1
|
Gutiérrez-Granados G, Torres-Beltrán UC, Castellanos-Moguel J, Rodríguez-Moreno Á, Sánchez-Cordero V. Fungal and bat diversities along a landscape gradient in central Mexico. PLoS One 2024; 19:e0310235. [PMID: 39250470 PMCID: PMC11383230 DOI: 10.1371/journal.pone.0310235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
Species interactions between bats and fungi are poorly known. We documented the association between fungal and bat diversities along a landscape gradient. Ten, eight, and seven bat species were captured in conserved, semi-conserved, and urban sites, respectively. Eptesicus fuscus, Myotis ciliolabrum and Corynorhinus townsendii were the most abundant in conserved and semi-conserved sites. E. fuscus, Myotis velifer, and Lasiurus cinereus were abundant in urban sites. C. townsendii was the least abundant bat. A total of 15 cultivated fungi genera included the fungal diversity in bats, of which nine fungi genera were shared along the landscape gradient. Penicillium and Aspergillus were the most abundant genera, and Aureobasidium, Bispora, Stachybotrys, and Verticillium were only documented in the conserved sites. We observed a higher fungal diversity associated with bat species along this landscape gradient. The individual site-based accumulation curves of fungal diversity showed significant decreasing values along the conserved, semi-conserved, and urban sites, respectively. In conserved and urban sites, M. californicus and M. velifer showed the highest fungal diversity, respectively. E. fuscus was associated to the fungi genera Scopulariopsis, Alternaria, Penicillium and Beauveria; L. cinereus to Cladosporium and Aspergillus, and M. velifer to Alternaria sp1, Bispora and Trichoderma. Conserved sites showed both high bat and fungal diversities [species richness and abundance] compared to semi-conserved and urban sites. More studies associating bat and fungal diversities in other ecosystems are needed to corroborate this pattern.
Collapse
Affiliation(s)
- Gabriel Gutiérrez-Granados
- Facultad de Estudios Superiores Zaragoza, UMIEZ, UNAM, Batalla 5 de mayo s/n esquina Fuerte de Loreto, Col. Ejército de Oriente, CDMX, Iztapalapa, México
| | - Uriel C Torres-Beltrán
- Facultad de Estudios Superiores Zaragoza, UMIEZ, UNAM, Batalla 5 de mayo s/n esquina Fuerte de Loreto, Col. Ejército de Oriente, CDMX, Iztapalapa, México
| | - Judith Castellanos-Moguel
- Departamento El Hombre y Su Ambiente, Laboratorio de Micología, Universidad Autónoma Metropolitana-Xochimilco, CDMX, Mexico City, México
| | - Ángel Rodríguez-Moreno
- Departamento de Zoología, Instituto de Biología, Pabellón Nacional de la Biodiversidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico City, México
| | - Víctor Sánchez-Cordero
- Departamento de Zoología, Instituto de Biología, Pabellón Nacional de la Biodiversidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico City, México
| |
Collapse
|
2
|
Dhivahar J, Parthasarathy A, Krishnan K, Kovi BS, Pandian GN. Bat-associated microbes: Opportunities and perils, an overview. Heliyon 2023; 9:e22351. [PMID: 38125540 PMCID: PMC10730444 DOI: 10.1016/j.heliyon.2023.e22351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
The potential biotechnological uses of bat-associated bacteria are discussed briefly, indicating avenues for biotechnological applications of bat-associated microbes. The uniqueness of bats in terms of their lifestyle, genomes and molecular immunology may predispose bats to act as disease reservoirs. Molecular phylogenetic analysis has shown several instances of bats harbouring the ancestral lineages of bacterial (Bartonella), protozoal (Plasmodium, Trypanosoma cruzi) and viral (SARS-CoV2) pathogens infecting humans. Along with the transmission of viruses from bats, we also discuss the potential roles of bat-associated bacteria, fungi, and protozoan parasites in emerging diseases. Current evidence suggests that environmental changes and interactions between wildlife, livestock, and humans contribute to the spill-over of infectious agents from bats to other hosts. Domestic animals including livestock may act as intermediate amplifying hosts for bat-origin pathogens to transmit to humans. An increasing number of studies investigating bat pathogen diversity and infection dynamics have been published. However, whether or how these infectious agents are transmitted both within bat populations and to other hosts, including humans, often remains unknown. Metagenomic approaches are uncovering the dynamics and distribution of potential pathogens in bat microbiomes, which might improve the understanding of disease emergence and transmission. Here, we summarize the current knowledge on bat zoonoses of public health concern and flag the gaps in the knowledge to enable further research and allocation of resources for tackling future outbreaks.
