1
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
2
|
Wang X, Li C, Huan Y, Cao H, Sun S, Lei L, Liu Q, Liu S, Ji W, Huang K, Shen Z, Zhou J. Diphenyl diselenide ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats via suppressing oxidative stress and inflammation. Chem Biol Interact 2021; 338:109427. [PMID: 33639173 DOI: 10.1016/j.cbi.2021.109427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022]
Abstract
Oxidative stress and inflammation are implicated in the occurrence and progression of diabetic nephropathy (DN). Diphenyl diselenide (DPDS) is a stable and simple diaryl diselenide with anti-hyperglycemic, anti-inflammatory, and antioxidant activities. However, the effects of DPDS on DN are still unclear to date. Herein, we aimed to explore whether DPDS could improve renal dysfunction in streptozotocin (STZ)-induced diabetic rats and its underlying mechanisms. STZ-induced DN rats were administered with DPDS (5 or 15 mg/kg) or metformin (200 mg/kg) once daily by intragastric gavage for 12 weeks. DPDS supplementation significantly improved hyperglycemia, glucose intolerance, dyslipidemia, and the renal pathological abnormalities, concurrent with significantly reduced serum levels of creatinine, urea nitrogen, urine volume, and urinary levels of micro-albumin, β2-microglobulin and N-acetyl-glucosaminidase activities. Moreover, DPDS effectively promoted the activities of antioxidant enzymes, and reduced the levels of MDA and pro-inflammatory factors in serum and the kidney. Furthermore, DPDS supplementation activated the renal Nrf2/Keap1 signaling pathway, but attenuated the high phosphorylation levels of NFκB, JNK, p38 and ERK1/2. Altogether, the current study indicated for the first time that DPDS ameliorated STZ-induced renal dysfunction in rats, and its mechanism of action may be attributable to suppressing oxidative stress via activating the renal Nrf2/Keap1 signaling pathway and mitigating inflammation by suppressing the renal NFκB/MAPK signaling pathways, suggesting a potential therapeutic approach for DN.
Collapse
MESH Headings
- Animals
- Antioxidants/metabolism
- Benzene Derivatives/pharmacology
- Benzene Derivatives/therapeutic use
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/physiopathology
- Diabetic Nephropathies/complications
- Diabetic Nephropathies/drug therapy
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/physiopathology
- Dyslipidemias/complications
- Dyslipidemias/drug therapy
- Dyslipidemias/genetics
- Gene Expression Regulation/drug effects
- Glucose/metabolism
- Inflammation/complications
- Inflammation/drug therapy
- Inflammation/genetics
- Kelch-Like ECH-Associated Protein 1/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Lipid Metabolism/drug effects
- MAP Kinase Signaling System/drug effects
- Male
- Models, Biological
- NF-E2-Related Factor 2/metabolism
- NF-kappa B/metabolism
- Organoselenium Compounds/pharmacology
- Organoselenium Compounds/therapeutic use
- Oxidative Stress/drug effects
- Rats, Sprague-Dawley
- Streptozocin
- Rats
Collapse
Affiliation(s)
- Xing Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Caina Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Huan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Cao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sujuan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Lei
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenming Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhufang Shen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China.
