1
|
Alrehaili BD. Unravelling the therapeutic landscape of bile acid-based therapies in gastrointestinal disorders. Saudi J Gastroenterol 2024; 30:283-293. [PMID: 38708898 PMCID: PMC11534188 DOI: 10.4103/sjg.sjg_53_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
ABSTRACT Bile acids serve as endogenous ligands for nuclear and cell membrane receptors and play a crucial role in bile acid and lipid metabolism. These detergent-like compounds promote bile flow and aid in the absorption of dietary fats and fat-soluble vitamins in the intestine. Synthesized in the liver as end products of cholesterol catabolism, bile acids exhibit a chemical structure comprising a nucleus and a side chain featuring a carboxyl group, with diverse steric arrangements and potential polar substituents. Critical interactions occur between bile acid species and various nuclear and cell membrane receptors, including the farnesoid X receptor and G-protein-coupled bile acid receptor 1. This research aimed to review the literature on bile acids and their roles in treating different diseases. Currently, numerous investigations are concentrating on specific bile acid species that target nuclear receptors in the gastrointestinal system, aiming to improve the treatment of conditions such as nonalcoholic fatty liver disease. Given the global attention this topic has garnered from research groups, it is considered relatively new, thus anticipating some gaps or incomplete data. Bile acid species have a significant therapeutic promise, especially in their ability to activate or inhibit nuclear receptors, such as farnesoid X receptor. This research provides to offer essential information for scientists and medical practitioners interested in discovering new studies that underscore the importance of bile acids in ameliorating and impeding the progression of disorders. Furthermore, it opens avenues for previously overlooked bile acid-based therapies.
Collapse
Affiliation(s)
- Bandar D. Alrehaili
- Pharmacology and Toxicology Department, Pharmacy College, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
2
|
Iwaki M, Kessoku T, Tanaka K, Ozaki A, Kasai Y, Kobayashi T, Nogami A, Honda Y, Ogawa Y, Imajo K, Usuda H, Wada K, Kobayashi N, Saito S, Nakajima A, Yoneda M. Combined, elobixibat, and colestyramine reduced cholesterol toxicity in a mouse model of metabolic dysfunction-associated steatotic liver disease. Hepatol Commun 2023; 7:e0285. [PMID: 37902528 PMCID: PMC10617934 DOI: 10.1097/hc9.0000000000000285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/04/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Cholesterol levels and bile acid metabolism are important drivers of metabolic dysfunction-associated steatohepatitis (MASH) progression. Using a mouse model, we investigated the mechanism by which cholesterol exacerbates MASH and the effect of colestyramine (a bile acid adsorption resin) and elobixibat (an apical sodium-dependent bile acid transporter inhibitor) concomitant administration on bile acid adsorption and MASH status. METHODS Mice were fed a high-fat high-fructose diet with varying concentrations of cholesterol to determine changes in fatty liver according to liver status, water intake, defecation status, insulin resistance, bile acid levels, intestinal permeability, atherosclerosis (in apolipoprotein E knockout mice), and carcinogenesis (in diethylnitrosamine mice). Using small interfering ribonucleic acid (siRNA), we evaluated the effect of sterol regulatory element binding protein 1c (SREBP1c) knockdown on triglyceride synthesis and fatty liver status following the administration of elobixibat (group E), colestyramine (group C), or both (group EC). RESULTS We found greater reductions in serum alanine aminotransferase levels, serum lipid parameters, serum primary bile acid concentrations, hepatic lipid levels, and fibrosis area in EC group than in the monotherapy groups. Increased intestinal permeability and watery diarrhea caused by elobixibat were completely ameliorated in group EC. Group EC showed reduced plaque formation rates in the entire aorta and aortic valve of the atherosclerosis model, and reduced tumor counts and tumor burden in the carcinogenesis model. CONCLUSIONS Excessive free cholesterol in the liver can promote fatty liver disease. Herein, combination therapy with EC effectively reduced free cholesterol levels in MASH model mice. Our study provides strong evidence for combination therapy as an effective treatment for MASH.
Collapse
Affiliation(s)
- Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takaomi Kessoku
- Department of Palliative Medicine, International University Health and Welfare, Narita Hospital, Narita, Japan
| | - Kosuke Tanaka
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Anna Ozaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Kasai
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Honda
- Department of Internal Medicine, Asakura Hospital, Konan-ku, Yokohama, Japan
| | - Yuji Ogawa
- Department of Gastroenterology, National Hospital Organization Yokohama Medical Center, Totsuka-ku, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology, Shinyurigaoka General Hospital, Kawasaki, Japan
| | - Haruki Usuda
- Department of Pharmacology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Koichiro Wada
- Department of Pharmacology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Noritoshi Kobayashi
- Department of Oncology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
3
|
Gillard J, Leclercq IA. Biological tuners to reshape the bile acid pool for therapeutic purposes in non-alcoholic fatty liver disease. Clin Sci (Lond) 2023; 137:65-85. [PMID: 36601783 PMCID: PMC9816373 DOI: 10.1042/cs20220697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
Bile acids synthesized within the hepatocytes are transformed by gut microorganisms and reabsorbed into the portal circulation. During their enterohepatic cycling, bile acids act as signaling molecules by interacting with receptors to regulate pathways involved in many physiological processes. The bile acid pool, composed of a variety of bile acid species, has been shown to be altered in diseases, hence contributing to disease pathogenesis. Thus, understanding the changes in bile acid pool size and composition in pathological processes will help to elaborate effective pharmacological treatments. Five crucial steps along the enterohepatic cycle shape the bile acid pool size and composition, offering five possible targets for therapeutic intervention. In this review, we provide an insight on the strategies to modulate the bile acid pool, and then we discuss the potential benefits in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Justine Gillard
- Laboratory of Hepato‐Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepato‐Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
4
|
Ng CH, Xiao J, Lim WH, Chin YH, Yong JN, Tan DJH, Tay P, Syn N, Foo R, Chan M, Chew N, Tan EX, Huang DQ, Dan YY, Tamaki N, Siddiqui MS, Sanyal AJ, Loomba R, Noureddin M, Muthiah MD. Placebo effect on progression and regression in NASH: Evidence from a meta-analysis. Hepatology 2022; 75:1647-1661. [PMID: 34990037 DOI: 10.1002/hep.32315] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS The evaluation of the natural history of NASH has been limited. Currently, liver biopsy remains the gold standard in the assessment of NASH. Placebo-controlled trials represent a controlled environment with paired biopsies for the evaluation of NASH. This meta-analysis thus seeks to quantify the change severity of NASH over time, with patients on placebo arms from randomized controlled trials (RCTs) to examine the natural history of NASH. METHODS A search was conducted to include NASH RCTs with placebo treatment arms. Primary outcomes were (1) the resolution of NASH without worsening of fibrosis, (2) two-point reduction in NAFLD activity score without worsening of fibrosis, and (3) at least one-point reduction in fibrosis. Generalized linear mix model was used to estimate pooled proportion and mean differences. RESULTS This meta-analysis of 43 RCTs included 2649 placebo-treated patients. The pooled estimate of NASH resolution and two-point NAFLD activity score reduction without worsening of fibrosis was 11.65% (95% CI: 7.98-16.71) and 21.11% (95% CI: 17.24-25.57). The rate of ≥1 stage reduction and progression of fibrosis was 18.82% (95% CI: 15.65-22.47) and 22.74% (CI: 19.63-26.17), respectively. Older age and African American ethnicity was associated with lower NASH resolution rate in placebo-treated patients. CONCLUSIONS Despite the absence of any pharmacological interventions, a significant proportion of patients in the placebo arm demonstrated improvements in liver histology, highlighting the possibility that NASH is a disease that can not only progress but regress spontaneously over time. Additionally, histologic response in placebo-treated patients is helpful in future design of phase 2B and phase 3 trials.
