1
|
Soliman SSM, Hamoda AM, Nayak Y, Mostafa A, Hamdy R. Novel compounds with dual inhibition activity against SARS-CoV-2 critical enzymes RdRp and human TMPRSS2. Eur J Med Chem 2024; 276:116671. [PMID: 39004019 DOI: 10.1016/j.ejmech.2024.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
COVID-19 caused major worldwide problems. The spread of variants and limited treatment encouraged the design of novel anti-SARS-CoV-2 compounds. A series of compounds RH1-23 were designed to dually target RNA-dependent RNA polymerase (RdRp) and transmembrane serine protease 2 (TMPRSS2). Compared to remdesivir, in vitro screening indicated the highest selectivity and potent activity of RH11-13 with half maximum inhibitory concentration (IC50) 3.9, 5.7, and 19.72 nM, respectively. RH11-12 showed superior inhibition activity against TMPRSS2 and RdRP with IC50 (1.7 and 4.2), and (6.1 and 4.42) nM, respectively. WaterMap analysis and molecular dynamics studies demonstrated the superior enzyme binding activity of RH11 and RH12. On Vero-E6 cells, RH11 and RH12 significantly inhibited the viral replication with 66 % and 63.2 %, and viral adsorption with 44 % and 65 %, alongside virucidal effect with 51.40 % and 90.5 %, respectively. Furthermore, the potent activity of RH12 was tested on TMPRSS2-expressing cells (Calu-3) compared to camostat. RH12 exhibited selectivity index (26.05) similar to camostat (28.01) and comparable to its SI on Vero-E6 cells (22.6). RH12 demonstrated also a significant inhibition of the viral adsorption on Calu-3 cells with 60 % inhibition at 30 nM. The designed compounds exhibited good physiochemical properties. These findings indicate a broad-spectrum antiviral efficacy of the designed compounds, particularly RH12, with a promise for further development.
Collapse
Affiliation(s)
- Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Alshaimaa M Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt; Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, 78227, United States
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
2
|
Pastene-Burgos S, Muñoz-Nuñez E, Quiroz-Carreño S, Pastene-Navarrete E, Espinoza Catalan L, Bustamante L, Alarcón-Enos J. Ceanothanes Derivatives as Peripheric Anionic Site and Catalytic Active Site Inhibitors of Acetylcholinesterase: Insights for Future Drug Design. Int J Mol Sci 2024; 25:7303. [PMID: 39000410 PMCID: PMC11242892 DOI: 10.3390/ijms25137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial and fatal neurodegenerative disorder. Acetylcholinesterase (AChE) plays a key role in the regulation of the cholinergic system and particularly in the formation of amyloid plaques; therefore, the inhibition of AChE has become one of the most promising strategies for the treatment of AD, particularly concerning AChE inhibitors that interact with the peripheral anionic site (PAS). Ceanothic acid isolated from the Chilean Rhamnaceae plants is an inhibitor of AChE through its interaction with PAS. In this study, six ceanothic acid derivatives were prepared, and all showed inhibitory activity against AChE. The structural modifications were performed starting from ceanothic acid by application of simple synthetic routes: esterification, reduction, and oxidation. AChE activity was determined by the Ellmann method for all compounds. Kinetic studies indicated that its inhibition was competitive and reversible. According to the molecular coupling and displacement studies of the propidium iodide test, the inhibitory effect of compounds would be produced by interaction with the PAS of AChE. In silico predictions of physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of the ceanothane derivatives were performed using the Swiss ADME tool.
Collapse
Affiliation(s)
- Sofía Pastene-Burgos
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Evelyn Muñoz-Nuñez
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Soledad Quiroz-Carreño
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Edgar Pastene-Navarrete
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| | - Luis Espinoza Catalan
- Departamento de Química, Universidad Federico Santa María, Valparaíso 2340000, Chile;
| | - Luis Bustamante
- Departamento Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4030000, Chile;
| | - Julio Alarcón-Enos
- Grupo de Investigación Química y Biotecnología de Productos Naturales Bioactivos, Laboratorio de Síntesis y Biotransformación de Productos Naturales, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán 3800708, Chile; (S.P.-B.); (E.M.-N.); (S.Q.-C.); (E.P.-N.)