Collapse
Affiliation(s)
- J. Dhivahar
- Research Department of Zoology, St. Johns College, Palayamkottai, 627002, India
- Department of Plant Biology and Biotechnology, Laboratory of Microbial Ecology, Loyola College, Chennai, 600034, India
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Anutthaman Parthasarathy
- Department of Chemistry and Biosciences, Richmond Building, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Kathiravan Krishnan
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Basavaraj S. Kovi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| |
Collapse
|
3
|
Oktay Gultekin E, Can B. Prevalence of Candida albicans in High-Risk Human Papillomavirus-Positive Women: A Study in Diyarbakır Province, Turkey. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:9945561. [PMID: 37854871 PMCID: PMC10581842 DOI: 10.1155/2023/9945561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
The human papillomavirus (HPV) is a significant public health concern due to its association with the development of cervical cancer. Although inflammation caused by Candida spp. has been shown to facilitate oncogenesis, the interactions between HPV and Candida spp. remain unclear. This study aimed to determine the prevalence and genotype distribution of HR-HPV infection HR-HPV-positiveCandida albicans in HR-HPV-positive individuals in Diyarbakır province in Turkey. Cervical samples were taken from 350 participants aged 20-69 years who applied to Diyarbakır Gazi Yaşargil Training and Research Hospital, Gynecology and Obstetrics Clinic. For detection of HPV presence and HR-HPV genotyping, PCR/direct cycle sequencing was used. E6/E7 mRNA expression of HPV-16, -18, -31, -33, and -45 was determined by type-specific real-time NASBA assay (NucliSENS EasyQ(®)HPV v1.1). The presence of Candida albicans in cervical specimens of HR-HPV-positive women was investigated by RAPD-PCR and culture methods. Results. Of the 350 women who participated in the study, 24% were HPV positive and 10.5% were found to be HR-HPV positive. HR-HPV positivity was most frequently detected in the age range of 40-49 years. Among HR-HPV-positive women, C. albicans was found in 59.4%. Conclusion. The most frequent HR-HPV genotype was HPV16, followed by HPV31. Of women who tested positive for HR-HPV, C. albicans was discovered in 59.4%. C. albicans infection may occur when the immune system is weakened or the balance of the vaginal flora is disturbed, increasing tissue damage in the vaginal area and the risk of carcinogenesis of HR-HPV. Therefore, knowing the presence of Candida infection in HR-HPV-positive women is essential to plan the treatment and prevent the risk of secondary disease.
Collapse
Affiliation(s)
- Efdal Oktay Gultekin
- Toros University Vocational School of Health Services, Department of Medical Services and Techniques, Mersin, Turkey
| | - Behzat Can
- Department of Gyneacological Oncology, Gazi Yaşargil Training and Research Hospital, Diyarbakir, Turkey
| |
Collapse
|
4
|
Brito JEC, de Mello BGV, Gaeta NC, Batista JMN, Brito TR, Agostinho WC, Brandão PE, Heinemann MB, Dias RA. Bats (Mammalia: Chiroptera) in urban-rural interfaces: community structure associated with pathogen screening in São Paulo-the largest metropolitan region in Brazil. Vet Res Commun 2023; 47:1575-1600. [PMID: 37154860 PMCID: PMC10165300 DOI: 10.1007/s11259-023-10112-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/19/2023] [Indexed: 05/10/2023]
Abstract
Little is known about the influence of the urban environments on bat species 'ecology. The urbanization process potentially lead to critical ecological changes in bat communities' intra and interspecific pathogenic transmissions dynamics. To date, the monitoring of pathogens in bats in Brazil has only been done with bats found dead or alive in households, from rabies surveillance systems. The present work aimed to investigate how urbanization influenced bat richness, relative abundance and pathogen occurrence. Most captured bats were Phyllostomidae, especially Sturnira lilium, Artibeus lituratus, A. fimbriatus, Glossophaga soricina, and Platyrrhinus lineatus, among others. From preserved-rural towards urban areas the lesser the bat richness, the higher the relative abundance of the captured bats. Noise level, luminosity and relative humidity correlated with bat abundance. The proportion of genders, sexually active bats and their size (weight, right forearm length, and body condition index) were stable throughout the investigation. Still, the proportion of pregnant females was higher in Spring and the number of juveniles in Summer, evidencing the seasonality of reproduction. Several Enterobacteria were isolated, evidencing a significant role of bats in the circulation of pathogens of medical and veterinary interest. These results are crucial in the pursuit of a harmonious coexistence between humans, bats and domestic animals in areas with different levels of anthropization.
Collapse
Affiliation(s)
- João Eduardo Cavalcanti Brito
- Laboratory of Epidemiology and Biostatistics, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Beatriz Gagete Veríssimo de Mello
- Laboratory of Epidemiology and Biostatistics, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Natália Carrillo Gaeta
- Laboratory of Bacterial Zoonosis, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Juliana Maria Nunes Batista
- Laboratory of Bacterial Zoonosis, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Tiago Roberto Brito
- Laboratory of Epidemiology and Biostatistics, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Washington Carlos Agostinho
- Laboratory of Viral Zoonosis, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Paulo Eduardo Brandão
- Laboratory of Viral Zoonosis, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Laboratory of Bacterial Zoonosis, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Ricardo Augusto Dias
- Laboratory of Epidemiology and Biostatistics, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Akinbobola AB, Kean R, Hanifi SMA, Quilliam RS. Environmental reservoirs of the drug-resistant pathogenic yeast Candida auris. PLoS Pathog 2023; 19:e1011268. [PMID: 37053164 PMCID: PMC10101498 DOI: 10.1371/journal.ppat.1011268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Candia auris is an emerging human pathogenic yeast; yet, despite phenotypic attributes and genomic evidence suggesting that it probably emerged from a natural reservoir, we know nothing about the environmental phase of its life cycle and the transmission pathways associated with it. The thermotolerant characteristics of C. auris have been hypothesised to be an environmental adaptation to increasing temperatures due to global warming (which may have facilitated its ability to tolerate the mammalian thermal barrier that is considered a protective strategy for humans against colonisation by environmental fungi with pathogenic potential). Thus, C. auris may be the first human pathogenic fungus to have emerged as a result of climate change. In addition, the release of antifungal chemicals, such as azoles, into the environment (from both pharmaceutical and agricultural sources) is likely to be responsible for the environmental enrichment of resistant strains of C. auris; however, the survival and dissemination of C. auris in the natural environment is poorly understood. In this paper, we critically review the possible pathways through which C. auris can be introduced into the environment and evaluate the environmental characteristics that can influence its persistence and transmission in natural environments. Identifying potential environmental niches and reservoirs of C. auris and understanding its emergence against a backdrop of climate change and environmental pollution will be crucial for the development of effective epidemiological and environmental management responses.
