1
|
Boccatonda A, Del Cane L, Marola L, D’Ardes D, Lessiani G, di Gregorio N, Ferri C, Cipollone F, Serra C, Santilli F, Piscaglia F. Platelet, Antiplatelet Therapy and Metabolic Dysfunction-Associated Steatotic Liver Disease: A Narrative Review. Life (Basel) 2024; 14:473. [PMID: 38672744 PMCID: PMC11051088 DOI: 10.3390/life14040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is not only related to traditional cardiovascular risk factors like type 2 diabetes mellitus and obesity, but it is also an independent risk factor for the development of cardiovascular disease. MASLD has been shown to be independently related to endothelial dysfunction and atherosclerosis. MASLD is characterized by a chronic proinflammatory response that, in turn, may induce a prothrombotic state. Several mechanisms such as endothelial and platelet dysfunction, changes in the coagulative factors, lower fibrinolytic activity can contribute to induce the prothrombotic state. Platelets are players and addresses of metabolic dysregulation; obesity and insulin resistance are related to platelet hyperactivation. Furthermore, platelets can exert a direct effect on liver cells, particularly through the release of mediators from granules. Growing data in literature support the use of antiplatelet agent as a treatment for MASLD. The use of antiplatelets drugs seems to exert beneficial effects on hepatocellular carcinoma prevention in patients with MASLD, since platelets contribute to fibrosis progression and cancer development. This review aims to summarize the main data on the role of platelets in the pathogenesis of MASLD and its main complications such as cardiovascular events and the development of liver fibrosis. Furthermore, we will examine the role of antiplatelet therapy not only in the prevention and treatment of cardiovascular events but also as a possible anti-fibrotic and anti-tumor agent.
Collapse
Affiliation(s)
- Andrea Boccatonda
- Internal Medicine, Bentivoglio Hospital, AUSL Bologna, 40010 Bentivoglio, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Lorenza Del Cane
- Nephrology Unit, Department of Life, Health & Environmental Sciences and Internal Medicine, University of L’Aquila, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.D.C.); (L.M.); (N.d.G.); (C.F.)
| | - Lara Marola
- Nephrology Unit, Department of Life, Health & Environmental Sciences and Internal Medicine, University of L’Aquila, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.D.C.); (L.M.); (N.d.G.); (C.F.)
| | - Damiano D’Ardes
- Institute of “Clinica Medica”, Department of Medicine and Aging Science, “G. D’Annunzio” University of Chieti, 66100 Chieti, Italy (F.C.)
| | | | - Nicoletta di Gregorio
- Nephrology Unit, Department of Life, Health & Environmental Sciences and Internal Medicine, University of L’Aquila, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.D.C.); (L.M.); (N.d.G.); (C.F.)
| | - Claudio Ferri
- Nephrology Unit, Department of Life, Health & Environmental Sciences and Internal Medicine, University of L’Aquila, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.D.C.); (L.M.); (N.d.G.); (C.F.)
| | - Francesco Cipollone
- Institute of “Clinica Medica”, Department of Medicine and Aging Science, “G. D’Annunzio” University of Chieti, 66100 Chieti, Italy (F.C.)
| | - Carla Serra
- Interventional, Diagnostic and Therapeutic Ultrasound Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Francesca Santilli
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, 66100 Chieti, Italy;
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
2
|
Minciuna I, Taru MG, Procopet B, Stefanescu H. The Interplay between Liver Sinusoidal Endothelial Cells, Platelets, and Neutrophil Extracellular Traps in the Development and Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. J Clin Med 2024; 13:1406. [PMID: 38592258 PMCID: PMC10932189 DOI: 10.3390/jcm13051406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a societal burden due to the lack of effective treatment and incomplete pathophysiology understanding. This review explores the intricate connections among liver sinusoidal endothelial cells (LSECs), platelets, neutrophil extracellular traps (NETs), and coagulation disruptions in MASLD pathogenesis. In MASLD's early stages, LSECs undergo capillarization and dysfunction due to excessive dietary macronutrients and gut-derived products. Capillarization leads to ischemic changes in hepatocytes, triggering pro-inflammatory responses in Kupffer cells (KCs) and activating hepatic stellate cells (HSCs). Capillarized LSECs show a pro-inflammatory phenotype through adhesion molecule overexpression, autophagy loss, and increased cytokines production. Platelet interaction favors leucocyte recruitment, NETs formation, and liver inflammatory foci. Liver fibrosis is facilitated by reduced nitric oxide, HSC activation, profibrogenic mediators, and increased angiogenesis. Moreover, platelet attachment, activation, α-granule cargo release, and NETs formation contribute to MASLD progression. Platelets foster fibrosis and microthrombosis, leading to parenchymal extinction and fibrotic healing. Additionally, platelets promote tumor growth, epithelial-mesenchymal transition, and tumor cell metastasis. MASLD's prothrombotic features are exacerbated by insulin resistance, diabetes, and obesity, manifesting as increased von Willebrand factor, platelet hyperaggregability, hypo-fibrinolysis, and a prothrombotic fibrin clot structure. Improving LSEC health and using antiplatelet treatment appear promising for preventing MASLD development and progression.
Collapse
Affiliation(s)
- Iulia Minciuna
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Madalina Gabriela Taru
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Bogdan Procopet
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
- Deaprtment IV, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Horia Stefanescu
- Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania (H.S.)
| |
Collapse
|
3
|
Casari M, Siegl D, Deppermann C, Schuppan D. Macrophages and platelets in liver fibrosis and hepatocellular carcinoma. Front Immunol 2023; 14:1277808. [PMID: 38116017 PMCID: PMC10728659 DOI: 10.3389/fimmu.2023.1277808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
During fibrosis, (myo)fibroblasts deposit large amounts of extracellular matrix proteins, thereby replacing healthy functional tissue. In liver fibrosis, this leads to the loss of hepatocyte function, portal hypertension, variceal bleeding, and increased susceptibility to infection. At an early stage, liver fibrosis is a dynamic and reversible process, however, from the cirrhotic stage, there is significant progression to hepatocellular carcinoma. Both liver-resident macrophages (Kupffer cells) and monocyte-derived macrophages are important drivers of fibrosis progression, but can also induce its regression once triggers of chronic inflammation are eliminated. In liver cancer, they are attracted to the tumor site to become tumor-associated macrophages (TAMs) polarized towards a M2- anti-inflammatory/tumor-promoting phenotype. Besides their role in thrombosis and hemostasis, platelets can also stimulate fibrosis and tumor development by secreting profibrogenic factors and regulating the innate immune response, e.g., by interacting with monocytes and macrophages. Here, we review recent literature on the role of macrophages and platelets and their interplay in liver fibrosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Martina Casari
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dominik Siegl
- Institute for Translational Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immune Therapy Forschungszentrum für Immuntherapie (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Detlef Schuppan
- Institute for Translational Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immune Therapy Forschungszentrum für Immuntherapie (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Airola C, Pallozzi M, Cerrito L, Santopaolo F, Stella L, Gasbarrini A, Ponziani FR. Microvascular Thrombosis and Liver Fibrosis Progression: Mechanisms and Clinical Applications. Cells 2023; 12:1712. [PMID: 37443746 PMCID: PMC10341358 DOI: 10.3390/cells12131712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Fibrosis is an unavoidable consequence of chronic inflammation. Extracellular matrix deposition by fibroblasts, stimulated by multiple pathways, is the first step in the onset of chronic liver disease, and its propagation promotes liver dysfunction. At the same time, chronic liver disease is characterized by alterations in primary and secondary hemostasis but unlike previously thought, these changes are not associated with an increased risk of bleeding complications. In recent years, the role of coagulation imbalance has been postulated as one of the main mechanisms promoting hepatic fibrogenesis. In this review, we aim to investigate the function of microvascular thrombosis in the progression of liver disease and highlight the molecular and cellular networks linking hemostasis to fibrosis in this context. We analyze the predictive and prognostic role of coagulation products as biomarkers of liver decompensation (ascites, variceal hemorrhage, and hepatic encephalopathy) and liver-related mortality. Finally, we evaluate the current evidence on the application of antiplatelet and anticoagulant therapies for prophylaxis of hepatic decompensation or prevention of the progression of liver fibrosis.