| |
Collapse
|
3
|
Lim H. Development of scoring-assisted generative exploration (SAGE) and its application to dual inhibitor design for acetylcholinesterase and monoamine oxidase B. J Cheminform 2024; 16:59. [PMID: 38790018 PMCID: PMC11127438 DOI: 10.1186/s13321-024-00845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
De novo molecular design is the process of searching chemical space for drug-like molecules with desired properties, and deep learning has been recognized as a promising solution. In this study, I developed an effective computational method called Scoring-Assisted Generative Exploration (SAGE) to enhance chemical diversity and property optimization through virtual synthesis simulation, the generation of bridged bicyclic rings, and multiple scoring models for drug-likeness. In six protein targets, SAGE generated molecules with high scores within reasonable numbers of steps by optimizing target specificity without a constraint and even with multiple constraints such as synthetic accessibility, solubility, and metabolic stability. Furthermore, I suggested a top-ranked molecule with SAGE as dual inhibitors of acetylcholinesterase and monoamine oxidase B through multiple desired property optimization. Therefore, SAGE can generate molecules with desired properties by optimizing multiple properties simultaneously, indicating the importance of de novo design strategies in the future of drug discovery and development. SCIENTIFIC CONTRIBUTION: The scientific contribution of this study lies in the development of the Scoring-Assisted Generative Exploration (SAGE) method, a novel computational approach that significantly enhances de novo molecular design. SAGE uniquely integrates virtual synthesis simulation, the generation of complex bridged bicyclic rings, and multiple scoring models to optimize drug-like properties comprehensively. By efficiently generating molecules that meet a broad spectrum of pharmacological criteria-including target specificity, synthetic accessibility, solubility, and metabolic stability-within a reasonable number of steps, SAGE represents a substantial advancement over traditional methods. Additionally, the application of SAGE to discover dual inhibitors for acetylcholinesterase and monoamine oxidase B not only demonstrates its potential to streamline and enhance the drug development process but also highlights its capacity to create more effective and precisely targeted therapies. This study emphasizes the critical and evolving role of de novo design strategies in reshaping the future of drug discovery and development, providing promising avenues for innovative therapeutic discoveries.
Collapse
Affiliation(s)
- Hocheol Lim
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon, Republic of Korea.
| |
Collapse
|
4
|
Alkubaisi BO, Aljobowry R, Ali SM, Sultan S, Zaraei SO, Ravi A, Al-Tel TH, El-Gamal MI. The latest perspectives of small molecules FMS kinase inhibitors. Eur J Med Chem 2023; 261:115796. [PMID: 37708796 DOI: 10.1016/j.ejmech.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
FMS kinase is a type III tyrosine kinase receptor that plays a central role in the pathophysiology and management of several diseases, including a range of cancer types, inflammatory disorders, neurodegenerative disorders, and bone disorders among others. In this review, the pathophysiological pathways of FMS kinase in different diseases and the recent developments of its monoclonal antibodies and inhibitors during the last five years are discussed. The biological and biochemical features of these inhibitors, including binding interactions, structure-activity relationships (SAR), selectivity, and potencies are discussed. The focus of this article is on the compounds that are promising leads and undergoing advanced clinical investigations, as well as on those that received FDA approval. In this article, we attempt to classify the reviewed FMS inhibitors according to their core chemical structure including pyridine, pyrrolopyridine, pyrazolopyridine, quinoline, and pyrimidine derivatives.
Collapse
Affiliation(s)
- Bilal O Alkubaisi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Raya Aljobowry
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Salma M Ali
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Sara Sultan
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Seyed-Omar Zaraei
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
5
|
Dehydroeburicoic Acid, a Dual Inhibitor against Oxidative Stress in Alcoholic Liver Disease. Pharmaceuticals (Basel) 2022; 16:ph16010014. [PMID: 36678511 PMCID: PMC9866905 DOI: 10.3390/ph16010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
Alcoholic liver disease (ALD) is a complicated disease which can lead to hepatocellular carcinoma; however, there is a lack of satisfactory therapeutics. Dehydroeburicoic acid (DEA) (1), a triterpenoid isolated from Antrodia cinnamomea, has been reported to act against ALD, but its mechanisms of action are still not clear. In this study, we report for the first time the use of DEA (1) as a dual inhibitor of the Keap1-Nrf2 protein-protein interaction (PPI) and GSK3β in an in vitro ALD cell model. DEA (1) engages Keap1 to disrupt the Keap1-Nrf2 PPI and inhibits GSK3β to restore Nrf2 activity in a Keap1-independent fashion. DEA (1) promotes Nrf2 nuclear translocation to activate downstream antioxidant genes. Importantly, DEA (1) restores the mitochondrial dysfunction induced by ethanol and generates antioxidant activity in the ALD cell model with minimal toxicity. We anticipate that DEA (1) could be a potential scaffold for the further development of clinical agents for treating ALD.
