cis-retinal, and 9-cis-RA with CRBPI and CRBPII by fluorescence spectroscopy, and analyzing the data with non-linear regression. We compared these data to the data we obtained for all-trans- and 13-cis-retinoids under identical conditions. RESULTS CRBPI and CRBPII, respectively, bind 9-cis-retinol (K'(d), 11nM and 68nM) and 9-cis-retinal (K'(d), 8nM and 5nM) with high affinity. No significant 9-cis-RA binding was observed with CRBPI or CRBPII. CONCLUSIONS CRBPI and CRBPII bind 9-cis-retinol and 9-cis-retinal with high affinities, albeit with affinities somewhat lower than for all-trans-retinol and all-trans-retinal. GENERAL SIGNIFICANCE These data provide further insight into structure-binding relationships of cellular retinol binding-proteins and are consistent with a model of 9-cis-RA biosynthesis that involves chaperoned delivery of 9-cis-retinoids to enzymes that recognize retinoid binding-proteins.
Collapse
Affiliation(s)
- Maureen A Kane
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720-3104, USA
| | | | | |
Collapse
|
32
|
von Lintig J. Colors with functions: elucidating the biochemical and molecular basis of carotenoid metabolism. Annu Rev Nutr 2010; 30:35-56. [PMID: 20415581 DOI: 10.1146/annurev-nutr-080508-141027] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health, serving as antioxidants in lipophilic environments and blue light filters in the macula of human retina. These dietary compounds also serve as precursors of a unique set of apo-carotenoid cleavage products, including retinoids. Although knowledge about retinoid biology has tremendously increased, the metabolism of retinoids' parent precursors remains poorly understood. Recently, molecular players in carotenoid metabolism have been identified and biochemically characterized. Moreover, mutations in their corresponding genes impair carotenoid metabolism and induce various pathologies in animal models. Polymorphisms in these genes alter carotenoid and retinoid homeostasis in humans as well. This review summarizes our current knowledge about the molecular/biochemical basis of carotenoid metabolism and particularly the physiological role of carotenoids in retinoid-dependent physiological processes.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| |
Collapse
|
33
|
Abstract
Numerous physiological processes require retinoids, including development, nervous system function, immune responsiveness, proliferation, differentiation, and all aspects of reproduction. Reliable retinoid quantification requires suitable handling and, in some cases, resolution of geometric isomers that have different biological activities. Here we describe procedures for reliable and accurate quantification of retinoids, including detailed descriptions for handling retinoids, preparing standard solutions, collecting samples and harvesting tissues, extracting samples, resolving isomers, and detecting with high sensitivity. Sample-specific strategies are provided for optimizing quantification. Approaches to evaluate assay performance also are provided. Retinoid assays described here for mice also are applicable to other organisms including zebrafish, rat, rabbit, and human and for cells in culture. Retinoid quantification, especially that of retinoic acid, should provide insight into many diseases, including Alzheimer's disease, type 2 diabetes, obesity, and cancer.
Collapse
|
34
|
Abstract
Our knowledge of the uptake and transport of dietary fat and fat-soluble vitamins has advanced considerably. Researchers have identified several new mechanisms by which lipids are taken up by enterocytes and packaged as chylomicrons for export into the lymphatic system or clarified the actions of mechanisms previously known to participate in these processes. Fatty acids are taken up by enterocytes involving protein-mediated as well as protein-independent processes. Net cholesterol uptake depends on the competing activities of NPC1L1, ABCG5, and ABCG8 present in the apical membrane. We have considerably more detailed information about the uptake of products of lipid hydrolysis, the active transport systems by which they reach the endoplasmic reticulum, the mechanisms by which they are resynthesized into neutral lipids and utilized within the endoplasmic reticulum to form lipoproteins, and the mechanisms by which lipoproteins are secreted from the basolateral side of the enterocyte. apoB and MTP are known to be central to the efficient assembly and secretion of lipoproteins. In recent studies, investigators found that cholesterol, phospholipids, and vitamin E can also be secreted from enterocytes as components of high-density apoB-free/apoAI-containing lipoproteins. Several of these advances will probably be investigated further for their potential as targets for the development of drugs that can suppress cholesterol absorption, thereby reducing the risk of hypercholesterolemia and cardiovascular disease.
