1
|
Hamoud AF, Al-Saadi NH. The Assessment of Selenium, Aluminum, and Zinc in Children with Autism Spectrum Disorder. Biol Trace Elem Res 2024:10.1007/s12011-024-04283-5. [PMID: 39008215 DOI: 10.1007/s12011-024-04283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
ASD is a complex condition defined by many causes, one of them being excessive concentrations of necessary and harmful chemicals in children. The serum, hair, and nails of children with ASD have lower levels of critical trace elements, according to studies. It is quite obvious that bio elements are involved in physiology and pathophysiology. Thus, this study examined trace element contents in serum samples from children with autism spectrum disorder (ASD), specifically zinc (Zn), aluminum (Al), and selenium (Se). The study also looked for links between trace element levels and autistic severity. The study included 47 children with autism spectrum disorder, and the Gilliam's Scale was used for severity. The study also included 53 healthy kids with age and gender-matched with those of ASD. For serum trace element analysis, graphite furnace atomic absorption spectrophotometry was used. The study found significant decreases in selenium and zinc concentration (OR, 5.25; CI, 1.96 ~ 14.08; p < 0.001) and increases in aluminum level (OR, 39.34; CI, 8.20 ~ 89.45; p < 0.001) in children with ASD compared to the control group. The area under the curve (AUC) values of 0.85 for Se, 0.98 for Al, and 0.7 for Zn showed high sensitivity and specificity for all parameters. Results indicate a strong positive connection between ASD and their levels of selenium (Se) and zinc (Zn) (β, 0.48; CI, 0.280 ~ 0.679; p < 0.001 and β, 0.31; CI, 0.10 ~ 0.52; p = 0.005). There is a negative correlation between ASD and aluminum (Al) (β 0.83; CI, 0.71 ~ 0.95; p < 0.001). This element may be a biomarker for autism in youngsters. High odds ratio (OR) values indicate trace element risk in autistic children.
Collapse
Affiliation(s)
- Ali Fadheel Hamoud
- Ministry of Education, Karbala Education Directorate, Karbala, Iraq.
- Chemistry Department, College of Science, Kerbala University, Karbala, Iraq.
| | | |
Collapse
|
2
|
Santos da Silva Calado CM, Manhães-de-Castro R, Souza VDS, Cavalcanti Bezerra Gouveia HJ, Pereira SDC, da Silva MM, Albuquerque GLD, Lima BMP, Lira AVSMD, Toscano AE. Early-life malnutrition role in memory, emotional behavior and motor impairments in early brain lesions with potential for neurodevelopmental disorders: a systematic review with meta-analysis. Nutr Neurosci 2024:1-23. [PMID: 38963807 DOI: 10.1080/1028415x.2024.2361572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
OBJECTIVES The present study aims to evaluate the impact of early exposure to brain injury and malnutrition on episodic memory and behavior. METHODS For this, a systematic review was carried out in the Medline/Pubmed, Web of Science, Scopus, and LILACS databases with no year or language restrictions. RESULTS Initially, 1759 studies were detected. After screening, 53 studies remained to be read in full. The meta-analysis demonstrated that exposure to double insults worsens episodic recognition memory but does not affect spatial memory. Early exposure to low-protein diets has been demonstrated to aggravate locomotor and masticatory sequelae. Furthermore, it reduces the weight of the soleus muscle and the muscle fibers of the masseter and digastric muscles. Early exposure to high-fat diets promotes an increase in oxidative stress and inflammation in the brain, increasing anxiety- and depression-like behavior and reducing locomotion. DISCUSSION Epigenetic modifications were noted in the hippocampus, hypothalamus, and prefrontal cortex depending on the type of dietetic exposure in early life. These findings demonstrate the impact of the double insult on regions involved in cognitive and behavioral processes. Additional studies are essential to understand the real impact of the double insults in the critical period.
Collapse
Affiliation(s)
- Caio Matheus Santos da Silva Calado
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Raul Manhães-de-Castro
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Vanessa da Silva Souza
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Henrique José Cavalcanti Bezerra Gouveia
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Sabrina da Conceição Pereira
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Márcia Maria da Silva
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Glayciele Leandro de Albuquerque
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Bruno Monteiro Paiva Lima
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | | | - Ana Elisa Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Vitória de Santo Antão-Pernambuco, Brazil
| |
Collapse
|
3
|
Calado CMSDS, Manhães-de-Castro R, da Conceição Pereira S, da Silva Souza V, Barbosa LNF, Dos Santos Junior OH, Lagranha CJ, Juárez PAR, Torner L, Guzmán-Quevedo O, Toscano AE. Resveratrol Reduces Neuroinflammation and Hippocampal Microglia Activation and Protects Against Impairment of Memory and Anxiety-Like Behavior in Experimental Cerebral Palsy. Mol Neurobiol 2024; 61:3619-3640. [PMID: 38001357 DOI: 10.1007/s12035-023-03772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023]
Abstract
Cerebral palsy (CP) is a neurodevelopmental disorder characterized by motor and postural impairments. However, early brain injury can promote deleterious effects on the hippocampus, impairing memory. This study aims to investigate the effects of resveratrol treatment on memory, anxiety-like behavior, and neuroinflammation markers in rats with CP. Male Wistar rats were subjected to perinatal anoxia (P0-P1) and sensory-motor restriction (P2-P28). They were treated with resveratrol (10 mg/kg, 0.1 ml/100 g) or saline from P3-P21, being divided into four experimental groups: CS (n = 15), CR (n = 15), CPS (n = 15), and CPR (n = 15). They were evaluated in the tests of novel object recognition (NORT), T-Maze, Light-Dark Box (LDB), and Elevated Plus Maze (EPM). Compared to the CS group, the CPS group has demonstrated a reduced discrimination index on the NORT (p < 0.0001) and alternation on the T-Maze (p < 0.01). In addition, the CPS group showed an increase in permanence time on the dark side in LDB (p < 0.0001) and on the close arms of the EPM (p < 0.001). The CPR group demonstrated an increase in the object discrimination index (p < 0.001), on the alternation (p < 0.001), on the permanence time on the light side (p < 0.0001), and on the open arms (p < 0.001). The CPR group showed a reduction in gene expression of IL-6 (p = 0.0175) and TNF-α (p = 0.0007) and an increase in Creb-1 levels (p = 0.0020). The CPS group showed an increase in the activated microglia and a reduction in cell proliferation in the hippocampus, while CPR animals showed a reduction of activated microglia and an increase in cell proliferation. These results demonstrate promising effects of resveratrol in cerebral palsy behavior impairment through reduced neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Caio Matheus Santos da Silva Calado
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Raul Manhães-de-Castro
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Sabrina da Conceição Pereira
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Vanessa da Silva Souza
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Leticia Nicoly Ferreira Barbosa
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Osmar Henrique Dos Santos Junior
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Claudia Jacques Lagranha
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Pedro Alberto Romero Juárez
- Laboratory of Experimental Neuronutrition and Food Engineering, Tecnológico Nacional de México (TECNM), Instituto Tecnológico Superior de Tacámbaro, 61651, Tacámbaro, Michoacán, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Omar Guzmán-Quevedo
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Laboratory of Experimental Neuronutrition and Food Engineering, Tecnológico Nacional de México (TECNM), Instituto Tecnológico Superior de Tacámbaro, 61651, Tacámbaro, Michoacán, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Ana Elisa Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
- Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Rua Do Alto Do Reservatório S/N, Bela Vista, Vitória de Santo Antão, Pernambuco, 55608-680, Brazil.
| |
Collapse
|
4
|
Figa Z, Temesgen T, Mahamed AA, Bekele E. The effect of maternal undernutrition on adverse obstetric outcomes among women who attend antenatal care in Gedeo zone public hospitals, cohort study design. BMC Nutr 2024; 10:64. [PMID: 38650046 PMCID: PMC11034148 DOI: 10.1186/s40795-024-00870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Undernutrition refers to an overall deficiency of nutrients due to an inadequate intake of a well-balanced diet. Undernourishment during pregnancy is an important contributor to maternal morbidity and mortality. It remains a persistent problem in developing countries, where women usually fall behind men in having access to food, health care, and education. Despite the high prevalence of maternal undernourishment, its direct impact on obstetric outcomes has not been studied in developing countries, including Ethiopia. OBJECTIVE This study aimed to assess the effect of maternal undernutrition on adverse obstetric outcomes in Gedeo zone public hospitals. METHOD A cohort study design was employed in Gedeo zone public hospitals from June 30, 2022, to February 28, 2023. This study included 721 pregnant women, 237 were exposed group whereas 484 were non-exposed. A systematic random sampling technique was used to select a non-exposed group and the exposed group was selected consecutively. Both groups were followed for 7 months, from 16 weeks of gestation to 24 h of delivery. The pretested interviewer-administered questionnaire and checklist were used. EpiData 4.4.1.2.version was used for data entry and analyzed using Stata version 16 software. A modified Poisson regression model with robust standard errors was used to determine relative risk, and the statistical association was declared at a p-value ≤ 0.05. Finally, the findings were reported in figures, tables, and words. RESULT The incidence of adverse obstetrics outcomes among undernourished and normally nourished mothers was hypertensive disorder during pregnancy (HDDP) (7.49% vs. 3.19%), antepartum haemorrhage (7.49% vs. 3.19%), obstructed labor (1.53% vs. 3.49%), premature rupture of the membrane (2.5% vs. 3.33%), preterm labor (6.52% vs. 6.93%), instrumental vaginal delivery (1.8% vs. 4.3%), postpartum haemorrhage (5.95% vs. 3.88%), and sepsis (3.74% vs. 1.94%). The risk of adverse obstetric outcomes among undernourished women was hypertensive disorder during pregnancy (HDDP) (aRR) = 4.07, 95%CI: 2.53-6.55), antepartum haemorrhage (APH) (aRR = 5.0, 95% CI: 2.08-12.72), preterm labor (aRR = 1.8, 95%CI: 1.23-2.62), operative delivery (aRR = 1.24, 95%C: 0.87-1.78), postpartum haemorrhage (aRR = 3.02, 95%CI: 1.91-4.79), and sepsis/chrioaminitis (aRR = 3.55, 95%CI: 1.83-6.89) times higher than normally nourished women. CONCLUSION The incidence rates of hypertensive disorder during pregnancy (HDDP), antepartum haemorrhage, postpartum haemorrhage, and sepsis were higher among undernourished women than normally nourished women. Undernourished women during pregnancy have an increased risk of adverse obstetrics outcomes including hypertensive disorder during pregnancy, antepartum, preterm labor, operative delivery, postpartum haemorrhage, and sepsis/chorioamnionitis.