Collapse
|
6
|
Jahantigh HR, Ahmadi N, Shahbazi B, Lovreglio P, Habibi M, Stufano A, Gouklani H, Ahmadi K. Evaluation of the dual effects of antiviral drugs on SARS-CoV-2 receptors and the ACE2 receptor using structure-based virtual screening and molecular dynamics simulation. J Biomol Struct Dyn 2022:1-23. [DOI: 10.1080/07391102.2022.2103735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hamid Reza Jahantigh
- Interdisciplinary Department of Medicine - Section of Occupational Medicine, University of Bari, Bari, Italy
- Animal Health and Zoonosis PhD Course, Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Nahid Ahmadi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Piero Lovreglio
- Interdisciplinary Department of Medicine - Section of Occupational Medicine, University of Bari, Bari, Italy
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Angela Stufano
- Interdisciplinary Department of Medicine - Section of Occupational Medicine, University of Bari, Bari, Italy
- Animal Health and Zoonosis PhD Course, Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Hamed Gouklani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
7
|
Pascual Alonso I, Valiente PA, Valdés-Tresanco ME, Arrebola Y, Almeida García F, Díaz L, García G, Guirola O, Pastor D, Bergado G, Sánchez B, Charli JL. Discovery of tight-binding competitive inhibitors of dipeptidyl peptidase IV. Int J Biol Macromol 2022; 196:120-130. [PMID: 34920066 DOI: 10.1016/j.ijbiomac.2021.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV, EC 3.4.14.5) is an abundant serine aminopeptidase that preferentially cleaves N-terminal Xaa-Pro or Xaa-Ala dipeptides from oligopeptides. Inhibitors of DPP-IV activity are used for treating type 2 diabetes mellitus and other diseases. DPP-IV is also involved in tumor progression. We identified four new non-peptide tight-binding competitive inhibitors of porcine DPP-IV by virtual screening and enzymatic assays. Molecular docking simulations supported the competitive behavior, and the selectivity of one of the compounds in the DPP-IV family. Since three of these inhibitors are also aminopeptidase N (APN) inhibitors, we tested their impact on APN+/DPP-IV+ and DPP-IV+ human tumor cells' viability. Using kinetic assays, we determined that HL-60 tumor cells express both APN and DPP-IV activities and that MDA-MB-231 tumor cells express DPP-IV activity. The inhibitors had a slight inhibitory effect on human HEK-293 cell viability but reduced the viability of APN+/DPP-IV+ and DPP-IV+ human tumor cells more potently. Remarkably, the intraperitoneal injection of these compounds inhibited DPP-IV activity in rat brain, liver, and pancreas. In silico studies suggested inhibitors binding to serum albumin contribute to blood-brain barrier crossing. The spectrum of action of some of these compounds may be useful for niche applications.
Collapse
Affiliation(s)
| | - Pedro A Valiente
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba; Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Canada.
| | - Mario E Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba; Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Yarini Arrebola
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba
| | | | - Lisset Díaz
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba
| | - Gabriela García
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba
| | - Osmany Guirola
- Centro de Ingeniería Genética y Biotecnología, BioCubafarma, Cuba
| | - Daniel Pastor
- Center for Protein Studies, Faculty of Biology, University of Havana, Cuba
| | | | | | - Jean-Louis Charli
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| |
Collapse
|
8
|
El-Wakil MH, Teleb M. Transforming Type II to Type I c-Met kinase inhibitors via combined scaffold hopping and structure-guided synthesis of new series of 1,3,4-thiadiazolo[2,3-c]-1,2,4-triazin-4-one derivatives. Bioorg Chem 2021; 116:105304. [PMID: 34534756 DOI: 10.1016/j.bioorg.2021.105304] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/21/2022]
Abstract
Novel 1,3,4-thiadiazolo[2,3-c]-1,2,4-triazin-4-one derivatives 3a-e, 4a-f and 5a-f were designed as Type I c-Met kinase inhibitors based on scaffold hopping of our previous Type II c-Met kinase lead. Target compounds were then synthesized under the guidance of molecular docking analysis to identify the potential inhibitors that fit the binding pocket of c-Met kinase in the characteristic manner as the reported Type I c-Met kinase inhibitors. All synthesized derivatives were evaluated for their c-Met kinase inhibitory activity at 10 µM concentration, where 3d, 5d and 5f displayed >80% inhibition. Further IC50 investigation of these compounds identified 5d as the most potent c-Met kinase inhibitor with IC50 value of 1.95 µM. Moreover, 5d showed selective antitumor activity against c-Met over-expressing colon HCT-116 and lung A549 adenocarcinoma cells with IC50 values of 6.18 and 10.6 µg/ml, respectively. More significantly, 5d effectively inhibited c-Met phosphorylation in the Western blot experiment. Also, 5d induced cellular apoptosis in HCT-116 cancer cells as well as cell cycle arrest with accumulation of cells in G2/M phase. Finally, kinase selectivity profiling of 5d against nine oncogenic kinases revealed its selectivity to only Tyro3 kinase (% inhibition = 80%, IC50 = 3 µM). All these experimental findings clearly demonstrate that 5d is a potential dual acting inhibitor against c-Met and Tyro3 kinases, standing out as a viable lead that deserves further investigation and development to new generation of antitumor agents.