Collapse
Affiliation(s)
- Ayorinde B Akinbobola
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Ryan Kean
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Syed Manzoor Ahmed Hanifi
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Health System and Population Studies Division, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, Bangladesh
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
6
|
Role of Brazilian bats in the epidemiological cycle of potentially zoonotic pathogens. Microb Pathog 2023; 177:106032. [PMID: 36804526 DOI: 10.1016/j.micpath.2023.106032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Bats (Chiroptera) are flying mammals of great biodiversity and habits. These characteristics contribute for them being natural reservoirs and part of the epidemiological cycle of several potentially zoonotic pathogens, such as viruses, protozoa, fungi and bacteria. Brazil hosts approximately 15% of the world's bat diversity, with 181 distinct species, 68 genera and 9 families. About 60% of infectious diseases in humans are of zoonotic origin and, in the last decades, the detection of zoonotic pathogens in bats and their environment has been reported, such as Rabies virus (RABV) and Histoplasma capsulatum. Thus, the aim of this work was to review the reports of zoonotic pathogens associated with bats in Brazil in the past ten years. We reviewed the main pathogenic microorganisms described and the species of bats most frequently involved in the epidemiological cycles of these zoonotic agents. The obtained data show an upward trend in the detection of zoonotic pathogens in Brazilian bats, such as RABV, Bartonella sp., Histoplasma capsulatum and Leishmania spp., with emphasis on the bat species Artibeus lituratus, Carollia perspicillata, Desmodus rotundus and Molossus molossus. These findings highlight the importance of monitoring bat-associated microrganisms to early identify pathogens that may threaten bat populations, including potentially zoonotic microrganisms, emphasizing the importance of the One Health approach to prevent and mitigate the risks of the emergence of zoonotic diseases.
Collapse
|
7
|
Shoukat M, Ullah F, Tariq MN, Din G, Khadija B, Faryal R. Profiling of potential pathogenic candida species in obesity. Microb Pathog 2023; 174:105894. [PMID: 36496057 DOI: 10.1016/j.micpath.2022.105894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/17/2022] [Accepted: 11/19/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE OF RESEARCH The aim of the current study was gut profiling of culturable Candida species and their possible pathogenic potential to asses role in obesity. METHODS This case control study includes stool samples from 75 obese individuals and 50 controls. Isolation and identification of various Candida species was carried out by standard microbiological techniques. For pathogenic profiling, extracellular enzymatic assays, biofilm forming ability and resistance to azole were analyzed. RESULTS Culturable gut profiling identified comparative higher abundance and diversity of Candida species among obese compared to controls. The most abundant specie among both groups was C.kefyr. A comparatively higher pathogenic potential as more hydrolases expression was detected in C.kefyr, C.albicans and Teunomyces krusei from obese group. Majority isolates from obese group were strong biofilm formers (47.1%) compared to control group (35.4%) suggesting it as strong risk factor for obesity. Fluconazole resistance was highest among C.kefyr (51%) followed by Teunomyces krusei and C.albicans. All the isolates from different species were voriconazole sensitive except C.kefyr displaying a 4.2% resistance in obese group only. A significant association of dominant colonizing species with meat, fruit/vegetable consumption and residence area was present (p < 0.05). CONCLUSION The presence of hydrolytic enzymes in gut Candida species showed strong association with protein's degradation and enhanced pathogenicity. C.kefyr and Teunomyces krusei has emerged as potential pathogen showing increased colonization as result of protein rich and low carb diet. Thus presenting it as a bad choice for weight loss in obese individuals.
Collapse
Affiliation(s)
- Mehreen Shoukat
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Faheem Ullah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan; Department of Medical Lab Technology, University of Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Marbaila Nane Tariq
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Ghufranud Din
- Department of Medical Lab Technology, University of Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Bibi Khadija
- Department of Medical Lab Technology, National Skills University, Islamabad, Pakistan.
| | - Rani Faryal
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| |
Collapse
|
8
|
Buela L, Cuenca M, Sarmiento J, Peláez D, Mendoza AY, Cabrera EJ, Yarzábal LA. Role of Guinea Pigs (Cavia porcellus) Raised as Livestock in Ecuadorian Andes as Reservoirs of Zoonotic Yeasts. Animals (Basel) 2022; 12:ani12243449. [PMID: 36552369 PMCID: PMC9774381 DOI: 10.3390/ani12243449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Guinea pigs (Cavia porcellus) have been reared for centuries in the Andean region for ceremonial purposes or as the main ingredient of traditional foods. The animals are kept in close proximity of households and interact closely with humans; this also occurs in western countries, where guinea pigs are considered pets. Even though it is acknowledged that domestic animals carry pathogenic yeasts in their tissues and organs that can cause human diseases, almost nothing is known in the case of guinea pigs. In this work we used traditional microbiological approaches and molecular biology techniques to isolate, identify, and characterize potentially zoonotic yeasts colonizing the nasal duct of guinea pigs raised as livestock in Southern Ecuador (Cañar Province). Our results show that 44% of the 100 animals studied were colonized in their nasal mucosa by at least eleven yeast species, belonging to eight genera: Wickerhamomyces, Diutina, Meyerozyma, Candida, Pichia, Rhodotorula, Galactomyces, and Cryptococcus. Noticeably, several isolates were insensitive toward several antifungal drugs of therapeutic use, including fluconazole, voriconazole, itraconazole, and caspofungin. Together, our results emphasize the threat posed by these potentially zoonotic yeasts to the farmers, their families, the final consumers, and, in general, to public and animal health.