| |
Collapse
|
3
|
Fulco BC, Jung JT, Brum LO, Zborowski VA, Goulart TA, Nogueira CW. Similar hepatoprotective effectiveness of Diphenyl diselenide and Ebselen against cisplatin-induced disruption of metabolic homeostasis and redox balance in juvenile rats. Chem Biol Interact 2020; 330:109234. [DOI: 10.1016/j.cbi.2020.109234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 11/24/2022]
|
4
|
Hypothalamic pathways regulate the anorectic action of p-chloro-diphenyl diselenide in rats. Eur J Pharmacol 2017; 815:241-250. [PMID: 28943102 DOI: 10.1016/j.ejphar.2017.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 11/23/2022]
Abstract
Behavioral studies have suggested that (p-ClPhSe)2 elicits an anorectic-like action in rats by inducing multiple effects such as satiety-enhancing effect, malaise and specific flavor; however, the molecular mechanisms underlying its anorexigenic action remain unclarified. Here, male Sprague-Dawley rats received acute and sub-chronic intraperitoneal treatments with (p-ClPhSe)2; thereafter, in vivo and ex vivo analyses were carried out. The present study reveals that the reduction of food intake resulting from a single treatment with (p-ClPhSe)2 (1mg/kg, i.p.) was associated with decreased hypothalamic levels of pro-melanin-concentrating hormone (pro-MCH) and orexin precursor. In addition, repeated administrations of (p-ClPhSe)2 (10mg/kg; i.p.) for 7 days induced sustained food intake suppression, body weight loss and white fat reduction. Measurements of brown adipose tissue content and temperature as well as data obtained from a pair-fed group indicated that the effects of (p-ClPhSe)2 on the body weight are closely related to its anorexigenic actions, ruling out the possibility of increased thermogenesis. Furthermore, (p-ClPhSe)2 reduced the hypothalamic orexin precursor levels when repeatedly administered to rats. Sub-chronic treatment with (p-ClPhSe)2 caused a decrease of serum triglyceride levels and down-regulation of hepatic cholesterol content. Therefore, the current study characterized the anorectic and reducing body weight actions of (p-ClPhSe)2 in Sprague-Dawley rats. Besides, the set of results suggests that food intake suppressant effects triggered after (p-ClPhSe)2 administration to rats are mainly related with the lower orexin levels in hypothalamus after acute and sub-chronic treatments.
Collapse
|
5
|
Selli J, Unal D, Mercantepe F, Akaras N, Kabayel R, Unal B, Atilay H. Protective effects of beta glucan in brain tissues of post-menopausal rats: a histochemical and ultra-structural study. Gynecol Endocrinol 2016; 32:234-9. [PMID: 26486170 DOI: 10.3109/09513590.2015.1110139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Decline of estrogen during menopause has been associated with numerous significant changes that have been linked to many pathophysiological complications. In addition, ovarian hormone deficiency increases the production of reactive oxygen radicals which could result in oxidative stress and cell damage. While estrogen therapy is often considered to overcome the behavioral and physiological shortcomings, antioxidants are gaining popularity for their beneficial property. For this purpose, in the present study, utilizing the antioxidant properties of beta glucan has been examined in treatment of menopause induced oxidative stress in cerebral neurons. Four groups of female Wistar rats were used: control, ovariectomy, ovariectomy + estrogen treated and ovariectomy + beta glucan treated. We observed a significant increase in neural degeneration in ovariectomized rats as compared to controls. Moreover, increased oxidative stress in the brains of the ovariectomized rats has been detected by performing immunohistochemical analysis. A large number of immuno-positive cerebral neurons have been observed in ovariectomy group rat brains. Interestingly, providing beta glucan treatment to ovariectomized rats reduced the number of degenerated neurons. Our study is the first to examine light and electron microscopic examination and immunohistochemical and stereological analysis of estrogen depletion in rats and to test protective role of beta glucan in the experimental study.