Collapse
Affiliation(s)
- Cheng Han Ng
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Jieling Xiao
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Wen Hui Lim
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Yip Han Chin
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Jie Ning Yong
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Phoebe Tay
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Nicholas Syn
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Roger Foo
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of CardiologyNational University Heart CentreNational University HospitalSingapore
| | - Mark Chan
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of CardiologyNational University Heart CentreNational University HospitalSingapore
| | - Nicholas Chew
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of CardiologyNational University Heart CentreNational University HospitalSingapore
| | - Eunice Xx Tan
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Division of Gastroenterology and HepatologyDepartment of MedicineNational University HospitalSingaporeSingapore
- National University Center for Organ TransplantationNational University Health SystemSingapore
| | - Daniel Q Huang
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Division of Gastroenterology and HepatologyDepartment of MedicineNational University HospitalSingaporeSingapore
- National University Center for Organ TransplantationNational University Health SystemSingapore
| | - Yock Young Dan
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Division of Gastroenterology and HepatologyDepartment of MedicineNational University HospitalSingaporeSingapore
- National University Center for Organ TransplantationNational University Health SystemSingapore
| | - Nobuharu Tamaki
- NAFLD Research CenterDivision of Gastroenterology and HepatologyDepartment of MedicineUniversity of California at San DiegoSan DiegoCaliforniaUSA
| | - Mohammad Shadab Siddiqui
- Cedars-Sinai Fatty Liver ProgramDivision of Digestive and Liver DiseasesDepartment of MedicineComprehensive Transplant CenterCedars-Sinai Medical CentreLos AngelesCaliforniaUSA
| | - Arun J Sanyal
- Department of Internal MedicineDivision of Gastroenterology, Hepatology and NutritionVirginia Commonwealth UniversityRichmondVirginiaUSA
- Division of Gastroenterology, Hepatology and NutritionDepartment of Internal MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Rohit Loomba
- NAFLD Research CenterDivision of Gastroenterology and HepatologyDepartment of MedicineUniversity of California at San DiegoSan DiegoCaliforniaUSA
| | - Mazen Noureddin
- Cedars-Sinai Fatty Liver ProgramDivision of Digestive and Liver DiseasesDepartment of MedicineComprehensive Transplant CenterCedars-Sinai Medical CentreLos AngelesCaliforniaUSA
| | - Mark D Muthiah
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Division of Gastroenterology and HepatologyDepartment of MedicineNational University HospitalSingaporeSingapore
- National University Center for Organ TransplantationNational University Health SystemSingapore
| |
Collapse
|
5
|
Ng CH, Muthiah MD, Xiao J, Chin YH, Lim G, Lim WH, Tay P, Tan DJH, Yong JN, Pan XH, Koh JWH, Chew N, Syn N, Tan E, Huang DQ, Siddiqui MS, Loomba R, Sanyal AJ, Noureddin M. Meta-analysis: analysis of mechanistic pathways in the treatment of non-alcoholic steatohepatitis. Evidence from a Bayesian network meta-analysis. Aliment Pharmacol Ther 2022; 55:1076-1087. [PMID: 35285529 DOI: 10.1111/apt.16808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/26/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Non-alcoholic steatohepatitis (NASH) is the most common cause of liver disease. However, there is lack of comparison of efficacy between different NASH drug classes. We conducted a network meta-analysis evaluating drug classes through comparing histological outcomes and targets of drugs. APPROACH AND RESULTS Medline, EMBASE and CENTRAL were searched for randomised controlled trials evaluating NASH drugs in biopsy-proven NASH patients. Primary outcomes included NASH resolution without worsening of fibrosis, at least 2-point reduction in Non-alcoholic fatty liver disease Activity Score (NAS) without worsening of fibrosis and at least 1-point reduction in fibrosis. Treatments were classified into inflammation, energy, bile acid and fibrosis modulators. The analysis was conducted with Bayesian network model and surface under the cumulative ranking curve (SUCRA) analysis. Among 49 included trials, treatments modulating energy (Risk ratio (RR): 1.92, Credible intervals (Crl): 1.59-2.34) were most likely to achieve NASH resolution followed by treatments modulating fibrosis (RR 1.66, Crl: 0.65-4.50), bile acids (RR: 1.37, Crl: 0.99-1.92) and inflammation (RR: 1.00, Crl: 0.75-1.33). Energy and bile acids modulation were effective in at least 2-point NAS reduction without worsening of fibrosis (RR: 1.52, Crl 1.30-1.77; RR: 1.69, Crl 1.41-2.03) and at least 1-point reduction in fibrosis (RR: 1.26, Crl:1.05-1.49; RR: 1.54, Crl: 1.20-1.97). CONCLUSIONS This network analysis demonstrates the relative superiority of drugs modulating energy pathways and bile acids in NASH treatment. This guides the development and selection of drugs for combination therapies.