Collapse
Affiliation(s)
- Carlo Airola
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Maria Pallozzi
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Lucia Cerrito
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Francesco Santopaolo
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Leonardo Stella
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Antonio Gasbarrini
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
5
|
Song JX, An JR, Chen Q, Yang XY, Jia CL, Xu S, Zhao YS, Ji ES. Liraglutide attenuates hepatic iron levels and ferroptosis in db/db mice. Bioengineered 2022; 13:8334-8348. [PMID: 35311455 PMCID: PMC9161873 DOI: 10.1080/21655979.2022.2051858] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Liver pathological changes are as high as 21%-78% in diabetic patients, and treatment options are lacking. Liraglutide is a glucagon-like peptide-1 (GLP-1) receptor that is widely used in the clinic and is approved to treat obesity and diabetes. However, the specific protection mechanism needs to be clarified. In the present study, db/db mice were used to simulate Type 2 diabetes mellitus (T2DM), and they were intraperitoneally injected daily with liraglutide (200 μg/kg/d) for 5 weeks. Hepatic function, pathologic changes, oxidative stress, iron levels, and ferroptosis were evaluated. First, liraglutide decreased serum AST and ALT levels, and suppressed liver fibrosis in db/db mice. Second, liraglutide inhibited the ROS production by upregulating SOD, GSH-PX, and GSH activity as well as by downregulating MDA, 4-HNE, and NOX4 expression in db/db mice. Furthermore, liraglutide attenuated iron deposition by decreasing TfR1 expression and increasing FPN1 expression. At the same time, liraglutide decreased ferroptosis by elevating the expression of SLC7A11 and the Nrf2/HO-1/GPX4 signaling pathway in the livers of db/db mice. In addition, liraglutide decreased the high level of labile iron pools (LIPs) and intracellular lipid ROS induced by high glucose in vitro. Therefore, we speculated that liraglutide played a crucial role in reducing iron accumulation, oxidative damage and ferroptosis in db/db mice.
Collapse
Affiliation(s)
- Ji-Xian Song
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, China
| | - Ji-Ren An
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, China.,First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Lioaning, China
| | - Qi Chen
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xin-Yue Yang
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Cui-Ling Jia
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Shan Xu
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ya-Shuo Zhao
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, China
| | - En-Sheng Ji
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.,Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Dalbeni A, Castelli M, Zoncapè M, Minuz P, Sacerdoti D. Platelets in Non-alcoholic Fatty Liver Disease. Front Pharmacol 2022; 13:842636. [PMID: 35250588 PMCID: PMC8895200 DOI: 10.3389/fphar.2022.842636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
Non alcoholic steatohepatitis (NASH) is the inflammatory reaction of the liver to excessive accumulation of lipids in the hepatocytes. NASH can progress to cirrhosis and hepatocellular carcinoma (HCC). Fatty liver is the hepatic manifestation of metabolic syndrome. A subclinical inflammatory state is present in patients with metabolic alterations like insulin resistance, type-2 diabetes, obesity, hyperlipidemia, and hypertension. Platelets participate in immune cells recruitment and cytokines-induced liver damage. It is hypothesized that lipid toxicity cause accumulation of platelets in the liver, platelet adhesion and activation, which primes the immunoinflammatory reaction and activation of stellate cells. Recent data suggest that antiplatelet drugs may interrupt this cascade and prevent/improve NASH. They may also improve some metabolic alterations. The pathophysiology of inflammatory liver disease and the implication of platelets are discussed in details.
Collapse
Affiliation(s)
- Andrea Dalbeni
- Division of General Medicine C, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
- Liver Unit, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Marco Castelli
- Division of General Medicine C, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Mirko Zoncapè
- Division of General Medicine C, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
- Liver Unit, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Pietro Minuz
- Division of General Medicine C, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
- *Correspondence: Pietro Minuz,
| | - David Sacerdoti
- Liver Unit, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| |
Collapse
|
7
|
Jiang H, Li Y, Sheng Q, Dou X. Relationship between Hepatitis B virus infection and platelet production and dysfunction. Platelets 2021; 33:212-218. [PMID: 34806523 DOI: 10.1080/09537104.2021.2002836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatitis B virus (HBV) is a kind of hepatotropic DNA virus. The main target organ is liver, except for liver, HBV has been found in a variety of extrahepatic tissues, such as kidney, thyroid, pancreas, bone marrow, etc. HBV can cause severe complications by invading these tissues. Among them, pancytopenia is one of the common complications, especially thrombocytopenia that causes life-threatening bleeding. However, the mechanism of thrombocytopenia is unclear and the treatment is extremely difficult. It has been confirmed that HBV has a close relationship with platelets. HBV can directly infect bone marrow, inhibit platelet production, and accelerate platelet destruction by activating monocyte-macrophage system and immune system. While platelets act as a double-edged sword to HBV. On one hand, the activated platelets can degranulate and release inflammatory mediators to help clear the viruses. Furthermore, platelets can provide anti-fibrotic molecules to improve liver functions and reduce hepatic fibrosis. On the other hand, platelets can also cause negative effects. The infected platelets collect HBV-specific CD8+ T cells and nonspecific inflammatory cells into liver parenchyma, inducing chronic inflammation, liver fibrosis and hepatic carcinoma. This article explores the interaction between HBV infection and platelets, providing a theoretical basis for clinical treatment of thrombocytopenia and severe hemorrhage caused by HBV infection.
Collapse
Affiliation(s)
- Huinan Jiang
- Department of Infectious Diseases, China Medical University of Shengjing Hospital, Shenyang, China.,Liaoning Key Laboratory of Viral Hepatitis, China Medical University of Shengjing Hospital, Shenyang, China
| | - Yanwei Li
- Department of Infectious Diseases, China Medical University of Shengjing Hospital, Shenyang, China.,Liaoning Key Laboratory of Viral Hepatitis, China Medical University of Shengjing Hospital, Shenyang, China
| | - Qiuju Sheng
- Department of Infectious Diseases, China Medical University of Shengjing Hospital, Shenyang, China.,Liaoning Key Laboratory of Viral Hepatitis, China Medical University of Shengjing Hospital, Shenyang, China
| | - Xiaoguang Dou
- Department of Infectious Diseases, China Medical University of Shengjing Hospital, Shenyang, China.,Liaoning Key Laboratory of Viral Hepatitis, China Medical University of Shengjing Hospital, Shenyang, China
| |
Collapse
|
8
|
Yang F, Li H, Li Y, Hao Y, Wang C, Jia P, Chen X, Ma S, Xiao Z. Crosstalk between hepatic stellate cells and surrounding cells in hepatic fibrosis. Int Immunopharmacol 2021; 99:108051. [PMID: 34426110 DOI: 10.1016/j.intimp.2021.108051] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Hepatic fibrosis represents as a dynamic pathological process characterized by the net accumulation of extracellular matrix in the progression of various chronic liver diseases, including viral hepatitis, alcoholic liver disease, and metabolic associated fatty liver disease (MAFLD). Activation of hepatic stellate cells (HSCs) is well-defined to play a central role in the initiation and progression of hepatic fibrosis. However, the activation of HSCs is affected by the complicated microenvironments in liver, which largely attributes to the communication between hepatocytes and multiple tissue-resident cells, including sinusoidal endothelial cells, bile duct epithelial cells, platelets, T cells, B cells, macrophages, natural killer cells, neutrophils, dendritic cells, in the direct or indirect mechanisms. Cellular crosstalk between HSCs and surrounding cells contributes to the activation of HSCs and the progression of hepatic fibrosis. Currently, accumulating evidence have proven the complexity and plasticity of HSCs activation, and further clarification of cellular communication between HSCs and surrounding cells will provide sufficient clue to the development of novel diagnostic methods and therapeutic strategies for hepatic fibrosis.