Collapse
Affiliation(s)
- Lenys Buela
- Carrera de Bioquímica y Farmacia, Unidad Académica de Salud y Bienestar, Universidad Católica de Cuenca, Av. Las Américas, Cuenca 010101, Ecuador
| | - Mercy Cuenca
- Carrera de Medicina Veterinaria, Unidad Académica de Ciencias Agropecuarias, Universidad Católica de Cuenca, Av. Las Américas, Cuenca 010101, Ecuador
| | - Jéssica Sarmiento
- Carrera de Odontología, Unidad Académica de Salud y Bienestar, Universidad Católica de Cuenca, Av. Las Américas, Cuenca 010101, Ecuador
| | - Diana Peláez
- Centro de Investigación, Innovación y Transferencia de Tecnología (CIITT), Universidad Católica de Cuenca, Ricaurte 010162, Ecuador
| | - Ana Yolanda Mendoza
- Carrera de Bioquímica y Farmacia, Unidad Académica de Salud y Bienestar, Universidad Católica de Cuenca, Av. Las Américas, Cuenca 010101, Ecuador
| | - Erika Judith Cabrera
- Carrera de Bioquímica y Farmacia, Unidad Académica de Salud y Bienestar, Universidad Católica de Cuenca, Av. Las Américas, Cuenca 010101, Ecuador
| | - Luis Andrés Yarzábal
- Carrera de Bioquímica y Farmacia, Unidad Académica de Salud y Bienestar, Universidad Católica de Cuenca, Av. Las Américas, Cuenca 010101, Ecuador
- Correspondence: or
| |
Collapse
|
9
|
Federici L, Masulli M, De Laurenzi V, Allocati N. An overview of bats microbiota and its implication in transmissible diseases. Front Microbiol 2022; 13:1012189. [PMID: 36338090 PMCID: PMC9631491 DOI: 10.3389/fmicb.2022.1012189] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Recent pandemic events have raised the attention of the public on the interactions between human and environment, with particular regard to the more and more feasible transmission to humans of micro-organisms hosted by wild-type species, due to the increasing interspecies contacts originating from human’s activities. Bats, due to their being flying mammals and their increasing promiscuity with humans, have been recognized as hosts frequently capable of transmitting disease-causing microorganisms. Therefore, it is of considerable interest and importance to have a picture as clear as possible of the microorganisms that are hosted by bats. Here we focus on our current knowledge on bats microbiota. We review the most recent literature on this subject, also in view of the bat’s body compartments, their dietary preferences and their habitat. Several pathogenic bacteria, including many carrying multidrug resistance, are indeed common guests of these small mammals, underlining the importance of preserving their habitat, not only to protect them from anthropogenic activities, but also to minimize the spreading of infectious diseases.
Collapse
Affiliation(s)
- Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d' Annunzio”, Chieti, Italy
| | - Michele Masulli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d' Annunzio”, Chieti, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- *Correspondence: Nerino Allocati,
| |
Collapse
|
10
|
El-Kamand S, Steiner M, Ramirez C, Halliday C, Chen SCA, Papanicolaou A, Morton CO. Assessing Differences between Clinical Isolates of Aspergillus fumigatus from Cases of Proven Invasive Aspergillosis and Colonizing Isolates with Respect to Phenotype (Virulence in Tenebrio molitor Larvae) and Genotype. Pathogens 2022; 11:pathogens11040428. [PMID: 35456102 PMCID: PMC9029132 DOI: 10.3390/pathogens11040428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
The fungus Aspergillus fumigatus, the cause of invasive aspergillosis (IA), is a serious risk to transplant patients and those with respiratory diseases. Host immune suppression is considered the most important factor for the development of IA. Less is known about the importance of fungal virulence in the development of IA including the significance of variation between isolates. In this study, isolates of A. fumigatus from cases diagnosed as having proven IA or colonisation (no evidence of IA) were compared in assays to measure isolate virulence. These assays included the measurement of radial growth and protease production on agar, sensitivity to UV light and oxidative stressors, and virulence in Tenebrio molitor (mealworm) larvae. These assays did not reveal obvious differences in virulence between the two groups of isolates; this provided the impetus to conduct genomic analysis. Whole genome sequencing and analysis did not allow grouping into coloniser or IA isolates. However, focused analysis of single nucleotide polymorphisms revealed variation in three putative genes: AFUA_5G09420 (ccg-8), AFUA_4G00330, and AFUA_4G00350. These are known to be responsive to azole exposure, and ccg-8 deletion leads to azole hypersensitivity in other fungi. A. fumigatus virulence is challenging, but the findings of this study indicate that further research into the response to oxidative stress and azole exposure are required to understand the development of IA.
Collapse
Affiliation(s)
- Sam El-Kamand
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
| | - Martina Steiner
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
| | - Carl Ramirez
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
| | - Catriona Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (C.H.); (S.C.-A.C.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (C.H.); (S.C.-A.C.)