Collapse
Affiliation(s)
- Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mark D Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore
| | - Jieling Xiao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yip Han Chin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Grace Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Phoebe Tay
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jie Ning Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xin-Hui Pan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Nicholas Chew
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas Syn
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eunice Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore
| | - Daniel Q Huang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore
| | - Mohammad Shadab Siddiqui
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, San Diego, California, USA
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mazen Noureddin
- Cedars-Sinai Fatty Liver Program, Division of Digestive and Liver Diseases, Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Centre, Los Angeles, California, USA
| |
Collapse
|
6
|
Hartmann P, Duan Y, Miyamoto Y, Demir M, Lang S, Hasa E, Stern P, Yamashita D, Conrad M, Eckmann L, Schnabl B. Colesevelam ameliorates non-alcoholic steatohepatitis and obesity in mice. Hepatol Int 2022; 16:359-370. [PMID: 35075592 PMCID: PMC9013343 DOI: 10.1007/s12072-022-10296-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Obesity, non-alcoholic fatty liver disease (NAFLD) and its more advanced form non-alcoholic steatohepatitis (NASH) are important causes of morbidity and mortality worldwide. Bile acid dysregulation is a pivotal part in their pathogenesis. The aim of this study was to evaluate the bile acid sequestrant colesevelam in a microbiome-humanized mouse model of diet-induced obesity and steatohepatitis. METHODS Germ-free C57BL/6 mice were associated with stool from patients with NASH and subjected to 20 weeks of Western diet feeding with and without colesevelam. RESULTS Colesevelam reduced Western diet-induced body and liver weight gain in microbiome-humanized mice compared with controls. It ameliorated Western diet-induced hepatic inflammation, steatosis, fibrosis and insulin resistance. Colesevelam increased de novo bile acid synthesis and decreased hepatic cholesterol content in microbiome-humanized mice fed a Western diet. It further induced the gene expression of the antimicrobials Reg3g and Reg3b in the distal small intestine and decreased plasma levels of LPS. CONCLUSIONS Colesevelam ameliorates Western diet-induced steatohepatitis and obesity in microbiome-humanized mice.
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yukiko Miyamoto
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | - Sonja Lang
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Elda Hasa
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | | | | | | | - Lars Eckmann
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
7
|
van de Peppel IP, Verkade HJ, Jonker JW. Metabolic consequences of ileal interruption of the enterohepatic circulation of bile acids. Am J Physiol Gastrointest Liver Physiol 2020; 319:G619-G625. [PMID: 32938201 DOI: 10.1152/ajpgi.00308.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The enterohepatic circulation of bile acids comprises a tightly regulated process of hepatic bile acid secretion, intestinal reabsorption and transport back to the liver. Disruption of this process has significant consequences for gastrointestinal, liver and whole body homeostasis and therefore offers opportunities for therapeutic intervention. In this review we discuss the effects of (pharmacological) interruption of the enterohepatic circulation at different levels. Recently, several studies have been published on ileal interruption of the enterohepatic circulation of bile acids, targeting the apical-sodium dependent bile acid transporter (ASBT, SLC10A2), as therapy for various diseases. However, ambiguous results have been reported and in-depth mechanistic insights are lacking. Here we discuss these novel studies and review the current knowledge on the consequences of ASBT inhibition and its potential effects on physiology and metabolism.
Collapse
Affiliation(s)
- Ivo P van de Peppel
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Henkjan J Verkade
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan W Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Kessoku T, Kobayashi T, Ozaki A, Iwaki M, Honda Y, Ogawa Y, Imajo K, Saigusa Y, Yamamoto K, Yamanaka T, Usuda H, Wada K, Yoneda M, Saito S, Nakajima A. Rationale and design of a randomised, double-blind, placebo-controlled, parallel-group, investigator-initiated phase 2a study to investigate the efficacy and safety of elobixibat in combination with cholestyramine for non-alcoholic fatty liver disease. BMJ Open 2020; 10:e037961. [PMID: 32907904 PMCID: PMC7482497 DOI: 10.1136/bmjopen-2020-037961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) pathogenesis involves abnormal metabolism of cholesterol and hepatic accumulation of toxic free-cholesterol. Elobixibat (EXB) inhibits the ileal bile acid (BA) transporter. EXB and cholestyramine (CTM) facilitate the removal of free cholesterol from the liver by decreasing BA recirculation to the liver, thereby stimulating novel BA synthesis from cholesterol. In this randomised, double-blind, placebo-controlled, parallel-group, phase IIa study, we aim to provide a proof-of-concept assessment by evaluating the efficacy and safety of EXB in combination with CTM in patients with NAFLD. METHODS AND ANALYSIS A total of 100 adult patients with NAFLD, diagnosed based on low-density lipoprotein cholesterol (LDL-C) level of >120 mg/dL and liver fat content of ≥8% by MRI-based proton density fat fraction (MRI-PDFF), who meet the inclusion/exclusion criteria will be enrolled. The patients will be randomly assigned to receive the combination therapy of 10 mg EXB and 9 g CTM powder (4 g CTM), 10 mg EXB monotherapy, 9 g CTM powder monotherapy or a placebo treatment (n=25 per group). Blood tests and MRIs will be performed 16 weeks following treatment initiation. The primary study endpoint will be the absolute LDL-C level change at week 16 after treatment initiation. The exploratory endpoint will include absolute changes in the liver fat fraction as measured by MRI-PDFF. This proof-of-concept study will determine whether the combination therapy of EXB and CTM is effective and safe for patients with NAFLD. ETHICS AND DISSEMINATION Ethics approval was obtained from the Ethics Committee of Yokohama City University Hospital before participant enrolment. The results of this study will be submitted for publication in international peer-reviewed journals and the key findings will be presented at international scientific conferences. TRIAL REGISTRATION NUMBER NCT04235205.
