1
|
He H, Chen J, Xie J, Ding J, Pan H, Li Y, Jia H. Engineering UDP-Glycosyltransferase UGTPg29 for the Efficient Synthesis of Ginsenoside Rg3 from Protopanaxadiol. Appl Biochem Biotechnol 2025; 197:355-369. [PMID: 39120838 DOI: 10.1007/s12010-024-05009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Rare ginsenosides Rg3 and Rh2, which exhibit diverse pharmacological effects, are derivatives of protopanaxadiol (PPD). UDP-glycosyltransferases, such as the M315F variant of Bs-YjiC (Bs-YjiCm) from Bacillus subtilis and UGTPg29 from Panax ginseng, can efficiently convert PPD into Rh2 and Rh2 into Rg3, respectively. In the present study, the N178I mutation of Bs-YjiCm was introduced, resulting in an increase in Rh2 production. UDP-glycosyltransferase UGTPg29 was then engineered to improve its robustness through semi-rational design. The variant R91M/D184M/A287V/A342L, which indicated desirable stability and activity, was utilized in coupling with the N178I variant of Bs-YjiCm and sucrose synthase AtSuSy from Arabidopsis thaliana to set up a "one-pot" three-enzyme reaction for the biosynthesis of Rg3. The influential factors, including the ratio and concentration of UDP-glycosyltransferases, pH, and the concentrations of UDP, sucrose, and DMSO, were optimized. On this basis, a fed-batch strategy was adopted to achieve a Rg3 yield as high as 12.38 mM (9.72 g/L) with a final yield of 68.78% within 24 h. This work may provide promising UDP-glycosyltransferase candidates for ginsenoside biosynthesis.
Collapse
Affiliation(s)
- Huichang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiajie Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiangtao Xie
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiajie Ding
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Huayi Pan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
2
|
Jiang M, Zhu L, Xie S, Ren Z, Chen X, Liu M, Yin G. Transcriptome Profiling, Cloning, and Characterization of AnGlu04478, a Ginsenoside Hydrolyzing β-Glucosidase from Aspergillus niger NG1306. Curr Microbiol 2024; 82:56. [PMID: 39718650 PMCID: PMC11668888 DOI: 10.1007/s00284-024-04012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024]
Abstract
β-Glucosidase plays a pivotal role in transforming ginsenosides into specific minor ginsenosides. In this study, total ginsenosides from Panax notoginseng leaves were used as substrates to stimulate the growth of Aspergillus niger NG1306. Transcriptome analysis identified a β-glucosidase gene, Anglu04478 (1455 bp, 484 amino acids, 54.5 kDa, pI = 5.1), as a participant in the ginsenosides biotransformation process. This gene was cloned and expressed in Escherichia coli BL21 Transetta (DE3). The AnGlu04478 protein was purified using a Ni2+ column, and its enzymatic properties were characterized. Purified AnGlu04478 exhibited a specific activity of 32.97 U/mg when assayed against pNPG. Under optimal conditions (pH 4.5, temperature 40 °C), the kinetic parameters, Km and Vmax, for pNPG were 1.55 mmol/L and 0.014 mmol/min, respectively. Cu2+ displayed an inhibitory effect on AnGlu04478, whereas Ca2+, Co2+, and Ni2+ ions had minimal impact. The enzyme showed tolerance to ethanol and was largely unaffected by glucose feedback inhibition. Testing with ginsenosides as substrates revealed selective hydrolysis at the C3 position of ginsenosides Rb1, Rb2, Rb3, and Rc, with the metabolic pathway delineated as Rb1 → GypXVII, Rb2 → C-O, Rb3 → C-Mx1 → C-Mx, and Rc → C-Mc1. The conversion rates of ginsenosides Rb1, Rb2, Rb3, and Rc varied from 2.58 to 20.63%. With 0.5 U purified enzyme and 0.5 mg total ginsenosides, incubated at 40 °C for 12 h, the conversion rates were 42.6% for GypXVII, 10.4% for C-O, 6.27% for C-Mx1, 26.96% for C-Mx, and 90% for Rc. These results suggest that AnGlu04478 displays substrate promiscuity as a β-glucosidase, thus broadening the potential for ginsenoside biotransformation.
Collapse
Affiliation(s)
- Mingxing Jiang
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China
| | - Ling Zhu
- College of Biological Resources and Food Engineering, Qujing Normal University, 222 San Jiang Road, Qujing, 655000, Yunnan, China
| | - Shuhan Xie
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China
| | - Zhen Ren
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China
| | - Xiu Chen
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China
| | - Minjiao Liu
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China
| | - Genshen Yin
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China.
| |
Collapse
|
3
|
Wang WT, Xue YJ, Zhou JK, Zhang Z, Guo SY, Zhao CF, Bai Y, Zhu YT, Zhang LZ, Guo S, Ren GX. Exploring the antimicrobial activity of rare ginsenosides and the progress of their related pharmacological effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155904. [PMID: 39151265 DOI: 10.1016/j.phymed.2024.155904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/23/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Panax ginseng C. A. Mey is a precious medicinal resource that could be used to treat a variety of diseases. Saponins are the most important bioactive components of, and rare ginsenosides (Rg3, Rh2, Rk1 and Rg5, etc.) refer to the chemical structure changes of primary ginsenosides through dehydration and desugarization reactions, to obtain triterpenoids that are easier to be absorbed by the human body and have higher activity. PURPOSE At present, the research of P. ginseng. is widely focused on anticancer related aspects, and there are few studies on the antibacterial and skin protection effects of rare ginsenosides. This review summarizes the rare ginsenosides related to bacterial inhibition and skin protection and provides a new direction for P. ginseng research. METHODS PubMed and Web of Science were searched for English-language studies on P. ginseng published between January 2002 and March 2024. Selected manuscripts were evaluated manually for additional relevant references. This review includes basic scientific articles and related studies such as prospective and retrospective cohort studies. CONCLUSION This paper summarizes the latest research progress of several rare ginsenosides, discusses the antibacterial effect of rare ginsenosides, and finds that ginsenosides can effectively protect the skin and promote wound healing during use, so as to play an efficient antibacterial effect, and further explore the other medicinal value of ginseng. It is expected that this review will provide a wider understanding and new ideas for further research and development of P. ginseng drugs.
Collapse
Affiliation(s)
- Wen-Ting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Ya-Jie Xue
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jian-Kang Zhou
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Sheng-Yuan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chao-Fan Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu Bai
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yu-Ting Zhu
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li-Zhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Shang Guo
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Shanxi University, Taiyuan 030006, China.
| | - Gui-Xing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
4
|
Xu W, Duan C, Ma F, Li D, Li X. A Versatile β-Glycosidase from Petroclostridium xylanilyticum Prefers the Conversion of Ginsenoside Rb3 over Rb1, Rb2, and Rc to Rd by Its Specific Cleavage Activity toward 1,6-Glycosidic Linkages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17510-17523. [PMID: 39052486 DOI: 10.1021/acs.jafc.4c03909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
To convert ginsenosides Rb1, Rb2, Rb3, and Rc into Rd by a single enzyme, a putative β-glycosidase (Pxbgl) from the xylan-degrading bacterium Petroclostridium xylanilyticum was identified and used. The kcat/Km value of Pxbgl for Rb3 was 18.18 ± 0.07 mM-1/s, which was significantly higher than those of Pxbgl for other ginsenosides. Pxbgl converted almost all Rb3 to Rd with a productivity of 5884 μM/h, which was 346-fold higher than that of only β-xylosidase from Thermoascus aurantiacus. The productivity of Rd from the Panax ginseng root and Panax notoginseng leaf was 146 and 995 μM/h, respectively. Mutants N293 K and I447L from site-directed mutagenesis based on bioinformatics analysis showed an increase in specific activity of 29 and 7% toward Rb3, respectively. This is the first report of a β-glycosidase that can simultaneously remove four different glycosyls at the C-20 position of natural PPD-type ginsenosides and produce Rd as the sole product from P. notoginseng leaf extracts with the highest productivity.
Collapse
Affiliation(s)
- Wenqi Xu
- Key Laboratory of Agro-products Processing Technology, Education Department of Jilin Province, Changchun University, 6543 Weixing Road, Changchun 130022, People's Republic of China
| | - Cuicui Duan
- Key Laboratory of Agro-products Processing Technology, Education Department of Jilin Province, Changchun University, 6543 Weixing Road, Changchun 130022, People's Republic of China
| | - Fumin Ma
- Key Laboratory of Agro-products Processing Technology, Education Department of Jilin Province, Changchun University, 6543 Weixing Road, Changchun 130022, People's Republic of China
| | - Dan Li
- Key Laboratory of Agro-products Processing Technology, Education Department of Jilin Province, Changchun University, 6543 Weixing Road, Changchun 130022, People's Republic of China
- Key Laboratory of Intelligent Rehabilitation and Barrier-free For the Disabled, Ministry of Education, Changchun University, 6543 Weixing Road, Changchun 130022, People's Republic of China
| | - Xiaolei Li
- Key Laboratory of Agro-products Processing Technology, Education Department of Jilin Province, Changchun University, 6543 Weixing Road, Changchun 130022, People's Republic of China
- Key Laboratory of Intelligent Rehabilitation and Barrier-free For the Disabled, Ministry of Education, Changchun University, 6543 Weixing Road, Changchun 130022, People's Republic of China
| |
Collapse
|
5
|
Shi Z, Yang L, Yang M, Li K, Yang L, Han M. Temporal patterns of endophytic microbial heterogeneity across distinct ecological compartments within the Panax ginseng root system following deforestation for cultivation. Front Microbiol 2024; 15:1402921. [PMID: 38756733 PMCID: PMC11097776 DOI: 10.3389/fmicb.2024.1402921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Alterations in the microbial community significantly impact the yield and quality of ginseng. Yet, the dynamics of microbial community shifts within the root endophytes of ginseng across varying cultivation periods remain inadequately understood. This study zeroes in on the microbial community variations within the xylem (M), phloem (R), and fibrous roots (X) of ginseng during the fourth (F4) and fifth (F5) years of cultivation, aiming to bridge this research gap. We assessed soil physicochemical properties, enzyme activities, and nine individual saponins, complemented by high-throughput sequencing techniques (16S rDNA and ITS) to determine their profiles. The results showed that cultivation years mainly affected the microbial diversity of endophytic bacteria in ginseng fibrous roots compartment: the ASVs number and α-diversity Chao1 index of bacteria and fungi in F5X compartment with higher cultivation years were significantly higher than those in F4X compartment with lower cultivation years. It is speculated that the changes of fibrous roots bacterial groups may be related to the regulation of amino acid metabolic pathway. Such as D-glutamine and D-glutamate metabolism D-glutamine, cysteine and methionine metabolism regulation. The dominant bacteria in ginseng root are Proteobacteria (relative abundance 52.07-80.35%), Cyanobacteria (1.97-42.52%) and Bacteroidota (1.11-5.08%). Firmicutes (1.28-3.76%). There were two dominant phyla: Ascomycota (60.10-93.71%) and Basidiomycota (2.25-30.57%). Endophytic fungi were more closely related to soil physicochemical properties and enzyme activities. AN, TK, OP, SWC and EC were the main driving factors of endophytic flora of ginseng root. Tetracladium decreased with the increase of cultivation years, and the decrease was more significant in phloem (F4R: 33.36%, F5R: 16.48%). The relative abundance of Bradyrhizobium, Agrobacterium and Bacillus in each ecological niche increased with the increase of cultivation years. The relative abundance of Bradyrhizobium and Agrobacterium in F5X increased by 8.35 and 9.29 times, respectively, and Bacillus in F5M increased by 5.57 times. We found a variety of potential beneficial bacteria and pathogen antagonists related to ginseng biomass and saponins, such as Bradyrhizobium, Agrobacterium, Bacillus and Exophiala, which have good potential for practical application and development.