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW 2145, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, NSW 2753, Australia
- Correspondence: (A.P.); (C.O.M.); Tel.: +61-2-4570-1385 (A.P.); +61-2-4620-3446 (C.O.M.)
| | - Charles Oliver Morton
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
- Correspondence: (A.P.); (C.O.M.); Tel.: +61-2-4570-1385 (A.P.); +61-2-4620-3446 (C.O.M.)
| |
Collapse
|
11
|
Ludwig L, Muraoka JY, Bonacorsi C, Donofrio FC. Diversity of fungi obtained from bats captured in urban forest fragments in Sinop, Mato Grosso, Brazil. BRAZ J BIOL 2021; 83:e247993. [PMID: 34190768 DOI: 10.1590/1519-6984.247993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022] Open
Abstract
Bats are important for the homeostasis of ecosystems and serve as hosts of various microorganisms including bacteria, viruses, and fungi with pathogenic potential. This study aimed to isolate fungi from biological samples obtained from bats captured in the city of Sinop (state of Mato Grosso, Brazil), where large areas of deforestation exist due to urbanization and agriculture. On the basis of the flow of people and domestic animals, 48 bats were captured in eleven urban forest fragments. The samples were processed and submitted to microbiological cultures, to isolate and to identify the fungal genera. Thirty-four (70.83%) of the captured bats were positive for fungi; 18 (37.5%) and 16 (33.33%) of these bats were female and male, respectively. Penicillium sp., Scopulariopsis sp., Fusarium sp., Aspergillus sp., Alternaria sp., Cryptococcus sp., Trichosporon sp., and Candida sp., which may cause opportunistic infections, were isolated. The bat species with the highest number of fungal isolates was Molossus molossus: 21 isolates (43.8%). According to our results, bats captured in urban forest fragments in Sinop harbor pathogenic fungi, increasing the risk of opportunistic fungal infections in humans and domestic animals.
Collapse
Affiliation(s)
- L Ludwig
- Universidade Federal de Mato Grosso - UFMT, Instituto de Ciências da Saúde, Laboratório de Análises Microbiológicas e Parasitológicas - LAMP, Sinop, MT, Brasil
| | - J Y Muraoka
- Universidade Federal de Mato Grosso - UFMT, Instituto de Ciências da Saúde, Laboratório de Análises Clínicas, Sinop, MT, Brasil
| | - C Bonacorsi
- Universidade Federal de Mato Grosso - UFMT, Instituto de Ciências da Saúde, Laboratório de Análises Clínicas, Sinop, MT, Brasil
| | - F C Donofrio
- Universidade Federal de Mato Grosso - UFMT, Instituto de Ciências da Saúde, Laboratório de Análises Microbiológicas e Parasitológicas - LAMP, Sinop, MT, Brasil
| |
Collapse
|
12
|
Gómez-Gaviria M, Mora-Montes HM. Current Aspects in the Biology, Pathogeny, and Treatment of Candida krusei, a Neglected Fungal Pathogen. Infect Drug Resist 2020; 13:1673-1689. [PMID: 32606818 PMCID: PMC7293913 DOI: 10.2147/idr.s247944] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
Fungal infections represent a constant and growing menace to human health, because of the emergence of new species as causative agents of diseases and the increment of antifungal drug resistance. Candidiasis is one of the most common fungal infections in humans and is associated with a high mortality rate when the fungi infect deep-seated organs. Candida krusei belongs to the group of candidiasis etiological agents, and although it is not isolated as frequently as other Candida species, the infections caused by this organism are of special relevance in the clinical setting because of its intrinsic resistance to fluconazole. Here, we offer a thorough revision of the current literature dealing with this organism and the caused disease, focusing on its biological aspects, the host-fungus interaction, the diagnosis, and the infection treatment. Of particular relevance, we provide the most recent genomic information, including the gene prediction of some putative virulence factors, like proteases, adhesins, regulators of biofilm formation and dimorphism. Moreover, C. krusei veterinary aspects and the exploration of natural products with anti-C. krusei activity are also included.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, México
| |
Collapse
|
13
|
Dias RA, Rocha F, Ulloa-Stanojlovic FM, Nitsche A, Castagna C, de Lucca T, Rodrigues RCA. Spatiotemporal distribution of a non-haematophagous bat community and rabies virus circulation: a proposal for urban rabies surveillance in Brazil. Epidemiol Infect 2019; 147:e130. [PMID: 30868985 PMCID: PMC6518535 DOI: 10.1017/s0950268818003229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/26/2018] [Accepted: 11/01/2018] [Indexed: 12/29/2022] Open
Abstract
In Brazil, rabies surveillance is based on monitoring domestic and wild animals, although the most prevalent lineage of the rabies virus (RABV) currently diagnosed in Brazil is associated with bats, particularly non-haematophagous bats. Disease control is based on the mass vaccination of dogs and cats. We used data collected by the passive surveillance system of the city of Campinas from 2011 to 2015, to describe the temporal and geographic distributions of the bat specimens and RABV and discuss the current rabies surveillance with the advent of the declaration of canine and feline rabies-free areas in Brazil. We described the species, locations and health statuses of the collected bat specimens. Moreover, all samples were submitted for RABV diagnosis. Then, we performed a time series decomposition for each bat family. Additionally, we determined the spatiotemporal relative risk for RABV infection using the ratio of the kernel-smoothed estimates of spatiotemporal densities of RABV-positive and RABV-negative bats. From the 2537 bat specimens, the most numerous family was Molossidae (72%), followed by Vespertilionidae (14%) and Phyllostomidae (13%). The bat families behaved differently in terms of seasonal and spatial patterns. The distribution of bats varied geographically in the urban environment, with Molossidae and Phyllostomidae being observed downtown and Vespertilionidae being observed in peripheral zones. Concurrently, a significant relative risk of RABV infection was observed downtown for Vespertilionidae and in peripheral zones for Molossidae. No RABV-positive sample clusters were observed. As a result of the official declaration of RABV-free areas in southern Brazil, mass dog and cat vaccinations are expected to halt in the near future. This stoppage would make most dog and cat populations susceptible to other RABV lineages, such as those maintained by non-haematophagous bats. In this scenario, all information available on bats and RABV distribution in urban areas is essential. Currently, few studies have been conducted. Some local health authorities, such as that in Campinas, are spontaneously basing their surveillance efforts on bat rabies, which is the alternative in reality scenario of increased susceptibility to bat-associated RABV that is developing in Brazil.