Collapse
Affiliation(s)
- Marwa H El-Wakil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
9
|
Omolabi KF, Odeniran PO, Olotu FA, S Soliman ME. A Mechanistic Probe into the Dual Inhibition of T. cruzi Glucokinase and Hexokinase in Chagas Disease Treatment - A Stone Killing Two Birds? Chem Biodivers 2021; 18:e2000863. [PMID: 33411971 DOI: 10.1002/cbdv.202000863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/07/2021] [Indexed: 01/15/2023]
Abstract
Glucokinase (GLK) and Hexokinase (HK) have been characterized as essential targets in Trypanosoma cruzi (Tc)-mediated infection. A recent study reported the propensity of the concomitant inhibition of TcGLK and TcHK by compounds GLK2-003 and GLK2-004, thereby presenting an efficient approach in Chagas disease treatment. We investigated this possibility using atomic and molecular scaling methods. Sequence alignment of TcGLK and TcHK revealed that both proteins shared approximately 33.3 % homology in their glucose/inhibitor binding sites. The total binding free energies of GLK2-003 and GLK2-004 were favorable in both proteins. PRO92 and THR185 were pivotal to the binding and stabilization of the ligands in TcGLK, likewise their conserved counterparts, PRO163 and THR237 in TcHK. Both compounds also induced a similar pattern of perturbations in both TcGLK and TcHK secondary structure. Findings from this study therefore provide insights into the underlying mechanisms of dual inhibition exhibited by the compounds. These results can pave way to discover and optimize novel dual Tc inhibitors with favorable pharmacokinetics properties eventuating in the mitigation of Chagas disease.
Collapse
Affiliation(s)
- Kehinde F Omolabi
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Paul O Odeniran
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, 200001, Nigeria
| | - Fisayo A Olotu
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
10
|
Search for new therapeutics against HIV-1 via dual inhibition of RNase H and integrase: current status and future challenges. Future Med Chem 2021; 13:269-286. [PMID: 33399497 DOI: 10.4155/fmc-2020-0257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Reverse transcriptase and integrase are key enzymes that play a pivotal role in HIV-1 viral maturation and replication. Reverse transcriptase consists of two active sites: RNA-dependent DNA polymerase and RNase H. The catalytic domains of integrase and RNase H share striking similarity, comprising two aspartates and one glutamate residue, also known as the catalytic DDE triad, and a Mg2+ pair. The simultaneous inhibition of reverse transcriptase and integrase can be a rational drug discovery approach for combating the emerging drug resistance problem. In the present review, the dual inhibition of RNase H and integrase is systematically discussed, including rationality of design, journey of development, advancement and future perspective.
Collapse
|
11
|
Adeowo FY, Lawal MM, Kumalo HM. Design and Development of Cholinesterase Dual Inhibitors towards Alzheimer's Disease Treatment: A Focus on Recent Contributions from Computational and Theoretical Perspective. ChemistrySelect 2020. [DOI: 10.1002/slct.202003573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Fatima Y. Adeowo
- Discipline of Medical Biochemistry School of Laboratory Medicine and Medical Science University of KwaZulu-Natal Durban 4001 South Africa
| | - Monsurat M. Lawal
- Discipline of Medical Biochemistry School of Laboratory Medicine and Medical Science University of KwaZulu-Natal Durban 4001 South Africa
| | - Hezekiel M. Kumalo
- Discipline of Medical Biochemistry School of Laboratory Medicine and Medical Science University of KwaZulu-Natal Durban 4001 South Africa
| |
Collapse
|
12
|
Zhou J, Zhang W, Pang J, Wang X, Zheng Z, Li Y, Yang F, Yang W. Optimized preparation of vinpocetine micelles and in vivo evaluation of its pharmacokinetics in rats. Pharm Dev Technol 2020; 25:464-471. [PMID: 31910066 DOI: 10.1080/10837450.2019.1709501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study aimed to develop a novel monomethoxy poly(ethylene glycol)-b-poly(D, L-lactide) (mPEG5000-PLA10 000) micelle drug delivery system to improve vinpocetine's (VP) dissolution and sustain VP concentrations in plasma. Three micelle fabrication methods were examined to maximize VP loading, followed by structurally characterization and investigation in vitro release and in vivo pharmacokinetics in Sprague-Dawley rats. The thin-film hydration is the most appropriate method of the three methods because of its high loading content. The loaded micelles exhibited a sustained release behavior up to 48 h. Following intraperitoneal administration (9 mg/kg), VP loaded micelles provided significantly higher (335%) AUC (area under concentration-time) compared to VP injection. And also increased the mean residence time [MRT(0-t)] and elimination half-life (t1/2z). There were obviously two peaks at 2 h and 9 h in VP loaded micelles concentration-time profile. In summary, these data demonstrated that poly mPEG-PLA micelles can efficiently sustain VP concentrations in plasma for 36 h, thus apprehending polymeric micelles suitability as poor aqueous solubility drug carriers.
Collapse
Affiliation(s)
- Jiaxin Zhou
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfang Zhang
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiali Pang
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoting Wang
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zijie Zheng
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuanxin Li
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fan Yang
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Yang
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
13
|
Zhu M, Ma L, Wen J, Dong B, Wang Y, Wang Z, Zhou J, Zhang G, Wang J, Guo Y, Liang C, Cen S, Wang Y. Rational design and Structure-Activity relationship of coumarin derivatives effective on HIV-1 protease and partially on HIV-1 reverse transcriptase. Eur J Med Chem 2019; 186:111900. [PMID: 31771827 DOI: 10.1016/j.ejmech.2019.111900] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 01/19/2023]
Abstract
Since dual inhibitors may yield lower toxicity and reduce the likelihood of drug resistance, as well as inhibitors of HIV-1 PR and RT constitute the core of chemotherapy for AIDS treatment, we herein designed and synthesized new coumarin derivatives characterized by various linkers that exhibited excellent potency against PR and a weak inhibition of RT. Among which, compounds 6f and 7c inhibited PR with IC50 values of 15.5 and 62.1 nM, respectively, and weakly affected also RT with IC50 values of 241.8 and 188.7 μM, respectively, showing the possibility in the future of developing dual HIV-1 PR/RT inhibitors. Creative stimulation for further research of more potent dual HIV-1 inhibitors was got according to the molecular docking studies.