Collapse
Affiliation(s)
- Fangming Yang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanmin Li
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yaokun Hao
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Chenxiao Wang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Pan Jia
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xinju Chen
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Suping Ma
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Zhun Xiao
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
9
|
Till Death Do Us Part-The Multifaceted Role of Platelets in Liver Diseases. Int J Mol Sci 2021; 22:ijms22063113. [PMID: 33803718 PMCID: PMC8003150 DOI: 10.3390/ijms22063113] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Platelets are tightly connected with the liver, as both their production and their clearance are mediated by the liver. Platelets, in return, participate in a variety of liver diseases, ranging from non-alcoholic fatty liver diseases, (viral) hepatitis, liver fibrosis and hepatocellular carcinoma to liver regeneration. Due to their versatile functions, which include (1) regulation of hemostasis, (2) fine-tuning of immune responses and (3) release of growth factors and cellular mediators, platelets quickly adapt to environmental changes and modulate disease development, leading to different layers of complexity. Depending on the (patho)physiological context, platelets exert both beneficial and detrimental functions. Understanding the precise mechanisms through which platelet function is regulated at different stages of liver diseases and how platelets interact with various resident and non-resident liver cells helps to draw a clear picture of platelet-related therapeutic interventions. Therefore, this review summarizes the current knowledge on platelets in acute and chronic liver diseases and aims to shed light on how the smallest cells in the circulatory system account for changes in the (patho)physiology of the second largest organ in the human body.
Collapse
|
10
|
Chen H, Chen X, Wang G. Platelets: A review of their function and effects in liver diseases. LIVER RESEARCH 2020. [DOI: 10.1016/j.livres.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
11
|
Intercellular crosstalk of hepatic stellate cells in liver fibrosis: New insights into therapy. Pharmacol Res 2020; 155:104720. [PMID: 32092405 DOI: 10.1016/j.phrs.2020.104720] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
Liver fibrosis is a dynamic wound-healing process characterized by the net accumulation of extracellular matrix. There is no efficient antifibrotic therapy other than liver transplantation to date. Activated hepatic stellate cells (HSCs) are the major cellular source of matrix-producing myofibroblasts, playing a central role in the initiation and progression of liver fibrosis. Paracrine signals from resident and inflammatory cells such as hepatocytes, liver sinusoidal endothelial cells, hepatic macrophages, natural killer/natural killer T cells, biliary epithelial cells, hepatic progenitor cells, and platelets can directly or indirectly regulate HSC differentiation and activation. Intercellular crosstalk between HSCs and those "responded" cells has been a critical event involved in HSC activation and fibrogenesis. This review summarizes recent advancement regarding intercellular communication between HSCs and other "responded cells" during liver fibrosis and experimental models of intercellular crosstalk systems, and provides novel ideas for potential antifibrotic therapeutic strategy.
Collapse
|
12
|
Ramadori P, Klag T, Malek NP, Heikenwalder M. Platelets in chronic liver disease, from bench to bedside. JHEP Rep 2019; 1:448-459. [PMID: 32039397 PMCID: PMC7005648 DOI: 10.1016/j.jhepr.2019.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
In the last decade, numerous studies revealed physiologic and pathophysiologic roles of platelets beyond haemostasis, a process to prevent and stop bleeding. These include the activation of the immune system and the promotion of inflammation, infection and cancer. Hence, the emerging view on the role of platelets has shifted - platelets are now seen as alert "sentinels" of the immune compartment, rather than passive bystanders. Herein, we review well-established and newly discovered features of platelets that define their natural role in maintaining blood haemostasis, but also their functional relationship with other cells of the immune system. We focus on recent studies underlining functional involvement of platelets in chronic liver diseases and cancer, as well as the effects of anti-platelet therapy in these contexts. Finally, we illustrate the potential of platelets as possible diagnostic and therapeutic tools in liver disease based on recently developed methodologies.
Collapse
Affiliation(s)
- Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Thomas Klag
- Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
| | - Nisar Peter Malek
- Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
- Corresponding authors. Address: Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany, Tel.: 0049-6221423891, or Department of Internal Medicine I, University Hospital of Tuebingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany, Tel.: 0049-70712982721.
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- Corresponding authors. Address: Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany, Tel.: 0049-6221423891, or Department of Internal Medicine I, University Hospital of Tuebingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany, Tel.: 0049-70712982721.
| |
Collapse
|
13
|
Velázquez-Miranda E, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic signaling in hepatic disease. Purinergic Signal 2019; 15:477-489. [PMID: 31576486 DOI: 10.1007/s11302-019-09680-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular purines (ATP and adenosine) are ubiquitous intercellular messengers. During tissular damage, they function as damage-associated molecular patterns (DAMPs). In this context, purines announce tissue alterations to initiate a reparative response that involve the formation of the inflammasome complex and the recruitment of specialized cells of the immune system. The present review focuses on the role of the purinergic system in liver damage, mainly during the onset and development of fibrosis. After hepatocellular injury, extracellular ATP promotes a signaling cascade that ameliorates tissue alterations to restore the hepatic function. However, if cellular damage becomes chronic, ATP orchestrates an aberrant reparative process that results in severe liver diseases such as fibrosis and cirrhosis. ATP and adenosine, their receptors, and extracellular ectonucleotidases are mediators of unique processes that will be reviewed in detail.
Collapse
Affiliation(s)
- E Velázquez-Miranda
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México.
| |
Collapse
|
14
|
Povital role of platelet count in platelet-lymphocyte count used in distinguishing patients with significant liver fibrosis and insulin resistance. Eur J Gastroenterol Hepatol 2018; 30:807. [PMID: 29847526 DOI: 10.1097/meg.0000000000001138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Abstract
Extracellular adenosine nucleoside is a potent, endogenous mediator that signals through specific G protein-coupled receptors, and exerts pleiotropic effects on liver physiology, in health and disease. Particularly, adenosinergic or adenosine-mediated signaling pathways impact the progression of hepatic fibrosis, a common feature of chronic liver diseases, through regulation of matrix deposition by liver myofibroblasts. This review examines the current lines of evidence on adenosinergic regulation of liver fibrosis and myofibroblasts, identifies unanswered research questions, and proposes important future areas of investigation.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| |
Collapse
|
16
|
Yamaguchi M, Saito SY, Nishiyama R, Nakamura M, Todoroki K, Toyo'oka T, Ishikawa T. Caffeine Suppresses the Activation of Hepatic Stellate Cells cAMP-Independently by Antagonizing Adenosine Receptors. Biol Pharm Bull 2018; 40:658-664. [PMID: 28458351 DOI: 10.1248/bpb.b16-00947] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
During liver injury, hepatic stellate cells (HSCs) are activated by various cytokines and transdifferentiated into myofibroblast-like activated HSCs, which produce collagen, a major source of liver fibrosis. Therefore, the suppression of HSC activation is regarded as a therapeutic target for liver fibrosis. Several epidemiological reports have revealed that caffeine intake decreases the risk of liver disease. In this study, therefore, we investigated the effect of caffeine on the activation of primary HSCs isolated from mice. Caffeine suppressed the activation of HSC in a concentration-dependent manner. BAPTA-AM, an intracellular Ca2+ chelator, had no effect on the caffeine-induced suppression of HSC activation. None of the isoform-selective inhibitors of phosphodiesterase1 to 5 affected changes in the morphology of HSC during activation, whereas CGS-15943, an adenosine receptor antagonist, inhibited them. Caffeine had no effect on intracellular cAMP level or on the phosphorylation of extracellular signal-regulated kinase (ERK)1/2. In contrast, caffeine significantly decreased the phosphorylation of Akt1. These results suggest that caffeine inhibits HSC activation by antagonizing adenosine receptors, leading to Akt1 signaling activation.