Collapse
Affiliation(s)
- R. A. Dias
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - F. Rocha
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - F. M. Ulloa-Stanojlovic
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - A. Nitsche
- Unidade de Vigilância de Zoonoses de Campinas, Prefeitura Municipal de Campinas, Campinas, Brazil
| | - C. Castagna
- Unidade de Vigilância de Zoonoses de Campinas, Prefeitura Municipal de Campinas, Campinas, Brazil
| | - T. de Lucca
- Vigilância em Saúde, Prefeitura Municipal de Campinas, Campinas, Brazil
| | - R. C. A. Rodrigues
- Unidade de Vigilância de Zoonoses de Campinas, Prefeitura Municipal de Campinas, Campinas, Brazil
| |
Collapse
|
14
|
Dögen A, Sav H, Gonca S, Kaplan E, Ilkit M, Novak Babic M, Gunde-Cimerman N, de Hoog GS. Candida parapsilosis in domestic laundry machines. Med Mycol 2018; 55:813-819. [PMID: 28204594 DOI: 10.1093/mmy/myx008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/20/2017] [Indexed: 11/14/2022] Open
Abstract
Candida parapsilosis, although a human commensal, acts as an opportunistic pathogen associated with nosocomial infections, with a rising incidence worldwide. Its ecological characteristics are poorly understood. Human-made environments within dwellings, such as dishwashers and water distribution systems, represent major sources of fungi such as C. parapsilosis. Here, we investigated the presence of members of the C. parapsilosis complex in 99 washing machines in various dwellings in the city of Mersin, Turkey. We sampled three sites in each washing machine: (i) the washing powder drawers, (ii) fabric softener drawers, and (iii) rubber seals around the washing machine doors. Additionally, we recorded the type of cleanser used by each customer. Of note, 25.3% of sampled washing machines harbored C. parapsilosis strains, later identified as the members of the C. parapsilosis sensu stricto via internal transcribed spacer (ITS) sequencing. Out of the 29 isolates obtained, biofilm-forming ability and proteinase and esterase activities were recorded in 14, 11, and 4 of the isolates, respectively. Our results suggest that the washing machines investigated abundantly harbored C. parapsilosis sensu stricto; however, no single preferred isolation site or association with cleanser type was observed (P > .05). Furthermore, C. parapsilosis isolates grew at temperatures ranging from 10°C to 37°C, at pH values ranging from 4 to 10, and were found to tolerate 5-10% NaCl. Domestic laundry appliances as a potential source of C. parapsilosis infections are discussed.
Collapse
Affiliation(s)
- Aylin Dögen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey
| | - Hafize Sav
- Division of Mycology, Kayseri Education and Research Hospital, Kayseri, Turkey
| | - Serpil Gonca
- Advanced Technology Education, Research, and Application Center, Mersin University, Mersin, Turkey
| | - Engin Kaplan
- Advanced Technology Education, Research, and Application Center, Mersin University, Mersin, Turkey.,Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Monika Novak Babic
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia.,Centre of Excellence of Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
| | - G Sybren de Hoog
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, Netherlands.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Li J, Li L, Jiang H, Yuan L, Zhang L, Ma JE, Zhang X, Cheng M, Chen J. Fecal Bacteriome and Mycobiome in Bats with Diverse Diets in South China. Curr Microbiol 2018; 75:1352-1361. [PMID: 29922970 DOI: 10.1007/s00284-018-1530-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 06/14/2018] [Indexed: 01/05/2023]
Abstract
Bats can be divided into frugivory, nectarivory, insectivory, and sanguivory based on their diets, and are therefore ideal wild animal models to study the relationship between diets and intestinal microflora. Early studies of bat gut bacteria showed that the diversity and structure of intestinal bacterial communities in bats are closely related to dietary changes. Worthy of note, intestinal microbes are composed of bacteria, fungi, protozoa, and archaea. Although the number of gut fungi is much lower than that of gut bacteria, they also play an important role in maintaining the host homeostasis. However, there are still few reports on the relationship between the gut mycobiota and the dietary habits of the host. In addition, bats have also been shown to naturally transmit pathogenic viruses and bacteria through their feces and saliva, but fungal infections from bat are less studied. Here, we used high-throughput sequencing of bacterial 16S and eukaryotic 18S rRNA genes in the V4 and V9 regions to characterize fecal bacterial and fungal microbiota in phytophagous and insectivorous bats in South China. The results show that the gut microbiota in bats were dominated by bacterial phyla Proteobacteria, Firmicutes, Tenericutes and Bacteroidetes, and fungal phyla Ascomycota and Basidiomycota. There was a significant difference in the diversity of bacterial and fungal microbiota between the groups, in addition to specific bacteria and fungi populations on each of them. Of note, the number of fungi in the feces of herbivorous bats is relatively higher. Most of these fungi are foodborne and are also pathogens of humans and other animals. Thus, bats are natural carriers of fungal pathogens. The current study expands the understanding of the bat gut bacterial and fungal mycobiota and provides further insight into the transmission of fungal pathogens.