Collapse
Affiliation(s)
- Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Anna Ozaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yusuke Saigusa
- Department of Biostatistics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Koji Yamamoto
- Department of Biostatistics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeharu Yamanaka
- Department of Biostatistics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Haruki Usuda
- Department of Pharmacology, Shimane University Faculty of Medicine Graduate School of Medicine, Izumo, Shimane, Japan
| | - Koichiro Wada
- Department of Pharmacology, Shimane University Faculty of Medicine Graduate School of Medicine, Izumo, Shimane, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
9
|
Bile Acid Sequestrant, Sevelamer Ameliorates Hepatic Fibrosis with Reduced Overload of Endogenous Lipopolysaccharide in Experimental Nonalcoholic Steatohepatitis. Microorganisms 2020; 8:microorganisms8060925. [PMID: 32575352 PMCID: PMC7357162 DOI: 10.3390/microorganisms8060925] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the use of various pharmacotherapeutic strategies, fibrosis due to nonalcoholic steatohepatitis (NASH) remains an unsatisfied clinical issue. We investigated the effect of sevelamer, a hydrophilic bile acid sequestrant, on hepatic fibrosis in a murine NASH model. Male C57BL/6J mice were fed a choline-deficient, L-amino acid-defined, high-fat (CDHF) diet for 12 weeks with or without orally administered sevelamer hydrochloride (2% per diet weight). Histological and biochemical analyses revealed that sevelamer prevented hepatic steatosis, macrophage infiltration, and pericellular fibrosis in CDHF-fed mice. Sevelamer reduced the portal levels of total bile acid and inhibited both hepatic and intestinal farnesoid X receptor activation. Gut microbiome analysis demonstrated that sevelamer improved a lower α-diversity and prevented decreases in Lactobacillaceae and Clostridiaceae as well as increases in Desulfovibrionaceae and Enterobacteriaceae in the CDHF-fed mice. Additionally, sevelamer bound to lipopolysaccharide (LPS) in the intestinal lumen and promoted its fecal excretion. Consequently, the sevelamer treatment restored the tight intestinal junction proteins and reduced the portal LPS levels, leading to the suppression of hepatic toll-like receptor 4 signaling pathway. Furthermore, sevelamer inhibited the LPS-mediated induction of fibrogenic activity in human hepatic stellate cells in vitro. Collectively, sevelamer inhibited the development of murine steatohepatitis by reducing hepatic LPS overload.
Collapse
|
10
|
Li T, Chiang JYL. Bile acid-based therapies for non-alcoholic steatohepatitis and alcoholic liver disease. Hepatobiliary Surg Nutr 2020; 9:152-169. [PMID: 32355674 PMCID: PMC7188552 DOI: 10.21037/hbsn.2019.09.03] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Bile acids are synthesized from cholesterol only in hepatocytes. Bile acids circulating in the enterohepatic system act as physiological detergent molecules to help solubilize biliary cholesterol and emulsify dietary lipids and fat-soluble vitamins in small intestine. Bile acids are signaling molecules that activate nuclear receptor farnesoid X receptor (FXR) and cell surface G protein-coupled receptor TGR5. FXR critically regulates bile acid homeostasis by mediating bile acid feedback inhibition of hepatic bile acid synthesis. In addition, bile acid-activated cellular signaling pathways regulate metabolic homeostasis, immunity, and cell proliferation in various metabolically active organs. In the small and large intestine, gut bacterial enzymes modify primary bile acids to generate secondary bile acids to help shape the bile acid pool composition and subsequent biological effects. In turn, bile acids exhibit anti-microbial properties and modulate gut microbiota to influence host metabolism and immunity. Currently, bile acid-based therapies including systemic and intestine-restricted FXR agonists, TGR5 agonists, fibroblast growth factor 19 analogue, intestine FXR antagonists, and intestine apical sodium-bile acid transporter (ASBT) inhibitors have been developed as promising treatments for non-alcoholic steatohepatitis (NASH). These pharmacological agents improved metabolic and inflammatory disorders via distinct mechanisms of action that are subjects of extensive research interest. More recently, human and experimental alcoholic liver disease (ALD) has been associated with disrupted bile acid homeostasis. In additional, new findings showed that targeting bile acid metabolism and signaling may be promising therapeutic approaches for treating ALD.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
11
|
Hu H, Lin A, Kong M, Yao X, Yin M, Xia H, Ma J, Liu H. Intestinal microbiome and NAFLD: molecular insights and therapeutic perspectives. J Gastroenterol 2020; 55:142-158. [PMID: 31845054 PMCID: PMC6981320 DOI: 10.1007/s00535-019-01649-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of dysregulated lipid and glucose metabolism, which is often associated with obesity, dyslipidemia and insulin resistance. In view of the high morbidity and health risks of NAFLD, the lack of effective cure has drawn great attention. In recent years, a line of evidence has suggested a close linkage between the intestine and liver diseases such as NAFLD. We summarized the composition and characteristics of intestinal microbes and reviewed molecular insights into the intestinal microbiome in development and progression of NAFLD. Intestinal microbes mainly include bacteria, archaea, viruses and fungi, and the crosstalk between non-bacterial intestinal microbes and human liver diseases should be paid more attention. Intestinal microbiota imbalance may not only increase the intestinal permeability to gut microbes but also lead to liver exposure to harmful substances that promote hepatic lipogenesis and fibrosis. Furthermore, we focused on reviewing the latest "gut-liver axis"-targeting treatment, including the application of antibiotics, probiotics, prebiotics, synbiotics, farnesoid X receptor agonists, bile acid sequestrants, gut-derived hormones, adsorbents and fecal microbiota transplantation for NAFLD. In this review, we also discussed the potential mechanisms of "gut-liver axis" manipulation and efficacy of these therapeutic strategies for NAFLD treatment.