Collapse
Affiliation(s)
- Momoka Yamaguchi
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Shin-Ya Saito
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Ryota Nishiyama
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Misuzu Nakamura
- Laboratory of Analytical and Bio-analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Toshimasa Toyo'oka
- Laboratory of Analytical and Bio-analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
17
|
Kurokawa T, Ohkohchi N. Role of Platelet, Blood Stem Cell, and Thrombopoietin in Liver Regeneration, Liver Cirrhosis, and Liver Diseases. STEM CELLS AND CANCER IN HEPATOLOGY 2018:159-177. [DOI: 10.1016/b978-0-12-812301-0.00009-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Shang L, Hosseini M, Liu X, Kisseleva T, Brenner DA. Human hepatic stellate cell isolation and characterization. J Gastroenterol 2018; 53:6-17. [PMID: 29094206 DOI: 10.1007/s00535-017-1404-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/22/2017] [Indexed: 02/04/2023]
Abstract
The hepatic stellate cells (HSCs) localize at the space of Disse in the liver and have multiple functions. They are identified as the major contributor to hepatic fibrosis. Significant understanding of HSCs has been achieved using rodent models and isolated murine HSCs; as well as investigating human liver tissues and human HSCs. There is growing interest and need of translating rodent study findings to human HSCs and human liver diseases. However, species-related differences impose challenges on the translational research. In this review, we focus on the current information on human HSCs isolation methods, human HSCs markers, and established human HSC cell lines.
Collapse
Affiliation(s)
- Linshan Shang
- Department of Medicine, University of California, San Diego, La Jolla, USA
| | - Mojgan Hosseini
- Department of Pathology, University of California, San Diego, La Jolla, USA
| | - Xiao Liu
- Department of Surgery, University of California, San Diego, La Jolla, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, USA
| | - David Allen Brenner
- Department of Medicine, University of California, San Diego, La Jolla, USA.
- School of Medicine, UC San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0602, USA.
| |
Collapse
|
19
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
20
|
Takahashi K, Nagai S, Putchakayala KG, Safwan M, Gosho M, Li AY, Kane WJ, Singh PL, Rizzari MD, Collins KM, Yoshida A, Abouljoud MS, Schnickel GT. Prediction of biliary anastomotic stricture after deceased donor liver transplantation: the impact of platelet counts - a retrospective study. Transpl Int 2017; 30:1032-1040. [PMID: 28605573 DOI: 10.1111/tri.12996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/13/2017] [Accepted: 06/01/2017] [Indexed: 12/29/2022]
Abstract
Biliary stricture is a common cause of morbidity after liver transplantation (LT). This study aimed to determine the risk factors for post-transplant biliary anastomotic strictures (BAS), focusing on perioperative platelet counts. We enrolled 771 consecutive recipients who underwent ABO-identical/compatible deceased donor LT with duct-to-duct biliary reconstruction from January 2000 to June 2012. BAS was identified in 142 cases. The median time for stricture development was 176 days. Preoperative and postoperative platelet counts within 5 days after LT were significantly lower in patients with BAS than those without BAS. Using cutoff values acquired by the receiver operating characteristic curve analysis, persistent postoperative thrombocytopenia was defined as platelet counts <41 × 1000/μl and <53 × 1000/μl on postoperative day (POD) 3 and POD 5, respectively. Multivariate analysis indicated persistent postoperative thrombocytopenia (OR = 2.38) was the only independent risk factor for BAS. No significant associations were observed in terms of donor and surgical factors. Multivariate analysis demonstrated estimated blood loss (OR = 1.01, per 100 ml) was an independent contributing factor for persistent postoperative thrombocytopenia. We demonstrated low platelet count was associated with progression of post-transplant BAS. Minimizing intraoperative blood loss potentially contributes to maintain post-transplant platelet count, which may reduce incidence of BAS.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Transplant and Hepatobiliary Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - Shunji Nagai
- Department of Transplant and Hepatobiliary Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - Krishna G Putchakayala
- Department of Transplant and Hepatobiliary Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - Mohamed Safwan
- Department of Transplant and Hepatobiliary Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - Masahiko Gosho
- Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Amy Y Li
- Department of Transplant and Hepatobiliary Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - William J Kane
- Department of Transplant and Hepatobiliary Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - Priyanka L Singh
- Department of Transplant and Hepatobiliary Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - Michael D Rizzari
- Department of Transplant and Hepatobiliary Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - Kelly M Collins
- Department of Transplant and Hepatobiliary Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - Atsushi Yoshida
- Department of Transplant and Hepatobiliary Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - Marwan S Abouljoud
- Department of Transplant and Hepatobiliary Surgery, Henry Ford Hospital, Detroit, MI, USA
| | - Gabriel T Schnickel
- Department of Transplant and Hepatobiliary Surgery, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
21
|
miR-200c Accelerates Hepatic Stellate Cell-Induced Liver Fibrosis via Targeting the FOG2/PI3K Pathway. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2670658. [PMID: 28691020 PMCID: PMC5485280 DOI: 10.1155/2017/2670658] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/21/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND Although expression of miR-200s is aberrant in liver fibrosis, its role in liver fibrogenesis still remains unknown. Here, we investigated the role of miR-200c in the activation of human hepatic stellate cells (HSCs) and induction of liver fibrosis. METHODS We engineered human HSCs (LX2 cell line) to stably express miR-200c (LX2-200c) or empty vector control (LX2-nc). RESULTS miR-200c expression upregulated α-smooth muscle actin (SMA) and vimentin, enhanced HSCs growth and migration, increased expression of collagen type I (a main component of ECM) gene and secretion of epidermal growth factor (EGF), and upregulated the phosphorylation of Akt, a downstream effector of the PI3K pathway. As a target of miR-200s and inhibitor of PI3K pathway, FOG2 protein expression was significantly suppressed in LX2-200c cells. Moreover, LY294002, a highly selective inhibitor of PI3K, blocked phosphorylation of Akt and the effects of miR-200c. CONCLUSIONS These data suggest that miR-200c activates HSCs in liver fibrosis possibly by downregulating FOG2 protein expression and upregulating PI3K/Akt signaling. Autocrine activation of EGF signaling may also be a mechanism of miR-200c-mediated HSCs activation. So miR-200c can be a potential marker for HSCs activation and liver fibrosis progression, as well as a potential target to attenuate liver fibrosis.
Collapse
|
22
|
Kurokawa T, Ohkohchi N. Platelets in liver disease, cancer and regeneration. World J Gastroenterol 2017; 23:3228-3239. [PMID: 28566882 PMCID: PMC5434428 DOI: 10.3748/wjg.v23.i18.3228] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/17/2016] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Although viral hepatitis treatments have evolved over the years, the resultant liver cirrhosis still does not completely heal. Platelets contain proteins required for hemostasis, as well as many growth factors required for organ development, tissue regeneration and repair. Thrombocytopenia, which is frequently observed in patients with chronic liver disease (CLD) and cirrhosis, can manifest from decreased thrombopoietin production and accelerated platelet destruction caused by hypersplenism; however, the relationship between thrombocytopenia and hepatic pathogenesis, as well as the role of platelets in CLD, is poorly understood. In this paper, experimental evidence of platelets improving liver fibrosis and accelerating liver regeneration is summarized and addressed based on studies conducted in our laboratory and current progress reports from other investigators. In addition, we describe our current perspective based on the results of these studies. Platelets improve liver fibrosis by inactivating hepatic stellate cells, which decreases collagen production. The regenerative effect of platelets in the liver involves a direct effect on hepatocytes, a cooperative effect with liver sinusoidal endothelial cells, and a collaborative effect with Kupffer cells. Based on these observations, we ascertained the direct effect of platelet transfusion on improving several indicators of liver function in patients with CLD and liver cirrhosis. However, unlike the results of our previous clinical study, the smaller incremental changes in liver function in patients with CLD who received eltrombopag for 6 mo were due to patient selection from a heterogeneous population. We highlight the current knowledge concerning the role of platelets in CLD and cancer and anticipate a novel application of platelet-based clinical therapies to treat liver disease.