Collapse
Affiliation(s)
- Zerihun Figa
- Dilla University College of Health and Medical Science Department of Midwifery, Dilla, Ethiopia.
| | - Tesfaye Temesgen
- Dilla University College of Health and Medical Science Department of Midwifery, Dilla, Ethiopia
| | - Abbas Ahmed Mahamed
- Dilla University College of Health and Medical Science Department of Midwifery, Dilla, Ethiopia
| | - Etaferahu Bekele
- Dilla University College of Health and Medical Science Department of Emergency and Critical Care Nursing, Dilla, Ethiopia
| |
Collapse
|
5
|
Rai S, Keservani RK, Kumar P, Nikam VK, Kachave RN, Kumar Y, Kesharwani RK. Importance of functional foods in the management of autism. NUTRACEUTICAL FRUITS AND FOODS FOR NEURODEGENERATIVE DISORDERS 2024:151-171. [DOI: 10.1016/b978-0-443-18951-7.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Ansuya, Nayak BS, Unnikrishnan B, Shashidhara YN, Mundkur SC. Effect of nutrition intervention on cognitive development among malnourished preschool children: randomized controlled trial. Sci Rep 2023; 13:10636. [PMID: 37391472 PMCID: PMC10313707 DOI: 10.1038/s41598-023-36841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 06/11/2023] [Indexed: 07/02/2023] Open
Abstract
Childhood malnutrition impairs health, development, and productivity in adulthood. Underweight children have been found to have a variety of cognitive abnormalities. The present study examined the effect of a nutrition-focused intervention on cognitive development among malnourished preschool children between 3 and 5 years of age residing in selected villages of Udupi district, Karnataka. A cluster of 12 villages was chosen randomly. The trial had enrolled preschool children (n = 253) from randomly assigned selected villages to intervention (n = 127) and control arms (n = 126). The mothers in the intervention arm received nutrition-focused intervention and reinforcement of health teaching for 12 months. The post-intervention outcome on the cognitive development of malnourished children was measured at 6 months and 12 months. Statistical analyses indicated that 52% of children in the intervention group had average cognitive development scores on the pre-test, whereas on the post-test, only 5.5% were in the average level of cognitive development. In the control group, the average cognitive development status of the children decreased from 44.4% in the pretest to 26.2% in the post-test. The cognitive development of malnourished children in the intervention group improved compared to the control group (p < 0.001). This study revealed that home-based nutrition-focused food helps to enhance children's cognitive development.Trial registration: ctri@gov.in. CTRI/31/03/2017/008273 [Registered on: 31/03/2017].
Collapse
Affiliation(s)
- Ansuya
- Department of Community Health Nursing, Manipal College of Nursing, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Baby S Nayak
- Department of Child Health Nursing, Manipal College of Nursing, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - B Unnikrishnan
- Kasturba Medical College, Manipal Academy of Higher Education, Mangaluru, Karnataka, India
| | - Y N Shashidhara
- Department of Community Health Nursing, Manipal College of Nursing, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Suneel C Mundkur
- Department of Pediatrics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
7
|
Chen W, Li T, Du S, Chen H, Wang Q. Microalgal polyunsaturated fatty acids: Hotspots and production techniques. Front Bioeng Biotechnol 2023; 11:1146881. [PMID: 37064250 PMCID: PMC10102661 DOI: 10.3389/fbioe.2023.1146881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Algae play a crucial role in the earth’s primary productivity by producing not only oxygen but also a variety of high-value nutrients. One such nutrient is polyunsaturated fatty acids (PUFAs), which are accumulated in many algae and can be consumed by animals through the food chain and eventually by humans. Omega-3 and omega-6 PUFAs are essential nutrients for human and animal health. However, compared with plants and aquatic sourced PUFA, the production of PUFA-rich oil from microalgae is still in the early stages of exploration. This study has collected recent reports on algae-based PUFA production and analyzed related research hotspots and directions, including algae cultivation, lipids extraction, lipids purification, and PUFA enrichment processes. The entire technological process for the extraction, purification and enrichment of PUFA oils from algae is systemically summarized in this review, providing important guidance and technical reference for scientific research and industrialization of algae-based PUFA production.
Collapse
Affiliation(s)
- Weixian Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tianpei Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shuwen Du
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- *Correspondence: Qiang Wang,
| |
Collapse
|
8
|
Fernandes MS, Pedroza AA, de Andrade Silva SC, de Lemos MDT, Bernardo EM, Pereira AR, Dos Santos TM, Lagranha C. Undernutrition during development modulates endoplasmic reticulum stress genes in the hippocampus of juvenile rats: Involvement of oxidative stress. Brain Res 2022; 1797:148098. [PMID: 36162496 DOI: 10.1016/j.brainres.2022.148098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
To evaluate whether exercise training mitigates the deleterious effects of undernutrition during the developmental period in juvenile Wistar rats. Pregnant Wistar rats were fed with a diet containing 17 % or 8 % casein during pregnancy and lactation. At 30 days of life, male offspring were divided into 4 groups: Low-Protein non-trained (LS), Low-Protein Trained (LT), Normoprotein non-trained (NS), and Normoprotein Trained (NT). Trained rats performed aerobic exercise training (AET) for 4 weeks, 5 days a week, 1 h a day. 24 h from the last day of training, the animals were sacrificed. The tissues were removed to analyze indicators of mitochondrial metabolism, oxidative stress, and gene expression of GRP78, PERK, ATF6 ER stress markers, and BDNF. The results showed that undernutrition during development promotes deleterious effects on mitochondrial oxidative metabolism and induces reticulum stress in the hippocampus of juvenile rats. On the other hand, AET improves mitochondrial function and increases enzymatic and non-enzymatic antioxidant capacity, as well as declines ER stress. AET at moderate intensity for 4 weeks in male juvenile Wistar rats acts as a lifestyle intervention opposing the negative effects induced by a protein-restricted maternal diet.
Collapse
Affiliation(s)
- Matheus Santos Fernandes
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil; Physical Education and Sport Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Anderson Apolônio Pedroza
- Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil
| | - Severina Cássia de Andrade Silva
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil
| | - Maria Daniele Teixeira de Lemos
- Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil
| | - Elenilson M Bernardo
- Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil
| | - Allifer R Pereira
- Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil
| | - Tony Meireles Dos Santos
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Physical Education and Sport Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Claudia Lagranha
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil.
| |
Collapse
|
9
|
Schausberger P, Rendon D. Transgenerational effects of grandparental and parental diets combine with early-life learning to shape adaptive foraging phenotypes in Amblyseius swirskii. Commun Biol 2022; 5:246. [PMID: 35314761 PMCID: PMC8938427 DOI: 10.1038/s42003-022-03200-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Transgenerational effects abound in animals. While a great deal of research has been dedicated to the effects of maternal stressors such as diet deficiency, social deprivation or predation risk on offspring phenotypes, we have a poor understanding of the adaptive value of transgenerational effects spanning across multiple generations under benign conditions and the relative weight of multigenerational effects. Here we show that grandparental and parental diet experiences combine with personal early-life learning to form adaptive foraging phenotypes in adult plant-inhabiting predatory mites Amblyseius swirskii. Our findings provide insights into transgenerational plasticity caused by persistent versus varying conditions in multiple ancestral generations and show that transgenerational effects may be adaptive in non-matching ancestor and offspring environments.
Collapse
Affiliation(s)
- Peter Schausberger
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Dalila Rendon
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| |
Collapse
|
10
|
Han T, Jiang W, Wu H, Wei W, Lu J, Lu H, Xu J, Gu W, Guo X, Wang Y, Ruan J, Li Y, Wang Y, Jiang X, Zhao S, Li Y, Sun C. Fetal malnutrition is associated with impairment of endogenous melatonin synthesis in pineal via hypermethylation of promoters of protein kinase C alpha and cAMP response element-binding. J Pineal Res 2021; 71:e12764. [PMID: 34486775 DOI: 10.1111/jpi.12764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/26/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
This study investigated whether and how fetal malnutrition would influence endogenous melatonin synthesis, and whether such effect of fetal malnutrition would transmit to the next generation. We enrolled 2466 participants and 1313 of their offspring. The urine 6-hydroxymelatonin sulfate and serum melatonin rhythm were measured. Methylation microarray detection and bioinformatics analysis were performed to identify hub methylated sites. Additionally, rat experiment was performed to elucidate mechanisms. The participants with fetal malnutrition had lower 6-hydroxymelatonin sulfate (16.59 ± 10.12 μg/24 hours vs 24.29 ± 11.99 μg/24 hours, P < .001) and arear under curve of melatonin rhythm (67.11 ± 8.16 pg/mL vs 77.11 ± 8.04 pg/mL, P < .001). We identified 961 differentially methylated sites, in which the hub methylated sites were locating on protein kinase C alpha (PRKCA) and cAMP response element-binding protein (CREB1) promoters, mediating the association of fetal malnutrition with impaired melatonin secretion. However, such effects were not observed in the offspring (all P > .05). Impaired histomorphology of pineal, decreased melatonin in serum, pineal, and pinealocyte were also found in the in vivo and in vitro experiments (P < .05 for the differences of the indicators). Hypermethylation of 10 CpG sites on the PRKCA promoter and 8 CpG sites on the CREB1 promoter were identified (all P < .05), which down-regulated PRKCA and CREB1 expressions, leading to decreased expression of AANAT, and then resulting in the impaired melatonin synthesis. Collectively, fetal malnutrition can impair melatonin synthesis through hypermethylation of PRKCA and CREB1 promoters, and such effects cannot be transmitted to the next generation.
Collapse
Affiliation(s)
- Tianshu Han
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Wenbo Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Huanyu Wu
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Wei Wei
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Jiang Lu
- National Center for Food Safety Risk Assessment, Beijing, China
| | - Huimin Lu
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Jiaxu Xu
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Wenbo Gu
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Xiaoyu Guo
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Yu Wang
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Jingqi Ruan
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Yunong Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuxin Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xitao Jiang
- College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT, Australia
| | - Shengnan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| | - Ying Li
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, Harbin, China
- NHC Key Laboratory of Cell Translation, Harbin Medical University, Harbin, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, School of Public Health, National Key Discipline, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Siomek-Gorecka A, Dlugosz A, Czarnecki D. The Molecular Basis of Alcohol Use Disorder (AUD). Genetics, Epigenetics, and Nutrition in AUD: An Amazing Triangle. Int J Mol Sci 2021; 22:ijms22084262. [PMID: 33924016 PMCID: PMC8072802 DOI: 10.3390/ijms22084262] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol use disorder (AUD) is a very common and complex disease, as alcohol is the most widely used addictive drug in the world. This disorder has an enormous impact on public health and social and private life, and it generates a huge number of social costs. Alcohol use stimulates hypothalamic-pituitary-adrenal (HPA) axis responses and is the cause of many physical and social problems (especially liver disease and cancer), accidental injury, and risky sexual behavior. For years, researchers have been trying to identify the genetic basis of alcohol use disorder, the molecular mechanisms responsible for its development, and an effective form of therapy. Genetic and environmental factors are known to contribute to the development of AUD, and the expression of genes is a complicated process that depends on epigenetic modulations. Dietary nutrients, such as vitamins, may serve as one these modulators, as they have a direct impact on epigenomes. In this review, we connect gathered knowledge from three emerging fields-genetics, epigenetics, and nutrition-to form an amazing triangle relating to alcohol use disorder.