Collapse
Affiliation(s)
- Jahangir Iqbal
- Dept. of Anatomy, 450 Clarkson Ave., State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
35
|
Kane MA, Folias AE, Wang C, Napoli JL. Quantitative profiling of endogenous retinoic acid in vivo and in vitro by tandem mass spectrometry. Anal Chem 2008; 80:1702-8. [PMID: 18251521 PMCID: PMC4086453 DOI: 10.1021/ac702030f] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We report an improved tandem mass spectrometric assay for retinoic acid (RA) applicable to in vitro and in vivo biological samples. This liquid chromatography tandem mass spectrometric (LC/MS/MS) assay for direct RA quantification is the most sensitive to date, with a 62.5 attomol lower limit of detection and a linear range spanning greater than 4 orders of magnitude (from 250 attomol to 10 pmol). This assay resolves all-trans-RA (atRA) from its endogenous geometric isomers, is applicable to samples of limited size (10-20 mg of tissue), and functions with complex biological matrixes. Coefficients of variation are as follows: instrumental, < or =2.6%; intraday, 5.2% +/- 0.7%; interday, 6.7% +/- 0.9%. In vitro capabilities are demonstrated by quantification of endogenous RA and RA production (from retinol) in primary cultured astrocytes. Quantification of endogenous atRA and its geometric isomers in 129SV mouse serum and tissues (liver, kidney, adipose, muscle, spleen, testis, and brain) reveals in vivo utility of the assay. The ability to discriminate spatial concentrations of RA in vivo is illustrated with C57BL/6 mouse brain loci (hippocampus, cortex, olfactory bulb, thalamus, cerebellum, and striatum), as well as with Lewis rat proximal/distal mammary gland regions during various morphological stages: virgin, early pregnancy (e7), late pregnancy (e20), lactating (day 4), involuting day 1, and involuting day 11. This assay provides the sensitivity necessary for direct, endogenous RA quantification necessary to elucidate RA function, e.g., in neurogenesis, morphogenesis, and the contribution of altered RA homeostasis to diseases, such as Alzheimer's disease, type 2 diabetes, obesity, and cancer.
Collapse
Affiliation(s)
- Maureen A. Kane
- Department of Nutritional Science and Toxicology, 119 Morgan Hall, MC#3104, University of California, Berkeley, Berkeley, California 94720-3104
| | - Alexandra E. Folias
- Department of Nutritional Science and Toxicology, 119 Morgan Hall, MC#3104, University of California, Berkeley, Berkeley, California 94720-3104
| | - Chao Wang
- Department of Nutritional Science and Toxicology, 119 Morgan Hall, MC#3104, University of California, Berkeley, Berkeley, California 94720-3104
| | - Joseph L. Napoli
- Department of Nutritional Science and Toxicology, 119 Morgan Hall, MC#3104, University of California, Berkeley, Berkeley, California 94720-3104
| |
Collapse
|
36
|
Hoover LL, Burton EG, Brooks BA, Kubalak SW. The expanding role for retinoid signaling in heart development. ScientificWorldJournal 2008; 8:194-211. [PMID: 18661045 PMCID: PMC2559957 DOI: 10.1100/tsw.2008.39] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The importance of retinoid signaling during cardiac development has long been appreciated, but recently has become a rapidly expanding field of research. Experiments performed over 50 years ago showed that too much or too little maternal intake of vitamin A proved detrimental for embryos, resulting in a cadre of predictable cardiac developmental defects. Germline and conditional knockout mice have revealed which molecular players in the vitamin A signaling cascade are potentially responsible for regulating specific developmental events, and many of these molecules have been temporally and spatially characterized. It is evident that intact and controlled retinoid signaling is necessary for each stage of cardiac development to proceed normally, including cardiac lineage determination, heart tube formation, looping, epicardium formation, ventricular maturation, chamber and outflow tract septation, and coronary arteriogenesis. This review summarizes many of the significant milestones in this field and particular attention is given to recently uncovered cross-talk between retinoid signaling and other developmentally significant pathways. It is our hope that this review of the role of retinoid signaling during formation, remodeling, and maturation of the developing heart will serve as a tool for future discoveries.