Collapse
|
23
|
The Comparative Effects of Human Mesenchymal Stem Cell and Platelet Extract on CCl4-Induced Liver Toxicity in Rats. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.5812/jjnpp.36818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Hesami Z, Jamshidzadeh A, Ayatollahi M, Gramizadeh B, Vahdati A. The Comparative Effects of Human Mesenchymal Stem Cell and Platelet Extract on CCl4-Induced Liver Toxicity in Rats. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-36818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
25
|
Mafi A, Dehghani F, Moghadam A, Noorafshan A, Vojdani Z, Talaei-Khozani T. Effects of platelet-rich plasma on liver regeneration in CCl 4-induced hepatotoxicity model. Platelets 2016; 27:771-776. [PMID: 27255378 DOI: 10.1080/09537104.2016.1184749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Numerous bioactive growth factors and cytokines in platelet-rich plasma (PRP) have recently made it an attractive biomaterial for therapeutic purposes. These growth factors have the potential to regenerate the injured tissues. The aim of this study was to investigate the therapeutic effects of PRP in hepatotoxic animal model. Hepatotoxicity was induced in rats by oral administration of 4 mL/kg/week of CCl4 diluted 1:1 in corn oil for 10 weeks. To confirm the hepatotoxicity, 24 h after the last CCl4 administration, blood samples were collected via cardiac puncture to assess the serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, albumin, total protein, and total bilirubin. Twenty-four hours after blood collection, the experimental animals received a single injection of PRP (1 mL) via the anterior mesenteric vein. One week later, all biochemical tests were performed again, and the rats were scarified and their livers were removed, prepared histologically, and stained. The stereological analyses were performed to evaluate the effects of PRP on histopathological features of CCl4-treated livers. The results were compared statistically with the corresponding control and CCl4+normal saline (NS)-treated animals. A significant decrease in the number and volume of hepatocytes (p = 0.01), and also a reduction in the volume of sinusoids (p = 0.001) and connective tissue (p = 0.04), were observed in the PRP-treated animals compared with the CCl4+NS-treated ones. Our findings demonstrated that application of PRP had beneficial effects on CCl4-induced fibrosis; however, it had detrimental effects on the total number of hepatocytes and the volume of hepatocytes and sinusoidal spaces.
Collapse
Affiliation(s)
- Afsaneh Mafi
- a Anatomy Department , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Farzaneh Dehghani
- b Anatomy Department , Stereology and Histomorphology Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Abbas Moghadam
- a Anatomy Department , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Ali Noorafshan
- b Anatomy Department , Stereology and Histomorphology Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Zahra Vojdani
- c Anatomy Department , Laboratory for Stem Cell Research, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Tahereh Talaei-Khozani
- d Anatomy Department , Tissue Engineering Lab, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
26
|
Tanoi T, Tamura T, Sano N, Nakayama K, Fukunaga K, Zheng YW, Akhter A, Sakurai Y, Hayashi Y, Harashima H, Ohkohchi N. Protecting liver sinusoidal endothelial cells suppresses apoptosis in acute liver damage. Hepatol Res 2016; 46:697-706. [PMID: 26490536 DOI: 10.1111/hepr.12607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 01/01/2023]
Abstract
AIM Apoptosis is associated with various types of hepatic disorders. We have developed a novel cell-transfer drug delivery system (DDS) using a multifunctional envelope-type nano device that targets liver sinusoidal endothelial cells (LSECs). The purpose of this study was to determine the efficacy of the novel DDS containing siRNA at suppressing apoptosis in LSECs. METHODS Bax siRNA was transfected into a sinusoidal endothelial cell line (M1) to suppress apoptosis induced by an anti-Fas antibody and staurosporine. C57BL/6J mice were divided into three groups: (i) a control group, only intravenous saline; (ii) a nonselective group, injections of siRNA sealed in the nonselective DDS; and (iii) an LSEC-transfer efficient group, injections of siRNA sealed in an LSEC-transfer efficient DDS. Hepatic cell apoptosis was induced by an anti-Fas antibody. RESULTS Bax siRNA had an anti-apoptotic effect on M1 cells. Serum alanine aminotransferase was reduced in the LSEC-transfer efficient group, as were cleaved caspase-3 and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling positive hepatocytes. Silver impregnation staining indicated that the sinusoidal space was maintained in the LSEC-transfer efficient group but not in the other groups. Electron microscopy showed that the LSECs were slightly impaired, although the sinusoidal structure was maintained in the LSEC-transfer efficient group. CONCLUSION Hepatocyte apoptosis was reduced by the efficient suppression of LSEC apoptosis with a novel DDS. Protecting the sinusoidal structure by suppressing LSEC damage will be an effective treatment for acute liver failure.
Collapse
Affiliation(s)
- Tomohito Tanoi
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takafumi Tamura
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naoki Sano
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ken Nakayama
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kiyoshi Fukunaga
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yun-Wen Zheng
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Afsana Akhter
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Sakurai
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Hayashi
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Nobuhiro Ohkohchi
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
27
|
Kurokawa T, Zheng YW, Ohkohchi N. Novel functions of platelets in the liver. J Gastroenterol Hepatol 2016; 31:745-51. [PMID: 26632220 DOI: 10.1111/jgh.13244] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/18/2015] [Accepted: 11/06/2015] [Indexed: 12/12/2022]
Abstract
Platelets contain not only proteins needed for hemostasis but also many growth factors that are required for organ development, tissue regeneration, and repair. Thrombocytopenia, which is frequently observed in patients with chronic liver disease (CLD) and cirrhosis, is due to various causes, such as decreased thrombopoietin production and accelerated platelet destruction caused by hypersplenism; however, the relationship between thrombocytopenia and hepatic pathogenesis and the role of platelets in CLD are poorly understood. Thus, in this paper, the experimental evidence for platelets improving liver fibrosis and accelerating liver regeneration is summarized and addressed based on studies conducted in our laboratory and current progress reports from other investigators. Platelets improve liver fibrosis by inactivating hepatic stellate cells to decrease collagen production. The level of intracellular cAMP is increased by adenosine through its receptors on hepatic stellate cells, thereby resulting in inactivation of these cells. Adenosine is produced by degradation of adenine nucleotides, which are stored in abundance within the dense granules of platelets. The regenerative effect of platelets in the liver consists of three mechanisms: a direct effect on hepatocytes, a cooperative effect with liver sinusoidal endothelial cells, and a collaborative effect with Kupffer cells. Based on these experiments, a clinical trial suggested that the increase in platelets induced by platelet transfusion improved liver function in patients with CLD in a clinical setting.We highlight the current knowledge concerning the role of platelets in CLD and expect to open a novel avenue for application of these clinical therapies to treat liver disease.
Collapse
Affiliation(s)
- Tomohiro Kurokawa
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery, and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yun-Wen Zheng
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery, and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiro Ohkohchi
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery, and Organ Transplantation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
28
|
Ozcelik F, Yiginer O, Özgün A. Relationship between thrombocytopenia and extrahepatic metastasis of hepatocellular carcinoma: a different perspective. Liver Int 2016; 36:614. [PMID: 26790402 DOI: 10.1111/liv.13062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Fatih Ozcelik
- Department of Biochemistry, GATA Haydarpasa Training Hospital, Istanbul, Turkey
| | - Omer Yiginer
- Department of Cardiology, GATA Haydarpasa Training Hospital, Istanbul, Turkey
| | - Alpaslan Özgün
- Department of Oncology, GATA Haydarpasa Training Hospital, Istanbul, Turkey
| |
Collapse
|
29
|
Kurokawa T, Murata S, Ohkohchi N. Stable Liver Function during Long-Term Administration of Eltrombopag, a Thrombopoietin Receptor Agonist, in Patients with Chronic Liver Disease. TOHOKU J EXP MED 2016; 240:277-279. [DOI: 10.1620/tjem.240.277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Tomohiro Kurokawa
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba
| | - Soichiro Murata
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba
| |
Collapse
|
30
|
The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells. Infect Immun 2015; 84:598-606. [PMID: 26667834 DOI: 10.1128/iai.01227-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/23/2015] [Indexed: 01/18/2023] Open
Abstract
The liver is frequently affected in patients with active brucellosis. In the present study, we identified a virulence factor involved in the modulation of hepatic stellate cell function and consequent fibrosis during Brucella abortus infection. This study assessed the role of BPE005 protein from B. abortus in the fibrotic phenotype induced on hepatic stellate cells during B. abortus infection in vitro and in vivo. We demonstrated that the fibrotic phenotype induced by B. abortus on hepatic stellate (LX-2) cells was dependent on BPE005, a protein associated with the type IV secretion system (T4SS) VirB from B. abortus. Our results indicated that B. abortus inhibits matrix metalloproteinase 9 (MMP-9) secretion through the activity of the BPE005-secreted protein and induces concomitant collagen deposition by LX-2 cells. BPE005 is a small protein containing a cyclic nucleotide monophosphate binding domain (cNMP) that modulates the LX-2 cell phenotype through a mechanism that is dependent on the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway. Altogether, these results indicate that B. abortus tilts LX-2 cells to a profibrogenic phenotype employing a functional T4SS and the secreted BPE005 protein through a mechanism that involves the cAMP and PKA signaling pathway.