Collapse
Affiliation(s)
- Haiming Hu
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Aizhen Lin
- grid.477392.cHubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei China
| | - Mingwang Kong
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Xiaowei Yao
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Mingzhu Yin
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Hui Xia
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Jun Ma
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Hongtao Liu
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| |
Collapse
|
12
|
Treatments of nonalcoholic fatty liver disease in adults who have no other illness: A Review article. Arab J Gastroenterol 2019; 20:189-197. [DOI: 10.1016/j.ajg.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 11/26/2019] [Indexed: 12/28/2022]
|
13
|
Abstract
Bile acids have important roles in the regulation of lipid, glucose and energy metabolism. Metabolic diseases linked to obesity, including type 2 diabetes mellitus and non-alcoholic fatty liver disease, are associated with dysregulation of bile acid homeostasis. Here, the basic chemistry and regulation of bile acids as well as their metabolic effects will be reviewed. Changes in circulating bile acids associated with obesity and related diseases will be reviewed. Finally, pharmaceutical manipulation of bile acid homeostasis as therapy for metabolic diseases will be outlined.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Stephen R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| |
Collapse
|
14
|
Rates of and Factors Associated With Placebo Response in Trials of Pharmacotherapies for Nonalcoholic Steatohepatitis: Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2019; 17:616-629.e26. [PMID: 29913275 DOI: 10.1016/j.cgh.2018.06.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS It is important to know the extent of the placebo effect in designing randomized controlled trials for patients with nonalcoholic steatohepatitis (NASH), to accurately calculate sample size and define treatment endpoints. METHODS We performed a systematic review and meta-analysis of the placebo groups from randomized controlled trials of adults with NASH that provided histologic and/or magnetic resonance image-based assessments. We identified trials through a comprehensive search of MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and Scopus, from each database's inception through January 2, 2018. RESULTS We identified 39 randomized controlled trials, comprising 1463 patients who received placebo. Histologic assessment data (the nonalcoholic fatty liver disease activity scores, NAS) were available from 956 patients; magnetic resonance spectroscopy data were available from 295 patients and magnetic resonance proton density fat fraction measurements from 61 patients. Overall, 25% of patients given placebo had an improvement in NAS by 2 or more points (95% CI, 21%-29%) with a small amount of heterogeneity (I2 = 27%). There were improvements by at least 1 point in steatosis scores of 33% ± 3% of patients, in hepatocyte ballooning scores of 30% ± 3% of patients, in lobular inflammation scores of 32% ± 3% of patients, and in fibrosis scores of 21% ± 3% of patients, with a moderate amount of heterogeneity among trials (I2 range, 51%-63%). Patients given placebo had a statistically significant improvement in NAS (by 0.72 ± 0.19), with a large amount of heterogeneity (I2 = 96%). Univariate and multivariate meta-regression showed that trials with a higher baseline NAS, those conducted in South America, and those in which patients had a decrease in body mass index, were associated with greater improvements in NAS among patients given placebo. Patients given placebo had significant reductions in intrahepatic triglyceride, measured by magnetic resonance spectroscopy (by 1.45% ± 0.54%) with moderate heterogeneity (I2 = 40%), and in magnetic resonance proton density fat fraction (by 2.43 ± 0.89), without heterogeneity (I2 = 0). Mean serum levels of alanine and aspartate aminotransferases decreased significantly (by 11.7 ± 3.8 U/L and 5.9 ± 2.1 U/L, respectively; P < .01 for both). CONCLUSIONS In a meta-analysis of randomized controlled trials of NASH, patients given placebo have significant histologic, radiologic, and biochemical responses. The placebo response should be considered in designing trials of agents for treatment of NASH.
Collapse
|
15
|
Zhu A, Chen J, Wu P, Luo M, Zeng Y, Liu Y, Zheng H, Zhang L, Chen Z, Sun Q, Li W, Duan Y, Su D, Xiao Z, Duan Z, Zheng S, Bai L, Zhang X, Ju Z, Li Y, Hu R, Pandol SJ, Han YP. Cationic Polystyrene Resolves Nonalcoholic Steatohepatitis, Obesity, and Metabolic Disorders by Promoting Eubiosis of Gut Microbiota and Decreasing Endotoxemia. Diabetes 2017; 66:2137-2143. [PMID: 28446519 PMCID: PMC5521855 DOI: 10.2337/db17-0070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/15/2017] [Indexed: 12/16/2022]
Abstract
A pandemic of metabolic diseases, consisting of type 2 diabetes, nonalcoholic fatty liver disease, and obesity, has imposed critical challenges for societies worldwide, prompting investigation of underlying mechanisms and exploration of low-cost and effective treatment. In this report, we demonstrate that metabolic disorders in mice generated by feeding with a high-fat diet without dietary vitamin D can be prevented by oral administration of polycationic amine resin. Oral administration of cholestyramine, but not the control uncharged polystyrene, was able to sequester negatively charged bacterial endotoxin in the gut, leading to 1) reduced plasma endotoxin levels, 2) resolved systemic inflammation and hepatic steatohepatitis, and 3) improved insulin sensitivity. Gut dysbiosis, characterized as an increase of the phylum Firmicutes and a decrease of Bacteroidetes and Akkermansia muciniphila, was fully corrected by cholestyramine, indicating that the negatively charged components in the gut are critical for the dysbiosis. Furthermore, fecal bacteria transplant, derived from cholestyramine-treated animals, was sufficient to antagonize the metabolic disorders of the recipient mice. These results indicate that the negatively charged components produced by dysbiosis are critical for biogenesis of metabolic disorders and also show a potential application of cationic polystyrene to treat metabolic disorders through promoting gut eubiosis.