Collapse
Affiliation(s)
- Juan Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Science, Guangzhou, 510650, Guangdong, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, Guangzhou, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, Guangzhou, China
| | - Haiying Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Science, Guangzhou, 510650, Guangdong, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, Guangzhou, China
| | - Lihong Yuan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, Guangzhou, China
| | - Libiao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, Guangzhou, China
| | - Jing-E Ma
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, Guangzhou, China
| | - Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, Guangzhou, China
| | - Minhua Cheng
- Wuhan Chopper Biology Co., Ltd, Wuhan, 430000, Hubei, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, Guangzhou, China.
| |
Collapse
|
16
|
Identification of fungi in shotgun metagenomics datasets. PLoS One 2018; 13:e0192898. [PMID: 29444186 PMCID: PMC5812651 DOI: 10.1371/journal.pone.0192898] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/31/2018] [Indexed: 01/22/2023] Open
Abstract
Metagenomics uses nucleic acid sequencing to characterize species diversity in different niches such as environmental biomes or the human microbiome. Most studies have used 16S rRNA amplicon sequencing to identify bacteria. However, the decreasing cost of sequencing has resulted in a gradual shift away from amplicon analyses and towards shotgun metagenomic sequencing. Shotgun metagenomic data can be used to identify a wide range of species, but have rarely been applied to fungal identification. Here, we develop a sequence classification pipeline, FindFungi, and use it to identify fungal sequences in public metagenome datasets. We focus primarily on animal metagenomes, especially those from pig and mouse microbiomes. We identified fungi in 39 of 70 datasets comprising 71 fungal species. At least 11 pathogenic species with zoonotic potential were identified, including Candida tropicalis. We identified Pseudogymnoascus species from 13 Antarctic soil samples initially analyzed for the presence of bacteria capable of degrading diesel oil. We also show that Candida tropicalis and Candida loboi are likely the same species. In addition, we identify several examples where contaminating DNA was erroneously included in fungal genome assemblies.
Collapse
|
17
|
Cordeiro RDA, Sales JA, Castelo-Branco DDSCM, Brilhante RSN, Ponte YBD, dos Santos Araújo G, Mendes PBL, Pereira VS, Alencar LPD, Pinheiro ADQ, Sidrim JJC, Rocha MFG. Candida parapsilosis complex in veterinary practice: A historical overview, biology, virulence attributes and antifungal susceptibility traits. Vet Microbiol 2017; 212:22-30. [DOI: 10.1016/j.vetmic.2017.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/27/2017] [Accepted: 07/11/2017] [Indexed: 11/29/2022]
|
18
|
Leite de Andrade MC, Soares de Oliveira MA, dos Santos FDAG, Ximenes Vilela PDB, da Silva MN, Macêdo DPC, de Lima Neto RG, Neves HJP, Brandão IDSL, Chaves GM, de Araujo RE, Neves RP. A new approach by optical coherence tomography for elucidating biofilm formation by emergent Candida species. PLoS One 2017; 12:e0188020. [PMID: 29145445 PMCID: PMC5690619 DOI: 10.1371/journal.pone.0188020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/29/2017] [Indexed: 01/13/2023] Open
Abstract
The majority of microorganisms present a community lifestyle, establishing biofilm ecosystems. However, little is known about its formation in emergent Candida species involved in catheter-related infections. Thus, various techniques may be used in the biofilm detection to elucidate structure and clinical impact. In this context, we report the ability of emergent Candida species (Candida haemulonii, C. lusitaniae, C. pelliculosa, C.guilliermondii, C. famata and C. ciferrii) on developing well structured biofilms with cell viability and architecture, using optical coherence tomography (OCT). This new approach was compared with XTT analyses and Scanning Electron Microscopy (SEM). A positive correlation between oxidative activity (XTT) and OCT results (r = 0.8752, p < 0.0001) was observed. SEM images demonstrated cells attachment, multilayer and morphologic characteristics of the biofilm structure. C. lusitaniae was the emergent species which revealed the highest scattering extension length and oxidative metabolism when evaluated by OCT and XTT methods, respectively. Herein, information on C. ciferri biofilm structure were presented for the first time. The OCT results are independently among Candida strains and no species-specific pattern was observed. Our findings strongly contribute for clinical management based on the knowledge of pathogenicity mechanisms involving emergent yeasts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Guilherme Maranhão Chaves
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Rejane Pereira Neves
- Department of Mycology, Federal University of Pernambuco, Recife, Brazil
- * E-mail:
| |
Collapse
|
19
|
Brilhante RSN, Maia-Júnior JE, Oliveira JS, Guedes GMM, Silva AL, Moura FBP, Sales JA, Castelo-Branco DSCM, Sidrim JJC, Cordeiro RA, Pereira-Neto WA, Rocha MFG. Yeasts from the microbiota of bats: a focus on the identification and antimicrobial susceptibility of cryptic species of Candida. J Med Microbiol 2016; 65:1225-1228. [DOI: 10.1099/jmm.0.000340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Raimunda S. N. Brilhante
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | - José E. Maia-Júnior
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza-CE, Brazil
| | - Jonathas S. Oliveira
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | - Glaucia M. M. Guedes
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | - Aline L. Silva
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza-CE, Brazil
| | - Francisco B. P. Moura
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza-CE, Brazil
| | - Jamille A. Sales
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza-CE, Brazil
| | - Debora S. C. M. Castelo-Branco
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | - José J. C. Sidrim
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | - Rossana A. Cordeiro
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | | | - Marcos F. G. Rocha
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza-CE, Brazil
| |
Collapse
|
20
|
Brilhante RSN, Silva STC, Castelo-Branco DSCM, Teixeira CEC, Borges LC, Bittencourt PV, de Oliveira JS, Monteiro AJ, Bandeira TJPG, Cordeiro RA, Moreira JLB, Sidrim JJC, Rocha MFG. Emergence of azole-resistant Candida albicans in small ruminants. Mycopathologia 2015; 180:277-80. [PMID: 25898770 DOI: 10.1007/s11046-015-9888-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
Small ruminant production is a common agricultural activity worldwide. However, studies on the fungal microbiota of these animals are scarce. Therefore, this study aimed at isolating yeasts from goats and sheep and evaluating the antifungal susceptibility of the recovered Candida albicans. A total of 120 animals from farms in Ceará State, Brazil, were assessed in this study. The samples were collected from nasal, oral and rectal cavities with sterile swabs. Candida spp., Trichosporon spp. and Rhodotorula spp. were isolated from small ruminants. Resistance to three azole drugs was observed in C. albicans. In summary, Candida spp. were predominantly observed as part of the microbiota of the nasal, oral and rectal cavities of small ruminants, including azole-resistant strains of C. albicans.