Collapse
|
31
|
Abstract
Hepatic stellate cells are resident perisinusoidal cells distributed throughout the liver, with a remarkable range of functions in normal and injured liver. Derived embryologically from septum transversum mesenchyme, their precursors include submesothelial cells that invade the liver parenchyma from the hepatic capsule. In normal adult liver, their most characteristic feature is the presence of cytoplasmic perinuclear droplets that are laden with retinyl (vitamin A) esters. Normal stellate cells display several patterns of intermediate filaments expression (e.g., desmin, vimentin, and/or glial fibrillary acidic protein) suggesting that there are subpopulations within this parental cell type. In the normal liver, stellate cells participate in retinoid storage, vasoregulation through endothelial cell interactions, extracellular matrix homeostasis, drug detoxification, immunotolerance, and possibly the preservation of hepatocyte mass through secretion of mitogens including hepatocyte growth factor. During liver injury, stellate cells activate into alpha smooth muscle actin-expressing contractile myofibroblasts, which contribute to vascular distortion and increased vascular resistance, thereby promoting portal hypertension. Other features of stellate cell activation include mitogen-mediated proliferation, increased fibrogenesis driven by connective tissue growth factor, and transforming growth factor beta 1, amplified inflammation and immunoregulation, and altered matrix degradation. Evolving areas of interest in stellate cell biology seek to understand mechanisms of their clearance during fibrosis resolution by either apoptosis, senescence, or reversion, and their contribution to hepatic stem cell amplification, regeneration, and hepatocellular cancer.
Collapse
Affiliation(s)
- Juan E Puche
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, New York
| | | | | |
Collapse
|
32
|
Murata S, Maruyama T, Nowatari T, Takahashi K, Ohkohchi N. Signal transduction of platelet-induced liver regeneration and decrease of liver fibrosis. Int J Mol Sci 2014; 15:5412-25. [PMID: 24686514 PMCID: PMC4013572 DOI: 10.3390/ijms15045412] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 03/16/2014] [Accepted: 03/20/2014] [Indexed: 12/16/2022] Open
Abstract
Platelets contain three types of granules: alpha granules, dense granules, and lysosomal granules. Each granule contains various growth factors, cytokines, and other physiological substances. Platelets trigger many kinds of biological responses, such as hemostasis, wound healing, and tissue regeneration. This review presents experimental evidence of platelets in accelerating liver regeneration and improving liver fibrosis. The regenerative effect of liver by platelets consists of three mechanisms; i.e., the direct effect on hepatocytes, the cooperative effect with liver sinusoidal endothelial cells, and the collaborative effect with Kupffer cells. Many signal transduction pathways are involved in hepatocyte proliferation. One is activation of Akt and extracellular signal-regulated kinase (ERK)1/2, which are derived from direct stimulation from growth factors in platelets. The other is signal transducer and activator of transcription-3 (STAT3) activation by interleukin (IL)-6 derived from liver sinusoidal endothelial cells and Kupffer cells, which are stimulated by contact with platelets during liver regeneration. Platelets also improve liver fibrosis in rodent models by inactivating hepatic stellate cells to decrease collagen production. The level of intracellular cyclic adenosine monophosphate (cyclic AMP) is increased by adenosine through its receptors on hepatic stellate cells, resulting in inactivation of these cells. Adenosine is produced by the degradation of adenine nucleotides such as adenosine diphosphate (ADP) and adenosine tri-phosphate (ATP), which are stored in abundance within the dense granules of platelets.
Collapse
Affiliation(s)
- Soichiro Murata
- Department of Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Takehito Maruyama
- Department of Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Takeshi Nowatari
- Department of Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Kazuhiro Takahashi
- Department of Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Nobuhiro Ohkohchi
- Department of Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
33
|
Burnstock G, Vaughn B, Robson SC. Purinergic signalling in the liver in health and disease. Purinergic Signal 2014; 10:51-70. [PMID: 24271096 PMCID: PMC3944046 DOI: 10.1007/s11302-013-9398-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022] Open
Abstract
Purinergic signalling is involved in both the physiology and pathophysiology of the liver. Hepatocytes, Kupffer cells, vascular endothelial cells and smooth muscle cells, stellate cells and cholangiocytes all express purinoceptor subtypes activated by adenosine, adenosine 5'-triphosphate, adenosine diphosphate, uridine 5'-triphosphate or UDP. Purinoceptors mediate bile secretion, glycogen and lipid metabolism and indirectly release of insulin. Mechanical stress results in release of ATP from hepatocytes and Kupffer cells and ATP is also released as a cotransmitter with noradrenaline from sympathetic nerves supplying the liver. Ecto-nucleotidases play important roles in the signalling process. Changes in purinergic signalling occur in vascular injury, inflammation, insulin resistance, hepatic fibrosis, cirrhosis, diabetes, hepatitis, liver regeneration following injury or transplantation and cancer. Purinergic therapeutic strategies for the treatment of these pathologies are being explored.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
34
|
Nowatari T, Murata S, Fukunaga K, Ohkohchi N. Role of platelets in chronic liver disease and acute liver injury. Hepatol Res 2014; 44:165-72. [PMID: 23841688 DOI: 10.1111/hepr.12205] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 07/03/2013] [Accepted: 07/07/2013] [Indexed: 12/13/2022]
Abstract
Platelets contain not only hemostatic factors but also many growth factors that play important roles in wound healing and tissue repair. Platelets have already been used for the promotion of tissue regeneration in the clinical setting, such as dental implantation and plastic surgery. Thrombocytopenia, which is frequently found in patients with chronic liver disease and cirrhosis, is due to various causes such as decreased thrombopoietin production and accelerated platelet destruction caused by hypersplenism. However, the relationship between thrombocytopenia and hepatic pathogenesis and the role of platelets in chronic liver disease are poorly understood. In acute liver injury, it is reported that platelets are recruited to the liver and contribute to liver damage by promoting the induction of chemotactic factors and the accumulation of leukocytes in the liver, whereas platelets or mediators released by platelets can have a protective effect against liver injury. In this review, we highlight the recent accumulated knowledge concerning the role of platelets in chronic liver disease and acute liver injury.
Collapse
Affiliation(s)
- Takeshi Nowatari
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery, and Organ Transplantation, University of Tsukuba, Tsukuba, Japan
| | | | | | | |
Collapse
|
35
|
Yang XJ, Qi CH, Zheng Y, Cao YW, Li R, Song LX, Zhao Q, Chen WG. SB203580 decreases collagen Ⅰ and collagen Ⅲ expression in the liver of rats with experimental hepatic fibrosis. Shijie Huaren Xiaohua Zazhi 2014; 22:310-318. [DOI: 10.11569/wcjd.v22.i3.310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of P38MAPK inhibitor SB203580 on collagen Ⅰ and collagen Ⅲ expression in the liver of rats with experimental hepatic fibrosis.
METHODS: Thirty-two female SD rats were randomly divided into four groups: a normal control group, a hepatic fibrosis group, a dimethyl sulfoxide (DMSO) group and a SB203580 group. Except the normal control group, rats in other groups were subcutaneously injected with carbon tetrachloride to induce hepatic fibrosis. The DMSO group was intraperitoneally injected with 2‰ DMSO [3 mL/(kg·d)]. Rats in the SB203580 group were intraperitoneally injected with SB203580 [10 mg/(kg·d), dissolved in DMSO]. Fibrosis was staged using histopathological methods. The expression of collagen Ⅰ and collagen Ⅲ was detected by immunohistochemistry and RT-PCR.