Collapse
Affiliation(s)
- Airu Zhu
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jingjing Chen
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pengfei Wu
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mei Luo
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
- Public Health Clinical Center of Chengdu, Chengdu, China
| | - Yilan Zeng
- Public Health Clinical Center of Chengdu, Chengdu, China
| | - Yong Liu
- Public Health Clinical Center of Chengdu, Chengdu, China
| | - Han Zheng
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Li Zhang
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zishou Chen
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qun Sun
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenwen Li
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yixiang Duan
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Danmei Su
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhixiong Xiao
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhongping Duan
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Sujun Zheng
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Li Bai
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Zhang
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Zhongyuan Ju
- Chengdu Tongde Pharmaceutical Co. Ltd., Chengdu, China
| | - Yan Li
- Chengdu Tongde Pharmaceutical Co. Ltd., Chengdu, China
| | - Richard Hu
- Olive View-UCLA Medical Center, Los Angeles, CA
| | | | - Yuan-Ping Han
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
- Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
16
|
Lombardi R, Onali S, Thorburn D, Davidson BR, Gurusamy KS, Tsochatzis E. Pharmacological interventions for non-alcohol related fatty liver disease (NAFLD): an attempted network meta-analysis. Cochrane Database Syst Rev 2017; 3:CD011640. [PMID: 28358980 PMCID: PMC6464620 DOI: 10.1002/14651858.cd011640.pub2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-alcohol related fatty liver disease (commonly called non-alcoholic fatty liver disease (NAFLD)) is liver steatosis in the absence of significant alcohol consumption, use of hepatotoxic medication, or other disorders affecting the liver such as hepatitis C virus infection, Wilson's disease, and starvation. NAFLD embraces the full spectrum of disease from pure steatosis (i.e. uncomplicated fatty liver) to non-alcoholic steatohepatitis (NASH), via NASH-cirrhosis to cirrhosis. The optimal pharmacological treatment for people with NAFLD remains uncertain. OBJECTIVES To assess the comparative benefits and harms of different pharmacological interventions in the treatment of NAFLD through a network meta-analysis and to generate rankings of the available pharmacological treatments according to their safety and efficacy. However, it was not possible to assess whether the potential effect modifiers were similar across different comparisons. Therefore, we did not perform the network meta-analysis, and instead, assessed the comparative benefits and harms of different interventions using standard Cochrane methodology. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Science Citation Index Expanded, the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.com to August 2016. SELECTION CRITERIA We included only randomised clinical trials (irrespective of language, blinding, or publication status) in participants with NAFLD. We excluded trials which included participants who had previously undergone liver transplantation. We considered any of the various pharmacological interventions compared with each other or with placebo or no intervention. DATA COLLECTION AND ANALYSIS We calculated the odds ratio (OR) and rate ratio with 95% confidence intervals (CI) using both fixed-effect and random-effects models based on an available participant analysis with Review Manager. We assessed risk of bias according to the Cochrane risk of bias tool, controlled risk of random errors with Trial Sequential Analysis, and assessed the quality of the evidence using GRADE. MAIN RESULTS We identified 77 trials including 6287 participants that met the inclusion criteria of this review. Forty-one trials (3829 participants) provided information for one or more outcomes. Only one trial was at low risk of bias in all domains. All other trials were at high risk of bias in one or more domains. Overall, all the evidence was very low quality. Thirty-five trials included only participants with non-alcohol related steatohepatitis (NASH) (based on biopsy confirmation). Five trials included only participants with diabetes mellitus; 14 trials included only participants without diabetes mellitus. The follow-up in the trials ranged from one month to 24 months.We present here only the comparisons of active intervention versus no intervention in which two or more trials reported at least one of the following outcomes: mortality at maximal follow-up, serious adverse events, and health-related quality of life, the outcomes that determine whether a treatment should be used. Antioxidants versus no interventionThere was no mortality in either group (87 participants; 1 trial; very low quality evidence). None of the participants developed serious adverse events in the trial which reported the proportion of people with serious adverse events (87 participants; 1 trial; very low quality evidence). There was no evidence of difference in the number of serious adverse events between antioxidants and no intervention (rate ratio 0.89, 95% CI 0.36 to 2.19; 254 participants; 2 trials; very low quality evidence). None of the trials reported health-related quality of life. Bile acids versus no interventionThere was no evidence of difference in mortality at maximal follow-up (OR 5.11, 95% CI 0.24 to 107.34; 659 participants; 4 trials; very low quality evidence), proportion of people with serious adverse events (OR 1.56, 95% CI 0.84 to 2.88; 404 participants; 3 trials; very low quality evidence), or the number of serious adverse events (rate ratio 1.01, 95% CI 0.66 to 1.54; 404 participants; 3 trials; very low quality evidence) between bile acids and no intervention. None of the trials reported health-related quality of life. Thiazolidinediones versus no interventionThere was no mortality in either group (74 participants; 1 trial; very low quality evidence). None of the participants developed serious adverse events in the two trials which reported the proportion of people with serious adverse events (194 participants; 2 trials; very low quality evidence). There was no evidence of difference in the number of serious adverse events between thiazolidinediones and no intervention (rate ratio 0.25, 95% CI 0.06 to 1.05; 357 participants; 3 trials; very low quality evidence). None of the trials reported health-related quality of life. Source of fundingTwenty-six trials were partially- or fully-funded by pharmaceutical companies that would benefit, based on the results of the trial. Twelve trials did not receive any additional funding or were funded by parties with no vested interest in the results. The source of funding was not provided in 39 trials. AUTHORS' CONCLUSIONS Due to the very low quality evidence, we are very uncertain about the effectiveness of pharmacological treatments for people with NAFLD including those with steatohepatitis. Further well-designed randomised clinical trials with sufficiently large sample sizes are necessary.
Collapse
Affiliation(s)
- Rosa Lombardi
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentreLondonUKNW3 2QG
| | - Simona Onali
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentreLondonUKNW3 2QG
| | - Douglas Thorburn
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentreLondonUKNW3 2QG
| | - Brian R Davidson
- Royal Free Campus, UCL Medical SchoolDepartment of SurgeryPond StreetLondonUKNW3 2QG
| | | | - Emmanuel Tsochatzis
- Royal Free Hospital and the UCL Institute of Liver and Digestive HealthSheila Sherlock Liver CentreLondonUKNW3 2QG
| | | |
Collapse
|
17
|
McGettigan BM, McMahan RH, Luo Y, Wang XX, Orlicky DJ, Porsche C, Levi M, Rosen HR. Sevelamer Improves Steatohepatitis, Inhibits Liver and Intestinal Farnesoid X Receptor (FXR), and Reverses Innate Immune Dysregulation in a Mouse Model of Non-alcoholic Fatty Liver Disease. J Biol Chem 2016; 291:23058-23067. [PMID: 27605663 DOI: 10.1074/jbc.m116.731042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Indexed: 12/20/2022] Open
Abstract
Bile acid sequestrants are synthetic polymers that bind bile acids in the gut and are used to treat dyslipidemia and hyperphosphatemia. Recently, these agents have been reported to lower blood glucose and increase insulin sensitivity by altering bile acid signaling pathways. In this study, we assessed the efficacy of sevelamer in treating mice with non-alcoholic fatty liver disease (NAFLD). We also analyzed how sevelamer alters inflammation and bile acid signaling in NAFLD livers. Mice were fed a low-fat or Western diet for 12 weeks followed by a diet-plus-sevelamer regimen for 2 or 12 weeks. At the end of treatment, disease severity was assessed, hepatic leukocyte populations were examined, and expression of genes involved in farnesoid X receptor (FXR) signaling in the liver and intestine was analyzed. Sevelamer treatment significantly reduced liver steatosis and lobular inflammation. Sevelamer-treated NAFLD livers had notably fewer pro-inflammatory infiltrating macrophages and a significantly greater fraction of alternatively activated Kupffer cells compared with controls. Expression of genes involved in FXR signaling in the liver and intestine was significantly altered in mice with NAFLD as well as in those treated with sevelamer. In a mouse model of NAFLD, sevelamer improved disease and counteracted innate immune cell dysregulation in the liver. This study also revealed a dysregulation of FXR signaling in the liver and intestine of NAFLD mice that was counteracted by sevelamer treatment.