Collapse
Affiliation(s)
- Loretta L Hoover
- Department of Cell Biology and Anatomy, Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, SC, USA.
| | | | | | | |
Collapse
|
37
|
|
38
|
Bloch-Zupan A. Genetische Störungen der Zahnentwicklung und Dentition. MED GENET-BERLIN 2007. [DOI: 10.1007/s11825-007-0050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Zusammenfassung
Die Zähne sind Organe, die aus ektodermalen epithelialen Aussackungen im Bereich des 1. Kiemenbogens entstehen, gesteuert von epitheliomesenchymalen Interaktionen. Dabei spielen zahlreiche Signalmoleküle speziell der 4 großen Familien TGF-β, FGF, Hedgehog und WNT sowie diverse Transkriptionsfaktoren eine Rolle. Eine Beteiligung der Retinoide an der Odontogenese ist durch umfangreiche Befunde belegt, auch wenn die Inaktivierung relevanter Gene in Mausmodellen meist keine Zahnanomalien verursacht. Die Zahnentwicklung wird klassischerweise in verschiedene Stadien eingeteilt: Entstehung der Zahnleiste, der Zahnknospe, der Schmelzkappe, der Schmelzglocke, die Wurzelbildung und der Zahndurchbruch. Anomalien der Zahnentwicklung können isoliert oder gemeinsam mit anderen Symptomen im Zusammenhang mit Syndromen auftreten. Sie können genetisch bedingt sein oder unter Einwirkung teratogener Stoffe während der Bildung und Mineralisierung der Zahnkeime zustande kommen. Dentibukkale Entwicklungsanomalien treten im Kontext seltener Erkrankungen auf und finden zunehmend Beachtung, da sie bei bestimmten Erkrankungen in der Diagnostik und als prädikative Faktoren wichtige Anhaltspunkte geben können. Allerdings ist hierfür eine interdisziplinäre und internationale Kooperation notwendig, die bislang erst in Ansätzen verwirklicht wurde.
Collapse
Affiliation(s)
- A. Bloch-Zupan
- Aff1_50 Faculté de Chirurgie Dentaire, Université Louis Pasteur, Centre de référence des manifestations odontologiques des maladies rares, Service de Soins Bucco-Dentaires Centre Hospitalier Universitaire, Hopital Civil 1 Place de l’Hopital 67000 Strasbourg Cedex France
- Aff2_50 grid.420255.4 0000000406382716 Département Génétique et Physiologie IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Inserm, U596 CNRS, UMR7104 67400 Illkirch France
- Aff3_50 grid.83440.3b 0000000121901201 Eastman Dental Institute Institute of Child Health, University College London UK
| |
Collapse
|
39
|
Verfaille CJ, Borgers M, van Steensel MAM. Retinoic acid metabolism blocking agents (RAMBAs): a new paradigm in the treatment of hyperkeratotic disorders. J Dtsch Dermatol Ges 2007; 6:355-64. [PMID: 17941881 DOI: 10.1111/j.1610-0387.2007.06541.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Synthetic vitamin A derivatives, retinoids,have long been the mainstay of treatment for several disorders of keratinization, notably the ichthyoses and severe acne. Some forms of psoriasis also respond well. Their considerable power comes at a price. They have dose-limiting side effects and can be highly teratogenic, limiting their use in women of childbearing age.Thus, retinoids are used less often than their potential would warrant. However, the recent development of compounds that block the catabolism of endogenous vitamin A, called Retinioic Acid Metabolism Blocking Agents or RAMBAs, offers new possibilities. With these drugs, retinoid effects with less side effects and a reduction of the post-treatment teratogenicity period due to their favourable pharmacokinetic profile might be expected. In this review, we discuss how retinoids work, how they are metabolized and how RAMBAs influence this process. We also review the presently available data from clinical trials with RAMBAs.