Collapse
Affiliation(s)
- Mei Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jiajia Wen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Biao Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yujia Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Zhen Wang
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Jinming Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Guoning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Juxian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Ying Guo
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Chen Liang
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
14
|
Nuthakki VK, Sharma A, Kumar A, Bharate SB. Identification of embelin, a 3-undecyl-1,4-benzoquinone from Embelia ribes as a multitargeted anti-Alzheimer agent. Drug Dev Res 2019; 80:655-665. [PMID: 31050027 DOI: 10.1002/ddr.21544] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022]
Abstract
Beta-secreatse (BACE-1) and cholinesterases are clinically validated targets of Alzheimer's disease (AD), for which natural products have provided immense contribution. The multifaceted nature of AD signifies the need of multitargeted agents to tackle this disease. In the search of new natural products as dual BACE-1/cholinesterase inhibitors, a library of pure natural products was screened for inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE-1. The screening efforts have identified 1,4-benzoquinone "embelin," a natural product derived from Embelia ribes displaying inhibition of all three enzymes, with IC50 values of 2.5, 5.4, and 2.1 μM, respectively. This screen has also identified isoquinoline alkaloids papaverine and L-tetrahydropalmatine as AChE inhibitors. Kinetic study has shown that embelin inhibits EeAChE and EqBChE with ki values of 4.59 and 0.57 μM, in an uncompetitive and noncompetitive manner, respectively. The interactions of embelin with allosteric peripheral anionic site of cholinesterases, has further supported the results of kinetic study. Embelin has also enhanced the activity of P-gp in LS-180 cells, the efflux pump which is involved in the clearance of amyloid-β from AD brain. Further, the cell viability study in neuronal cell line has indicated the excellent therapeutic window of embelin. These results are indicative of the fact that embelin is a multitargeted agent playing role in stopping the formation of amyloid-β oligomers (via inhibition of BACE-1), improves cholinergic-transmission (via inhibition of AChE/BChE) and increases amyloid-β clearance (via P-gp induction).
Collapse
Affiliation(s)
- Vijay K Nuthakki
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ankita Sharma
- PK-PD Toxicology & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ajay Kumar
- PK-PD Toxicology & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| |
Collapse
|
15
|
Watts E, Heidenreich D, Tucker E, Raab M, Strebhardt K, Chesler L, Knapp S, Bellenie B, Hoelder S. Designing Dual Inhibitors of Anaplastic Lymphoma Kinase (ALK) and Bromodomain-4 (BRD4) by Tuning Kinase Selectivity. J Med Chem 2019; 62:2618-2637. [PMID: 30789735 PMCID: PMC6421522 DOI: 10.1021/acs.jmedchem.8b01947] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 12/31/2022]
Abstract
Concomitant inhibition of anaplastic lymphoma kinase (ALK) and bromodomain-4 (BRD4) is a potential therapeutic strategy for targeting two key oncogenic drivers that co-segregate in a significant fraction of high-risk neuroblastoma patients, mutation of ALK and amplification of MYCN. Starting from known dual polo-like kinase (PLK)-1-BRD4 inhibitor BI-2536, we employed structure-based design to redesign this series toward compounds with a dual ALK-BRD4 profile. These efforts led to compound ( R)-2-((2-ethoxy-4-(1-methylpiperidin-4-yl)phenyl)amino)-7-ethyl-5-methyl-8-((4-methylthiophen-2-yl)methyl)-7,8-dihydropteridin-6(5 H)-one (16k) demonstrating improved ALK activity and significantly reduced PLK-1 activity, while maintaining BRD4 activity and overall kinome selectivity. We demonstrate the compounds' on-target engagement with ALK and BRD4 in cells as well as favorable broad kinase and bromodomain selectivity.
Collapse
Affiliation(s)
- Ellen Watts
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SM2 5NG, U.K.
| | - David Heidenreich
- Institute
for Pharmaceutical Chemistry, Johann Wolfgang
Goethe-University, Max-von-Laue-Strasse
9, D-60438 Frankfurt
am Main, Germany
- Structural
Genomics Consortium, BMLS, Goethe-University
Frankfurt, 60438 Frankfurt, Germany
| | - Elizabeth Tucker
- Paediatric
and Solid Tumour Biology and Therapeutics Group, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, U.K.