Collapse
Affiliation(s)
- Brett M McGettigan
- From the Departments of Gastroenterology and Hepatology.,Immunology and Microbiology, University of Colorado, Aurora, Colorado 80045
| | | | | | | | | | - Cara Porsche
- From the Departments of Gastroenterology and Hepatology
| | | | - Hugo R Rosen
- From the Departments of Gastroenterology and Hepatology, .,Immunology and Microbiology, University of Colorado, Aurora, Colorado 80045
| |
Collapse
|
18
|
Tagawa H, Irie J, Itoh A, Kusumoto Y, Kato M, Kobayashi N, Tanaka K, Morinaga R, Fujita M, Nakajima Y, Morimoto K, Sugizaki T, Kawano Y, Yamada S, Kawai T, Watanabe M, Itoh H. Bile acid binding resin improves hepatic insulin sensitivity by reducing cholesterol but not triglyceride levels in the liver. Diabetes Res Clin Pract 2015; 109:85-94. [PMID: 25981325 DOI: 10.1016/j.diabres.2015.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 03/16/2015] [Accepted: 04/15/2015] [Indexed: 01/06/2023]
Abstract
AIMS Bile acid binding resin (BAR) improves glycaemic control in patients with type 2 diabetes. Although the mechanism is hypothesised to involve the clearance of excess hepatic triglyceride, this hypothesis has not been examined in appropriately designed studies. Therefore, we investigated whether reduced hepatic triglyceride deposition is involved in BAR-mediated improvements in glycaemic control in spontaneous fatty liver diabetic mice without dietary interventions. METHODS Male 6-week-old fatty liver Shionogi (FLS) mice were fed a standard diet without or with 1.5% BAR (colestilan) for 6 weeks. Glucose tolerance, insulin sensitivity, hepatic lipid content, and gene expression were assessed. A liver X receptor (LXR) agonist was also administered to activate the LXR pathway. We also retrospectively analysed the medical records of 21 outpatients with type 2 diabetes who were treated with colestilan for ≥6 months. RESULTS BAR enhanced glucose tolerance and insulin sensitivity in FLS mice without altering fat mass. BAR improved hepatic insulin sensitivity, increased IRS2 expression, and decreased SREBP expression. BAR reduced hepatic cholesterol levels but not hepatic triglyceride levels. BAR also reduced the expression of LXR target genes, and LXR activation abolished the BAR-mediated improvements in glycaemic control. Colestilan significantly lowered serum cholesterol levels and improved glycaemic control in patients with type 2 diabetes. CONCLUSIONS BAR improved hepatic insulin resistance in FLS mice by reducing hepatic cholesterol without affecting hepatic triglyceride levels or body fat distribution. Our study revealed that BAR improves glycaemic control at least in part by downregulating the hepatic cholesterol-LXR-IRS2 pathway.
Collapse
Affiliation(s)
- Hirotsune Tagawa
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Junichiro Irie
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan.
| | - Arata Itoh
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yukie Kusumoto
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Mari Kato
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Nana Kobayashi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Kumiko Tanaka
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Rieko Morinaga
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Masataka Fujita
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yuya Nakajima
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Kohkichi Morimoto
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Taichi Sugizaki
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Yoshinaga Kawano
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Satoru Yamada
- Diabetes Center, Kitasato Institute Hospital, Tokyo 108-8642, Japan
| | - Toshihide Kawai
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Mitsuhiro Watanabe
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| |
Collapse
|
19
|
Le TA, Chen J, Changchien C, Peterson MR, Kono Y, Patton H, Cohen BL, Brenner D, Sirlin C, Loomba R. Effect of colesevelam on liver fat quantified by magnetic resonance in nonalcoholic steatohepatitis: a randomized controlled trial. Hepatology 2012; 56:922-32. [PMID: 22431131 PMCID: PMC3400720 DOI: 10.1002/hep.25731] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 03/09/2012] [Indexed: 12/14/2022]
Abstract
UNLABELLED Bile acid sequestrants (BAS) lower plasma low density lipoprotein levels and improve glycemic control. Colestimide, a BAS, has been claimed by computed tomography to reduce liver fat. Therefore, we examined the efficacy of colesevelam, a potent BAS, to decrease liver fat in patients with biopsy-proven nonalcoholic steatohepatitis (NASH). Liver fat was measured by a novel magnetic resonance imaging (MRI) technique, the proton-density-fat-fraction (PDFF), as well as by conventional MR spectroscopy (MRS). Fifty patients with biopsy-proven NASH were randomly assigned to either colesevelam 3.75 g/day orally or placebo for 24 weeks. The primary outcome was change in liver fat as measured by MRI-PDFF in colocalized regions of interest within each of the nine liver segments. Compared with placebo, colesevelam increased liver fat by MRI-PDFF in all nine segments of the liver with a mean difference of 5.6% (P = 0.002). We cross-validated the MRI-PDFF-determined fat content with that assessed by colocalized MRS; the latter showed a mean difference of 4.9% (P = 0.014) in liver fat between the colesevelam and the placebo arms. MRI-PDFF correlated strongly with MRS-determined hepatic fat content (r(2) = 0.96, P < 0.0001). Liver biopsy assessment of steatosis, cellular injury, and lobular inflammation did not detect any effect of treatment. CONCLUSION Colesevelam increases liver fat in patients with NASH as assessed by MRI as well as MRS without significant changes seen on histology. Thus, MRI and MRS may be better than histology to detect longitudinal changes in hepatic fat in NASH. Underlying mechanisms and whether the small MR-detected increase in liver fat has clinical consequences is not known.