Collapse
Affiliation(s)
- Agnieszka Siomek-Gorecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-095 Bydgoszcz, Poland
- Correspondence: ; Tel.: +48-52-585-37-48
| | - Anna Dlugosz
- Department of Engineering and Chemical and Food Analytics, Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, 85-326 Bydgoszcz, Poland;
| | - Damian Czarnecki
- Department of Preventive Nursing, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-821 Bydgoszcz, Poland;
| |
Collapse
|
12
|
Jannuzzi LB, Pereira-Acacio A, Ferreira BSN, Silva-Pereira D, Veloso-Santos JPM, Alves-Bezerra DS, Lopes JA, Costa-Sarmento G, Lara LS, Vieira LD, Abadie-Guedes R, Guedes RCA, Vieyra A, Muzi-Filho H. Undernutrition - thirty years of the Regional Basic Diet: the legacy of Naíde Teodósio in different fields of knowledge. Nutr Neurosci 2021; 25:1973-1994. [PMID: 33871318 DOI: 10.1080/1028415x.2021.1915631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Undernutrition is characterized by an imbalance of essential nutrients with an insufficient nutritional intake, a disorder in which the clinical manifestations in most cases are the result of the economic and social context in which the individual lives. In 1990, the study by the medical and humanitarian Naíde Teodósio (1915-2005) and coworkers, which formulated the Regional Basic Diet (RBD) model for inducing undernutrition, was published. This diet model took its origin from the observation of the dietary habits of families that inhabited impoverished areas from the Pernambuco State. RBD mimics an undernutrition framework that extends not only to the Brazilian population, but to populations in different regions worldwide. The studies based on RBD-induced deficiencies provide a better understanding of the impact of undernutrition on the pathophysiological mechanisms underlying the most diverse prevalent diseases. Indexed papers that are analyzed in this review focus on the importance of using RBD in different areas of knowledge. These papers reflect a new paradigm in translational medicine: they show how the study of pathology using the RBD model in animals over the past 30 years has and still can help scientists today, shedding light on the mechanisms of prevalent diseases that affect impoverished populations.
Collapse
Affiliation(s)
- Larissa B Jannuzzi
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amaury Pereira-Acacio
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna S N Ferreira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Silva-Pereira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João P M Veloso-Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danilo S Alves-Bezerra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jarlene A Lopes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glória Costa-Sarmento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucienne S Lara
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leucio D Vieira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Ricardo Abadie-Guedes
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Rubem C A Guedes
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology of Regenerative Medicine/REGENERA, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Ratsika A, Codagnone MC, O’Mahony S, Stanton C, Cryan JF. Priming for Life: Early Life Nutrition and the Microbiota-Gut-Brain Axis. Nutrients 2021; 13:423. [PMID: 33525617 PMCID: PMC7912058 DOI: 10.3390/nu13020423] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 12/18/2022] Open
Abstract
Microbes colonize the human body during the first moments of life and coexist with the host throughout the lifespan. Intestinal microbiota and their metabolites aid in the programming of important bodily systems such as the immune and the central nervous system during critical temporal windows of development, with possible structural and functional implications throughout the lifespan. These critical developmental windows perinatally (during the first 1000 days) are susceptible timepoints for insults that can endure long lasting effects on the microbiota-gut-brain axis. Environmental and parental factors like host genetics, mental health, nutrition, delivery and feeding mode, exposure to antibiotics, immune activation and microbiota composition antenatally, are all factors that are able to modulate the microbiota composition of mother and infant and may thus regulate important bodily functions. Among all these factors, early life nutrition plays a pivotal role in perinatal programming and in the modulation of offspring microbiota from birth throughout lifespan. This review aims to present current data on the impact of early life nutrition and microbiota priming of important bodily systems and all the factors influencing the microbial coexistence with the host during early life development.
Collapse
Affiliation(s)
- Anna Ratsika
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; (A.R.); (M.C.C.); (S.O.); (C.S.)
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| | - Martin C. Codagnone
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; (A.R.); (M.C.C.); (S.O.); (C.S.)
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| | - Siobhain O’Mahony
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; (A.R.); (M.C.C.); (S.O.); (C.S.)
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; (A.R.); (M.C.C.); (S.O.); (C.S.)
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy P61 C996, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland; (A.R.); (M.C.C.); (S.O.); (C.S.)
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
14
|
Guan J, Ding Y, Rong Y, Geng Y, Lai L, Qi D, Tang Y, Yang L, Li J, Zhou T, Wu E, Wu R. Early Life Stress Increases Brain Glutamate and Induces Neurobehavioral Manifestations in Rats. ACS Chem Neurosci 2020; 11:4169-4178. [PMID: 33179901 DOI: 10.1021/acschemneuro.0c00454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Early life stress (ELS) is associated with an increased risk of developing depression and anxiety disorders. Disturbances of the neurobiological glutamatergic system are implicated in depression; however, the long-term effects of ELS on glutamate (Glu) metabolites remain unclear. Our study used 7T proton magnetic resonance spectroscopy (7T 1H MRS) to detect metabolic Glu in a rat model to investigate maternal deprivation (MD)-induced ELS. MD was established in Sprague-Dawley rats by periodic separation from mothers and peers. Changes in the hippocampal volume and Glu metabolism were detected by 7T 1H MRS after testing for depression-like behavior via open field, sucrose preference, and Morris water maze tests. Adult MD offspring exhibited depression-like behavior. Compared to the control, the MD group exhibited reduced ratio of central activity time to total time and decreased sucrose consumption (p < 0.05). MD rats spent less time in the fourth quadrant, where the platform was originally placed, in the Morris water maze test. According to 7T 1H MRS, hippocampus of MD rats had elevated Glu and glutamate + glutamine (Glu+Gln) levels compared with the control group hippocampi, but Gln, γ-aminobutyric acid (GABA), and glutamate + glutamine (Glu+Gln) in the prefrontal cortex of MD rats showed a downward trend. Depression-like behavior and cognition deficits related to ELS may induce region-specific changes in Glu metabolism in the prefrontal cortex and hippocampus. The novel, noninvasive 7T 1H MRS-identified associations between Glu levels and ELS may guide future clinical studies.
Collapse
Affiliation(s)
- Jitian Guan
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76502, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas 76502, United States
| | - Yan Ding
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Yunjie Rong
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yiqun Geng
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76502, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas 76502, United States
- Laboratory of Molecular Pathology, Shantou University Medical College, Shantou 515031, China
| | - Lingfeng Lai
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76502, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas 76502, United States
| | - Yanyan Tang
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Lin Yang
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Juntao Li
- Department of Breast Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Teng Zhou
- Department of Computer Science, Shantou University, Shantou 515041, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76502, United States
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas 76502, United States
- Department of Surgery, Texas A & M University Health Science Center College of Medicine, Temple 76508, Texas United States
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A & M University Health Science Center, College Station, Texas 77843, United States
- LIVESTRONG Cancer Institutes, Dell Medical School, the University of Texas at Austin, Austin, Texas 78712, United States
| | - Renhua Wu
- Department of Radiology, the Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
15
|
Rocha MLM, Fernandes PP, Tenório F, Manhães AC, Barradas PC. Malnourishment during early lactation disrupts the ontogenetic distribution of the CART and α-MSH anorexigenic molecules in the arcuate/paraventricular pathway and lateral hypothalamus in male rats. Brain Res 2020; 1743:146906. [PMID: 32473258 DOI: 10.1016/j.brainres.2020.146906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/20/2020] [Accepted: 05/25/2020] [Indexed: 11/19/2022]
Abstract
Developmental malnourishment impacts the energetic metabolism control throughout life. In rat offspring, a 0% protein diet during the first 10 days of lactation results in leptin resistance and in alterations in: feeding behavior, serum leptin and neuropeptide Y (NPY) levels in the hypothalamic arcuate nucleus (ARC)/paraventricular (PVN) pathway. Here, the distributions of alpha-melanocyte stimulating hormone (α-MSH) and cocaine and amphetamine regulated transcript (CART), anorexigenic molecules, were immunohistochemically assessed in the ARC, PVN and lateral hypothalamus (LH) nuclei. Rat dams were subjected to one of the following diet protocols from postnatal day (P) 1-10: 1) Protein-free (PFG, 0% protein chow); 2) Pair-fed (UFG, normoprotein chow); 3) Control group (CG, normoprotein chow). PFG, UFG and CG male offspring were analyzed at different time points, from P5 to P180. In the ARC, PFG α-MSH and CART were increased from P10 to P45 when compared to CG and UFG. In the PVN, α-MSH and CART peaks in PFG animals were delayed from P20 to P30 when compared to CG. In the LH, CART was more intense in PFG animals than in UFG and CG ones by P20, and, by P30, UFG immunostaining became less intense than in CG. In conclusion, aproteic diet altered the ontogenetic distribution of both anorexigenic molecules. In the PVN, the peak was delayed to P30, which coincides with the leptin peak and follows the previously described NPY (orexigenic) peak in this model. The permanent LH CART and α-MSH increase may be associated with the previously observed PFG hypophagia.
Collapse
Affiliation(s)
- Michael L M Rocha
- Laboratório de Neurobiologia do Desenvolvimento, Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscilla P Fernandes
- Laboratório de Neurobiologia do Desenvolvimento, Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frank Tenório
- Laboratório de Neurobiologia do Desenvolvimento, Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Penha C Barradas
- Laboratório de Neurobiologia do Desenvolvimento, Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Yan L, Wang Y, Zhang Z, Xu S, Ullah R, Luo X, Xu X, Ma X, Chen Z, Zhang L, Lv Y, Du L. Postnatal delayed growth impacts cognition but rescues programmed impaired pulmonary vascular development in an IUGR rat model. Nutr Metab Cardiovasc Dis 2019; 29:1418-1428. [PMID: 31653519 DOI: 10.1016/j.numecd.2019.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Intrauterine growth restriction (IUGR) is a state of slower fetal growth usually followed by a catch-up growth. Postnatal catch-up growth in IUGR models increases the incidence of pulmonary arterial hypertension in adulthood. Here, we hypothesize that the adverse pulmonary vascular consequences of IUGR may be improved by slowing down postnatal growth velocity. Meanwhile, cognitive function was also studied. METHODS AND RESULTS We established an IUGR rat model by restricting maternal food throughout gestation. After birth, pups were fed a regular or restricted diet during lactation by changing litter size. Thus, there were three experimental groups according to the dam/offspring diet: C/C (gold standard), IUGR with catch-up growth (R/C) and IUGR with delayed growth (R/D). In adulthood (14 weeks of age), we assessed pulmonary vascular development by hemodynamic measurement and immunohistochemistry. Our results showed that adult R/C offspring developed an elevated mean pulmonary arterial pressure (mPAP) and pulmonary arteriolar remodeling accompanied with decreased eNOS mRNA and protein expressions compared to C/C or R/D offspring. This suggested that delayed postnatal growth improved pulmonary circulation compared to postnatal catch-up growth. Conversely, adult R/D offspring performed poorly in cognition. Behavior test and electrophysiology results exhibited a reduced synaptic plasticity. Furthermore, decreased mRNA expression levels of the memory-related gene zif268 and transcription factor recruitment factor p300 in the hippocampus region were also observed in R/D group. CONCLUSION These findings indicate that delayed postnatal growth results in cognitive impairment, but it reverses elevations in mPAP induced by postnatal catch-up growth following IUGR.
