1
|
Lan Y, Hu Y, Guo Y, Ali F, Amjad N, Ouyang Q, Almutairi MH, Wang D. Microbiome analysis reveals the differences in gut fungal community between Dutch Warmblood and Mongolian horses. Microb Pathog 2024; 188:106566. [PMID: 38309310 DOI: 10.1016/j.micpath.2024.106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Similar to gut bacterial community, gut fungal community are also an important part of the gut microbiota and play crucial roles in host immune regulation and metabolism. However, most studies have focused on the gut bacterial community, and research on the gut fungal community has been limited. Dutch Warmblood (DWH) and Mongolian horses (MGH) are important equine breeds, but little research has been done on their gut fungal community. Here, we assessed differences in gut fungal community between two horse species. Results showed that a total of 2159 OTUs were found in the Dutch Warmblood and Mongolian horses, of which 308 were common. Between-group analyzes of microbial diversity showed no differences in the alpha and beta diversity of gut fungal community between the two horse species. Microbiological taxonomic surveys showed that the dominant fungal phyla (Neocallimastigomycota and Ascomycota) and genera (unclassified_Neocallimastigaceae and Anaeromyces) were the same without being affected by species. Although the types of dominant fungal phyla did not change, the abundances of some fungal genera changed significantly. Results of Metastats analysis showed that there were a total of 206 fungal genera that were significantly different between the two horses, among which 78 genera showed an increase and 127 genera significantly decreased in Dutch Warmblood horses compared with Mongolian horses. In conclusion, this study investigated the composition and structure of the gut fungal community of Dutch Warmblood and Mongolian horses and found significant differences in gut fungal community between both breeds. Notably, this is the first exploration of the differences in the gut fungal community of both breeds, which may help to understand the distribution characteristics of the gut fungal community of different breeds of horses and reveal the differences in the traits of different horses.
Collapse
Affiliation(s)
- Yanfang Lan
- Wuhan Business University, Wuhan, 430100, China
| | - Yunyun Hu
- Wuhan Business University, Wuhan, 430100, China
| | | | - Farah Ali
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Nouman Amjad
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dongjing Wang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa City, Tibet, 850009, China; State Key Laboratory of Highland Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa City, Tibet, 850009, China.
| |
Collapse
|
2
|
Carrillo Heredero AM, Sabbioni A, Asti V, Ablondi M, Summer A, Bertini S. Fecal microbiota characterization of an Italian local horse breed. Front Vet Sci 2024; 11:1236476. [PMID: 38425839 PMCID: PMC10902133 DOI: 10.3389/fvets.2024.1236476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
The Bardigiano horse is a traditional native Italian breed with a rich history and peculiar characteristics. Local breeds are proven to have unique genetic traits developed over generations to adapt to defined geographical regions and/or conditions. The specific microbial communities that coexist within these animals are unraveled by studying their microbiota, which permits a further step in the characterization of local heritage. This work aimed to characterize Bardigiano horse fecal microbiota composition. The data obtained were then compared with published data of a mix of athlete breeds to evaluate potential differences among local and specialized breeds. The study involved 11 Bardigiano mares between 3 and 4 years of age, from which stool was sampled for the study. Samples were processed for 16S rRNA sequencing. Data obtained were analyzed and plotted using R, RStudio, and FastTree software. The samples analyzed were similar to what literature has reported on horses of other breeds and attitudes at higher taxonomic levels (from phylum to genera). While at lower taxonomic levels, the difference was more marked highlighting specific families found in the Bardigiano breed only. Weight, province of origin, and breeding sites significantly affected microbiota composition (p-value ≤0.02, p-value ≤0.04, and p-value ≤0.05, respectively). The comparison with athlete breed showed a significant difference confirming that animal and environmental factors are crucial in determining fecal microbiota composition (p-value <0.001). Understanding the microbiota composition in local breeds like the Bardigiano horse is crucial for preserving biodiversity, managing animal health, and promoting sustainable farming practices.