| | - Monika Raab
- Department
of Gynecology and Obstetrics, Johann Wolfgang
Goethe-University, Theodor-Stern
Kai 7, 60590 Frankfurt
am Main, Germany
| | - Klaus Strebhardt
- Department
of Gynecology and Obstetrics, Johann Wolfgang
Goethe-University, Theodor-Stern
Kai 7, 60590 Frankfurt
am Main, Germany
| | - Louis Chesler
- Paediatric
and Solid Tumour Biology and Therapeutics Group, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, U.K.
| | - Stefan Knapp
- Institute
for Pharmaceutical Chemistry, Johann Wolfgang
Goethe-University, Max-von-Laue-Strasse
9, D-60438 Frankfurt
am Main, Germany
- Structural
Genomics Consortium, BMLS, Goethe-University
Frankfurt, 60438 Frankfurt, Germany
- German Cancer
Network (DKTK), Site
Frankfurt/Mainz, D-60438 Frankfurt am Main, Germany
| | - Benjamin Bellenie
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Swen Hoelder
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SM2 5NG, U.K.
| |
Collapse
|
16
|
|
17
|
Carcelli M, Rogolino D, Gatti A, Pala N, Corona A, Caredda A, Tramontano E, Pannecouque C, Naesens L, Esposito F. Chelation Motifs Affecting Metal-dependent Viral Enzymes: N'-acylhydrazone Ligands as Dual Target Inhibitors of HIV-1 Integrase and Reverse Transcriptase Ribonuclease H Domain. Front Microbiol 2017; 8:440. [PMID: 28373864 PMCID: PMC5357622 DOI: 10.3389/fmicb.2017.00440] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/03/2017] [Indexed: 12/22/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection, still represent a serious global health emergency. The chronic toxicity derived from the current anti-retroviral therapy limits the prolonged use of several antiretroviral agents, continuously requiring the discovery of new antiviral agents with innovative strategies of action. In particular, the development of single molecules targeting two proteins (dual inhibitors) is one of the current main goals in drug discovery. In this contest, metal-chelating molecules have been extensively explored as potential inhibitors of viral metal-dependent enzymes, resulting in some important classes of antiviral agents. Inhibition of HIV Integrase (IN) is, in this sense, paradigmatic. HIV-1 IN and Reverse Transcriptase-associated Ribonuclease H (RNase H) active sites show structural homologies, with the presence of two Mg(II) cofactors, hence it seems possible to inhibit both enzymes by means of chelating ligands with analogous structural features. Here we present a series of N′-acylhydrazone ligands with groups able to chelate the Mg(II) hard Lewis acid ions in the active sites of both the enzymes, resulting in dual inhibitors with micromolar and even nanomolar activities. The most interesting identified N′-acylhydrazone analog, compound 18, shows dual RNase H-IN inhibition and it is also able to inhibit viral replication in cell-based antiviral assays in the low micromolar range. Computational modeling studies were also conducted to explore the binding attitudes of some model ligands within the active site of both the enzymes.
Collapse
Affiliation(s)
- Mauro Carcelli
- Department of Chemistry, University of Parma Parma, Italy
| | - Dominga Rogolino
- Department of Chemistry, University of ParmaParma, Italy; Research Interuniversity Consortium Chemistry of Metals in Biological Systems Parma Unit, University of ParmaParma, Italy
| | - Anna Gatti
- Department of Chemistry, University of ParmaParma, Italy; Research Interuniversity Consortium Chemistry of Metals in Biological Systems Parma Unit, University of ParmaParma, Italy
| | - Nicolino Pala
- Department of Chemistry and Pharmacy, University of Sassari Sassari, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato Cagliari, Italy
| | - Alessia Caredda
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di MonserratoCagliari, Italy; Genetics and Biomedical Research institute, National Research CouncilMonserrato, Italy
| | | | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven Leuven, Belgium
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato Cagliari, Italy
| |
Collapse
|
18
|
Bhayye SS, Roy K, Saha A. Pharmacophore generation, atom-based 3D-QSAR, HQSAR and activity cliff analyses of benzothiazine and deazaxanthine derivatives as dual A 2A antagonists/MAO‑B inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2016; 27:183-202. [PMID: 26873265 DOI: 10.1080/1062936x.2015.1136840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dual inhibition of A2A and MAO-B is an emerging strategy in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). In this study, atom-based three-dimensional quantitative structure-activity relationship (3D-QSAR) and hologram quantitative structure-activity relationship (HQSAR) models were generated with benzothiazine and deazaxanthine derivatives. Based on activity against A2A and MAO-B, two statistically significant 3D-QSAR models (r2 = 0.96, q2 = 0.76 and r2 = 0.91, q2 = 0.63) and HQSAR models (r2 = 0.93, q2 = 0.68 and r2 = 0.97, q2 = 0.58) were developed. In an activity cliff analysis, structural outliers were identified by calculating the Mahalanobis distance for a pair of compounds with A2A and MAO-B inhibitory activities. The generated 3D-QSAR and HQSAR models, activity cliff analysis, molecular docking and dynamic studies for dual target protein inhibitors provide key structural scaffolds that serve as building blocks in designing drug-like molecules for neurodegenerative diseases.