Collapse
Affiliation(s)
- LingLing Yan
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Wang
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - ZiMing Zhang
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - ShanShan Xu
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rahim Ullah
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - XiaoFei Luo
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - XueFeng Xu
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - XiaoLu Ma
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zheng Chen
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - LiYan Zhang
- Fujian University of Medicine, NICU, Fuzhou Children's Hospital of Fujian Province, Fuzhou, 350005, Fujian Province, China
| | - Ying Lv
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - LiZhong Du
- Department of Pediatrics, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
17
|
Wang L, Yi Y, Yao Y, Feng G, Shu C, Wang H, Zhang X. Walnut oil improves spatial memory in rats and increases the expression of acid-sensing ion channel genes Asic2a and Asic4. Food Sci Nutr 2019; 7:293-301. [PMID: 30680184 PMCID: PMC6341134 DOI: 10.1002/fsn3.889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
Although Walnut oil (WO) has been reported to enhance cognitive function, the underlying molecular mechanisms are not well understood. This study was designed to assess the effects of WO on spatial memory in rats through modulation of the expression of acid-sensing ion channel genes, Asic2a and Asic4. To investigate the effect of WO on cognitive performance, we supplemented the diet of female rats with WO. The results showed that supplementation with WO at doses of 2.2 and 11 g kg-1 day-1 significantly improved learning and memory. In vitro treatment of rat hippocampal neuronal cells with appropriate doses of WO revealed a significant increase in the expression of Asic2a and Asic4 in a dose-dependent manner at both the mRNA and protein levels. We conclude that WO intake might help to prevent cognitive decline, particularly in the elderly, and that ASIC genes in neurons can be the targets of compounds contained in the oil.
Collapse
Affiliation(s)
- Li‐Mei Wang
- College of Biological and Pharmaceutical EngineeringWuhan Polytechnic UniversityWuhanChina
- Hubei Key Laboratory for Processing and Transformation of Agricultural ProductsWuhan Polytechnic UniversityWuhanChina
- Key Laboratory for Deep Processing of Major Grain and Oil(Wuhan Polytechnic University)of Ministry of Education in ChinaWuhanChina
| | - Yang Yi
- Hubei Key Laboratory for Processing and Transformation of Agricultural ProductsWuhan Polytechnic UniversityWuhanChina
- Key Laboratory for Deep Processing of Major Grain and Oil(Wuhan Polytechnic University)of Ministry of Education in ChinaWuhanChina
- College of Food Science and EngineeringWuhan Polytechnic UniversityWuhanChina
| | - Yi‐Lan Yao
- College of Biological and Pharmaceutical EngineeringWuhan Polytechnic UniversityWuhanChina
| | - Ge Feng
- College of Biological and Pharmaceutical EngineeringWuhan Polytechnic UniversityWuhanChina
| | - Chang Shu
- College of Biological and Pharmaceutical EngineeringWuhan Polytechnic UniversityWuhanChina
| | - Hong‐Xun Wang
- College of Biological and Pharmaceutical EngineeringWuhan Polytechnic UniversityWuhanChina
- Hubei Key Laboratory for Processing and Transformation of Agricultural ProductsWuhan Polytechnic UniversityWuhanChina
- Key Laboratory for Deep Processing of Major Grain and Oil(Wuhan Polytechnic University)of Ministry of Education in ChinaWuhanChina
| | - Xi‐Feng Zhang
- College of Biological and Pharmaceutical EngineeringWuhan Polytechnic UniversityWuhanChina
| |
Collapse
|
18
|
Das JK, Hoodbhoy Z, Salam RA, Bhutta AZ, Valenzuela‐Rubio NG, Weise Prinzo Z, Bhutta ZA. Lipid-based nutrient supplements for maternal, birth, and infant developmental outcomes. Cochrane Database Syst Rev 2018; 8:CD012610. [PMID: 30168868 PMCID: PMC6513224 DOI: 10.1002/14651858.cd012610.pub2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ready-to-use lipid-based nutrient supplements (LNS) are a highly nutrient-dense supplement, which could be a good source of macro- and micronutrients for pregnant women who need to supplement their nutrient intake. OBJECTIVES To assess the effects of LNS for maternal, birth and infant outcomes in pregnant women. Secondary objectives were to explore the most appropriate composition, frequency and duration of LNS administration. SEARCH METHODS In May 2018, we searched CENTRAL, MEDLINE, Embase, 22 other databases and two trials registers for any published and ongoing studies. We also checked the reference lists of included studies and relevant reviews, and we contacted the authors of included studies and other experts in the field to identify any studies we may have missed, including any unpublished studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) and quasi-RCTs that compared LNS given in pregnancy to no intervention, placebo, iron folic acid (IFA), multiple micronutrients (MMN) or nutritional counselling. DATA COLLECTION AND ANALYSIS We used standard Cochrane procedures. MAIN RESULTS We included four studies in 8018 pregnant women. All four studies took place in stable community settings in low- and middle-income countries: Bangladesh, Burkina Faso, Ghana and Malawi. None were in emergency settings. The oldest trial was published in 2009. Of the four included studies, one compared LNS to IFA, one compared LNS to MMN, and two compared LNS to both IFA and MMN.We considered the included studies to be of medium to high quality, and we rated the quality of the evidence as moderate using the GRADE approach.LNS versus IFAMaternal outcomes: there was no difference between the LNS and IFA groups as regards maternal gestational weight gain per week (standard mean difference (SMD) 0.46, 95% confidence interval (CI) -0.44 to 1.36; 2 studies, 3539 participants). One study (536 participants) showed a two-fold increase in the prevalence of maternal anaemia in the LNS group compared to the IFA group, but no difference between the groups as regards adverse effects. There was no difference between the two groups for maternal mortality (risk ratio (RR) 0.53, 95% CI 0.12 to 2.41; 3 studies, 5628 participants).Birth and infant outcomes: there was no difference between the LNS and IFA groups for low birth weight (LBW) (RR 0.87, 95% CI 0.72 to 1.05; 3 studies, 4826 participants), though newborns in the LNS group had a slightly higher mean birth weight (mean difference (MD) 53.28 g, 95% CI 28.22 to 78.33; 3 studies, 5077 participants) and birth length (cm) (MD 0.24 cm, 95% CI 0.11 to 0.36; 3 studies, 4986 participants). There was a reduction in the proportion of infants who were small for gestational age (SGA) (RR 0.94, 95% CI 0.89 to 0.99; 3 studies, 4823 participants) and had newborn stunting (RR 0.82, 95% CI 0.71 to 0.94; 2 studies, 4166 participants) in the LNS group, but no difference between the LNS and IFA groups for preterm delivery (RR 0.94, 95% CI 0.80 to 1.11; 4 studies, 4924 participants), stillbirth (RR 1.14; 95% CI 0.52 to 2.48; 3 studies, 5575 participants) or neonatal death (RR 0.96, 95% CI 0.14 to 6.51). The current evidence for child developmental outcomes is not sufficient to draw any firm conclusions.LNS versus MMNMaternal outcomes: one study (662 participants) showed no difference between the LNS and MMN groups as regards gestational weight gain per week or adverse effects. Another study (557 participants) showed an increased risk of maternal anaemia in the LNS group compared to the MMN group.Birth and infant outcomes: there was no difference between the LNS and MMN groups for LBW (RR 0.92, 95% CI 0.74 to 1.14; 3 studies, 2404 participants), birth weight (MD 23.67 g, 95% CI -10.53 to 57.86; 3 studies, 2573 participants), birth length (MD 0.20 cm, 95% CI -0.02 to 0.42; 3 studies, 2567 participants), SGA (RR 0.95, 95% CI 0.84 to 1.07; 3 studies, 2393 participants), preterm delivery (RR 1.15, 95% CI 0.93 to 1.42; 3 studies, 2630 participants), head circumference z score (MD 0.10, 95% CI -0.01 to 0.21; 2 studies, 1549 participants) or neonatal death (RR 0.88, 95% CI 0.36 to 2.15; 1 study, 1175 participants). AUTHORS' CONCLUSIONS Findings from this review suggest that LNS supplementation has a slight, positive effect on weight at birth, length at birth, SGA and newborn stunting compared to IFA. LNS and MMN were comparable for all maternal, birth and infant outcomes. Both IFA and MMN were better at reducing maternal anaemia when compared to LNS. We did not find any trials for LNS given to pregnant women in emergency settings.Readers should interpret the beneficial findings of the review with caution since the evidence comes from a small number of trials, with one-large scale study (conducted in community settings in Bangladesh) driving most of the impact. In addition, effect sizes are too small to propose any concrete recommendation for practice.
Collapse
Affiliation(s)
- Jai K Das
- Aga Khan University HospitalDivision of Women and Child HealthStadium RoadPO Box 3500KarachiSindPakistan
| | - Zahra Hoodbhoy
- Aga Khan University HospitalDivision of Women and Child HealthStadium RoadPO Box 3500KarachiSindPakistan
| | - Rehana A Salam
- Aga Khan University HospitalDivision of Women and Child HealthStadium RoadPO Box 3500KarachiSindPakistan
| | | | - Nancy G Valenzuela‐Rubio
- Autonomous University of SinaloaSchool of Nutrition and GastronomyPuerto Ensenada Ave. 1783Nuevo CuliacanCuliacanSinaloaMexico80170
- Mexican Association for Nutrition and Health ResearchCuliacanMexico
| | - Zita Weise Prinzo
- World Health OrganizationDepartment of Nutrition for Health and DevelopmentAvenue Appia 20GenevaGESwitzerland1211
| | - Zulfiqar A Bhutta
- The Hospital for Sick ChildrenCentre for Global Child HealthTorontoONCanadaM5G A04
- Aga Khan University HospitalCentre for Excellence in Women and Child HealthStadium RoadPO Box 3500KarachiPakistan74800
| | | |
Collapse
|
19
|
Effects of early-life malnutrition on neurodevelopment and neuropsychiatric disorders and the potential mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 2018; 83:64-75. [PMID: 29287829 DOI: 10.1016/j.pnpbp.2017.12.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/21/2017] [Accepted: 12/24/2017] [Indexed: 02/08/2023]
Abstract
Lines of evidence have demonstrated that early-life malnutrition is highly correlated with neurodevelopment and adulthood neuropsychiatric disorders, while some findings are conflicting with each other. In addition, the biological mechanisms are less investigated. We systematically reviewed the evidence linking early-life nutrition status with neurodevelopment and clinical observations in human and animal models. We summarized the effects of special nutritious on neuropsychiatric disorders and explored the underlying potential mechanisms. The further understanding of the biological regulation of early-life nutritional status on neurodevelopment might shed light on precision nutrition at an integrative systems biology framework.