Collapse
Affiliation(s)
| | | | | | | | - Li Yang
- Cultivation Base of State Key Laboratory for Ecological Restoration and Ecosystem Management, College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Mei Han
- Cultivation Base of State Key Laboratory for Ecological Restoration and Ecosystem Management, College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Liu B, Gu H, Shi R, He X, Sun Z, Ren Q, Pan H. Streptomyces beigongshangae sp. nov., isolated from baijiu fermented grains, could transform ginsenosides of Panax notoginseng. Int J Syst Evol Microbiol 2024; 74. [PMID: 38767616 DOI: 10.1099/ijsem.0.006392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
A Gram-stain-positive actinomycete, designated REN17T, was isolated from fermented grains of Baijiu collected from Sichuan, PR China. It exhibited branched substrate mycelia and a sparse aerial mycelium. The optimal growth conditions for REN17T were determined to be 28 °C and pH 7, with a NaCl concentration of 0 % (w/v). ll-Diaminopimelic acid was the diagnostic amino acid of the cell-wall peptidoglycan and the polar lipids were composed of phosphatidylethanolamine, phosphatidylinositol, an unidentified phospholipid, two unidentified lipids and four unidentified glycolipids. The predominant menaquinone was MK-9 (H2), MK-9 (H4), MK-9 (H6) and MK-9 (H8). The major fatty acids were iso-C16 : 0. The 16S rRNA sequence of REN17T was most closely related to those of Streptomyces apricus SUN 51T (99.8 %), Streptomyces liliiviolaceus BH-SS-21T (99.6 %) and Streptomyces umbirnus JCM 4521T (98.9 %). The digital DNA-DNA hybridization, average nucleotide identity and average amino acid identify values between REN17T and its closest replated strain, of S. apricus SUN 51T, were 35.9, 88.9 and 87.3 %, respectively. Therefore, REN17T represents a novel species within the genus Streptomyces, for which the name Streptomyces beigongshangae sp. nov. is proposed. The type strain is REN17T (=GDMCC 4.193T=JCM 34712T). While exploring the function of the strain, REN17T was found to possess the ability to transform major ginsenosides of Panax notoginseng (Burk.) F.H. Chen (Araliaceae) into minor ginsenoside through HPLC separation, which was due to the presence of β-glucosidase. The recombinant β-glucosidase was constructed and purified, which could produce minor ginsenosides of Rg3 and C-K. Finally, the enzymatic properties were characterized.
Collapse
Affiliation(s)
- Bo Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, PR China
| | - Haoyue Gu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, PR China
| | - Rui Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan, PR China
| | - Xiahong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan, PR China
| | - Zhanbin Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, PR China
| | - Qing Ren
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, PR China
| | - Hanxu Pan
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, PR China
| |
Collapse
|
7
|
Rai S, Singh LS, Shaanker RU, Jeyaram K, Parija T, Sahoo D. Endophytic fungi of Panax sokpayensis produce bioactive ginsenoside Compound K in flask fermentation. Sci Rep 2024; 14:9318. [PMID: 38654024 DOI: 10.1038/s41598-024-56441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024] Open
Abstract
Endophytes of Panax have the potential to produce their host plant secondary metabolites, ginsenosides. Panax sokpayensis, an endemic traditional medicinal plant of the Sikkim Himalayas was explored for the isolation of endophytic fungi. In the present study, we have isolated 35 endophytic fungal cultures from the rhizome of P. sokpayensis and screened for ginsenosides production by HPLC by comparing the peak retention time with that of standard ginsenosides. The HPLC analysis revealed that out of 35 isolates, the mycelial extracts of four fungal endophytes (PSRF52, PSRF53, PSRF49 and PSRF58) exhibited peaks with a similar retention time of the standard ginsenoside, Compound K (CK). LC-ESI-MS/MS analysis led to the confirmation of ginsenoside CK production by the four fungal endophytes which showed a compound with m/z 639.6278, similar to that of standard ginsenoside CK with yield in potato dextrose broth flask fermentation ranging from 0.0019 to 0.0386 mg/g of mycelial mass in dry weight basis. The four prospective fungal endophyte isolates were identified as Thermothielavioides terrestris PSRF52, Aspergillus sp. PSRF49, Rutstroemiaceae sp. strain PSRF53, and Phaeosphaeriaceae sp. strain PSRF58 based on ITS sequencing. The present finding highlights the need for further study on growth optimization and other culture parameters to exploit the endophytes as an alternative source for ginsenoside CK production.
Collapse
Affiliation(s)
- Subecha Rai
- Institute of Bioresources and Sustainable Development (IBSD), Sikkim Centre, DBT, Tadong, Gangtok, Sikkim, 737102, India
- School of Biotechnology, KIIT-Deemed to be University, Campus XI, Patia, Bhubaneshwar, Odisha, 751024, India
| | - Laishram Shantikumar Singh
- Institute of Bioresources and Sustainable Development (IBSD), Sikkim Centre, DBT, Tadong, Gangtok, Sikkim, 737102, India.
- Department of Microbiology, Assam Down Town University, Guwahati, Assam, 781026, India.
| | - Ramanan Uma Shaanker
- School of Ecology and Conservation, Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bellary Road, Bangalore, Karnataka, 560065, India
| | - Kumaraswamy Jeyaram
- Institute of Bioresources and Sustainable Development (IBSD), Sikkim Centre, DBT, Tadong, Gangtok, Sikkim, 737102, India
| | - Tithi Parija
- School of Biotechnology, KIIT-Deemed to be University, Campus XI, Patia, Bhubaneshwar, Odisha, 751024, India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development (IBSD), Sikkim Centre, DBT, Tadong, Gangtok, Sikkim, 737102, India
- Department of Botany, University of Delhi, Delhi, 110007, India
| |
Collapse
|
8
|
Chen Q, Wang J, Gao Y, Wang Z, Gao X, Yan P. Biotransformation of American Ginseng Stems and Leaves by an Endophytic Fungus Umbelopsis sp. and Its Effect on Alzheimer's Disease Control. Nutrients 2023; 15:4878. [PMID: 38068736 PMCID: PMC10708258 DOI: 10.3390/nu15234878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Common ginsenosides can be transformed into rare ginsenosides through microbial fermentation, and some rare ginsenosides can prevent Alzheimer's disease (AD). This study aimed to transform common ginsenosides into rare ginsenosides through solid-state fermentation of American ginseng stems and leaves (AGSL) by an endophytic fungus and to explore whether fermented saponin extracts prevent AD. METHODS The powders of AGSL were fermented in a solid state by endophytic fungus. Total saponins were extracted from fermentation products using the methanol extraction method. The types of saponins were analyzed by liquid chromatography mass spectrometry (LC/MS). The Aβ42 concentration and β-secretase activity were measured by ELISA for the prevention of AD. RESULTS After AGSL was fermented by an endophytic fungus NSJG, the total saponin concentration of the fermented extract G-SL was higher than the unfermented CK-SL. Rare ginsenoside Rh1 was newly produced and the yield of compound K (561.79%), Rh2 (77.48%), and F2 (40.89%) was increased in G-SL. G-SL had a higher inhibition rate on Aβ42 concentration (42.75%) and β-secretase activity (42.22%) than CK-SL, possibly because the rare ginsenoside Rh1, Rh2, F2, and compound K included in it have a strong inhibitory effect on AD. CONCLUSION The fermented saponin extracts of AGSL show more inhibition effects on AD and may be promising therapeutic drugs or nutrients for AD.
Collapse
Affiliation(s)
- Qiqi Chen
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Q.C.)
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Jingying Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Q.C.)
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Yuhang Gao
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Zixin Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Xiujun Gao
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Peisheng Yan
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; (Q.C.)