Collapse
Affiliation(s)
- Jale Selli
- a Department of Histology and Embryology , Faculty of Medicine, Ataturk University , Erzurum , Turkey and
| | - Deniz Unal
- a Department of Histology and Embryology , Faculty of Medicine, Ataturk University , Erzurum , Turkey and
| | - Filiz Mercantepe
- b Department of Internal Medicine , Faculty of Medicine, Recep Tayyip Erdogan University , Rize , Turkey
| | - Nurhan Akaras
- a Department of Histology and Embryology , Faculty of Medicine, Ataturk University , Erzurum , Turkey and
| | - Rabia Kabayel
- a Department of Histology and Embryology , Faculty of Medicine, Ataturk University , Erzurum , Turkey and
| | - Bunyami Unal
- a Department of Histology and Embryology , Faculty of Medicine, Ataturk University , Erzurum , Turkey and
| | - Hilal Atilay
- a Department of Histology and Embryology , Faculty of Medicine, Ataturk University , Erzurum , Turkey and
| |
Collapse
|
6
|
Curcumin Supplementation Decreases Intestinal Adiposity Accumulation, Serum Cholesterol Alterations, and Oxidative Stress in Ovariectomized Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5719291. [PMID: 26640615 PMCID: PMC4658407 DOI: 10.1155/2016/5719291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/21/2015] [Accepted: 01/29/2015] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the potential of curcumin oral supplementation (50 and 100 mg/Kg/day, for 30 days) in circumventing menopause-associated oxidative stress and lipid profile dysfunctions in a rat ovariectomy (OVX) model. Female Wistar rats were operated and randomly divided into either sham-operated or OVX groups. Sham-operated group (n = 8) and one OVX group (n = 11) were treated with vehicle (refined olive oil), and the other two OVX groups received curcumin at 50 or 100 mg/Kg/day doses (n = 8/group). OVX vehicle-treated animals presented a higher deposition of intestinal adipose tissue as well as increased serum levels of IL-6, LDL, and total cholesterol when compared to sham-operated rats. In addition, several oxidative stress markers in serum, blood, and liver (such as TBARS, carbonyl, reduced-sulphydryl, and nonenzymatic antioxidant defenses) were altered toward a prooxidant status by OVX. Interestingly, curcumin supplementation attenuated most of these parameters to sham comparable values. Thus, the herein presented results show that curcumin may be useful to ameliorate lipid metabolism alterations and oxidative damage associated with hormone deprivation in menopause.
Collapse
|
7
|
Mimicking the lipid peroxidation inhibitory activity of phospholipid hydroperoxide glutathione peroxidase (GPx4) by using fatty acid conjugates of a water-soluble selenolane. Molecules 2015. [PMID: 26198222 PMCID: PMC6331923 DOI: 10.3390/molecules200712364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A series of fatty acid conjugates of trans-3,4-dihydroxy-1-selenolane (DHS) were synthesized by reacting DHS with appropriate acid chlorides. The obtained monoesters were evaluated for their antioxidant capacities by the lipid peroxidation assay using a lecithin/cholesterol liposome as a model system. The observed antioxidant capacities against accumulation of the lipid hydroperoxide (LOOH) increased with increasing the alkyl chain length and became saturated for dodecanoic acid (C12) or higher fatty acid monoesters, for which the capacities were much greater than those of DHS, its tridecanoic acid (C13) diester, and PhSeSePh. On the other hand, the bacteriostatic activity of myristic acid (C14) monoester, evaluated through the colony formation assay using Bacillus subtilis, indicated that it has higher affinity to bacterial cell membranes than parent DHS. Since DHS-fatty acid conjugates would inhibit lipid peroxidation through glutathione peroxidase (GPx)-like 2e− mechanism, higher fatty acid monoesters of DHS can mimic the function of GPx4, which interacts with LOOH to reduce it to harmless alcohol (LOH). Importance of the balance between hydrophilicity and lipophilicity for the design of effective GPx4 mimics was suggested.
Collapse
|
8
|
Effects of diphenyl and p-chloro-diphenyl diselenides on feeding behavior of rats. Psychopharmacology (Berl) 2015; 232:2239-49. [PMID: 25563236 DOI: 10.1007/s00213-014-3856-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/20/2014] [Indexed: 01/23/2023]
Abstract
RATIONALE The searching for safe and effective antiobesity drugs has been the subject of intense research. Previous studies have shown several pharmacological applications of organoselenium compounds; however, their possible anorectic-like actions have not been investigated. OBJECTIVE This study aims to investigate the effects of (PhSe)2 and (p-ClPhSe)2 on feeding behavior of rats and their potential as weight-reducing agents. METHODS The effects of intraperitoneal administration of diselenides were investigated through the microstructural pattern of feeding behavior, behavioral satiety sequence (BSS), hypothalamic serotonin (5-HT) uptake, body weight, and epididymal fat content of male rats. RESULTS Our findings demonstrated that food intake of fasted rats was reduced by both diselenides (1 and 10 mg/kg). Diphenyl diselenide [(PhSe)2] (1 mg/kg) and p-chloro-diphenyl diselenide [(p-ClPhSe)2] (10 mg/kg) decreased the frequency, mean duration, and mean size of meals compared with the control treatment. The BSS structure was preserved when organoselenium compounds (1 mg/kg) were administered, and it was associated to a displacement to the left when the resting period started indicating a satiating action. Inhibition of 5-HT uptake in the hypothalamus (∼20 %) was also found in rats treated with low doses of (PhSe)2 and (p-ClPhSe)2 (1 mg/kg). Treatments with a high dose of both diselenides (10 mg/kg) carried out for 7 days induced weight loss and epididymal fat reduction in sated rats. CONCLUSION This study suggests that diselenides caused a satiating action in rats that could be partially explained by the inhibition of hypothalamic 5-HT uptake. These organoselenium compounds were potential weight-reducing agents when repeatedly administered.