RESULTS: In the normal control group, hepatic fibrosis group, DMSO group and SB203580 group, mean rank of liver fibrosis stage was 4.50, 22.50, 24.00 and 15.00, respectively; SSS scores were 2.750 ± 0.707, 15.875 ± 0.835, 16.000 ± 0.926 and 11.625 ± 0.916, respectively; color rendering indexes of collagen Ⅰ were 1.575 ± 0.249, 7.650 ± 0.621, 7.725 ± 0.501 and 4.625 ± 0.495, respectively; color rendering indexes of collagen Ⅲ were 2.375 ± 0.518, 4.025 ± 0.446, 4.075 ± 0.544 and 3.375 ± 0.167, respectively; the relative expression levels of collagen Ⅰ were 0.020 ± 0.003, 0.012 ± 0.002, 0.009 ± 0.002 and 0.016 ± 0.005, respectively; the relative expression levels of collagen Ⅲ were 0.412 ± 0.772, 0.773 ± 0.137, 0.799 ± 0.116 and 0.572 ± 0.862, respectively. Compared to the normal control group, the stage of fibrosis was elevated (P < 0.001) and the expression of collagen Ⅰ and collagen Ⅲ was increased (both P < 0.001) in the hepatic fibrosis group. Compared to the hepatic fibrosis group, the stage of fibrosis declined (P = 0.015) and the expression of collagen Ⅰ (P < 0.001) and collagen Ⅲ (P = 0.041) was decreased in the SB203580 group.
CONCLUSION: P38MAPK inhibitor SB203580 decreases the expression of collagen Ⅰ and collagen Ⅲ and inhibits the progression of hepatic fibrosis in rats.
Collapse
|
36
|
Acquaviva A, Vecchio D, Arezzini B, Comporti M, Gardi C. Signaling pathways involved in isoprostane-mediated fibrogenic effects in rat hepatic stellate cells. Free Radic Biol Med 2013; 65:201-207. [PMID: 23792773 DOI: 10.1016/j.freeradbiomed.2013.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/06/2013] [Accepted: 06/12/2013] [Indexed: 12/12/2022]
Abstract
Despite evidence supporting a potential role for F2-isoprostanes (F2-IsoP's) in liver fibrosis, their signaling mechanisms are poorly understood. We have previously provided evidence that F2-IsoP's stimulate hepatic stellate cell (HSC) proliferation and collagen hyperproduction by activation of a modified form of isoprostane receptor homologous to the classic thromboxane receptor (TP). In this paper, we examined which signal transduction pathways are set into motion by F2-IsoP's to exert their fibrogenic effects. HSCs were isolated from rat liver, cultured to their activated myofibroblast-like phenotype, and then treated with the isoprostane 15-F2t-isoprostane (15-F2t-IsoP). Inositol trisphosphate (IP3) and adenosine 3',5'-cyclic monophosphate (cAMP) levels were determined using commercial kits. Mitogen-activated protein kinase (MAPK) and cyclin D1 expression was assessed by Western blotting. Cell proliferation and collagen synthesis were determined by measuring [(3)H]thymidine and [(3)H]proline incorporation, respectively. 15-F2t-IsoP elicited an activation of extracellular-signal-regulated kinase (ERK), p38 MAPK, and c-Jun NH2-terminal kinase (JNK), which are known to be also regulated by G-protein-coupled receptors. Preincubation with specific ERK (PD98059), p38 (SB203580), or JNK (SP600125) inhibitors prevented 15-F2t-IsoP-induced cell proliferation and collagen synthesis. 15-F2t-IsoP decreased cAMP levels within 30 min, suggesting binding to the TPβ isoform and activation of Giα protein. Also, 15-F2t-IsoP increased IP3 levels within a few minutes, suggesting that the Gq protein pathway is also involved. In conclusion, the fibrogenic effects of F2-IsoP's in HSCs are mediated by downstream activation of MAPKs, through TP binding that couples via both Gqα and Giα proteins. Targeting TP receptor, or its downstream pathways, may contribute to preventing oxidative damage in liver fibrosis.
Collapse
Affiliation(s)
- Alessandra Acquaviva
- Department of Molecular and Developmental Medicine, University of Siena, I-53100 Siena, Italy
| | - Daniela Vecchio
- Department of Molecular and Developmental Medicine, University of Siena, I-53100 Siena, Italy
| | - Beatrice Arezzini
- Department of Molecular and Developmental Medicine, University of Siena, I-53100 Siena, Italy
| | - Mario Comporti
- Department of Molecular and Developmental Medicine, University of Siena, I-53100 Siena, Italy
| | - Concetta Gardi
- Department of Molecular and Developmental Medicine, University of Siena, I-53100 Siena, Italy.
| |
Collapse
|
37
|
Takahashi K, Murata S, Ohkohchi N. Platelet therapy: A novel strategy for liver regeneration, anti-fibrosis, and anti-apoptosis. World J Surg Proced 2013; 3:29-36. [DOI: 10.5412/wjsp.v3.i3.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/31/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
Platelets contain bio-physiological substances, including insulin-like growth factor-1, vascular endothelial growth factor, platelet-derived growth factor, hepatocyte growth factor, serotonin, transforming growth factor-β, adenosine diphosphate, adenosine tri-phosphate, and epidermal growth factor. Platelets have conventionally been considered to exacerbate the inflammatory response and liver injury. Recently, platelets were discovered to have a positive impact on the liver. In this review, we present experimental and clinical evidence indicating that platelets accelerate liver regeneration and have anti-fibrosis and anti-apoptosis activity, and we detail the mechanisms of action. Platelets accelerate liver regeneration by three different mechanisms: (1) a direct effect on hepatocytes, (2) a cooperative effect with liver sinusoidal endothelial cells, and (3) a collaborative effect with Kupffer cells. Platelets exert anti-fibrotic activity by deactivating hepatic stellate cells via the adenosine-cyclic adenosine 5’-monophosphate signaling pathway. Platelets prevent hepatocyte apoptosis by activating the Akt pathway and up-regulating Bcl-xL, which suppresses caspase-3 activation. Platelet therapy with thrombopoietin, thrombopoietin receptor agonists, and platelet transfusion has the advantages of convenience and cost-efficiency over other treatments. We propose that in the future, platelet therapy will play a promising role in the treatment of the various liver disorders that currently challenge the surgical field, such as liver failure after a massive hepatectomy, hepatectomy of a cirrhotic liver, and small grafts in liver transplantation.
Collapse
|
38
|
Takahashi K, Murata S, Fukunaga K, Ohkohchi N. Human platelets inhibit liver fibrosis in severe combined immunodeficiency mice. World J Gastroenterol 2013; 19:5250-5260. [PMID: 23983427 PMCID: PMC3752558 DOI: 10.3748/wjg.v19.i32.5250] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/12/2013] [Accepted: 07/05/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of human platelets in liver fibrosis.
METHODS: Severe combined immunodeficiency (SCID) mice were administered CCl4 and either phosphate-buffered saline (PBS group) or human platelet transfusions (hPLT group). Concentrations of hepatocyte growth factor (HGF), matrix metallopeptidases (MMP)-9, and transforming growth factor-β (TGF-β) in the liver tissue were compared between the PBS and the hPLT groups by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The effects of a human platelet transfusion on liver fibrosis included the fibrotic area, hydroxyproline content, and α-smooth muscle actin (α-SMA) expression, which were evaluated by picrosirius red staining, ELISA, and immunohistochemical staining using an anti-mouse α-SMA antibody, respectively. Phosphorylations of mesenchymal-epithelial transition factor (Met) and SMAD3, downstream signals of HGF and TGF-β, were compared between the two groups by Western blotting and were quantified using densitometry. Hepatocyte apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Furthermore, the accumulation of human platelets in the liver 2 h after platelet transfusion was compared between normal and fibrotic livers by immunohistochemical staining using an anti-human CD41 antibody.