Collapse
Affiliation(s)
- Thuy-Anh Le
- Division of Gastroenterology, Department of Medicine,Department of Family and Preventive Medicine, University of CaliforniaSan Diego, La Jolla, CA
| | - Joshua Chen
- Department of Radiology,Department of Family and Preventive Medicine, University of CaliforniaSan Diego, La Jolla, CA
| | - Christopher Changchien
- Department of Radiology,Department of Family and Preventive Medicine, University of CaliforniaSan Diego, La Jolla, CA
| | - Michael R Peterson
- Department of Pathology,Department of Family and Preventive Medicine, University of CaliforniaSan Diego, La Jolla, CA
| | - Yuko Kono
- Division of Gastroenterology, Department of Medicine,Department of Family and Preventive Medicine, University of CaliforniaSan Diego, La Jolla, CA
| | - Heather Patton
- Division of Gastroenterology, Department of Medicine,Department of Family and Preventive Medicine, University of CaliforniaSan Diego, La Jolla, CA
| | - Benjamin L Cohen
- Division of Gastroenterology, Department of Medicine,Department of Family and Preventive Medicine, University of CaliforniaSan Diego, La Jolla, CA
| | - David Brenner
- Division of Gastroenterology, Department of Medicine,Department of Family and Preventive Medicine, University of CaliforniaSan Diego, La Jolla, CA
| | - Claude Sirlin
- Department of Radiology,Department of Family and Preventive Medicine, University of CaliforniaSan Diego, La Jolla, CA
| | - Rohit Loomba
- Division of Gastroenterology, Department of Medicine,Department of Family and Preventive Medicine, University of CaliforniaSan Diego, La Jolla, CA,Division of Epidemiology, Department of Family and Preventive Medicine, University of CaliforniaSan Diego, La Jolla, CA
| | | |
Collapse
|
20
|
Le TA, Loomba R. Management of Non-alcoholic Fatty Liver Disease and Steatohepatitis. J Clin Exp Hepatol 2012; 2:156-73. [PMID: 25755424 PMCID: PMC3940181 DOI: 10.1016/s0973-6883(12)60104-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/08/2012] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of abnormal liver enzymes and chronic liver disease in the US with expected rise in incidence paralleling the epidemic of obesity. A subset of patients with NAFLD have the progressive form of NAFLD that is termed non-alcoholic steatohepatitis (NASH), which is characterized by specific features on liver histology including hepatocellular ballooning degeneration, lobular inflammation, and zone-3 steatosis with or without peri-sinusoidal fibrosis. Non-alcoholic steatohepatitis can progress to cirrhosis and result in liver-related death. Insulin resistance is commonly seen in patients with NASH and often co-exists with other features of the metabolic syndrome including hypertension, hyperlipidemia, and obesity. Although weight loss through lifestyle modifications including dietary changes and increased physical exercise remains the backbone of management of NASH, it has proved challenging for patients to achieve and maintain weight loss goals. Thus, it is often necessary to couple lifestyle changes with another pharmacologic treatment for NASH. Insulin sensitizers including the biguanides (metformin), thiazolidinediones (pioglitazone and rosiglitazone), and glucagon-like peptide-1 receptor agonists (exenatide) are large groups of medications that have been studied for the treatment of NASH. Other agents with anti-inflammatory, anti-apoptotic, or anti-fibrotic properties which have been studied in NASH include vitamin E, pentoxifylline, betaine, and ursodeoxycholic acid. This review will provide a detailed summary on the clinical data behind the full spectrum of treatments that exist for NASH and suggest management recommendations.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Alk-phos, alkaline phosphatase
- BMI, body mass index
- Colesevelam
- DEXA, dual-energy X-ray absorptiometry
- GGT, gamma-glutamyl transferase
- HDL, high-density lipoprotein
- HOMA, homeostatic model assessment
- LDL, low-density lipoprotein
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH, non-alcoholic steatohepatitis
- QUICKI, quantitative insulin sensitivity check index
- S-adenosylmethionine
- TG, triglyceride
- exenatide
- ezetimibe
- metformin
- pentoxifylline
- statins
- thiazolidinediones
- ursodeoxycholic acid
- vitamin E
Collapse
Affiliation(s)
- Thuy-Anh Le
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rohit Loomba
- Division of Epidemiology, Department of Family and Preventive Medicine, University of California, San Diego, La Jolla, CA 92093, USA,Address for correspondence: Rohit Loomba, Division of Gastroenterology and Epidemiology, University of California at San Diego School of Medicine, UC 303, MC-063, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Porez G, Prawitt J, Gross B, Staels B. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J Lipid Res 2012; 53:1723-37. [PMID: 22550135 DOI: 10.1194/jlr.r024794] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dyslipidemia is an important risk factor for cardiovascular disease (CVD) and atherosclerosis. When dyslipidemia coincides with other metabolic disorders such as obesity, hypertension, and glucose intolerance, defined as the metabolic syndrome (MS), individuals present an elevated risk to develop type 2 diabetes (T2D) as well as CVD. Because the MS epidemic represents a growing public health problem worldwide, the development of therapies remains a major challenge. Alterations of bile acid pool regulation in T2D have revealed a link between bile acid and metabolic homeostasis. The bile acid receptors farnesoid X receptor (FXR) and TGR5 both regulate lipid, glucose, and energy metabolism, rendering them potential pharmacological targets for MS therapy. This review discusses the mechanisms of metabolic regulation by FXR and TGR5 and the utility relevance of natural and synthetic modulators of FXR and TGR5 activity, including bile acid sequestrants, in the treatment of the MS.
Collapse
|
22
|
Okanoue T, Umemura A, Yasui K, Itoh Y. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in Japan. J Gastroenterol Hepatol 2011; 26 Suppl 1:153-62. [PMID: 21199527 DOI: 10.1111/j.1440-1746.2010.06547.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the past 20 to 30 years, the frequency of patients presenting with nonalcoholic fatty liver diseases (NAFLD) has increased gradually in Japan in proportion to the increase in the population with life-style related diseases. We describe here the current status of the clinical and basic aspects of research into NAFLD in Japan. The increase in the incidence of life-style-related diseases has resulted in an increase in NAFLD throughout the past 20 to 30 years. The rate of obesity in the population is not high compared to western countries but the incidence of NAFLD is similar to those countries. In 2008 we started a nationwide study of NAFLD which has been supported by the Ministry of Labor and Welfare Japan. In this project, we planned to investigate the epidemiology, genetic backgrounds and biochemical markers, and liver injury in patients with diabetes mellitus (DM) and hepatocellular carcinoma in NASH, and treatment of NASH. Approximately 20 to 25% of DM patients showed NAFLD in which the prevalence of NASH might be more than 30 to 40%. Fortunately, we have been able to obtain very interesting results from our group studies, including single necleotide polymorphisms (SNPs) which will be published in the near future.
Collapse
Affiliation(s)
- Takeshi Okanoue
- Center of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan.
| | | | | | | |
Collapse
|