Collapse
|
9
|
Iwaoka M, Sano N, Lin YY, Katakura A, Noguchi M, Takahashi K, Kumakura F, Arai K, Singh BG, Kunwar A, Priyadarsini KI. Fatty Acid Conjugates of Water-Soluble (±)-trans-Selenolane-3,4-diol: Effects of Alkyl Chain Length on the Antioxidant Capacity. Chembiochem 2015; 16:1226-34. [DOI: 10.1002/cbic.201500047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 11/11/2022]
|
10
|
Acker CI, Nogueira CW. Diphenyl diselenide protects against metabolic disorders induced by acephate acute exposure in rats. ENVIRONMENTAL TOXICOLOGY 2014; 29:665-671. [PMID: 22778074 DOI: 10.1002/tox.21793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/04/2012] [Accepted: 06/10/2012] [Indexed: 06/01/2023]
Abstract
The present study investigated the effect of diphenyl diselenide [(PhSe)2 ] on metabolic disorders induced by acephate acute exposure in rats. We also investigated a possible mechanism of action of (PhSe)2 against hyperglycemia induced by acephate. (PhSe)2 was administered to rats at a dose of 10 or 30 mg/kg by oral gavage (p.o.) 1 hour prior to acephate administration (140 mg/kg; p.o.). Glucose and corticosterone levels as well as the lipid status were determined in plasma of rats. Cardiovascular risk factors and the atherogenic index were calculated. Glycogen levels as well as tyrosine aminotransferase (TAT) and glucose-6-phosphatase (G6Pase) activities were determined in livers of rats. Cerebral acetylcholinesterase (AChE) activity was assayed. Acephate induced an increase in glucose and corticosterone levels as well as in TAT and G6Pase activities. AChE activity was inhibited by acephate. Triglyceride (TG) levels and the cardiovascular risk factor TG/high-density lipoprotein-cholesterol (HDL) were increased by acephate. (PhSe)2 was effective against the metabolic disorders induced by acephate acute exposure in rats.
Collapse
Affiliation(s)
- Carmine Inês Acker
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brasil
| | | |
Collapse
|
11
|
Van Swearingen AED, Sanchez CL, Frisbee SM, Williams A, Walker QD, Korach KS, Kuhn CM. Estradiol replacement enhances cocaine-stimulated locomotion in female C57BL/6 mice through estrogen receptor alpha. Neuropharmacology 2013; 72:236-49. [PMID: 23608737 DOI: 10.1016/j.neuropharm.2013.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/05/2013] [Accepted: 04/10/2013] [Indexed: 12/22/2022]
Abstract
Psychostimulant effects are enhanced by ovarian hormones in women and female rodents. Estradiol increases behavioral responses to psychostimulants in women and female rats, although the underlying mechanism is unknown. This study utilized mice to investigate the time frame and receptor mediation of estradiol's enhancement of cocaine-induced behavior as mice enable parallel use of genetic, surgical and pharmacological methods. The spontaneous behavior of Sham and Ovariectomized (Ovx) female wildtype (WT) mice was determined during habituation to a novel environment and after cocaine administration. Ovx mice were replaced with vehicle (sesame oil) or 17β-estradiol (E2) for 2 days or 30 min prior to a cocaine challenge to investigate the time course of E2's effects. To examine receptor mediation of estradiol effects, Ovx mice replaced for 2 days with either the ERα-selective agonist PPT or the ERβ-selective agonist DPN were compared to Sham mice, and mice lacking either ERα (αERKO) or ERβ (βERKO) were compared to WT littermates. Ovx mice exhibited fewer ambulations during habituation than Sham females. Cocaine-induced increases in behavioral ratings were greater in Sham than in Ovx mice. Two days but not 30 min of E2 replacement in Ovx mice increased cocaine responses to Sham levels. PPT replacement also increased the cocaine response relative to vehicle- or DPN- treated Ovx mice. αERKO mice displayed modestly attenuated behavioral responses to novelty and cocaine compared to αWT littermates, but no behavioral differences were found between βERKO and βWT mice. These results suggest that E2 enhances cocaine-stimulated locomotion in mice predominantly through ERα.