Collapse
|
20
|
Baxter MFA, Latorre JD, Koltes DA, Dridi S, Greene ES, Bickler SW, Kim JH, Merino-Guzman R, Hernandez-Velasco X, Anthony NB, Bottje WG, Hargis BM, Tellez G. Assessment of a Nutritional Rehabilitation Model in Two Modern Broilers and Their Jungle Fowl Ancestor: A Model for Better Understanding Childhood Undernutrition. Front Nutr 2018; 5:18. [PMID: 29629373 PMCID: PMC5876931 DOI: 10.3389/fnut.2018.00018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/08/2018] [Indexed: 01/28/2023] Open
Abstract
This article is the first in a series of manuscripts to evaluate nutritional rehabilitation in chickens as a model to study interventions in children malnutrition (Part 1: Performance, Bone Mineralization, and Intestinal Morphometric Analysis). Inclusion of rye in poultry diets induces a nutritional deficit that leads to increased bacterial translocation, intestinal viscosity, and decreased bone mineralization. However, it is unclear the effect of diet on developmental stage or genetic strain. Therefore, the objective was to determine the effects of a rye diet during either the early or late phase of development on performance, bone mineralization, and intestinal morphology across three diverse genetic backgrounds. Modern 2015 (Cobb 500) broiler chicken, 1995 Cobb broiler chicken, and the Giant Jungle Fowl were randomly allocated into four different dietary treatments. Dietary treatments were (1) a control corn-based diet throughout the trial (corn-corn); (2) an early phase malnutrition diet where chicks received a rye-based diet for 10 days, and then switched to the control diet (rye-corn); (3) a malnutrition rye-diet that was fed throughout the trial (rye-rye); and (4) a late phase malnutrition diet where chicks received the control diet for 10 days, and then switched to the rye diet for the last phase (corn-rye). At 10 days of age, chicks were weighed and diets were switched in groups 2 and 4. At day 20 of age, all chickens were weighed and euthanized to collect bone and intestinal samples. Body weight, weight gain, and bone mineralization were different across diet, genetic line, age and all two- and three-way interactions (P < 0.05). Overall, Jungle Fowl were the most tolerant to a rye-based diet, and both the modern and 1995 broilers were significantly affected by the high rye-based diet. However, the 1995 broilers consuming the rye-based diet appeared to experience more permanent effects when compared with the modern broiler. The results of this study suggest that chickens have a great potential as a nutritional rehabilitation model in human trials. The 1995 broilers line was an intermediate genetic line between the fast growing modern line and the non-selected Jungle Fowl line, suggesting that it would be the most appropriate model to study for future studies.
Collapse
Affiliation(s)
- Mikayla F. A. Baxter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Dawn A. Koltes
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Elizabeth S. Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Stephen W. Bickler
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Jae H. Kim
- Division Neonatology, University of California, San Diego, San Diego, CA, United States
| | - Ruben Merino-Guzman
- College of Veterinary Medicine, National Autonomous University of Mexico, Ciudad de Mexico, Mexico
| | | | - Nicholas B. Anthony
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Walter G. Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
21
|
Mesirow MS, Cecil C, Maughan B, Barker ED. Associations between Prenatal and Early Childhood Fish and Processed Food Intake, Conduct Problems, and Co-Occurring Difficulties. JOURNAL OF ABNORMAL CHILD PSYCHOLOGY 2017; 45:1039-1049. [PMID: 27812905 PMCID: PMC5415431 DOI: 10.1007/s10802-016-0224-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Little is known about early life diet as a risk factor for early-onset persistent conduct problems (EOP CP). To investigate this, we used data from the Avon Longitudinal Study of Parents and Children, a UK-based prospective epidemiological birth cohort. 5727 mother-child pairs (49.9 % boys) monitored since pregnancy (delivery date between 1 April, 1991 and 31 December, 1992) reported intake of fish and processed foods at 32 weeks gestation and, for the child, at 3 years; EOP (n = 666) and Low conduct problem (Low CP, n = 5061) trajectories were measured from 4 to 13 years; hyperactivity and emotional difficulties were assessed in childhood (4-10 years) and early adolescence (12-13 years), in addition to potential confounding factors (family adversity, birth complications, income). Compared to Low CP, mothers of EOP children consumed less fish (p < 0.01) and more processed food (p < 0.05) prenatally, while EOP children consumed more processed food at 3 years (p < 0.05). For EOP, but not Low CP children, consuming less than two servings/week of fish (vs. two or more servings/week, p < 0.05), and one or more servings/day of processed food (vs. less than one serving/day, p < 0.01), was associated with higher emotional difficulties in early adolescence. CONCLUSIONS Findings suggest that prenatal and postnatal diets high in processed food, and low in fish, associate with an EOP CP trajectory and co-occurring difficulties in early adolescence. As small effect size differences were found, further studies are needed to investigate the long-term impact of early unhealthy diet.
Collapse
Affiliation(s)
- Maurissa Sc Mesirow
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Charlotte Cecil
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Barbara Maughan
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Edward D Barker
- Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
22
|
Sartore RC, Cardoso SC, Lages YVM, Paraguassu JM, Stelling MP, Madeiro da Costa RF, Guimaraes MZ, Pérez CA, Rehen SK. Trace elements during primordial plexiform network formation in human cerebral organoids. PeerJ 2017; 5:e2927. [PMID: 28194309 PMCID: PMC5301978 DOI: 10.7717/peerj.2927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022] Open
Abstract
Systematic studies of micronutrients during brain formation are hindered by restrictions to animal models and adult post-mortem tissues. Recently, advances in stem cell biology have enabled recapitulation of the early stages of human telencephalon development in vitro. In the present work, we analyzed cerebral organoids derived from human pluripotent stem cells by synchrotron radiation X-ray fluorescence in order to measure biologically valuable micronutrients incorporated and distributed into the exogenously developing brain. Our findings indicate that elemental inclusion in organoids is consistent with human brain tissue and involves P, S, K, Ca, Fe and Zn. Occurrence of different concentration gradients also suggests active regulation of elemental transmembrane transport. Finally, the analysis of pairs of elements shows interesting elemental interaction patterns that change from 30 to 45 days of development, suggesting short- or long-term associations, such as storage in similar compartments or relevance for time-dependent biological processes. These findings shed light on which trace elements are important during human brain development and will support studies aimed to unravel the consequences of disrupted metal homeostasis for neurodevelopmental diseases, including those manifested in adulthood.
Collapse
Affiliation(s)
- Rafaela C Sartore
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Simone C Cardoso
- Physics Institute, Federal University of Rio de Janeiro , Brazil
| | - Yury V M Lages
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Julia M Paraguassu
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Mariana P Stelling
- Federal Institute of Education, Science and Technology of Rio de Janeiro , Brazil
| | | | - Marilia Z Guimaraes
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Carlos A Pérez
- Brazilian Synchrotron Light Laboratory , São Paulo , Brazil
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Wang B. Molecular Determinants of Milk Lactoferrin as a Bioactive Compound in Early Neurodevelopment and Cognition. J Pediatr 2016; 173 Suppl:S29-36. [PMID: 27234408 DOI: 10.1016/j.jpeds.2016.02.073] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lactoferrin is a sialic acid-rich, iron-binding milk glycoprotein, known to have multifunctional health benefits, including its ability to modulate immune function and facilitate iron absorption, as well as its antibacterial and antiinflammatory actions. Human milk contains significantly higher lactoferrin levels than bovine milk at the same stages of lactation. The purpose of this review is to discuss the current state of knowledge of lactoferrin as a conditional nutrient for neurodevelopment, neuroprotection, and cognitive function during the period of rapid brain growth.
Collapse
Affiliation(s)
- Bing Wang
- Discipline of Physiology, School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia; School of Medicine, Xiamen University, Xiamen City, P.R. China.
| |
Collapse
|
24
|
Augusto RL, Isaac AR, Silva-Júnior IID, Santana DFD, Ferreira DJS, Lagranha CJ, Gonçalves-Pimentel C, Rodrigues MCA, Andrade-da-Costa BLDS. Fighting Oxidative Stress: Increased Resistance of Male Rat Cerebellum at Weaning Induced by Low Omega 6/Omega 3 Ratio in a Protein-Deficient Diet. THE CEREBELLUM 2016; 16:103-117. [DOI: 10.1007/s12311-016-0773-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Morris MC, Brockman J, Schneider JA, Wang Y, Bennett DA, Tangney CC, van de Rest O. Association of Seafood Consumption, Brain Mercury Level, and APOE ε4 Status With Brain Neuropathology in Older Adults. JAMA 2016; 315:489-97. [PMID: 26836731 PMCID: PMC5460535 DOI: 10.1001/jama.2015.19451] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE Seafood consumption is promoted for its many health benefits even though its contamination by mercury, a known neurotoxin, is a growing concern. OBJECTIVE To determine whether seafood consumption is correlated with increased brain mercury levels and also whether seafood consumption or brain mercury levels are correlated with brain neuropathologies. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional analyses of deceased participants in the Memory and Aging Project clinical neuropathological cohort study, 2004-2013. Participants resided in Chicago retirement communities and subsidized housing. The study included 286 autopsied brains of 554 deceased participants (51.6%). The mean (SD) age at death was 89.9 (6.1) years, 67% (193) were women, and the mean (SD) educational attainment was 14.6 (2.7) years. EXPOSURES Seafood intake was first measured by a food frequency questionnaire at a mean of 4.5 years before death. MAIN OUTCOMES AND MEASURES Dementia-related pathologies assessed were Alzheimer disease, Lewy bodies, and the number of macroinfarcts and microinfarcts. Dietary consumption of seafood and n-3 fatty acids was annually assessed by a food frequency questionnaire in the years before death. Tissue concentrations of mercury and selenium were measured using instrumental neutron activation analyses. RESULTS Among the 286 autopsied brains of 544 participants, brain mercury levels were positively correlated with the number of seafood meals consumed per week (ρ = 0.16; P = .02). In models adjusted for age, sex, education, and total energy intake, seafood consumption (≥ 1 meal[s]/week) was significantly correlated with less Alzheimer disease pathology including lower density of neuritic plaques (β = -0.69 score units [95% CI, -1.34 to -0.04]), less severe and widespread neurofibrillary tangles (β = -0.77 score units [95% CI, -1.52 to -0.02]), and lower neuropathologically defined Alzheimer disease (β = -0.53 score units [95% CI, -0.96 to -0.10]) but only among apolipoprotein E (APOE ε4) carriers. Higher intake levels of α-linolenic acid (18:3 n-3) were correlated with lower odds of cerebral macroinfarctions (odds ratio for tertiles 3 vs 1, 0.51 [95% CI, 0.27 to 0.94]). Fish oil supplementation had no statistically significant correlation with any neuropathologic marker. Higher brain concentrations of mercury were not significantly correlated with increased levels of brain neuropathology. CONCLUSIONS AND RELEVANCE In cross-sectional analyses, moderate seafood consumption was correlated with lesser Alzheimer disease neuropathology. Although seafood consumption was also correlated with higher brain levels of mercury, these levels were not correlated with brain neuropathology.