Collapse
Affiliation(s)
- Christel J Verfaille
- Barrier Therapeutics NV, Geel, Belgium, and Department of Dermatology, University Hospital Maastricht, The Netherlands
| | | | | |
Collapse
|
40
|
Vauclair S, Majo F, Durham AD, Ghyselinck NB, Barrandon Y, Radtke F. Corneal Epithelial Cell Fate Is Maintained during Repair by Notch1 Signaling via the Regulation of Vitamin A Metabolism. Dev Cell 2007; 13:242-53. [PMID: 17681135 DOI: 10.1016/j.devcel.2007.06.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 06/11/2007] [Accepted: 06/29/2007] [Indexed: 11/20/2022]
Abstract
Integrity and preservation of a transparent cornea are essential for good vision. The corneal epithelium is stratified and nonkeratinized and is maintained and repaired by corneal stem cells. Here we demonstrate that Notch1 signaling is essential for cell fate maintenance of corneal epithelium during repair. Inducible ablation of Notch1 in the cornea combined with mechanical wounding show that Notch1-deficient corneal progenitor cells differentiate into a hyperplastic, keratinized, skin-like epithelium. This cell fate switch leads to corneal blindness and involves cell nonautonomous processes, characterized by secretion of fibroblast growth factor-2 (FGF-2) through Notch1(-/-) epithelium followed by vascularization and remodeling of the underlying stroma. Vitamin A deficiency is known to induce a similar corneal defect in humans (severe xerophthalmia). Accordingly, we found that Notch1 signaling is linked to vitamin A metabolism by regulating the expression of cellular retinol binding protein 1 (CRBP1), required to generate a pool of intracellular retinol.
Collapse
Affiliation(s)
- Sophie Vauclair
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Tang XH, Vivero M, Gudas LJ. Overexpression of CRABPI in suprabasal keratinocytes enhances the proliferation of epidermal basal keratinocytes in mouse skin topically treated with all-trans retinoic acid. Exp Cell Res 2007; 314:38-51. [PMID: 17727842 DOI: 10.1016/j.yexcr.2007.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 07/16/2007] [Accepted: 07/16/2007] [Indexed: 12/31/2022]
Abstract
We investigated whether ectopic expression of CRABPI, a cellular retinoic acid binding protein, influenced the actions of all-trans retinoic acid (ATRA) in transgenic (TG) mice. We targeted CRABPI to the basal vs. suprabasal layers of mouse epidermis by using the keratin 14 (K14) and keratin 10 (K10) promoters, respectively. Greater CRABPI protein levels were detected in the epidermis of adult transgenic(+) mice than in transgenic(-) mice for both transgenes. In adult mouse skin CRABPI overexpression in the basal or suprabasal keratinocytes did not cause morphological abnormalities, but did result in decreased CRABPII mRNA levels. Ectopically overexpressed CRABPI in suprabasal keratinocytes, but not in basal keratinocytes, enhanced the thickening of the epidermis induced by topical ATRA treatments (10 microM, 400 microl for 4 days) by 1.59+/-0.2-fold (p<0.05). ATRA treatment (10 microM) resulted in a 59.9+/-9.8% increase (p<0.05) in the BrdU labeling index in K10/FLAG-CRABPI TG(+) mice vs. TG(-) mice. Retinoid topical treatments reduced p27 and CYP26A1 mRNA levels in TG(+) and TG(-) mouse skin in K14 and K10/FLAG-CRABPI transgenic mice. As epidermal basal keratinocyte proliferation is stimulated by paracrine growth factors secreted by ATRA activated suprabasal keratinocytes, our results indicate that CRABPI overexpression in suprabasal keratinocytes enhances the physiological functions of ATRA.