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| |
Collapse
|
9
|
Zhao M, Tian L, Xiao Y, Chang Y, Zhou Y, Liu S, Zhao H, Xiu Y. Heterogeneous Transformation of Ginsenoside Rb1 with Ethanol Using Heteropolyacid-Loaded Mesoporous Silica and Identification by HPLC-MS. ACS OMEGA 2023; 8:43285-43294. [PMID: 38024707 PMCID: PMC10652834 DOI: 10.1021/acsomega.3c07214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Rare ginsenosides with major pharmacological effects are barely present in natural ginseng and are required to be obtained by transformation. In the current study, ginsenoside Rb1 was chemically transformed with the involvement of ethanol molecules to prepare rare ginsenosides using the synthesized heterogeneous catalyst 12-HPW@MeSi. A total of 16 transformation products were obtained and identified using high-performance liquid chromatography coupled with multistage tandem mass spectrometry and high-resolution mass spectrometry. Ethanol molecules were involved in the production of 6 transformation products by adding to the C-20(21), C-20(22), or C-24(25) double bonds on the aglycone to produce ethoxyl groups at the C-25 and C-20 positions. Transformation pathways of ginsenoside Rb1 are summarized, which involve deglycosylation, elimination, cycloaddition, epimerization, and addition reactions. In addition, 12-HPW@MeSi was recyclable through a simple centrifugation, maintaining an 85.1% conversion rate of Rb1 after 3 cycles. This work opens up an efficient and recycled process for the preparation of rare ginsenosides with the involvement of organic molecules.
Collapse
Affiliation(s)
- Mengya Zhao
- Jilin
Ginseng Academy, Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Lu Tian
- Jilin
Ginseng Academy, Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Yusheng Xiao
- Jilin
Ginseng Academy, Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Yanyan Chang
- Jilin
Ginseng Academy, Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Yujiang Zhou
- Jilin
Ginseng Academy, Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Shuying Liu
- Jilin
Ginseng Academy, Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Huanxi Zhao
- Jilin
Ginseng Academy, Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| | - Yang Xiu
- Jilin
Ginseng Academy, Changchun University of
Chinese Medicine, Changchun 130117, P. R. China
| |
Collapse
|
10
|
Kumari P, Deepa N, Trivedi PK, Singh BK, Srivastava V, Singh A. Plants and endophytes interaction: a "secret wedlock" for sustainable biosynthesis of pharmaceutically important secondary metabolites. Microb Cell Fact 2023; 22:226. [PMID: 37925404 PMCID: PMC10625306 DOI: 10.1186/s12934-023-02234-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Many plants possess immense pharmacological properties because of the presence of various therapeutic bioactive secondary metabolites that are of great importance in many pharmaceutical industries. Therefore, to strike a balance between meeting industry demands and conserving natural habitats, medicinal plants are being cultivated on a large scale. However, to enhance the yield and simultaneously manage the various pest infestations, agrochemicals are being routinely used that have a detrimental impact on the whole ecosystem, ranging from biodiversity loss to water pollution, soil degradation, nutrient imbalance and enormous health hazards to both consumers and agricultural workers. To address the challenges, biological eco-friendly alternatives are being looked upon with high hopes where endophytes pitch in as key players due to their tight association with the host plants. The intricate interplay between plants and endophytic microorganisms has emerged as a captivating subject of scientific investigation, with profound implications for the sustainable biosynthesis of pharmaceutically important secondary metabolites. This review delves into the hidden world of the "secret wedlock" between plants and endophytes, elucidating their multifaceted interactions that underpin the synthesis of bioactive compounds with medicinal significance in their plant hosts. Here, we briefly review endophytic diversity association with medicinal plants and highlight the potential role of core endomicrobiome. We also propose that successful implementation of in situ microbiome manipulation through high-end techniques can pave the way towards a more sustainable and pharmaceutically enriched future.
Collapse
Affiliation(s)
- Poonam Kumari
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Nikky Deepa
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prabodh Kumar Trivedi
- Division of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden.
| | - Akanksha Singh
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
11
|
Wang P, Gao Y, Yang G, Zhao Y, Zhao Z, Gao G, Zhao L, Li S. Enhancing the inhibition of cell proliferation and induction of apoptosis in H22 hepatoma cells through biotransformation of notoginsenoside R1 by Lactiplantibacillus plantarum S165 into 20( S/ R)-notoginsenoside R2. RSC Adv 2023; 13:29773-29783. [PMID: 37829710 PMCID: PMC10565556 DOI: 10.1039/d3ra06029b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Notoginsenoside R2 is a crucial active saponin in Panax notoginseng (Burk.) F. H. Chen, but its natural content is relatively low. In this study, we investigated the biotransformation of notoginsenoside R1 to 20(S/R)-notoginsenoside R2 using Lactiplantibacillus plantarum S165, compared the inhibitory effects on cancer cell proliferation and conducted a mechanistic study. Notoginsenoside R1 was transformed using Lactiplantibacillus plantarum S165 at 37 °C for 21 days. The fermentation products were identified using a combination of HPLC, UPLC-MS/MS, and 13C-NMR methods. The inhibition effects of 20(S/R)-notoginsenoside R2 on H22 hepatoma cells were assessed by CCK-8 and TUNEL assays, and the underlying mechanism was investigated by Western blotting. Lactiplantibacillus plantarum S165 could effectively transform notoginsenoside R1 to 20(S/R)-notoginsenoside R2 with a conversion yield of 82.85%. Our results showed that 20(S/R)-notoginsenoside R2 inhibited H22 hepatoma cells proliferation and promoted apoptosis. The apoptosis of H22 hepatoma cells was promoted by 20(S/R)-notoginsenoside R2 through the blockade of the PI3K/AKT/mTOR signaling pathway. The biotransformation method used in this study resulted in the production of 20(S)-notoginsenoside R2 and 20(R)-notoginsenoside R2 from notoginsenoside R1, and the anti-tumor activity of the transformed substance markedly improved.
Collapse
Affiliation(s)
- Penghui Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun 130117 P. R. China
| | - Yansong Gao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences Changchun 130033 P. R. China +86 431 87063075 +86 431 87063289
| | - Ge Yang
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences Changchun 130033 P. R. China +86 431 87063075 +86 431 87063289
| | - Yujuan Zhao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences Changchun 130033 P. R. China +86 431 87063075 +86 431 87063289
| | - Zijian Zhao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences Changchun 130033 P. R. China +86 431 87063075 +86 431 87063289
| | - Ge Gao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun 130117 P. R. China
| | - Lei Zhao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine Changchun 130117 P. R. China
| | - Shengyu Li
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences Changchun 130033 P. R. China +86 431 87063075 +86 431 87063289
| |
Collapse
|
12
|
Tsipinana S, Husseiny S, Alayande KA, Raslan M, Amoo S, Adeleke R. Contribution of endophytes towards improving plant bioactive metabolites: a rescue option against red-taping of medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1248319. [PMID: 37771494 PMCID: PMC10522919 DOI: 10.3389/fpls.2023.1248319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023]
Abstract
Medicinal plants remain a valuable source for natural drug bioprospecting owing to their multi-target spectrum. However, their use as raw materials for novel drug synthesis has been greatly limited by unsustainable harvesting leading to decimation of their wild populations coupled with inherent low concentrations of constituent secondary metabolites per unit mass. Thus, adding value to the medicinal plants research dynamics calls for adequate attention. In light of this, medicinal plants harbour endophytes which are believed to be contributing towards the host plant survival and bioactive metabolites through series of physiological interference. Stimulating secondary metabolite production in medicinal plants by using endophytes as plant growth regulators has been demonstrated to be one of the most effective methods for increasing metabolite syntheses. Use of endophytes as plant growth promotors could help to ensure continuous supply of medicinal plants, and mitigate issues with fear of extinction. Endophytes minimize heavy metal toxicity in medicinal plants. It has been hypothesized that when medicinal plants are exposed to harsh conditions, associated endophytes are the primary signalling channels that induce defensive reactions. Endophytes go through different biochemical processes which lead to activation of defence mechanisms in the host plants. Thus, through signal transduction pathways, endophytic microorganisms influence genes involved in the generation of secondary metabolites by plant cells. Additionally, elucidating the role of gene clusters in production of secondary metabolites could expose factors associated with low secondary metabolites by medicinal plants. Promising endophyte strains can be manipulated for enhanced production of metabolites, hence, better probability of novel bioactive metabolites through strain improvement, mutagenesis, co-cultivation, and media adjustment.
Collapse
Affiliation(s)
- Sinawo Tsipinana
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Samah Husseiny
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Kazeem A. Alayande
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Mai Raslan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Stephen Amoo
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Agricultural Research Council – Vegetables, Industrial and Medicinal Plants, Roodeplaat, Pretoria, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
13
|
Ferreira MJ, Sierra-Garcia IN, Louvado A, Gomes NCM, Figueiredo S, Patinha C, Pinto DCGA, Cremades J, Silva H, Cunha Â. Domestication shapes the endophytic microbiome and metabolome of Salicornia europaea. J Appl Microbiol 2023; 134:lxad178. [PMID: 37587019 DOI: 10.1093/jambio/lxad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
AIMS We aim at understanding the effect of domestication on the endophytic microbiome and metabolome of Salicornia europaea and collecting evidence on the potential role of microbial populations and metabolites in the adaptation of plants to different ecological contexts (wild vs crops). METHODS AND RESULTS Samples were collected from a natural salt marsh (wild) and an intensive crop field (crop). High-throughput sequencing of the 16S rRNA gene, gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) were used to analyze the endophytic bacterial communities and the metabolite profiles of S. europaea roots, respectively. The elemental analysis of the plant shoots was performed by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS).Overall, significant differences were found between the microbiome of wild and cultivated plants. The later showed a higher relative abundance of the genera Erythrobacter, Rhodomicrobium, and Ilumatobacter than wild plants. The microbiome of wild plants was enriched in Marinobacter, Marixanthomonas, and Thalassospira. The metabolite profile of crop plants revealed higher amounts of saturated and non-saturated fatty acids and acylglycerols. In contrast, wild plants contained comparatively more carbohydrates and most macroelements (i.e. Na, K, Mg, and Ca). CONCLUSIONS There is a strong correlation between plant metabolites and the endosphere microbiome of S. europaea. In wild populations, plants were enriched in carbohydrates and the associated bacterial community was enriched in genes related to primary metabolic pathways such as nitrogen metabolism and carbon fixation. The endosphere microbiome of crop plants was predicted to have higher gene counts related to pathogenesis. Crop plants also exhibited higher amounts of azelaic acid, an indicator of exposure to phytopathogens.