Collapse
Affiliation(s)
- Martha Clare Morris
- Section on Nutrition and Nutritional Epidemiology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | | | - Julie A Schneider
- Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, Illinois4Department of Neurology, Rush University Medical Center, Chicago, Illinois5Department of Pathology, Rush University Medical Center, Chicago, Illinois
| | - Yamin Wang
- Section on Nutrition and Nutritional Epidemiology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - David A Bennett
- Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, Illinois4Department of Neurology, Rush University Medical Center, Chicago, Illinois
| | - Christy C Tangney
- Department of Clinical Nutrition, Rush University Medical Center, Chicago, Illinois
| | - Ondine van de Rest
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
26
|
Mental performance in 8-year-old children fed reduced protein content formula during the 1st year of life: safety analysis of a randomised clinical trial. Br J Nutr 2016; 122:S22-S30. [PMID: 31638498 DOI: 10.1017/s0007114515000768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In humans, maximum brain development occurs between the third trimester of gestation and 2 years of life. Nutrition during these critical windows of rapid brain development might be essential for later cognitive functioning and behaviour. In the last few years, trends on protein recommendations during infancy and childhood have tended to be lower than that in the past. It remains to be demonstrated that lower protein intakes among healthy infants, a part of being able to reduce obesity risk, is safe in terms of mental performance achievement. Secondary analyses of the EU CHOP, a clinical trial in which infants from five European countries were randomised to be fed a higher or a lower protein content formula during the 1st year of life. Children were assessed at the age of 8 years with a neuropsychological battery of tests that included assessments of memory (visual and verbal), attention (visual, selective, focused and sustained), visual-perceptual integration, processing speed, visual-motor coordination, verbal fluency and comprehension, impulsivity/inhibition, flexibility/shifting, working memory, reasoning, visual-spatial skills and decision making. Internalising, externalising and total behaviour problems were assessed using the Child Behaviour Checklist 4-18. Adjusted analyses considering factors that could influence neurodevelopment, such as parental education level, maternal smoking, child's gestational age at birth and head circumference, showed no differences between feeding groups in any of the assessed neuropsychological domains and behaviour. In summary, herewith we report on the safety of lower protein content in infant formulae (closer to the content of human milk) according to long-term mental performance.
Collapse
|
27
|
Naik AA, Patro IK, Patro N. Slow Physical Growth, Delayed Reflex Ontogeny, and Permanent Behavioral as Well as Cognitive Impairments in Rats Following Intra-generational Protein Malnutrition. Front Neurosci 2015; 9:446. [PMID: 26696810 PMCID: PMC4672086 DOI: 10.3389/fnins.2015.00446] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/09/2015] [Indexed: 01/04/2023] Open
Abstract
Environmental stressors including protein malnutrition (PMN) during pre-, neo- and post-natal age have been documented to affect cognitive development and cause increased susceptibility to neuropsychiatric disorders. Most studies have addressed either of the three windows and that does not emulate the clinical conditions of intra-uterine growth restriction (IUGR). Such data fail to provide a complete picture of the behavioral alterations in the F1 generation. The present study thus addresses the larger window from gestation to F1 generation, a new model of intra-generational PMN. Naive Sprague Dawley (SD) dams pre-gestationally switched to LP (8% protein) or HP (20% protein) diets for 45 days were bred and maintained throughout gestation on same diets. Pups born (HP/LP dams) were maintained on the respective diets post-weaningly. The present study aimed to show the sex specific differences in the neurobehavioral evolution and behavioral phenotype of the HP/LP F1 generation pups. A battery of neurodevelopmental reflex tests, behavioral (Open field and forelimb gripstrength test), and cognitive [Elevated plus maze (EPM) and Morris water maze (MWM)] assays were performed. A decelerated growth curve with significantly restricted body and brain weight, delays in apparition of neuro-reflexes and poor performance in the LP group rats was recorded. Intra-generational PMN induced poor habituation-with-time in novel environment exploration, low anxiety and hyperactive like profile in open field test in young and adult rats. The study revealed poor forelimb neuromuscular strength in LP F1 pups till adulthood. Group occupancy plots in MWM test revealed hyperactivity with poor learning, impaired memory retention and integration, thus modeling the signs of early onset Alzehemier phenotype. In addition, a gender specific effect of LP diet with severity in males and favoring female sex was also noticed.
Collapse
Affiliation(s)
- Aijaz A Naik
- School of Studies in Neuroscience, Jiwaji University Gwalior, India ; School of Studies in Zoology, Jiwaji University Gwalior, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University Gwalior, India ; School of Studies in Zoology, Jiwaji University Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University Gwalior, India
| |
Collapse
|
28
|
Reis KP, Heimfarth L, Pierozan P, Ferreira F, Loureiro SO, Fernandes CG, Carvalho RV, Pessoa-Pureur R. High postnatal susceptibility of hippocampal cytoskeleton in response to ethanol exposure during pregnancy and lactation. Alcohol 2015; 49:665-74. [PMID: 26314629 DOI: 10.1016/j.alcohol.2015.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022]
Abstract
Ethanol exposure to offspring during pregnancy and lactation leads to developmental disorders, including central nervous system dysfunction. In the present work, we have studied the effect of chronic ethanol exposure during pregnancy and lactation on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits of low, medium, and high molecular weight (NFL, NFM, and NFH, respectively) in 9- and 21-day-old pups. Female rats were fed with 20% ethanol in their drinking water during pregnancy and lactation. The homeostasis of the IF phosphorylation was not altered in the cerebral cortex, cerebellum, or hippocampus of 9-day-old pups. However, GFAP, NFL, and NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. PKA had been activated in the hippocampus, and Ser55 in the N-terminal region of NFL was hyperphosphorylated. In addition, JNK/MAPK was activated and KSP repeats in the C-terminal region of NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. Decreased NFH immunocontent but an unaltered total NFH/phosphoNFH ratio suggested altered stoichiometry of NFs in the hippocampus of ethanol-exposed 21-day-old pups. In contrast to the high susceptibility of hippocampal cytoskeleton in developing rats, the homeostasis of the cytoskeleton of ethanol-fed adult females was not altered. Disruption of the cytoskeletal homeostasis in neural cells supports the view that regions of the brain are differentially vulnerable to alcohol insult during pregnancy and lactation, suggesting that modulation of JNK/MAPK and PKA signaling cascades target the hippocampal cytoskeleton in a window of vulnerability in 21-day-old pups. Our findings are relevant, since disruption of the cytoskeleton in immature hippocampus could contribute to later hippocampal damage associated with ethanol toxicity.
Collapse
Affiliation(s)
- Karina Pires Reis
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Luana Heimfarth
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Paula Pierozan
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | | | | | - Rônan Vivian Carvalho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
29
|
Modification of Docosahexaenoic Acid Composition of Milk from Nursing Women Who Received Alpha Linolenic Acid from Chia Oil during Gestation and Nursing. Nutrients 2015; 7:6405-24. [PMID: 26247968 PMCID: PMC4555128 DOI: 10.3390/nu7085289] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 05/12/2015] [Accepted: 07/24/2015] [Indexed: 01/29/2023] Open
Abstract
α-Linolenic acid (ALA) is the precursor of docosahexaenoic acid (DHA) in humans, which is fundamental for brain and visual function. Western diet provides low ALA and DHA, which is reflected in low DHA in maternal milk. Chia oil extracted from chia (Salvia hispanica L.), a plant native to some Latin American countries, is high in ALA (up to 60%) and thereby is an alternative to provide ALA with the aim to reduce DHA deficits. We evaluated the modification of the fatty acid profile of milk obtained from Chilean mothers who received chia oil during gestation and nursing. Forty healthy pregnant women (22–35 years old) tabulated for food consumption, were randomly separated into two groups: a control group with normal feeding (n = 21) and a chia group (n = 19), which received 16 mL chia oil daily from the third trimester of pregnancy until the first six months of nursing. The fatty acid profile of erythrocyte phospholipids, measured at six months of pregnancy, at time of delivery and at six months of nursing, and the fatty acid profile of the milk collected during the first six months of nursing were assessed by gas-chromatography. The chia group, compared to the control group, showed (i) a significant increase in ALA ingestion and a significant reduction of linoleic acid (LA) ingestion, no showing modification of arachidonic acid (AA), eicosapentaenoic acid (EPA) and DHA; (ii) a significant increase of erythrocyte ALA and EPA and a reduction of LA. AA and DHA were not modified; (iii) a increased milk content of ALA during the six months of nursing, whereas LA showed a decrease. AA and EPA were not modified, however DHA increased only during the first three months of nursing. Consumption of chia oil during the last trimester of pregnancy and the first three months of nursing transiently increases the milk content of DHA.
Collapse
|
30
|
Besson AA, Lagisz M, Senior AM, Hector KL, Nakagawa S. Effect of maternal diet on offspring coping styles in rodents: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2015; 91:1065-1080. [DOI: 10.1111/brv.12210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 06/07/2015] [Accepted: 06/18/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Anne A. Besson
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Malgorzata Lagisz
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, Biological Science Building; University of New South Wales; Sydney 2052 New South Wales Australia
| | - Alistair M. Senior
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
- Charles Perkins Centre, The University of Sydney; Johns Hopkins Drive, Sydney 2009 New South Wales Australia
| | - Katie L. Hector
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Shinichi Nakagawa
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, Biological Science Building; University of New South Wales; Sydney 2052 New South Wales Australia
| |
Collapse
|
31
|
Scofield HN, Mattila HR. Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults. PLoS One 2015; 10:e0121731. [PMID: 25853902 PMCID: PMC4390236 DOI: 10.1371/journal.pone.0121731] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 02/18/2015] [Indexed: 11/18/2022] Open
Abstract
The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera). Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees' access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults). Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus our findings underscore the importance of adequate nutrition for supporting worker performance and their potential contribution to colony productivity and quality pollination services.
Collapse
Affiliation(s)
- Hailey N. Scofield
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
| | - Heather R. Mattila
- Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Perez KO, Fuiman LA. Maternal diet and larval diet influence survival skills of larval red drum Sciaenops ocellatus. JOURNAL OF FISH BIOLOGY 2015; 86:1286-1304. [PMID: 25740661 DOI: 10.1111/jfb.12637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/26/2014] [Indexed: 06/04/2023]
Abstract
Larval red drum Sciaenops ocellatus survival, turning rate, routine swimming speed, escape response latency and escape response distance were significantly correlated with essential fatty-acid (EFA) concentrations in eggs. Of the five traits that varied with egg EFA content, two (escape response latency and routine swimming speed) were significantly different when larvae were fed enriched diets compared with the low fatty-acid diet, indicating that the larval diet can compensate for some imbalances in egg composition. Turning rate during routine swimming and escape response distance, however, did not change when larvae predicted to have low performance (based on egg composition) were fed an enriched diet, indicating that these effects of egg composition may be irreversible. Escape response distances and survival rates of larvae predicted to perform well (based on egg composition) and fed highly enriched diets were lower than expected, suggesting that high levels of EFA intake can be detrimental. Altogether, these results suggest that both maternal diet, which is responsible for egg EFA composition, and larval diet may play a role in larval survivorship and recruitment.