Collapse
Affiliation(s)
- R S N Brilhante
- Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Specialized Medical Mycology Center, School of Medicine, Federal University of Ceará, Rua Coronel Nunes de Melo, Fortaleza, CE, 1315, Brazil,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Andreas Sing
- Dept. of Infectiology, Bavarian Health and Food Safety Authority, Oberschleißheim, Bayern Germany
| |
Collapse
|
22
|
Cordeiro RDA, Bittencourt PV, Brilhante RSN, Teixeira CEC, Castelo-Branco DDSCM, Silva STDC, De Alencar LP, Souza ERY, Bandeira TDJPG, Monteiro AJ, Sidrim JJC, Rocha MFG. Species of Candida as a component of the nasal microbiota of healthy horses. Med Mycol 2013; 51:731-6. [PMID: 23651178 DOI: 10.3109/13693786.2013.777858] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Respiratory infections are a common problem among equines and occur with variable rates of morbidity and mortality. Although some fungal species are considered primary agents of respiratory tract infections in several mammals, their relevance in respiratory diseases of equines is frequently neglected. In the present study, we performed an active search for Candida spp. in the nasal cavity of horses. The presence of Candida spp. was investigated through the use of nasal swabs that were streaked on culture media. These yeasts were identified through physiological testing and their in vitro antifungal susceptibility were also characterized. The analysis of the material from the nasal cavity of 97 randomly chosen horses resulted in the isolation of Candida spp. from 35 animals (36.08%), out of which 18 (32.14%) were C. famata, 14 (25%) C. parapsilosis, 12 (21.42%) Meyerozyma guilliermondii (C. guilliermondii), 11 (19.64%) C. tropicalis and 1 (1.78%) Wickerhamomyces anomalus (C. pelliculosa). The minimum inhibitory concentration (MIC) values ranged from 0.03125-1 μg/ml for amphotericin B; and from 0.03125-> 16 μg/ml and 0.125 to > 64 μg/ml for itraconazole and fluconazole, respectively. Resistance to fluconazole and itraconazole was observed among C. tropicalis (n = 3) and C. guilliermondii (n = 1). The data show a predominance of non-C. albicans Candida species in the nasal microbiota of healthy equines, including antifungal resistant isolates, reiterating the importance of monitoring fungal pathogens in these animals.
Collapse
Affiliation(s)
- Rossana De Aguiar Cordeiro
- * Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará , Fortaleza-CE , Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rodriguez-Cerdeira C, Sanchez-Blanco E, Alba A. Evaluation of Association between Vaginal Infections and High-Risk Human Papillomavirus Types in Female Sex Workers in Spain. ISRN OBSTETRICS AND GYNECOLOGY 2012; 2012:240190. [PMID: 22900198 PMCID: PMC3415090 DOI: 10.5402/2012/240190] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/13/2012] [Indexed: 01/26/2023]
Abstract
Background. Infection with and persistence of high-risk human papillomavirus (HR-HPV) are the strongest risk factors for cervical cancer. In addition, other genital microorganisms may also be involved in the progression of HPV-associated lesions. Objetive. To evaluate the association of the vaginal microbiota (Candida spp., Trichomonas vaginalis, and bacterial vaginosis) with HR-HPV infection in Spanish female sex workers (FSWs). Methods. This cross-sectional study involved 208 (FSWs; age, 18-49 years) who visited a sexually transmitted infection (STI) information and prevention center (SERGAS) between January 2010 and December 2011. Face-to-face interviews were carried out. Cervical and vaginal samples were examined for human papillomavirus (HPV), Trichomonas vaginalis, Candida spp., and microorganisms related to bacterial vaginosis (BV). Results. HR-HPV was found to be significantly associated with BV in FSWs with positive results for HPV16-related types (31, 33, 35, and 52). T. vaginalis was isolated in FSWs with the following HR-HPVs: 18, 45, 66, and 68. Candida spp. were isolated only in FSWs with HPV 18-positive infection. Conclusion. We demonstrate a significant prevalence of HR-HPVs in FSWs with disturbances in the vaginal microbiota.
Collapse
|