Collapse
Affiliation(s)
- Maria J Ferreira
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - I Natalia Sierra-Garcia
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - António Louvado
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Newton C M Gomes
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Sandro Figueiredo
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Patinha
- Department of Geosciences & Geobiotec, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Diana C G A Pinto
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Javier Cremades
- Centre for Advanced Scientific Research (CICA), University of A Coruña, 15071 A Coruña, Spain
| | - Helena Silva
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ângela Cunha
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
14
|
Rutkowska N, Drożdżyński P, Ryngajłło M, Marchut-Mikołajczyk O. Plants as the Extended Phenotype of Endophytes-The Actual Source of Bioactive Compounds. Int J Mol Sci 2023; 24:10096. [PMID: 37373241 PMCID: PMC10298476 DOI: 10.3390/ijms241210096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
For thousands of years, plants have been used for their medicinal properties. The industrial production of plant-beneficial compounds is facing many drawbacks, such as seasonal dependence and troublesome extraction and purification processes, which have led to many species being on the edge of extinction. As the demand for compounds applicable to, e.g., cancer treatment, is still growing, there is a need to develop sustainable production processes. The industrial potential of the endophytic microorganisms residing within plant tissues is undeniable, as they are often able to produce, in vitro, similar to or even the same compounds as their hosts. The peculiar conditions of the endophytic lifestyle raise questions about the molecular background of the biosynthesis of these bioactive compounds in planta, and the actual producer, whether it is the plant itself or its residents. Extending this knowledge is crucial to overcoming the current limitations in the implementation of endophytes for larger-scale production. In this review, we focus on the possible routes of the synthesis of host-specific compounds in planta by their endophytes.
Collapse
Affiliation(s)
- Natalia Rutkowska
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (P.D.); (M.R.); (O.M.-M.)
| | | | | | | |
Collapse
|
15
|
Microorganisms for Ginsenosides Biosynthesis: Recent Progress, Challenges, and Perspectives. Molecules 2023; 28:molecules28031437. [PMID: 36771109 PMCID: PMC9921939 DOI: 10.3390/molecules28031437] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Ginsenosides are major bioactive compounds present in the Panax species. Ginsenosides exhibit various pharmaceutical properties, including anticancer, anti-inflammatory, antimetastatic, hypertension, and neurodegenerative disorder activities. Although several commercial products have been presented on the market, most of the current chemical processes have an unfriendly environment and a high cost of downstream processing. Compared to plant extraction, microbial production exhibits high efficiency, high selectivity, and saves time for the manufacturing of industrial products. To reach the full potential of the pharmaceutical resource of ginsenoside, a suitable microorganism has been developed as a novel approach. In this review, cell biological mechanisms in anticancer activities and the present state of research on the production of ginsenosides are summarized. Microbial hosts, including native endophytes and engineered microbes, have been used as novel and promising approaches. Furthermore, the present challenges and perspectives of using microbial hosts to produce ginsenosides have been discussed.
Collapse
|
16
|
Zhang NN, Jiang ZM, Li SZ, Yang X, Liu EH. Evolving interplay between natural products and gut microbiota. Eur J Pharmacol 2023; 949:175557. [PMID: 36716810 DOI: 10.1016/j.ejphar.2023.175557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
Growing evidence suggests gut microbiota status affects human health, and microbiota imbalance will induce multiple disorders. Natural products are gaining increasing attention for their therapeutical effects and less side effects. The emerging studies support that the activities of many natural products are dependent on gut microbiota, meanwhile gut microbiota is modulated by natural products. In this review, we summarized the interplay between the gut microbiota and host disease, and the emerging molecular mechanisms of the interaction between natural products and gut microbiota. Focusing on gut microbiota metabolite of various natural products, and the effects of natural products on gut microbiota, we summarized the biotransformation pathways of natural products, and discussed the effect of natural products on the composition modulation of gut microbiota, protection of gut mucosal barrier and modulation of the gut microbiota metabolites. Dissecting the interplay between gut microbiota and natural products will help elucidate the therapeutic mechanisms of natural products.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zheng-Meng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Shang-Zhen Li
- Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
17
|
Kandasamy GD, Kathirvel P. Insights into bacterial endophytic diversity and isolation with a focus on their potential applications –A review. Microbiol Res 2022; 266:127256. [DOI: 10.1016/j.micres.2022.127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
|
18
|
Production of Minor Ginsenosides from Panax notoginseng Flowers by Cladosporium xylophilum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196615. [PMID: 36235151 PMCID: PMC9572572 DOI: 10.3390/molecules27196615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
Panax notoginseng flowers have the highest content of saponins compared to the other parts of Panax notoginseng, but minor ginsenosides have higher pharmacological activity than the main natural ginsenosides. Therefore, this study focused on the transformation of the main ginsenosides in Panax notoginseng flowers to minor ginsenosides using the fungus of Cladosporium xylophilum isolated from soil. The main ginsenosides Rb1, Rb2, Rb3, and Rc and the notoginsenoside Fa in Panax notoginseng flowers were transformed into the ginsenosides F2 and Rd2, the notoginsenosides Fd and Fe, and the ginsenoside R7; the conversion rates were 100, 100, 100, 88.5, and 100%, respectively. The transformation products were studied by TLC, HPLC, and MS analyses, and the biotransformation pathways of the major ginsenosides were proposed. In addition, the purified enzyme of the fungus was prepared with the molecular weight of 66.4 kDa. The transformation of the monomer ginsenosides by the crude enzyme is consistent with that by the fungus. Additionally, three saponins were isolated from the transformation products and identified as the ginsenoside Rd2 and the notoginsenosides Fe and Fd by NMR and MS analyses. This study provided a unique and powerful microbial strain for efficiently transformating major ginsenosides in P. notoginseng flowers to minor ginsenosides, which will help raise the functional and economic value of the P. notoginseng flower.
Collapse
|
19
|
Pal G, Saxena S, Kumar K, Verma A, Sahu PK, Pandey A, White JF, Verma SK. Endophytic Burkholderia: Multifunctional roles in plant growth promotion and stress tolerance. Microbiol Res 2022; 265:127201. [PMID: 36167006 DOI: 10.1016/j.micres.2022.127201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/21/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022]
Abstract
The genus Burkholderia has proven potential in improving plant performance. In recent decades, a huge diversity of Burkholderia spp. have been reported with diverse capabilities of plant symbiosis which could be harnessed to enhance plant growth and development. Colonization of endophytic Burkholderia spp. have been extensively studied through techniques like advanced microscopy, fluorescent labelling, PCR based assays, etc., and found to be systemically distributed in plants. Thus, use of these biostimulant microbes holds the promise of improving quality and quantity of crops. The endophytic Burkholderia spp. have been found to support plant functions along with boosting nutrient availability, especially under stress. Endophytic Burkholderia spp. improve plant survival against deadly pathogens via mechanisms like competition, induced systemic resistance, and antibiosis. At the same time, they are reported to extend plant tolerance towards multiple abiotic stresses especially drought, salinity, and cold. Several attempts have been made to decipher the potential of Burkholderia spp. by genome mining, and these bacteria have been found to harbour genes for plant symbiosis and for providing multiple benefits to host plants. Characteristics specific for host recognition and nutrient acquisition were confirmed in endophytic Burkholderia by genomics and proteomics-based studies. This could pave the way for harnessing Burkholderia spp. for biotechnological applications like biotransformation, phytoremediation, insecticidal activity, antimicrobials, etc. All these make Burkholderia spp. a promising microbial agent in improving plant performance under multiple adversities. Thus, the present review highlights critical roles of endophytic Burkholderia spp., their colonization, alleviation of biotic and abiotic stresses, biotechnological applications and genomic insights.
Collapse
Affiliation(s)
- Gaurav Pal
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP, India
| | - Samiksha Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Kanchan Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP, India
| | - Anand Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP, India
| | - Pramod K Sahu
- National Bureau of Agriculturally Important Microorganisms, Mau, UP, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - James F White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA.
| | - Satish K Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
20
|
Yang Z, Deng J, Liu M, He C, Feng X, Liu S, Wei S. A review for discovering bioactive minor saponins and biotransformative metabolites in Panax quinquefolius L. Front Pharmacol 2022; 13:972813. [PMID: 35979234 PMCID: PMC9376941 DOI: 10.3389/fphar.2022.972813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Panax quinquefolius L. has attracted extensive attention worldwide because of its prominent pharmacological properties on type 2 diabetes, cancers, central nervous system, and cardiovascular diseases. Ginsenosides are active phytochemicals of P. quinquefolius, which can be classified as propanaxdiol (PPD)-type, propanaxtriol (PPT)-type, oleanane-type, and ocotillol-type oligo-glycosides depending on the skeleton of aglycone. Recently, advanced analytical and isolated methods including ultra-performance liquid chromatography tandem with mass detector, preparative high-performance liquid chromatography, and high speed counter-current chromatography have been used to isolate and identify minor components in P. quinquefolius, which accelerates the clarification of the material basis. However, the poor bioavailability and undetermined bio-metabolism of most saponins have greatly hindered both the development of medicines and the identification of their real active constituents. Thus, it is essential to consider the bio-metabolism of constituents before and after absorption. In this review, we described the structures of minor ginsenosides in P. quinquefolius, including naturally occurring protype compounds and their in vivo metabolites. The preclinical and clinical pharmacological studies of the ginsenosides in the past few years were also summarized. The review will promote the reacquaint of minor saponins on the growing appreciation of their biological role in P. quinquefolius.