Collapse
Affiliation(s)
- K O Perez
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, U.S.A
| | | |
Collapse
|
33
|
Castro-Chavira SA, Aguilar-Vázquez AR, Martínez-Chávez Y, Palma L, Padilla-Gómez E, Diaz-Cintra S. Effects of chronic malnourishment and aging on the ultrastructure of pyramidal cells of the dorsal hippocampus. Nutr Neurosci 2015; 19:329-336. [PMID: 25730173 DOI: 10.1179/1476830515y.0000000009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Malnourishment (M) produces permanent alterations during the development of the CNS and might modify the aging process. In pyramidal neurons (PN) of the hippocampus, which are associated with learning and memory performance, few studies have focused on changes at the subcellular level under chronic malnutrition (ChM) in young (Y, 2 months old) and aged (A, 22 months old) rats. The present work evaluated the extent to which ChM disrupts organelles in PN of the dorsal hippocampus CA1 as compared to controls (C). METHODS Ultrastructural analysis was performed at 8000× and 20 000× magnification: Nucleus eccentricity and somatic, cytoplasmic, and nuclear areas were measured; and in the PN perikaryon, density indices (number of organelles/cytoplasmic area) of Golgi membrane systems (GMS, normal, and swollen), mitochondria (normal and abnormal), and vacuolated organelles (lysosomes, lipofuscin granules, and multivesicular bodies (MVB)) were determined. RESULTS The density of abnormal mitochondria, swollen GMS, and MVB increased significantly in the AChM group compared to the other groups. The amount of lipofuscin was significantly greater in the AChM than in the YChM groups - a sign of oxidative stress due to malnutrition and aging; however, in Y animals, ChM showed no effect on organelle density or the cytoplasmic area. An increased density of lysosomes as well as nucleus eccentricity was observed in the AC group, which also showed an increase in the cytoplasmic area. DISCUSSION Malnutrition produces subcellular alterations in vulnerable hippocampal pyramidal cells, and these alterations may provide an explanation for the previously reported deficient performance of malnourished animals in a spatial memory task in which aging and malnutrition were shown to impede the maintenance of long-term memory.
Collapse
Affiliation(s)
- Susana Angelica Castro-Chavira
- a Departamento de Neurobiología del Desarrollo y Neurofisiología , Instituto de Neurobiología Campus UNAM-Juriquilla , Boulevard Juriquilla 3001, Querétaro 76230 , Mexico
| | - Azucena Ruth Aguilar-Vázquez
- a Departamento de Neurobiología del Desarrollo y Neurofisiología , Instituto de Neurobiología Campus UNAM-Juriquilla , Boulevard Juriquilla 3001, Querétaro 76230 , Mexico
| | - Yvonne Martínez-Chávez
- a Departamento de Neurobiología del Desarrollo y Neurofisiología , Instituto de Neurobiología Campus UNAM-Juriquilla , Boulevard Juriquilla 3001, Querétaro 76230 , Mexico
| | - Lourdes Palma
- a Departamento de Neurobiología del Desarrollo y Neurofisiología , Instituto de Neurobiología Campus UNAM-Juriquilla , Boulevard Juriquilla 3001, Querétaro 76230 , Mexico
| | - Euridice Padilla-Gómez
- a Departamento de Neurobiología del Desarrollo y Neurofisiología , Instituto de Neurobiología Campus UNAM-Juriquilla , Boulevard Juriquilla 3001, Querétaro 76230 , Mexico
| | - Sofia Diaz-Cintra
- a Departamento de Neurobiología del Desarrollo y Neurofisiología , Instituto de Neurobiología Campus UNAM-Juriquilla , Boulevard Juriquilla 3001, Querétaro 76230 , Mexico
| |
Collapse
|
34
|
Hoeijmakers L, Lucassen PJ, Korosi A. The interplay of early-life stress, nutrition, and immune activation programs adult hippocampal structure and function. Front Mol Neurosci 2015; 7:103. [PMID: 25620909 PMCID: PMC4288131 DOI: 10.3389/fnmol.2014.00103] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/16/2014] [Indexed: 01/08/2023] Open
Abstract
Early-life adversity increases the vulnerability to develop psychopathologies and cognitive decline later in life. This association is supported by clinical and preclinical studies. Remarkably, experiences of stress during this sensitive period, in the form of abuse or neglect but also early malnutrition or an early immune challenge elicit very similar long-term effects on brain structure and function. During early-life, both exogenous factors like nutrition and maternal care, as well as endogenous modulators, including stress hormones and mediator of immunological activity affect brain development. The interplay of these key elements and their underlying molecular mechanisms are not fully understood. We discuss here the hypothesis that exposure to early-life adversity (specifically stress, under/malnutrition and infection) leads to life-long alterations in hippocampal-related cognitive functions, at least partly via changes in hippocampal neurogenesis. We further discuss how these different key elements of the early-life environment interact and affect one another and suggest that it is a synergistic action of these elements that shapes cognition throughout life. Finally, we consider different intervention studies aiming to prevent these early-life adversity induced consequences. The emerging evidence for the intriguing interplay of stress, nutrition, and immune activity in the early-life programming calls for a more in depth understanding of the interaction of these elements and the underlying mechanisms. This knowledge will help to develop intervention strategies that will converge on a more complete set of changes induced by early-life adversity.
Collapse
Affiliation(s)
- Lianne Hoeijmakers
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Paul J Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
35
|
Saha T, Dutta S, Rajamma U, Sinha S, Mukhopadhyay K. A pilot study on the contribution of folate gene variants in the cognitive function of ADHD probands. Neurochem Res 2014; 39:2058-67. [PMID: 25079255 DOI: 10.1007/s11064-014-1393-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 11/28/2022]
Abstract
Genetic abnormalities in components important for the folate cycle confer risk for various disorders since adequate folate turnover is necessary for normal methylation, gene expression and chromosome structure. However, the system has rarely been studied in children diagnosed with attention deficit hyperactivity disorder (ADHD). We hypothesized that ADHD related cognitive deficit could be attributed to abnormalities in the folate cycle and explored functional single nucleotide polymorphisms in methylenetetrahydrofolate dehydrogenase (rs2236225), reduced folate carrier (rs1051266), and methylenetetrahydrofolate reductase (rs1801131 and rs1801133) in families with ADHD probands (N = 185) and ethnically matched controls (N = 216) recruited following the DSM-IV. After obtaining informed written consent for participation, peripheral blood was collected for genomic DNA isolation and PCR-based analysis of target sites. Data obtained was analyzed by UNPHASED. Interaction between sites was analyzed by the multi dimensionality reduction (MDR) program. Genotypic frequencies of the Indian population were strikingly different from other ethnic groups. rs1801133 "T" allele showed biased transmission in female probands (p < 0.05). Significant difference in genotypic frequencies for female probands was also noticed. rs1801131 and rs1801133 showed an association with low intelligence quotient (IQ). MDR analysis exhibited independent effects and contribution of these sites to IQ, thus indicating a role of these genes in ADHD related cognitive deficit.
Collapse
Affiliation(s)
- T Saha
- Manovikas Biomedical Research and Diagnostic Centre, 482, Madudah, Plot I-24, Sec.-J, E.M. Bypass, Kolkata, 700107, India
| | | | | | | | | |
Collapse
|
36
|
Schumer JE, Bernell SL, Bovbjerg VE, Long ML. Factors Influencing Maternal Nutrition in Rural Nepal: An Exploratory Research Project. Health Care Women Int 2014; 35:1201-15. [DOI: 10.1080/07399332.2013.862792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends Neurosci 2013; 36:621-31. [PMID: 23998452 DOI: 10.1016/j.tins.2013.08.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/22/2022]
Abstract
Early-life stress lastingly affects adult cognition and increases vulnerability to psychopathology, but the underlying mechanisms remain elusive. In this Opinion article, we propose that early nutritional input together with stress hormones and sensory stimuli from the mother during the perinatal period act synergistically to program the adult brain, possibly via epigenetic mechanisms. We hypothesize that stress during gestation or lactation affects the intake of macro- and micronutrients, including dietary methyl donors, and/or impairs the dam's metabolism, thereby altering nutrient composition and intake by the offspring. In turn, this may persistently modulate gene expression via epigenetic programming, thus altering hippocampal structure and cognition. Understanding how the combination of stress, nutrition, and epigenetics shapes the adult brain is essential for effective therapies.
Collapse
|
38
|
Lassek WD, Gaulin SJC. Maternal milk DHA content predicts cognitive performance in a sample of 28 nations. MATERNAL AND CHILD NUTRITION 2013; 11:773-9. [PMID: 23795772 DOI: 10.1111/mcn.12060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Convergent evidence from neuronal biology and hominin brain hypertrophy suggests that omega-3 fatty acids are a limiting resource for neural and cognitive development in Homo sapiens, and therefore that children from populations with higher omega-3 availability should display superior cognitive performance. Using multiple regression, we tested this prediction in a sample of 28 countries, with Programme for International Student Assessment (PISA) math scores in 2009 as an index of cognitive performance, and country-specific breast milk levels of omega-3 docosahexaenoic acid (DHA) as an index of omega-3 availability. Breast milk DHA makes a highly significant contribution to math scores (β = 0.462, P = 0.006), greater in magnitude than the control variables of per capita Gross Domestic Product (PCGDP) and educational expenditures per pupil. Together, dietary fish (positively) and total fat (negatively) explain 61% of the variance in maternal milk DHA in a larger sample of 39 countries.
Collapse
Affiliation(s)
- William Day Lassek
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven J C Gaulin
- Department of Anthropology, University of California, Santa Barbara, California, USA
| |
Collapse
|
39
|
Beck B, Pourié G. Ghrelin, neuropeptide Y, and other feeding-regulatory peptides active in the hippocampus: role in learning and memory. Nutr Rev 2013; 71:541-61. [PMID: 23865799 DOI: 10.1111/nure.12045] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The hippocampus is a brain region of primary importance for neurogenesis, which occurs during early developmental states as well as during adulthood. Increases in neuronal proliferation and in neuronal death with age have been associated with drastic changes in memory and learning. Numerous neurotransmitters are involved in these processes, and some neuropeptides that mediate neurogenesis also modulate feeding behavior. Concomitantly, feeding peptides, which act primarily in the hypothalamus, are also present in the hippocampus. This review aims to ascertain the role of several important feeding peptides in cognitive functions, either through their local synthesis in the hippocampus or through their actions via specific receptors in the hippocampus. A link between neurogenesis and the orexigenic or anorexigenic properties of feeding peptides is discussed.