Collapse
Affiliation(s)
- S S Bhayye
- a Department of Chemical Technology , University of Calcutta , Kolkata , West Bengal , India
| | - K Roy
- b Department of Pharmaceutical Technology , Jadavpur University , Kolkata , West Bengal , India
| | - A Saha
- a Department of Chemical Technology , University of Calcutta , Kolkata , West Bengal , India
| |
Collapse
|
19
|
Vajs J, Steiner I, Brozovic A, Pevec A, Ambriović-Ristov A, Matković M, Piantanida I, Urankar D, Osmak M, Košmrlj J. The 1,3-diaryltriazenido(p-cymene)ruthenium(II) complexes with a high in vitro anticancer activity. J Inorg Biochem 2015; 153:42-48. [DOI: 10.1016/j.jinorgbio.2015.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/26/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
|
20
|
Dolles D, Nimczick M, Scheiner M, Ramler J, Stadtmüller P, Sawatzky E, Drakopoulos A, Sotriffer C, Wittmann HJ, Strasser A, Decker M. Aminobenzimidazoles and Structural Isomers as Templates for Dual-Acting Butyrylcholinesterase Inhibitors andhCB2R Ligands To Combat Neurodegenerative Disorders. ChemMedChem 2015; 11:1270-83. [DOI: 10.1002/cmdc.201500418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Dominik Dolles
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Martin Nimczick
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Jacqueline Ramler
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Patricia Stadtmüller
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Edgar Sawatzky
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Antonios Drakopoulos
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Christoph Sotriffer
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Hans-Joachim Wittmann
- Pharmaceutical and Medicinal Chemistry II; Institute of Pharmacy; University of Regensburg; 95053 Regensburg Germany
| | - Andrea Strasser
- Pharmaceutical and Medicinal Chemistry II; Institute of Pharmacy; University of Regensburg; 95053 Regensburg Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
21
|
Cuzzucoli Crucitti G, Métifiot M, Pescatori L, Messore A, Madia VN, Pupo G, Saccoliti F, Scipione L, Tortorella S, Esposito F, Corona A, Cadeddu M, Marchand C, Pommier Y, Tramontano E, Costi R, Di Santo R. Structure-activity relationship of pyrrolyl diketo acid derivatives as dual inhibitors of HIV-1 integrase and reverse transcriptase ribonuclease H domain. J Med Chem 2015; 58:1915-28. [PMID: 25629256 DOI: 10.1021/jm501799k] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of HIV-1 dual inhibitors is a highly innovative approach aimed at reducing drug toxic side effects as well as therapeutic costs. HIV-1 integrase (IN) and reverse transcriptase-associated ribonuclease H (RNase H) are both selective targets for HIV-1 chemotherapy, and the identification of dual IN/RNase H inhibitors is an attractive strategy for new drug development. We newly synthesized pyrrolyl derivatives that exhibited good potency against IN and a moderate inhibition of the RNase H function of RT, confirming the possibility of developing dual HIV-1 IN/RNase H inhibitors and obtaining new information for the further development of more effective dual HIV-1 inhibitors.
Collapse
Affiliation(s)
- Giuliana Cuzzucoli Crucitti
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma , Rome, I-00185, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tzvetkov NT, Hinz S, Küppers P, Gastreich M, Müller CE. Indazole- and Indole-5-carboxamides: Selective and Reversible Monoamine Oxidase B Inhibitors with Subnanomolar Potency. J Med Chem 2014; 57:6679-703. [DOI: 10.1021/jm500729a] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Nikolay T. Tzvetkov
- Pharmaceutical Institute, Pharmaceutical
Chemistry I, PharmaCenter Bonn, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Sonja Hinz
- Pharmaceutical Institute, Pharmaceutical
Chemistry I, PharmaCenter Bonn, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Petra Küppers
- Pharmaceutical Institute, Pharmaceutical
Chemistry I, PharmaCenter Bonn, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Marcus Gastreich
- BioSolveIT GmbH, An der Ziegelei 79, 53757 St. Augustin, Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical
Chemistry I, PharmaCenter Bonn, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| |
Collapse
|
23
|
Abstract
HIV integrase (IN) catalyzes the insertion into the genome of the infected human cell of viral DNA produced by the retrotranscription process. The discovery of raltegravir validated the existence of the IN, which is a new target in the field of anti-HIV drug research. The mechanism of catalysis of IN is depicted, and the characteristics of the inhibitors of the catalytic site of this viral enzyme are reported. The role played by the resistance is elucidated, as well as the possibility of bypassing this problem. New approaches to block the integration process are depicted as future perspectives, such as development of allosteric IN inhibitors, dual inhibitors targeting both IN and other enzymes, inhibitors of enzymes that activate IN, activators of IN activity, as well as a gene therapy approach.