Collapse
Affiliation(s)
- Zhiyou Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jiahang Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Mingxin Liu
- College of Electrical and Information Engineering, Guangdong Ocean University, Zhanjiang, China
| | - Chuantong He
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xinyue Feng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shucheng Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shuai Wei
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
21
|
Singh D, Thapa S, Mahawar H, Kumar D, Geat N, Singh SK. Prospecting potential of endophytes for modulation of biosynthesis of therapeutic bioactive secondary metabolites and plant growth promotion of medicinal and aromatic plants. Antonie van Leeuwenhoek 2022; 115:699-730. [PMID: 35460457 DOI: 10.1007/s10482-022-01736-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/26/2022] [Indexed: 01/13/2023]
Abstract
Medicinal and aromatic plants possess pharmacological properties (antidiabetes, anticancer, antihypertension, anticardiovascular, antileprosy, etc.) because of their potential to synthesize a wide range of therapeutic bioactive secondary metabolites. The concentration of bioactive secondry metabolites depends on plant species, local environment, soil type and internal microbiome. The internal microbiome of medicinal plants plays the crucial role in the production of bioactive secondary metabolites, namely alkaloids, steroids, terpenoids, peptides, polyketones, flavonoids, quinols and phenols. In this review, the host specific secondry metabolites produced by endophytes, their therapeutic properties and host-endophytes interaction in relation to production of bioactive secondry metaboloites and the role of endophytes in enhancing the production of bioactive secondry metabolites is discussed. How biological nitrogen fixation, phosphorus solubilization, micronutrient uptake, phytohormone production, disease suppression, etc. can play a vital role in enhacing the plant growth and development.The role of endophytes in enhancing the plant growth and content of bioactive secondary metabolites in medicinal and aromatic plants in a sustainable mode is highlighted.
Collapse
Affiliation(s)
- Devendra Singh
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India.
| | - Shobit Thapa
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau Nath Bhanjan, Uttar Pradesh, 275103, India
| | - Himanshu Mahawar
- ICAR-Directorate of Weed Research (DWR), Maharajpur, Jabalpur, Madhya Pradesh, 482004, India
| | - Dharmendra Kumar
- ICAR- Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Neelam Geat
- Agricultural Research Station, Agriculture University, Jodhpur, Rajasthan, 342304, India
| | - S K Singh
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India
| |
Collapse
|
22
|
Goodwin PH. The Endosphere Microbiome of Ginseng. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030415. [PMID: 35161395 PMCID: PMC8838582 DOI: 10.3390/plants11030415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 05/14/2023]
Abstract
The endosphere of ginseng contains a variety of fungal, bacterial, archaeal and viral endophytes. Bacterial endophytes are primarily members of the Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, and fungal endophytes are primarily members of the Ascomycota, Zygomycota and Basidiomycota. Although archaea and viruses have been detected in symptomless ginseng plants, little is known about them. Many but not all studies have shown roots having the highest abundance and diversity of bacterial and fungal endophytes, with some endophytes showing specificity to above or belowground tissues. Abundance often increases with root age, although diversity can decrease, possibly related to increases in potential latent fungal pathogen infections. The descriptions of many endophytes that can metabolize ginsenosides indicate an adaptation of the microbes to the unique combination of secondary metabolites found in ginseng tissues. Most research on the benefits provided by bacterial and fungal endophytes has concentrated on improved plant nutrition, growth promotion and increased disease resistance, but little on their ability to increase abiotic stress resistance. Some other areas where more research is needed is field trials with endophyte-treated plants grown in various environments, genomic/metagenomic analysis of endophytes, and the effects of endophytes on induced disease resistance and abiotic stress tolerance.
Collapse
Affiliation(s)
- Paul H Goodwin
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
23
|
Chu LL, Bae H. Bacterial endophytes from ginseng and their biotechnological application. J Ginseng Res 2022; 46:1-10. [PMID: 35035239 PMCID: PMC8753428 DOI: 10.1016/j.jgr.2021.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Ginseng has been well-known as a medicinal plant for thousands of years. Bacterial endophytes ubiquitously colonize the inside tissues of ginseng without any disease symptoms. The identification of bacterial endophytes is conducted through either the internal transcribed spacer region combined with ribosomal sequences or metagenomics. Bacterial endophyte communities differ in their diversity and composition profile, depending on the geographical location, cultivation condition, and tissue, age, and species of ginseng. Bacterial endophytes have a significant effect on the growth of ginseng through indole-3-acetic acid (IAA) and siderophore production, phosphate solubilization, and nitrogen fixation. Moreover, bacterial endophytes can protect ginseng by acting as biocontrol agents. Interestingly, bacterial endophytes isolated from Panax species have the potential to produce ginsenosides and bioactive metabolites, which can be used in the production of food and medicine. The ability of bacterial endophytes to transform major ginsenosides into minor ginsenosides using β-glucosidase is gaining increasing attention as a promising biotechnology. Recently, metabolic engineering has accelerated the possibilities for potential applications of bacterial endophytes in producing beneficial secondary metabolites.
Collapse
Affiliation(s)
- Luan Luong Chu
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, Viet Nam
- Bioresource Research Center, Phenikaa University, Hanoi, Viet Nam
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
24
|
Liang Y, Wei G, Ning K, Zhang G, Liu Y, Dong L, Chen S. Contents of lobetyolin, syringin, and atractylolide III in Codonopsis pilosula are related to dynamic changes of endophytes under drought stress. Chin Med 2021; 16:122. [PMID: 34809641 PMCID: PMC8607676 DOI: 10.1186/s13020-021-00533-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023] Open
Abstract
Background Codonopsis pilosula, an important medicinal plant, can accumulate certain metabolites under moderate drought stress. Endophytes are involved in the metabolite accumulations within medicinal plants. It is still unknown that the endophytes of C. pilosula are associated with the accumulations of metabolites. This study aims to investigate the promoting effect of endophytes on the accumulations of active substances in C. pilosula under drought stress. Methods High–performance liquid chromatography and high–throughput sequencing technology were performed to investigate changes in the contents of secondary metabolite and endophyte abundances of C. pilosula under drought stress, respectively. Spearman’s correlation analysis was further conducted to identify the endophytic biomarkers related to accumulations of pharmacodynamic compounds. Culture-dependent experiments were performed to confirm the functions of endophytes in metabolite accumulations. Results The distribution of pharmacological components and diversity and composition of endophytes showed tissue specificity within C. pilosula. The contents of lobetyolin, syringin, and atractylolide III in C. pilosula under drought stress were increased by 8.47%‒86.47%, 28.78%‒230.98%, and 32.17%‒177.86%, respectively, in comparison with those in untreated groups. The Chao 1 and Shannon indices in different parts of drought–stressed C. pilosula increased compared with those in untreated parts. The composition of endophytic communities in drought treatment parts of C. pilosula was different from that in control parts. A total of 226 microbial taxa were identified as potential biomarkers, of which the abundances of 42 taxa were significantly and positively correlated to the pharmacodynamic contents. Culture-dependent experiments confirmed that the contents of lobetyolin and atractylolide III were increased by the application of Epicoccum thailandicum, Filobasidium magnum, and Paraphoma rhaphiolepidis at the rates of 11.12%‒46.02%, and that the content of syringin was increased by Pseudomonas nitroreducens at the rates of 118.61%‒119.36%. Conclusions Certain endophytes participated in the accumulations of bioactive metabolites, which provided a scientific evidence for the development and application of microorganisms to improve the quality of traditional Chinese medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00533-z.
Collapse
Affiliation(s)
- Yichuan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Kang Ning
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Youping Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China.
| |
Collapse
|
25
|
Xie G, Guo BQ, Li XM, Liu S, Liu HX, Wang YZ. Enhancement of biotransformation of ginsenosides in white ginseng roots by aerobic co-cultivation of Bacillus subtilis and Trichoderma reesei. Appl Microbiol Biotechnol 2021; 105:8265-8276. [PMID: 34661708 DOI: 10.1007/s00253-021-11631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/26/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022]
Abstract
In the present work, the biotransformation of ginsenosides in white ginseng roots was innovatively investigated using the aerobic fermentation by the co-cultivation of Bacillus subtilis and Trichoderma reesei. It is found that in the co-cultivation mode, the optimal nitrogen source was corn steep liquor, and the loading of ginseng powder and inoculation proportion of B. subtilis and T. reesei were 15 g/L and 1:4, respectively. The total ginsenoside yield and production of minor ginsenosides in the co-cultivation mode obviously enhanced in comparison to the monoculture mode. Meanwhile, the maximal total ginsenoside yield of 21.79% and high hydrolase activities were achieved using the staged inoculation at the inoculation proportion of 1:4 in the co-cultivation mode, the production of minor ginsenosides such as Rg3 and Rh1, Rh2 was significantly strengthened, and the pharmacological activities of the fermented solution obviously improved. The enhancement of ginsenoside transformation can be mainly attributed to hydrolysis of the produced hydrolases and metabolism of two probiotics. This result clearly reveals that using the staged inoculation in co-cultivation fermentation mode was favor of the ginsenoside biotransformation in ginseng due to non-synchronous cell growth and different metabolic pathways of both probiotics. This work can provide a novel method for enhancing ginsenoside transformation of ginseng.Key points• Co-cultivation fermentation significantly promoted ginsenoside biotransformation.• The staged inoculation in co-culture mode was an optimal operation method.• The pharmacological activity of the co-cultured solution was significantly enhanced.