Collapse
Affiliation(s)
- Bernard Beck
- INSERM U954, Nutrition, Génétique et Expositions aux Risques Environnementaux, Faculté de Médecine, Vandœuvre, France.
| | | |
Collapse
|
40
|
Nyaradi A, Li J, Hickling S, Foster J, Oddy WH. The role of nutrition in children's neurocognitive development, from pregnancy through childhood. Front Hum Neurosci 2013; 7:97. [PMID: 23532379 PMCID: PMC3607807 DOI: 10.3389/fnhum.2013.00097] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/07/2013] [Indexed: 12/20/2022] Open
Abstract
This review examines the current evidence for a possible connection between nutritional intake (including micronutrients and whole diet) and neurocognitive development in childhood. Earlier studies which have investigated the association between nutrition and cognitive development have focused on individual micronutrients, including omega-3 fatty acids, vitamin B12, folic acid, choline, iron, iodine, and zinc, and single aspects of diet. The research evidence from observational studies suggests that micronutrients may play an important role in the cognitive development of children. However, the results of intervention trials utilizing single micronutrients are inconclusive. More generally, there is evidence that malnutrition can impair cognitive development, whilst breastfeeding appears to be beneficial for cognition. Eating breakfast is also beneficial for cognition. In contrast, there is currently inconclusive evidence regarding the association between obesity and cognition. Since individuals consume combinations of foods, more recently researchers have become interested in the cognitive impact of diet as a composite measure. Only a few studies to date have investigated the associations between dietary patterns and cognitive development. In future research, more well designed intervention trials are needed, with special consideration given to the interactive effects of nutrients.
Collapse
Affiliation(s)
- Anett Nyaradi
- Centre for Child Health Research, Telethon Institute for Child Health Research, The University of Western AustraliaPerth, WA, Australia
- School of Population Health, The University of Western AustraliaPerth, WA, Australia
| | - Jianghong Li
- Centre for Child Health Research, Telethon Institute for Child Health Research, The University of Western AustraliaPerth, WA, Australia
- Centre for Population Health Research, Curtin Health Innovation Research Institute, Curtin UniversityPerth, WA, Australia
- Social Science Research CenterBerlin, Germany
| | - Siobhan Hickling
- Centre for Child Health Research, Telethon Institute for Child Health Research, The University of Western AustraliaPerth, WA, Australia
- School of Population Health, The University of Western AustraliaPerth, WA, Australia
| | - Jonathan Foster
- Centre for Child Health Research, Telethon Institute for Child Health Research, The University of Western AustraliaPerth, WA, Australia
- School of Psychology and Speech Pathology, Curtin UniversityPerth, WA, Australia
- Neurosciences Unit, Health Department of Western AustraliaPerth, WA, Australia
- School of Paediatrics and Child Health, The University of Western AustraliaPerth, WA, Australia
| | - Wendy H. Oddy
- Centre for Child Health Research, Telethon Institute for Child Health Research, The University of Western AustraliaPerth, WA, Australia
| |
Collapse
|
41
|
Yetimler B, Ulusoy G, Çelik T, Jakubowska-Doğru E. Differential effect of age on the brain fatty acid levels and their correlation with animal cognitive status in mice. Pharmacol Biochem Behav 2012; 103:53-9. [DOI: 10.1016/j.pbb.2012.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/11/2012] [Accepted: 07/14/2012] [Indexed: 11/29/2022]
|
42
|
D'Angiulli A, Lipina SJ, Olesinska A. Explicit and implicit issues in the developmental cognitive neuroscience of social inequality. Front Hum Neurosci 2012; 6:254. [PMID: 22973216 PMCID: PMC3434357 DOI: 10.3389/fnhum.2012.00254] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/20/2012] [Indexed: 11/13/2022] Open
Abstract
The appearance of developmental cognitive neuroscience (DCN) in the socioeconomic status (SES) research arena is hugely transformative, but challenging. We review challenges rooted in the implicit and explicit assumptions informing this newborn field. We provide balanced theoretical alternatives on how hypothesized psychological processes map onto the brain (e.g., problem of localization) and how experimental phenomena at multiple levels of analysis (e.g., behavior, cognition and the brain) could be related. We therefore examine unclear issues regarding the existing perspectives on poverty and their relationships with low SES, the evidence of low-SES adaptive functioning, historical precedents of the "alternate pathways" (neuroplasticity) interpretation of learning disabilities related to low-SES and the notion of deficit, issues of "normativity" and validity in findings of neurocognitive differences between children from different SES, and finally alternative interpretations of the complex relationship between IQ and SES. Particularly, we examine the extent to which the available laboratory results may be interpreted as showing that cognitive performance in low-SES children reflects cognitive and behavioral deficits as a result of growing up in specific environmental or cultural contexts, and how the experimental findings should be interpreted for the design of different types of interventions-particularly those related to educational practices-or translated to the public-especially the media. Although a cautionary tone permeates many studies, still, a potential deficit attribution-i.e., low-SES is associated with cognitive and behavioral developmental deficits-seems almost an inevitable implicit issue with ethical implications. Finally, we sketch the agenda for an ecological DCN, suggesting recommendations to advance the field, specifically, to minimize equivocal divulgation and maximize ethically responsible translation.
Collapse
Affiliation(s)
- Amedeo D'Angiulli
- Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
- The Institute of Interdisciplinary Studies, Carleton UniversityOttawa, ON, Canada
| | - Sebastian J. Lipina
- Unidad de Neurobiología Aplicada (UNA, CEMIC-CONICET)Argentina
- Centro de Investigaciones Psicopedagógicas Aplicadas (CIPA-UNSAM)Argentina
| | - Alice Olesinska
- Department of Neuroscience, Carleton UniversityOttawa, ON, Canada
| |
Collapse
|
43
|
Alamy M, Bengelloun WA. Malnutrition and brain development: an analysis of the effects of inadequate diet during different stages of life in rat. Neurosci Biobehav Rev 2012; 36:1463-80. [PMID: 22487135 DOI: 10.1016/j.neubiorev.2012.03.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 03/19/2012] [Accepted: 03/25/2012] [Indexed: 12/22/2022]
Abstract
Protein malnutrition or undernutrition can result in abnormal development of the brain. Depending on type, age at onset and duration, different structural and functional deficits can be observed. In the present review, we discuss the neuroanatomical, behavioral, neurochemical and oxidative status changes associated with protein malnutrition or undernutrition at different ages during prenatal and immediately postnatal periods as well as in adult rat. Analysis of all data suggests that protein malnutrition as well as undernutrition induced impaired learning and retention when imposed during the immediately postnatal period and in adulthood, whereas hyperactivity including increased impulsiveness and greater reactivity to aversive stimuli occurred when malnutrition or undernutrition was imposed either pre or postnatally. This general state of hyperreactivity may be linked essentially to an alteration in dopaminergic system. Hence, the present review shows that in spite of the attention devoted in the literature to prenatal effects, cognitive deficits are more serious following malnutrition or undernutrition after birth. We thus clearly establish a special vulnerability to malnutrition after weaning in rats.
Collapse
Affiliation(s)
- Meryem Alamy
- Faculty of Science, Mohammed V-Agdal University, Rabat, Morocco
| | | |
Collapse
|
44
|
Haavik J, Halmøy A, Hegvik TA, Johansson S. Maternal genotypes as predictors of offspring mental health: the next frontier of genomic medicine? FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.54] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple lines of evidence have suggested that the in utero microenvironment is influenced by the maternal genotype and that such genetic differences can affect the prenatal development and long-term health of the offspring. This article reviews recent evidence for such effects on offspring mental health, with an emphasis on common neurodevelopmental disorders, such as attention deficit–hyperactivity disorder, autism and schizophrenia. We conclude that prenatal programming of offspring behavior has been found to be important both in humans and animal models and that this mechanism may explain some of the ‘missing heritability’ reported for genetic studies of complex disorders. Combining genetic and epidemiological research strategies, it is possible to disentangle the different effects of prenatal environmental and genetic exposures, which are particularly attractive candidates for primary prevention and early intervention strategies, for instance by correcting for metabolic deficiencies during critical weeks of prenatal development. Combined with advancing DNA sequencing and genotyping technologies, this knowledge may gradually transform our approach to psychiatric diagnostics, prevention and therapy.
Collapse
Affiliation(s)
| | - Anne Halmøy
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
- KG Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Norway
| | - Tor-Arne Hegvik
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- KG Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Norway
| | - Stefan Johansson
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- KG Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Norway
- Center of Medical Genetics & Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
45
|
Clasadonte J, Sharif A, Baroncini M, Prevot V. Gliotransmission by prostaglandin e(2): a prerequisite for GnRH neuronal function? Front Endocrinol (Lausanne) 2011; 2:91. [PMID: 22649391 PMCID: PMC3355930 DOI: 10.3389/fendo.2011.00091] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/17/2011] [Indexed: 02/06/2023] Open
Abstract
Over the past four decades it has become clear that prostaglandin E(2) (PGE(2)), a phospholipid-derived signaling molecule, plays a fundamental role in modulating the gonadotropin-releasing hormone (GnRH) neuroendocrine system and in shaping the hypothalamus. In this review, after a brief historical overview, we highlight studies revealing that PGE(2) released by glial cells such as astrocytes and tanycytes is intimately involved in the active control of GnRH neuronal activity and neurosecretion. Recent evidence suggests that hypothalamic astrocytes surrounding GnRH neuronal cell bodies may respond to neuronal activity with an activation of the erbB receptor tyrosine kinase signaling, triggering the release of PGE(2) as a chemical transmitter from the glia themselves, and, in turn, leading to the feedback regulation of GnRH neuronal activity. At the GnRH neurohemal junction, in the median eminence of the hypothalamus, PGE(2) is released by tanycytes in response to cell-cell signaling initiated by glial cells and vascular endothelial cells. Upon its release, PGE(2) causes the retraction of the tanycyte end-feet enwrapping the GnRH nerve terminals, enabling them to approach the adjacent pericapillary space and thus likely facilitating neurohormone diffusion from these nerve terminals into the pituitary portal blood. In view of these new insights, we suggest that synaptically associated astrocytes and perijunctional tanycytes are integral modulatory elements of GnRH neuronal function at the cell soma/dendrite and nerve terminal levels, respectively.
Collapse
Affiliation(s)
- Jerome Clasadonte
- Jean-Pierre Aubert Research Center, Inserm, U837, F-59000Lille, France
- Laboratory of Anatomy, Université Lille Nord de FranceLille, France
- School of Medicine, UDSLLille, France
| | - Ariane Sharif
- Jean-Pierre Aubert Research Center, Inserm, U837, F-59000Lille, France
- Laboratory of Anatomy, Université Lille Nord de FranceLille, France
- School of Medicine, UDSLLille, France
| | - Marc Baroncini
- Jean-Pierre Aubert Research Center, Inserm, U837, F-59000Lille, France
- Laboratory of Anatomy, Université Lille Nord de FranceLille, France
- School of Medicine, UDSLLille, France
- Department of Neurosurgery, CHULilleLille, France
| | - Vincent Prevot
- Jean-Pierre Aubert Research Center, Inserm, U837, F-59000Lille, France
- Laboratory of Anatomy, Université Lille Nord de FranceLille, France
- School of Medicine, UDSLLille, France
- *Correspondence: Vincent Prevot, INSERM U837, Bâtiment Biserte, Place de Verdun, 59045 Lille Cedex, France. e-mail:
| |
Collapse
|