Collapse
Affiliation(s)
- Amanda E D Van Swearingen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Filho CB, Del Fabbro L, Boeira SP, Furian AF, Savegnago L, Soares LC, Braga AL, Jesse CR. Hepatoprotective effect ofbis(4-methylbenzoyl) diselenide against CCl4-induced oxidative damage in mice. Cell Biochem Funct 2012; 31:152-8. [DOI: 10.1002/cbf.2869] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Carlos Borges Filho
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa; Universidade Federal do Pampa; CEP 97650-000; Itaqui; RS; Brazil
| | - Lucian Del Fabbro
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa; Universidade Federal do Pampa; CEP 97650-000; Itaqui; RS; Brazil
| | - Silvana P. Boeira
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa; Universidade Federal do Pampa; CEP 97650-000; Itaqui; RS; Brazil
| | - Ana Flávia Furian
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa; Universidade Federal do Pampa; CEP 97650-000; Itaqui; RS; Brazil
| | - Lucielli Savegnago
- Centro de Desenvolvimento Tecnológico, Unidade Biotecnologia; Universidade Federal de Pelotas; Pelotas; RS; Brazil
| | - Letiére Cabreira Soares
- Departamento de Química, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria; CEP 97105-900; RS; Brazil
| | - Antonio Luiz Braga
- Departamento de Química, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria; CEP 97105-900; RS; Brazil
| | - Cristiano R. Jesse
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa; Universidade Federal do Pampa; CEP 97650-000; Itaqui; RS; Brazil
| |
Collapse
|
13
|
Acker CI, Souza ACG, Dos Santos MP, Mazzanti CM, Nogueira CW. Diphenyl diselenide attenuates hepatic and hematologic toxicity induced by chlorpyrifos acute exposure in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:3481-3490. [PMID: 22477165 DOI: 10.1007/s11356-012-0882-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 03/18/2012] [Indexed: 05/31/2023]
Abstract
PURPOSE In this study, we investigated the effect of diphenyl diselenide [(PhSe)(2)] on chlorpyrifos (CPF)-induced hepatic and hematologic toxicity in rats. METHODS Rats were pre-treated with (PhSe)(2) (5 mg/kg) via the oral route (oral gavage) once a day for 7 days. On the eighth and ninth days, rats were treated with (PhSe)(2) (5 mg/kg) 30 min prior to CPF (50 mg/kg, by subcutaneous route). The aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase activities were determined in plasma of rats. Lipid peroxidation, protein carbonyl, and non-protein thiol levels as well as catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and gluthatione S-transferase activities were determined in livers of rats. Hematological parameters were also determined. RESULTS The results showed that CPF caused hepatic oxidative damage, as demonstrated by an increase in lipid peroxidation and protein carbonyl levels which was associated with a decrease in antioxidant defenses. CPF exposure caused a reduction in the leukocyte, indicating hematologic toxicity. (PhSe)(2) was effective in attenuating these toxic effects caused by CPF exposure in rats. CONCLUSIONS The results indicated that (PhSe)(2) was effective in protecting the hepatic and hematologic toxicity induced by acute CPF exposure in rats.
Collapse
Affiliation(s)
- Carmine Inês Acker
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|