Collapse
Affiliation(s)
- Guo Xie
- Gene and Protein Engineering Technology Research Center of Guangdong Province, Institutes of Zhongshan, University of Electronic Science and Technology of China, Zhongshan, 528402, Guangdong Province, China
| | - Bian-Qin Guo
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Xiao-Min Li
- Perfect (China) Co., Ltd., Zhongshan, 528402, Guangdong Province, China
| | - Shuai Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Hong-Xia Liu
- Perfect (China) Co., Ltd., Zhongshan, 528402, Guangdong Province, China
| | - Yong-Zhong Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
26
|
Nakayasu M, Yamazaki S, Aoki Y, Yazaki K, Sugiyama A. Triterpenoid and Steroidal Saponins Differentially Influence Soil Bacterial Genera. PLANTS (BASEL, SWITZERLAND) 2021; 10:2189. [PMID: 34685998 PMCID: PMC8538258 DOI: 10.3390/plants10102189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022]
Abstract
Plant specialized metabolites (PSMs) are secreted into the rhizosphere, i.e., the soil zone surrounding the roots of plants. They are often involved in root-associated microbiome assembly, but the association between PSMs and microbiota is not well characterized. Saponins are a group of PSMs widely distributed in angiosperms. In this study, we compared the bacterial communities in field soils treated with the pure compounds of four different saponins. All saponin treatments decreased bacterial α-diversity and caused significant differences in β-diversity when compared with the control. The bacterial taxa depleted by saponin treatments were higher than the ones enriched; two families, Burkholderiaceae and Methylophilaceae, were enriched, while eighteen families were depleted with all saponin treatments. Sphingomonadaceae, which is abundant in the rhizosphere of saponin-producing plants (tomato and soybean), was enriched in soil treated with α-solanine, dioscin, and soyasaponins. α-Solanine and dioscin had a steroid-type aglycone that was found to specifically enrich Geobacteraceae, Lachnospiraceae, and Moraxellaceae, while soyasaponins and glycyrrhizin with an oleanane-type aglycone did not specifically enrich any of the bacterial families. At the bacterial genus level, the steroidal-type and oleanane-type saponins differentially influenced the soil bacterial taxa. Together, these results indicate that there is a relationship between the identities of saponins and their effects on soil bacterial communities.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan; (M.N.); (K.Y.)
| | - Shinichi Yamazaki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (S.Y.); (Y.A.)
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (S.Y.); (Y.A.)
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan; (M.N.); (K.Y.)
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan; (M.N.); (K.Y.)
| |
Collapse
|
27
|
Wei G, Chen Z, Wang B, Wei F, Zhang G, Wang Y, Zhu G, Zhou Y, Zhao Q, He M, Dong L, Chen S. Endophytes isolated from Panax notoginseng converted ginsenosides. Microb Biotechnol 2021; 14:1730-1746. [PMID: 34081833 PMCID: PMC8313278 DOI: 10.1111/1751-7915.13842] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/02/2021] [Accepted: 05/13/2021] [Indexed: 01/02/2023] Open
Abstract
Endophytes may participate in the conversion of metabolites within medicinal plants, influencing the efficacy of host. However, the distribution of endophytes within medicinal plants P. notoginseng and how it contributes to the conversion of saponins are not well understood. Here, we determined the distribution of saponins and endophytes within P. notoginseng compartments and further confirm the saponin conversion by endophytes. We found metabolites showed compartment specificity within P. notoginseng. Potential saponin biomarkers, such as Rb1, Rg1, Re, Rc and Rd, were obtained. Endophytic diversity, composition and co-occurrence networks also showed compartment specificity, and bacterial alpha diversity values were highest in root compartment, consistently decreased in the stem and leaf compartments, whereas those of fungi showed the opposite trend. Potential bacterial biomarkers, such as Rhizobium, Bacillus, Pseudomonas, Enterobacter, Klebsiella, Pantoea and fungal biomarkers Phoma, Epicoccum, Xylariales, were also obtained. Endophytes related to saponin contents were found by Spearman correlation analysis, and further verification experiments showed that Enterobacter chengduensis could convert ginsenoside Rg1 to F1 at a rate of 13.24%; Trichoderma koningii could convert ginsenoside Rb1 to Rd at a rate of 40.00% and to Rg3 at a rate of 32.31%; Penicillium chermesinum could convert ginsenoside Rb1 to Rd at a rate of 74.24%.
Collapse
Affiliation(s)
- Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesNo.16 Nanxiaojie, Dongzhimennei AveBeijing100700China
| | - Zhongjian Chen
- Institute of Sanqi ResearchWenshan UniversityWenshan663000China
| | - Bo Wang
- Hubei Institute for Drug ControlWuhan430012China
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd.Wenshan663000China
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesNo.16 Nanxiaojie, Dongzhimennei AveBeijing100700China
| | - Yong Wang
- Institute of Sanqi ResearchWenshan UniversityWenshan663000China
| | - Guangwei Zhu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesNo.16 Nanxiaojie, Dongzhimennei AveBeijing100700China
| | - Yuxin Zhou
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesNo.16 Nanxiaojie, Dongzhimennei AveBeijing100700China
- Hubei Institute for Drug ControlWuhan430012China
| | - Qinghe Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesNo.16 Nanxiaojie, Dongzhimennei AveBeijing100700China
| | - Mingjun He
- Hainan Branch Institute of Medicinal PlantChinese Academy of Medical Sciences & Peking Union Medical CollegeWanning571533China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesNo.16 Nanxiaojie, Dongzhimennei AveBeijing100700China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesNo.16 Nanxiaojie, Dongzhimennei AveBeijing100700China
| |
Collapse
|
28
|
Chen Y, Hu B, Xing J, Li C. Endophytes: the novel sources for plant terpenoid biosynthesis. Appl Microbiol Biotechnol 2021; 105:4501-4513. [PMID: 34047817 PMCID: PMC8161352 DOI: 10.1007/s00253-021-11350-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022]
Abstract
Terpenoids are natural compounds predominantly present in plants. They have many pharmaceutical and/or nutritional functions, and have been widely applied in medical, food, and cosmetics industries. Recently, terpenoids have been used in the clinical treatment of COVID-19 due to the good antiviral activities. The increasing demand for terpenoids in international markets poses a serious threat to many plant species. For environmentally sustainable development, microbial cell factories have been utilized as the promising platform to produce terpenoids. Nevertheless, the bioproduction of most terpenoids cannot meet commercial requirements due to the low cost-benefit ratio until now. The biosynthetic potential of endophytes has gained attention in recent decades owing to the continual discovery of endophytes capable of synthesizing plant bioactive compounds. Accordingly, endophytes could be alternative sources of terpenoid-producing strains or terpenoid synthetic genes. In this review, we summarized the research progress describing the main and supporting roles of endophytes in terpenoid biosynthesis and biotransformation, and discussed the current problems and challenges which may prevent the further exploitation. This review will improve our understanding of endophyte resources for terpenoid production in industry in the future. The four main research interests on endophytes for terpenoid production. A: Isolation of terpenoid-producing endophytes; B: The heterologous expression of endophyte-derived terpenoid synthetic genes; C: Endophytes promoting their hosts' terpenoid production. The blue dashed arrows indicate signal transduction; D: Biotransformation of terpenoids by endophytes or their enzymes. Key points• The mechanisms employed by endophytes in terpenoid synthesis in vivo and in vitro.• Endophytes have the commercial potentials in terpenoid bioproduction and biotransformation.• Synthetic biology and multiomics will improve terpenoid bioproduction in engineered cell factories.
Collapse
Affiliation(s)
- Yachao Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Bing Hu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun Li
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
29
|
Bacterial Endophytes: The Hidden Actor in Plant Immune Responses against Biotic Stress. PLANTS 2021; 10:plants10051012. [PMID: 34069509 PMCID: PMC8161118 DOI: 10.3390/plants10051012] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Bacterial endophytes constitute an essential part of the plant microbiome and are described to promote plant health by different mechanisms. The close interaction with the host leads to important changes in the physiology of the plant. Although beneficial bacteria use the same entrance strategies as bacterial pathogens to colonize and enter the inner plant tissues, the host develops strategies to select and allow the entrance to specific genera of bacteria. In addition, endophytes may modify their own genome to adapt or avoid the defense machinery of the host. The present review gives an overview about bacterial endophytes inhabiting the phytosphere, their diversity, and the interaction with the host. Direct and indirect defenses promoted by the plant-endophyte symbiont exert an important role in controlling plant defenses against different stresses, and here, more specifically, is discussed the role against biotic stress. Defenses that should be considered are the emission of volatiles or antibiotic compounds, but also the induction of basal defenses and boosting plant immunity by priming defenses. The primed defenses may encompass pathogenesis-related protein genes (PR family), antioxidant enzymes, or changes in the secondary metabolism.
Collapse
|
30
|
Wu W, Chen W, Liu S, Wu J, Zhu Y, Qin L, Zhu B. Beneficial Relationships Between Endophytic Bacteria and Medicinal Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:646146. [PMID: 33968103 PMCID: PMC8100581 DOI: 10.3389/fpls.2021.646146] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
Plants benefit extensively from endophytic bacteria, which live in host plant tissues exerting no harmful effects. Bacterial endophytes promote the growth of host plants and enhance their resistance toward various pathogens and environmental stresses. They can also regulate the synthesis of secondary metabolites with significant medicinal properties and produce various biological effects. This review summarizes recent studies on the relationships between bacterial endophytes and medicinal plants. Endophytic bacteria have numerous applications in agriculture, medicine, and other industries: improving plant growth, promoting resistance toward both biotic and abiotic stresses, and producing metabolites with medicinal potential. Their distribution and population structure are affected by their host plant's genetic characteristics and health and by the ecology of the surrounding environment. Understanding bacterial endophytes can help us use them more effectively and apply them to medicinal plants to improve yield and quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Luping Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
31
|
Highly regioselective hydrolysis of the glycosidic bonds in ginsenosides catalyzed by snailase. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Biotransformation of ginsenoside Rc to Rd by endophytic bacterium Bacillus sp. G9y isolated from Panax quinquefolius. Antonie van Leeuwenhoek 2021; 114:437-444. [PMID: 33619598 DOI: 10.1007/s10482-021-01529-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
To isolate endophytic bacterium with the ability to specifically convert ginsenoside Rc from Panax quinquefolius. An endophytic bacterium G9y was isolated from Panax quinquefolius and indentified as Bacillus sp. based on 16s rDNA gene sequence. Ginsenoside Rc was effectively converted to Rd by G9y, which was confirmed by thin-layer chromatography and high performance liquid chromatography (HPLC) analysis. The biotransformation conditions were further optimized as follows: inoculum amount 5%, converting temperature 45 °C, medium beef extract peptone broth at pH of 7, and the time of Rc addition was 4 h after bacterium G9y growth, under which ginsenoside Rc was completely converted to Rd by bacterium G9y within 25 h after inoculation. A strain of G9y with the ability to convert ginsenoside Rc into Rd was screened from endophytic bacteria isolated from P. quinquefolius. The results provide a new microbial resource for preparing ginsenoside Rd via biotransformation, and explore a pathway for Rc utilization, which has great potential application value.