RESULTS: The fibrotic area and hydroxyproline content in the liver were both significantly lower in the hPLT group when compared to the PBS group (fibrotic area, 1.7% ± 0.6% vs 2.5% ± 0.6%, P = 0.03; hydroxyproline content, 121 ± 26 ng/g liver vs 156 ± 47 ng/g liver, P = 0.04). There was less α-smooth muscle actin staining in the hPLT group than in the PBS group (0.5% ± 0.1% vs 0.8% ± 0.3%, P = 0.02). Hepatic expression levels of mouse HGF and MMP-9 were significantly higher in the hPLT group than in the PBS group (HGF, 109 ± 13 ng/g liver vs 88 ± 22 ng/g liver, P = 0.03; MMP-9, 113% ± 7%/GAPDH vs 92% ± 11%/GAPDH, P = 0.04). In contrast, the concentration of mouse TGF-β in the liver tissue was significantly lower in the hPLT group than in the PBS group (22 ± 5 ng/g liver vs 39 ± 6 ng/g liver, P = 0.02). Phosphorylation of Met was more prevalent in the hPLT group than in the PBS group (37% ± 4%/GAPDH vs 20% ± 8%/GAPDH, P = 0.03). Phosphorylation of SMAD3 was weaker in the hPLT group than in the PBS group (60% ± 12%/GAPDH vs 84% ± 12%/GAPDH, P = 0.1), although this difference was not significant. Furthermore, a lower rate of hepatocyte apoptosis was observed in the hPLT group than in the PBS group (5.9% ± 1.7% vs 2.9% ± 2.1%, P = 0.02). Significant human platelet accumulation was observed in the fibrotic liver tissues, whereas few platelets accumulated in the normal liver.
CONCLUSION: Human platelets inhibit liver fibrosis in SCID mice. Increased concentration of HGF in the liver suppresses hepatic stellate cell activation, induces MMPs, and inhibits hepatocyte apoptosis.
Collapse
|
39
|
Nozaki R, Murata S, Nowatari T, Maruyama T, Ikeda N, Kawasaki T, Fukunaga K, Ohkohchi N. Effects of thrombopoietin on growth of hepatocellular carcinoma: Is thrombopoietin therapy for liver disease safe or not? Hepatol Res 2013; 43:610-20. [PMID: 23157389 DOI: 10.1111/hepr.12006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/19/2012] [Accepted: 10/15/2012] [Indexed: 12/13/2022]
Abstract
AIM Liver cirrhosis (LC) is the end stage of chronic liver disease. No definitive pharmacological treatment is currently available. We previously reported that thrombopoietin (TPO) promoted liver regeneration and improved liver cirrhosis by increasing platelet count. TPO is therefore considered to be a therapeutic agent for LC; however, it is unclear whether TPO has proliferative effects on hepatocellular carcinoma (HCC), which arises frequently in cirrhotic livers. In this study, we examined the effects of TPO on growth of HCC. METHODS Expression of the TPO receptor, myeloproliferative leukemia virus oncogene (MPL) was examined in various liver tumor cell lines and liver cell types. In an in vitro study, the effects of TPO on signal transduction, cell proliferation, migration and invasion were examined in Huh7 cells, in which MPL is highly expressed. In an in vivo study, we subcutaneously transplanted Huh7 cells into nude mice that were divided into a TPO-treated group and a control group, and the tumor volume of each group was measured. RESULTS MPL was expressed strongly in hepatocytes but not in other cell types. Among liver tumor cell lines, Huh7 showed the highest expression of MPL. In Huh7, the addition of TPO activated Akt phosphorylation but not cell proliferation, migration or invasion. In the mouse experiment, there was no significant difference in tumor volume between the two groups. CONCLUSION TPO had no proliferative effect on HCC in vitro or in vivo, and could therefore be useful in the treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Reiji Nozaki
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Takahashi K, Kozuma Y, Suzuki H, Tamura T, Maruyama T, Fukunaga K, Murata S, Ohkohchi N. Human platelets promote liver regeneration with Kupffer cells in SCID mice. J Surg Res 2012; 180:62-72. [PMID: 23260232 DOI: 10.1016/j.jss.2012.11.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/02/2012] [Accepted: 11/15/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Platelets contain several growth factors, including vascular endothelial growth factor (VEGF) and insulin-like growth factor. We examined the role of human platelets in liver regeneration with a focus on Kupffer cells (KCs). MATERIALS AND METHODS Severe combined immunodeficiency mice were subjected to 70% hepatectomy and phosphate-buffered saline administration (PBS); 70% hepatectomy and human platelet transfusion (hPLT); 70% hepatectomy, KC depletion, and PBS administration (KD + PBS); 70% hepatectomy, KC depletion, and human platelet transfusion (KD + hPLT); or a sham operation and human platelet transfusion (sham). The groups were evaluated for liver regeneration, accumulation and activation of human platelets in the liver, and/or co-localization of platelets and KCs. RESULTS The liver-to-body weight ratio was significantly higher 48 h post-transfusion in the hPLT group compared with the PBS, KD + PBS, and KD + hPLT groups. Human VEGF concentrations were higher in liver tissues from the hPLT group, whereas VEGF was not detected in the other groups. Hepatic levels of KC-derived cytokines were elevated in the hPLT group compared with the PBS group. Molecules in signaling cascades downstream of these cytokines were phosphorylated earlier and more robustly in the hPLT group than in the PBS group. Activated human platelets accumulated in livers in the hPLT group, whereas fewer platelets accumulated and many were not activated in the sham and KD + hPLT groups. In the hPLT group, most human platelets were attached to KCs. CONCLUSIONS Human platelet transfusion promoted liver regeneration in severe combined immunodeficiency mice. Together, human platelets and KCs resulted in growth factor release and enhanced liver regeneration.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Platelets are the smallest blood constitutes which contain three types of granules; alpha granules, dense granules, and lysosomal granules. Each granule contains various biophysiological substances such as growth factors, cytokines, etc. Platelets have been conventionally viewed as a trigger of inflammatory responses and injury in the liver. Some studies revealed that platelets have strong effects on promoting liver regeneration. This review presents experimental evidence of platelets in accelerating liver regeneration and describes three different mechanisms involved; (1) the direct effect on hepatocytes, where platelets translocate to the space of Disse and release growth factors through direct contact with hepatocytes, (2) the cooperative effect with liver sinusoidal endothelial cells, where the dense concentration of sphingosine-1-phosphate in platelets induces excretion of interleukin-6 from liver sinusoidal endothelial cells, and (3) the collaborative effect with Kupffer cells, where the functions of Kupffer cells are enhanced by platelets.
Collapse
|
42
|
Yang QG, Liu SN. P38 MAPK signaling pathway and hepatic fibrosis. Shijie Huaren Xiaohua Zazhi 2012; 20:2231-2236. [DOI: 10.11569/wcjd.v20.i24.2231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascade is one of eukaryotic cell-mediated extracellular signal responses to distinct environmental stresses. P38 MAPK is an important member of the MAPK family and plays an important role in a variety of physiological and pathological processes such as inflammation, cellular stress, apoptosis, cell cycle and growth. This article reviews the role of the P38 MAPK signaling pathway in the pathogenesis of hepatic fibrosis in terms of its structure composition, distribution and subtypes, activation pathways and function.
Collapse
|
43
|
Zhang HJ, Wu JF, Liu CB. Plasticity of hepatic stellate cells: implications for the treatment of hepatic fibrosis. Shijie Huaren Xiaohua Zazhi 2011; 19:3415-3419. [DOI: 10.11569/wcjd.v19.i33.3415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activation of hepatic stellate cells (HSCs) plays an important role in hepatic fibrogenesis. More and more experimental and clinical data have shown that HSCs have the capacity of multi-directional differentiation in special niches. Hepatic fibrosis may be prevented and reversed in part, if not all, by changing HSC fate. Thus, the research of HSC plasticity may break a new path for therapy of chronic hepatic diseases. This review aims to elucidate the origin, structure and plasticity of HSCs, and identify HSCs as a potential therapeutic target for liver fibrosis.
Collapse
|