Collapse
Affiliation(s)
- Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
42
|
Everts HB, Sundberg JP, King LE, Ong DE. Immunolocalization of enzymes, binding proteins, and receptors sufficient for retinoic acid synthesis and signaling during the hair cycle. J Invest Dermatol 2007; 127:1593-604. [PMID: 17363914 DOI: 10.1038/sj.jid.5700753] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Retinoic acid (RA) is essential for maintenance of most epithelial tissues. One RA biosynthesis pathway consists of cellular retinol-binding protein (Crbp), retinol dehydrogenase (Dhrs9/eRoldh), retinal dehydrogenase 1-3 (Aldh1a1-3), and cellular RA-binding protein 2 (Crabp2). Previously, we localized Aldh1a2 and Aldh1a3 to both epithelial and mesenchymal cells within the hair follicle throughout the hair cycle. This study expands that observation by examining the complete pathway of RA biosynthesis and signaling via RA receptors alpha, beta, and gamma by immunohistochemistry in C57BL/6J mice wax-stripped to initiate and synchronize the cycle. This pathway of RA biosynthesis and signaling localized to the majority of layers of the hair follicle, sebaceous gland, and interfollicular epidermis in a hair cycle-dependent manner, suggesting that RA biosynthesis within the hair follicle is regulated in both a spatial and temporal manner. This localization pattern also revealed insights into epithelial-mesenchymal interactions and differentiation state differences within the RA biosynthesis and signaling pathway, as well as novel observations on nuclear versus cytoplasmic localization of Crabp2 and RA receptors. This complex pattern of RA biosynthesis and signaling identified by immunolocalization suggests that endogenous RA regulates specific aspects of hair follicle growth, differentiation, and cycling.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
43
|
Zhou FC, Wei LN. Expression of cellular retinoic acid-binding protein I is specific to neurons in adult transgenic mouse brain. Gene Expr Patterns 2007; 1:67-72. [PMID: 15018820 DOI: 10.1016/s1567-133x(01)00010-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2001] [Indexed: 11/19/2022]
Abstract
Cellular retinoic acid binding protein I (CRABP-I) plays a role in retinoic acid (RA) metabolism or transport. This report shows specific neuronal expression of CRABP-I in adult transgenic mouse brain using CRABP-I promotor-driven lac-Z and neuron- and astrocyte-markers. Double staining indicates that CRABP-I is expressed in neurons and large cells (>12 microm) but to much lesser degree the astrocytes. CRABP-I-lac-Z(+) neurons were distributed throughout the brain, but in a very discreet pattern in each brain region. CRABP-I expression in specific populations of brain neurons suggests that RA is extensively metabolized in mature brains, mostly in neurons. Additionally, the genetic basis of its specific expression in these brain areas is located in the 5' regulatory region of this gene.
Collapse
Affiliation(s)
- F C Zhou
- Department of Anatomy and Cell Biology, and Medical Neurobiology Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
44
|
Butt MS, Tahir-Nadeem M, Shahid M. Vitamin A: Deficiency and Food-Based Combating Strategies in Pakistan and Other Developing Countries. FOOD REVIEWS INTERNATIONAL 2007. [DOI: 10.1080/87559120701418343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Moise AR, Noy N, Palczewski K, Blaner WS. Delivery of retinoid-based therapies to target tissues. Biochemistry 2007; 46:4449-58. [PMID: 17378589 PMCID: PMC2562735 DOI: 10.1021/bi7003069] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Through its various metabolites, vitamin A controls essential physiological functions. Both naturally occurring metabolites and novel retinoid analogues have shown effectiveness in many clinical settings that include skin diseases and cancer, and in animal models of human conditions affecting vision. In this review, we analyze several potential retinoid-based therapies from the point of view of drug metabolism and transport to target tissues. We focus on the endogenous factors that affect the absorption, transport, and metabolism of retinoids by taking into account data obtained from the analysis of animal models that lack the enzymes or proteins involved in the storage and absorption of retinoids. We also discuss findings of toxicity associated with retinoids in an effort to improve the outcome of retinoid-based therapies. In this context, we review evidence that esterification of retinol and retinol-based drugs within target tissues provides one of the most efficient means to improve the absorption and to reduce the toxicity associated with pharmacological doses of retinoids. Future retinoid-based therapeutic strategies could involve targeted delivery mechanisms leading to lower toxicity and improved effectiveness of retinoids.
Collapse
Affiliation(s)
- Alexander R Moise
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| | | | | | | |
Collapse
|
46
|
Marceau G, Gallot D, Lemery D, Sapin V. Metabolism of retinol during mammalian placental and embryonic development. VITAMINS AND HORMONES 2007; 75:97-115. [PMID: 17368313 DOI: 10.1016/s0083-6729(06)75004-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Retinol (vitamin A) is a fat-soluble nutrient indispensable for a harmonious mammalian gestation. The absence or excess of retinol and its active derivatives [i.e., the retinoic acids (RAs)] can lead to abnormal development of embryonic and extraembryonic (placental) structures. The embryo is unable to synthesize the retinol and is strongly dependent on the maternal delivery of retinol itself or precursors: retinyl esters or carotenoids. Before reaching the embryonic tissue, the retinol or the precursors have to pass through the placental structures. During this placental step, a simple diffusion of retinol can occur between maternal and fetal compartments; but retinol can also be used in situ after its activation into RA(1) or stored as retinyl esters. Using retinol-binding protein knockout model, an alternative way of embryonic retinol supply was described using retinyl esters incorporated into maternal chylomicrons. In the embryo, the principal metabolic event occurring for retinol is its conversion into RAs, the active molecules implicated on the molecular control of embryonic morphogenesis and organogenesis. All these placental and embryonic events of retinol transport and metabolism are highly regulated. Nevertheless, some genetic and/or environmental abnormalities in the transport and/or metabolism of retinol can be related to developmental pathologies during mammalian development.