Collapse
|
33
|
Yao L, Wang J, He J, Huang L, Gao W. Endophytes, biotransforming microorganisms, and engineering microbial factories for triterpenoid saponins production. Crit Rev Biotechnol 2021; 41:249-272. [PMID: 33472430 DOI: 10.1080/07388551.2020.1869691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Triterpenoid saponins are structurally diverse secondary metabolites. They are the main active ingredient of many medicinal plants and have a wide range of pharmacological effects. Traditional production of triterpenoid saponins, directly extracted from cultivated plants, cannot meet the rapidly growing demand of pharmaceutical industry. Microorganisms with triterpenoid saponins production ability (especially Agrobacterium genus) and biotransformation ability, such as fungal species in Armillaria and Aspergillus genera and bacterial species in Bacillus and Intestinal microflora, represent a valuable source of active metabolites. With the development of synthetic biology, engineering microorganisms acquired more potential in terms of triterpenoid saponins production. This review focusses on potential mechanisms and the high yield strategies of microorganisms with inherent production or biotransformation ability of triterpenoid saponins. Advances in the engineering of microorganisms, such as Saccharomyces cerevisiae, Yarrowia lipolytica, and Escherichia coli, for the biosynthesis triterpenoid saponins de novo have also been reported. Strategies to increase the yield of triterpenoid saponins in engineering microorganisms are summarized following four aspects, that is, introduction of high efficient gene, optimization of enzyme activity, enhancement of metabolic flux to target compounds, and optimization of fermentation conditions. Furthermore, the challenges and future directions for improving the yield of triterpenoid saponins biosynthesis in engineering microorganisms are discussed.
Collapse
Affiliation(s)
- Lu Yao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Junping He
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
34
|
Kouipou Toghueo RM, Youmbi DY, Boyom FF. Endophytes from Panax species. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
35
|
Karmazyn M, Gan XT. Chemical components of ginseng, their biotransformation products and their potential as treatment of hypertension. Mol Cell Biochem 2020; 476:333-347. [PMID: 32940821 DOI: 10.1007/s11010-020-03910-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Ginseng is an ancient perennial herb belonging to the family Araliaceae and genus Panax which has been used for medical therapeutics for thousands of years, particularly in China and other Asian cultures although increasing interest in ginseng has recently emerged in western societies. Ginseng is a complex substance containing dozens of bioactive and potentially effective therapeutic compounds. Among the most studied are the ginsenosides, which are triterpene saponins possessing a wide array of potential therapeutic effects for many conditions. The quantity and type of ginsenoside vary greatly depending on ginseng species and their relative quantity in a given ginseng species is greatly affected by extraction processes as well as by subjecting ginseng to various procedures such as heating. Adding to the complexity of ginsenosides is their ability to undergo biotransformation to bioactive metabolites such as compound K by enteric bacteria following ingestion. Many ginsenosides exert vasodilatating effects making them potential candidates for the treatment of hypertension. Their vascular effects are likely dependent on eNOS activation resulting in the increased production of NO. One proposed end-mechanism involves the activation of calcium-activated potassium channels in vascular smooth cells resulting in reduced calcium influx and a vasodilatating effect, although other mechanisms have been proposed as discussed in this review.
Collapse
|
36
|
Anti-Inflammatory Effects of Fermented Bark of Acanthopanax sessiliflorus and Its Isolated Compounds on Lipopolysaccharide-Treated RAW 264.7 Macrophage Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6749425. [PMID: 32774425 PMCID: PMC7391118 DOI: 10.1155/2020/6749425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022]
Abstract
The fermentation was carried out on the bark of Acanthopanax sessiliflorus (AS). Acanthopanax species have been used in traditional medicine as tonics, sedatives, and antispasmodics. An activity-guided isolation of the fermented bark of A. sessiliflorus (FAS) yielded several phytochemicals: acanthoside D (1), acanthoside B (2), daucosterol (3), protocatechuic acid (4), chlorogenic acid methyl ester (5), ciwujiatone (6), syringaresinol (7), farnesol (8), 3,4-dicaffeoylquinic acid (9), and falcarindiol (10). HPLC analysis showed that content of lignan glycoside (1) was decreased and 4 and 7 were increased after fermentation. Anti-inflammatory activities on FAS showed the decrease of nitric oxide (NO) production, and inhibitory activities of iNOS and COX-2, proinflammatory cytokines (IL-6 and tumor necrosis factor-α), and collagenase. The aglycone, syringaresinol (7), which was increased through fermentation showed enhanced activity than 1. Thus, FAS may have the potential to treat inflammatory disorders, such as arthritis.
Collapse
|
37
|
Geraldi A. Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes. BIO INTEGRATION 2020. [DOI: 10.15212/bioi-2020-0007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract Minor ginsenodes are of great interest due to their diverse pharmacological activities such as their anti-cancer, anti-diabetic, neuroprotective, immunomodulator, and anti-inflammatory effects. The miniscule amount of minor ginsenosides in ginseng plants has driven
the development of their mass production methods. Among the various production methods for minor ginsenosides, the utilization of microorganisms and their enzymes are considered as highly specific, safe, and environmentally friendly. In this review, various minor ginsenosides production strategies,
namely utilizing microorganisms and recombinant microbial enzymes, for biotransforming major ginsenosides into minor ginsenoside, as well as constructing synthetic minor ginsenosides production pathways in yeast cell factories, are described and discussed. Furthermore, the present challenges
and future research direction for producing minor ginsenosides using those approaches are discussed.
Collapse
Affiliation(s)
- Almando Geraldi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| |
Collapse
|
38
|
Zhang C, Ma X, Zhu R, Liu Z, Gu M, Zhang J, Li Y, Xu Y, Zhu D. Analysis of the Endophytic Bacteria Community Structure and Function of Panax notoginseng Based on High-Throughput Sequencing. Curr Microbiol 2020; 77:2745-2750. [PMID: 32506240 DOI: 10.1007/s00284-020-02068-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 05/30/2020] [Indexed: 12/11/2022]
Abstract
Panax notoginseng has long been used as a Chinese herb with high medicinal value. The endophytic bacteria in this medicinal plant have multiple biological functions. High-throughput sequencing is a rapidly evolving technique that helps profile the endophytic bacterial community structure of medicinal plants. However, few studies on the endophytic bacteria in P. notoginseng, particularly in dry P. notoginseng roots as a raw medicinal material, have been conducted. In this study, fresh P. notoginseng and dry P. notoginseng were analysed using high-throughput sequencing on an Illumina MiSeq platform to explore the diversity and functions of the endophytic bacteria in different parts of P. notoginseng. The results showed that a total of 201 operational taxonomic units were obtained from fresh P. notoginseng and dry P. notoginseng. The dominant phyla in the fresh and dry P. notoginseng were Proteobacteria (85.9%) and Firmicutes (99.9%), respectively, whereas the dominant genera in these samples were Enterobacter (84.4%) and Bacillus (99.6%), respectively. Fresh P. notoginseng exhibited a higher degree of endophytic bacterial diversity than dry P. notoginseng, but functional prediction of metabolism indicated that the relative abundance of the metabolic function of terpenoids and polyketides synthesis in the dry sample was higher than that in the fresh sample. Our study indicates significant differences in the diversity and metabolic function of the endophytic bacteria between fresh and dry P. notoginseng, providing useful information for the exploitation and utilization of endophytic bacteria resources from P. notoginseng.
Collapse
Affiliation(s)
- Chen Zhang
- College of Life Science, Zhengzhou University, Henan, 450000, China
| | - Xuan Ma
- Antu Biological Engineering Co., Ltd. Zhengzhou, Zhengzhou, 450000, China
| | - Runqi Zhu
- College of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhenzhen Liu
- College of Life Science, Zhengzhou University, Henan, 450000, China
| | - Mengmeng Gu
- College of Life Science, Zhengzhou University, Henan, 450000, China
| | - Jingyuan Zhang
- College of Life Science, Zhengzhou University, Henan, 450000, China
| | - Yu Li
- College of Life Science, Zhengzhou University, Henan, 450000, China
| | - Yanyan Xu
- College of Life Science, Zhengzhou University, Henan, 450000, China
| | - Daheng Zhu
- College of Life Science, Zhengzhou University, Henan, 450000, China.
| |
Collapse
|
39
|
Mahmood A, Kataoka R. Metabolite profiling reveals a complex response of plants to application of plant growth-promoting endophytic bacteria. Microbiol Res 2020; 234:126421. [PMID: 32006789 DOI: 10.1016/j.micres.2020.126421] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/17/2019] [Accepted: 01/14/2020] [Indexed: 11/19/2022]
Abstract
Endophytic bacteria have been explored for their role in plant growth promotion, however, not much has been explored in cucumber. The metabolomic response of plants to application of such microbes also remains largely unknown. Thus, we investigated the application of endophytic bacteria to cucumber to infer their role in plant growth promotion and document metabolome response. The lowest healthy leaf-stalks were sampled from four differently sourced cucumber plants, and endophytic bacteria were isolated after surface disinfection. Initial plant growth-promoting (PGP) screening was performed to identify PGP strains out of numerous isolates, and five strains (Strains 4=Curtobacterium spp., 72=Brevibacillus spp., 167=Paenibacillus spp., 193=Bacillus spp., and 227=Microbacterium spp.) were selected based on their contribution to root growth compared with the control. The selected strains were further evaluated in pot experiments, axenic PGP trait assays, and metabolomic analysis. Results revealed that the selected isolates possessed different qualitative characteristics among indole acetic acid, siderophore production, phosphate solubilization, and 1-aminocyclopropane-1-carboxylate (ACC)-deaminase and nifH genes, and all isolates significantly enhanced plant growth in both pot experiments compared with the uninoculated control and fertilizer control. Metabolomic profiling revealed that both strains affected the plant metabolomes compared with the uninoculated control. Around 50 % of the metabolites explored had higher concentrations in either or both bacteria-applied plants compared with the uninoculated control. Differences were observed in both strains' regulation of metabolites, although both enhanced root growth near equally. Overall, endophytic bacteria significantly enhanced plant growth and tended to produce or induce release of certain metabolites within the plant endosphere.