Collapse
Affiliation(s)
- Roberto Di Santo
- Dipartimento
di Chimica e
Tecnologie del Farmaco, Istituto Pasteur, Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, P.le Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
24
|
Costi R, Métifiot M, Esposito F, Cuzzucoli Crucitti G, Pescatori L, Messore A, Scipione L, Tortorella S, Zinzula L, Novellino E, Pommier Y, Tramontano E, Marchand C, Di Santo R. 6-(1-Benzyl-1H-pyrrol-2-yl)-2,4-dioxo-5-hexenoic acids as dual inhibitors of recombinant HIV-1 integrase and ribonuclease H, synthesized by a parallel synthesis approach. J Med Chem 2013; 56:8588-98. [PMID: 24124919 DOI: 10.1021/jm401040b] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The increasing efficiency of HAART has helped to transform HIV/AIDS into a chronic disease. Still, resistance and drug-drug interactions warrant the development of new anti-HIV agents. We previously discovered hit 6, active against HIV-1 replication and targeting RNase H in vitro. Because of its diketo-acid moiety, we speculated that this chemotype could serve to develop dual inhibitors of both RNase H and integrase. Here, we describe a new series of 1-benzyl-pyrrolyl diketohexenoic derivatives, 7a-y and 8a-y, synthesized following a parallel solution-phase approach. Those 50 analogues have been tested on recombinant enzymes (RNase H and integrase) and in cell-based assays. Approximately half (22) exibited inhibition of HIV replication. Compounds 7b, 7u, and 8g were the most active against the RNase H activity of reverse-transcriptase, with IC50 values of 3, 3, and 2.5 μM, respectively. Compound 8g was also the most potent integrase inhibitor with an IC50 value of 26 nM.
Collapse
Affiliation(s)
- Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma , P. le Aldo Moro 5, Rome I-00185, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stössel A, Schlenk M, Hinz S, Küppers P, Heer J, Gütschow M, Müller CE. Dual targeting of adenosine A(2A) receptors and monoamine oxidase B by 4H-3,1-benzothiazin-4-ones. J Med Chem 2013; 56:4580-96. [PMID: 23631427 DOI: 10.1021/jm400336x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Blockade of A2A adenosine receptors (A2AARs) and inhibition of monoamine oxidase B (MAO-B) in the brain are considered attractive strategies for the treatment of neurodegenerative diseases such as Parkinson's disease (PD). In the present study, benzothiazinones, e.g., 2-(3-chlorophenoxy)-N-(4-oxo-4H-3,1-benzothiazin-2-yl)acetamide (13), were identified as a novel class of potent MAO-B inhibitors (IC50 human MAO-B: 1.63 nM). Benzothiazinones with large substituents in the 2-position, e.g., methoxycinnamoylamino, phenylbutyrylamino, or chlorobenzylpiperazinylbenzamido residues (14, 17, 27, and 28), showed high affinity and selectivity for A2AARs (Ki human A2AAR: 39.5-69.5 nM). By optimizing benzothiazinones for both targets, the first potent, dual-acting A2AAR/MAO-B inhibitors with a nonxanthine structure were developed. The best derivative was N-(4-oxo-4H-3,1-benzothiazin-2-yl)-4-phenylbutanamide (17, Ki human A2A, 39.5 nM; IC50 human MAO-B, 34.9 nM; selective versus other AR subtypes and MAO-A), which inhibited A2AAR-induced cAMP accumulation and showed competitive, reversible MAO-B inhibition. The new compounds may be useful tools for validating the A2AAR/MAO-B dual target approach in PD.
Collapse
Affiliation(s)
- Anne Stössel
- PharmaCenter Bonn, University of Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The combination of two different and independently acting compounds into one covalently linked hybrid compound can convey synergy from the effects of both independently acting moieties to the new composite compound, leading to a pharmacological potency greater than the sum of each individual moiety's potencies. Here, we review a variety of such hybrid compounds, which can consist of various functional parts, molecular recognition or subcellular targeting moieties, or combinations thereof, acting either simultaneously or sequentially. Such moieties within a hybrid compound can consist of a variety of substance classes, including small organic molecules, polypeptides or nucleic acids identified either via rational molecular design or selection from libraries. Precedent for hybrid compounds comes from naturally occurring proteins and small molecules, such as botulinum toxin and bleomycin, which are secreted by micro-organisms. We review the high degree of suitability of hybrid compounds for the treatment of multifactorial diseases by simultaneously hitting several targets along an identified disease pathway. Examples are hybrid compounds against Alzheimer's disease, against the cancer-relevant phosphoinisitide-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) and epidermal growth factor signaling cascade, or in antimalarial therapy via simultaneous hitting of different mechanisms of hemozoin formation. Molecular recognition by peptides or aptamers (recognition-specific RNA or peptide sequences) can be combined with the transport of small molecule β-sheet breakers or toxins, or targeting to ubiquitin-dependent proteolysis. The vision of molecular nanomachines is currently realized in sequentially acting modular nanotransporters, consisting of four modules including a target, a membrane and nuclear translocation sequence, as well as a drug attachment domain. Through the rational combination of existing drugs and the synergy of their effects, a rapid amplification of their potency may be achieved, greatly accelerating drug development. A further enhancement of simultaneous multitarget action is enabled through the design of multifunctional hybrid drugs with sequential effects that make these hybrid molecules resemble intelligent nanomachines.
Collapse
|