Collapse
Affiliation(s)
- Geoffroy Marceau
- Université d'Auvergne, JE 2447, ARDEMO, F-63000, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
47
|
Orlandi A, Ferlosio A, Ciucci A, Francesconi A, Lifschitz-Mercer B, Gabbiani G, Spagnoli LG, Czernobilsky B. Cellular retinol binding protein-1 expression in endometrial hyperplasia and carcinoma: diagnostic and possible therapeutic implications. Mod Pathol 2006; 19:797-803. [PMID: 16575402 DOI: 10.1038/modpathol.3800586] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cellular retinol binding protein-1 (CRBP-1) contributes to the maintenance of the differentiative state of endometrial glandular cells through the regulation of bioavailability of retinol and derivatives, but its role in endometrial oncogenetic process remains unclear. Antibodies to CRBP-1, estrogen and progesterone receptors (ER and PR) were applied to paraffin sections of proliferative (n = 10) and secretory endometrium (n = 9), and to endometrial polyps (n = 6), simple (n = 7), complex (n = 3) and atypical endometrial hyperplasias (n = 9) as well as to 47 endometrioid carcinomas of different histological grade (G) (G1, n = 18; G2, n = 19; G3, n = 10). Four serous and two clear cell carcinomas were also examined. In glandular cells, CRBP-1 positivity was mainly cytoplasmic and rarely in the nuclei. CRBP-1 immunodetection was weakly positive in proliferative and low and focal in secretory endometrium and higher in atypical as compared to simple and complex hyperplasias. CRBP-1 expression in G1 endometrioid carcinomas was similar to that in atypical hyperplasias. In the latter, the highest CRBP-1 expression was observed in areas of squamous differentiation. Semiquantitative evaluation revealed a significant decrease of cytoplasmic CRBP-1 immunoreactivity with the increase of tumor grade. Among G3 endometrioid carcinomas, 60% were CRBP-1 negative, whereas the remaining cases showed a very low and focal positivity. Serous carcinomas were also CRBP-1 negative. When areas of different grading were present within the same tumor, less differentiated areas retained a lower CRBP-1 immunoreaction. The progressive decrease of CRBP-1 paralleled that of ER and PR immunodetection. RT-PCR in eight endometrioid carcinomas suggested a decrease of CRBP-1 with the increase of tumor grade also at transcriptional level. Our results indicate that CRBP-1 immunodetection may constitute an additional tool for histological grading of endometrial carcinoma. The CRBP-1 loss during the progression of endometrial cancer suggests a new potential target for pharmacological strategies aimed to counteract its progression by increased intracellular retinol bioavailability.
Collapse
Affiliation(s)
- Augusto Orlandi
- Department of Biopathology and Image Diagnostics, Institute of Anatomic Pathology, Tor Vergata University, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Levadoux-Martin M, Li Y, Blackburn A, Chabanon H, Hesketh JE. Perinuclear localisation of cellular retinoic acid binding protein I mRNA. Biochem Biophys Res Commun 2006; 340:326-31. [PMID: 16376305 DOI: 10.1016/j.bbrc.2005.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/02/2005] [Indexed: 11/23/2022]
Abstract
Retinoids are important metabolic and developmental regulators that act through nuclear receptors. The cellular retinoic acid binding protein CRABPI has been suggested to play a role in trafficking of retinoic acid but its exact functions and subcellular localisation remain unclear. Here we show that in CHO cells both exogenous CRABPI transcripts and tagged CRABPI protein have a perinuclear distribution that depends upon the 3'UTR of the mRNA. The CRABPI 3'UTR conferred perinuclear localisation on globin reporter transcripts. Deletion analysis indicated that the first 123nt of CRABPI 3'UTR are necessary for localisation of both CRABPI mRNA and protein. We propose that CRABPI mRNA is localised by a signal within its 3'UTR and that this partly determines the distribution of CRABPI protein.