Collapse
Affiliation(s)
- Ahmad Mahmood
- Department of Environmental Sciences, Faculty of Life & Environmental Sciences, University of Yamanashi, Takeda, Kofu, Yamanashi, Japan
| | - Ryota Kataoka
- Department of Environmental Sciences, Faculty of Life & Environmental Sciences, University of Yamanashi, Takeda, Kofu, Yamanashi, Japan.
| |
Collapse
|
40
|
Tong Q, Zhu PC, Zhuang Z, Deng LH, Wang ZH, Zeng H, Zheng GQ, Wang Y. Notoginsenoside R1 for Organs Ischemia/Reperfusion Injury: A Preclinical Systematic Review. Front Pharmacol 2019; 10:1204. [PMID: 31680976 PMCID: PMC6811647 DOI: 10.3389/fphar.2019.01204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Notoginsenoside R1 (NGR1) exerts pharmacological actions for a variety of diseases such as myocardial infarction, ischemic stroke, acute renal injury, and intestinal injury. Here, we conducted a preclinical systematic review of NGR1 for ischemia reperfusion (I/R) injury. Eight databases were searched from their inception to February 23rd, 2019; Review Manager 5.3 was applied for data analysis. CAMARADES 10-item checklist and cell 10-item checklist were used to evaluate the methodological quality. Twenty-five studies with 304 animals and 124 cells were selected. Scores of the risk of bias in animal studies ranged from 3 to 8, and the cell studies ranged from 3 to 5. NGR1 had significant effects on decreasing myocardial infarct size in myocardial I/R injury, decreasing cerebral infarction volume and neurologic deficit score in cerebral I/R injury, decreasing serum creatinine in renal I/R injury, and decreasing Park/Chiu score in intestinal I/R injury compared with controls (all P < 0.05 or P < 0.01). The multiple organ protection of NGR1 after I/R injury is mainly through the mechanisms of antioxidant, anti-apoptosis, and anti-inflammatory, promoting angiogenesis and improving energy metabolism. The findings showed the organ protection effect of NGR1 after I/R injury, and NGR1 can potentially become a novel drug candidate for ischemic diseases. Further translation studies are needed.
Collapse
Affiliation(s)
- Qiang Tong
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Chong Zhu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuang Zhuang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li-Hui Deng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-Hao Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hua Zeng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Qu Q, Yang F, Zhao C, Shi X. Analysis of the bacteria community in wild
Cordyceps cicadae
and its influence on the production of HEA and nucleosides in
Cordyceps cicadae. J Appl Microbiol 2019; 127:1759-1767. [DOI: 10.1111/jam.14432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Q.S. Qu
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| | - F. Yang
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| | - C.Y. Zhao
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| | - X.Y. Shi
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| |
Collapse
|
42
|
Ying YM, Xu YL, Yu HF, Zhang CX, Mao W, Tong CP, Zhang ZD, Tang QY, Zhang Y, Shan WG, Zhan ZJ. Biotransformation of Huperzine A by Irpex lacteus-A fungal endophyte of Huperzia serrata. Fitoterapia 2019; 138:104341. [PMID: 31470066 DOI: 10.1016/j.fitote.2019.104341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022]
Abstract
The biotransformation of huperzine A (hupA), one of the characteristic bioactive constituents of the medicinal plant Huperzia serrata, by a fungal endophyte of the host plant was studied. Two previously undescribed compounds 1-2, along with a known analog 8α,15α-epoxyhuperzine A (3), were isolated and identified. The structures of all the isolates were established by spectroscopic methods including NMR, MS, IR, and UV spectra. In particular, the absolute configurations of 1 and 2 were elucidated by CD spectra comparison and theoretic NOE strength calculation. In the LPS-induced neuro-inflammation injury assay, 1-3 exhibited moderate neuroprotective activity by increasing the viability of U251 cell lines with EC50 values of 35.3 ± 0.9, 32.1 ± 0.9, and 50.3 ± 0.8 nM, respectively.
Collapse
Affiliation(s)
- You-Min Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yi-Lian Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Hang-Fei Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Cai-Xue Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Wei Mao
- Hangzhou Zhongmeihuadong China Pharmaceutical Co., Ltd., 310011 Hangzhou, China
| | - Cui-Ping Tong
- Hangzhou Zhongmeihuadong China Pharmaceutical Co., Ltd., 310011 Hangzhou, China
| | - Zhi-Dong Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, China
| | - Qi-Yong Tang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, China
| | - Yun Zhang
- Hangzhou Zhongmeihuadong China Pharmaceutical Co., Ltd., 310011 Hangzhou, China
| | - Wei-Guang Shan
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, China.
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, China.
| |
Collapse
|
43
|
Zhan ZJ, Tian T, Xu YL, Yu HF, Zhang CX, Zhang ZD, Tang QY, Shan WG, Ying YM. Biotransformation of Huperzine B by a Fungal Endophyte of Huperzia serrata. Chem Biodivers 2019; 16:e1900299. [PMID: 31287220 DOI: 10.1002/cbdv.201900299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 11/11/2022]
Abstract
The biotransformation of huperzine B (hupB), one of the characteristic bioactive constituents of the medicinal plant Huperzia serrata, by a fungal endophyte of the host plant was studied. One new compound, 8α,15α-epoxyhuperzine B (1), along with two known oxygenated hupB analogs, 16-hydroxyhuperzine B (2) and carinatumin B (3), was isolated and identified. The structures of all the isolates were deduced by spectroscopic methods including NMR, MS, IR, and UV spectra. The known compounds 2 and 3 were obtained from a microbial source for the first time. To the best of our knowledge, it is the first report on the microbial transformation of hupB and would facilitate further structural modification of hupB by chemo-enzymatic method. In the LPS-induced neuro-inflammation injury assay, 8α,15α-epoxyhuperzine B (1) exhibited moderate neuroprotective activity by increasing the viability of U251 cell lines with an EC50 of 40.1 nm.
Collapse
Affiliation(s)
- Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ting Tian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yi-Lian Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hang-Fei Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Cai-Xue Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhi-Dong Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, P. R. China
| | - Qi-Yong Tang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, P. R. China
| | - Wei-Guang Shan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - You-Min Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
44
|
Ginsenoside Re impacts on biotransformation products of ginsenoside Rb1 by Cellulosimicrobium cellulans sp. 21 and its mechanisms. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Chen C, Zhang D, Zhao Y, Cai E, Zhu H, Gao Y. A new 3,4-seco-lupane triterpenene glycosyl ester from the leaves of Eleutherococcus sessiliflorus. Nat Prod Res 2019; 34:1927-1930. [PMID: 30672331 DOI: 10.1080/14786419.2018.1564292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A new minor 3,4-seco-lupane triterpenene glycosyl ester, named sessiloside-A1 (1), along with three known 3,4-seco-lupane triterpenenes were isolated from the which alcohol extract of the leaves of Eleutherococcus sessiliflorus (Rupr. & Maxim.) S.Y. Hu by silica gel column chromatography, and their structures were determined by spectroscopic methods (UV, IR, NMR and HRMS). Compound 1 was elucidated to be β-D-glucopyranosyl ester of chiisanogenin. At the same time, a new efficient two-step enzymatic hydrolysis method was established to transform chiisanoside (2) → divaroside (3) → 1.
Collapse
Affiliation(s)
- Chen Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Danfeng Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Enbo Cai
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yugang Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
46
|
Fu Y. Biotransformation of ginsenoside Rb1 to Gyp-XVII and minor ginsenoside Rg3 by endophytic bacterium Flavobacterium
sp. GE 32 isolated from Panax ginseng. Lett Appl Microbiol 2019; 68:134-141. [DOI: 10.1111/lam.13090] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Y. Fu
- College of Chemistry and Life Science; Anshan Normal University; Anshan China
| |
Collapse
|
47
|
Etalo D, Jeon JS, Raaijmakers JM. Modulation of plant chemistry by beneficial root microbiota. Nat Prod Rep 2018; 35:398-409. [DOI: 10.1039/c7np00057j] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Beneficial root microbiota modulate plant chemistry and represent an untapped potential to discover new pathways involved in the biosynthesis of high value natural plant products.
Collapse
Affiliation(s)
- Desalegn W. Etalo
- Netherlands Institute of Ecology NIOO-KNAW
- Department of Microbial Ecology
- Wageningen
- Netherlands
| | - Je-Seung Jeon
- Netherlands Institute of Ecology NIOO-KNAW
- Department of Microbial Ecology
- Wageningen
- Netherlands
- Institute of Biology
| | - Jos M. Raaijmakers
- Netherlands Institute of Ecology NIOO-KNAW
- Department of Microbial Ecology
- Wageningen
- Netherlands
- Institute of Biology
| |
Collapse
|
48
|
Study on Transformation of Ginsenosides in Different Methods. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8601027. [PMID: 29387726 PMCID: PMC5745656 DOI: 10.1155/2017/8601027] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/06/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022]
Abstract
Ginseng is a traditional Chinese medicine and has the extensive pharmacological activity. Ginsenosides are the major constituent in ginseng and have the unique biological activity and medicinal value. Ginsenosides have the good effects on antitumor, anti-inflammatory, antioxidative and inhibition of the cell apoptosis. Studies have showed that the major ginsenosides could be converted into rare ginsenosides, which played a significant role in exerting pharmacological activity. However, the contents of some rare ginsenosides are very little. So it is very important to find the effective way to translate the main ginsenosides to rare ginsenosides. In order to provide the theoretical foundation for the transformation of ginsenoside in vitro, in this paper, many methods of the transformation of ginsenoside were summarized, mainly including physical methods, chemical methods, and biotransformation methods.
Collapse
|