Collapse
Affiliation(s)
- M Levadoux-Martin
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle-upon-Tyne, UK
| | | | | | | | | |
Collapse
|
49
|
Abstract
The inner ear originates from an embryonic ectodermal placode and rapidly develops into a three-dimensional structure (the otocyst) through complex molecular and cellular interactions. Many genes and their products are involved in inner ear induction, organogenesis, and cell differentiation. Retinoic acid (RA) is an endogenous signaling molecule that may play a role during different phases of inner ear development, as shown from pathological observations. To gain insight into the function of RA during inner ear development, we have investigated the spatio-temporal expression patterns of major components of RA signaling pathway, including cellular retinoic acid binding proteins (CRABPs), cellular retinoid binding proteins (CRBPs), retinaldehyde dehydrogenases (RALDHs), catabolic enzymes (CYP26s), and nuclear receptors (RARs). Although the CrbpI, CrabpI, and -II genes are specifically expressed in the inner ear throughout development, loss-of-function studies have revealed that these proteins are dispensable for inner development and function. Several Raldh and Cyp26 gene transcripts are expressed at embryological day (E) 9.0-9.5 in the otocyst and show mainly complementary distributions in the otic epithelium and mesenchyme during following stages. From Western blot, RT-PCR, and in situ hybridization analysis, there is a low expression of Raldhs in the early otocyst at E9, while Cyp26s are strongly expressed. During the following days, there is an up-regulation of Raldhs and a down-regulation for Cyp26s. Specific RA receptor (Rar and Rxr) genes are expressed in the otocyst and during further development of the inner ear. At the otocyst stage, most of the components of the retinoid pathway are present, suggesting that the embryonic inner ear might act as an autocrine system, which is able to synthesize and metabolize RA necessary for its development. We propose a model in which two RA-dependent pathways may control inner ear ontogenesis: one indirect with RA from somitic mesoderm acting to regulate gene expression within the hindbrain neuroepithelium, and another with RA acting directly on the otocyst. Current evidence suggests that RA may regulate several genes involved in mesenchyme-epithelial interactions, thereby controlling inner ear morphogenesis. Our investigations suggest that RA signaling is a critical component not only of embryonic development, but also of postnatal maintenance of the inner ear.
Collapse
Affiliation(s)
- Raymond Romand
- Institut Clinique de la Souris and Institut de Génétique et de Biologie Moléculaire et cellulaire, B.P. 10142, 67404 Illkirch Cedex, France.
| | | | | |
Collapse
|
50
|
Abstract
Mechanisms involved in the digestion and absorption of dietary vitamin A require the participation of several proteins. Dietary retinyl esters are hydrolyzed in the intestine by the pancreatic enzyme, pancreatic triglyceride lipase, and intestinal brush border enzyme, phospholipase B. Unesterified retinol taken up by the enterocyte is complexed with cellular retinol-binding protein type 2 and the complex serves as a substrate for reesterification of the retinol by the enzyme lecithin:retinol acyltransferase (LRAT). The retinyl esters are then incorporated into chylomicrons, intestinal lipoproteins containing other dietary lipids, such as triglycerides, phospholipids, and free and esterified cholesterol, and apolipoprotein B. Chylomicrons containing newly absorbed retinyl esters are then secreted into the lymph. Although under normal dietary conditions much of the dietary vitamin A is absorbed via the chylomicron/lymphatic route, it is also clear that under some circumstances there is substantial absorption of unesterified retinol via the portal route. Evidence supports the idea that the cellular uptake and efflux of unesterified retinol by enterocytes is mediated by lipid transporters, but the exact number, identity, and role of these proteins is not known and is an active area of research.
Collapse
Affiliation(s)
- Earl H Harrison
- Human Nutrition Research Center, United States Department of Agriculture, Beltsville, Maryland 20705, USA.
| |
Collapse
|