Collapse
Affiliation(s)
| | | | - Vittoria Asti
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | | | | | | |
Collapse
|
3
|
Zhao Y, Ren X, Wu H, Hu H, Cheng C, Du M, Huang Y, Zhao X, Wang L, Yi L, Tao J, Li Y, Lin Y, Su S, Dugarjaviin M. Diversity and functional prediction of fungal communities in different segments of mongolian horse gastrointestinal tracts. BMC Microbiol 2023; 23:253. [PMID: 37689675 PMCID: PMC10492400 DOI: 10.1186/s12866-023-03001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Anaerobic fungi are effective fibre-degrading microorganisms in the digestive tract of horses. However, our understanding of their diversity and community structure is limited, especially in different parts of the gastrointestinal tract. RESULTS For the first time, high-throughput sequencing technology was used to analyse and predict fungal microbial diversity in different parts of the gastrointestinal tract of Mongolian horses. The results revealed that the richness and diversity of fungi in the hindgut of Mongolian horses were much higher than those in the foregut. The foregut was dominated by Basidiomycota and Ascomycota, whereas the hindgut was dominated by Neocallimastigomycota and Basidiomycota. At the genus level, the relative abundance of many pathogenic fungi (Cryptococcus, Cladosporium, Alternaria, and Sarocladium) in the foregut was significantly higher than that in the posterior gut, indicating that Mongolian horses have strong disease resistance. The prediction of fungal function also showed significant differences in the fungal flora between the foregut and the hindgut. The fungi in Mongolian horses' foreguts were mainly pathologically nutritive and contained many animal and plant pathogens, particularly in the small intestine (jejunum and ileum). This indicates that the foregut may be the most important immune site in the digestive system of Mongolian horses, which explains the high disease resistance of Mongolian horses. The number of unassigned functional groups in the posterior gut was significantly higher than that in the anterior gut, indicating that the functions of fungal groups in the posterior gut have not been fully explored, and further studies are required in the future. CONCLUSIONS Analysis of high-throughput sequencing results revealed that the fungal composition varied greatly among different gastrointestinal tract segments in Mongolian horses, whose hindgut contains many anaerobic fungi involved in plant cellulose degradation. This provides important basic data for studying fungal diversity in the digestive system of healthy horses, which can be used for the health assessment of horses and provides clues for further research on the disease resistance and digestive capacity of horses, as well as a reference for the early diagnosis of intestinal diseases and innovative treatment methods.
Collapse
Affiliation(s)
- Yiping Zhao
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xiujuan Ren
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Haiqing Wu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Biotechnology Research Centre, Hohhot, 010031, China
| | - He Hu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Biotechnology Research Centre, Hohhot, 010031, China
| | - Chao Cheng
- College of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China
| | - Ming Du
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yao Huang
- Education Department, Baotou Light Industry Vocational Technical College, Baotou, China
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Biotechnology Research Centre, Hohhot, 010031, China
| | - Liwei Wang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Biotechnology Research Centre, Hohhot, 010031, China
| | - Liuxi Yi
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jinshan Tao
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yajing Li
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yanan Lin
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Shaofeng Su
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Biotechnology Research Centre, Hohhot, 010031, China.
| | - Manglai Dugarjaviin
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
4
|
Arnold CE, Pilla R. What Is the Microbiota and What Is Its Role in Colic? Vet Clin North Am Equine Pract 2023:S0749-0739(23)00016-0. [PMID: 37121786 DOI: 10.1016/j.cveq.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The fecal microbiome of the horse is reflective of the large colon and plays an important role in the health of the horse. The microbes of the gastrointestinal tract digest fiber and produce energy for the host. Healthy horses have Firmicutes, Bacteroidetes, and Verrucromicrobia as the most common phyla. During gastrointestinal disease such as colic or colitis, the microbiome shows less diversity and changes in bacterial community composition.
Collapse
Affiliation(s)
- Carolyn E Arnold
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Street, Amarillo, Texas 79106, USA.
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
5
|
Theelen MJP, Luiken REC, Wagenaar JA, Sloet van Oldruitenborgh-Oosterbaan MM, Rossen JWA, Schaafstra FJWC, van Doorn DA, Zomer AL. Longitudinal study of the short- and long-term effects of hospitalisation and oral trimethoprim-sulfadiazine administration on the equine faecal microbiome and resistome. MICROBIOME 2023; 11:33. [PMID: 36850017 PMCID: PMC9969626 DOI: 10.1186/s40168-023-01465-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Hospitalisation and antimicrobial treatment are common in horses and significantly impact the intestinal microbiota. Antimicrobial treatment might also increase levels of resistant bacteria in faeces, which could spread to other ecological compartments, such as the environment, other animals and humans. In this study, we aimed to characterise the short- and long-term effects of transportation, hospitalisation and trimethoprim-sulfadiazine (TMS) administration on the faecal microbiota and resistome of healthy equids. METHODS In a longitudinal experimental study design, in which the ponies served as their own control, faecal samples were collected from six healthy Welsh ponies at the farm (D0-D13-1), immediately following transportation to the hospital (D13-2), during 7 days of hospitalisation without treatment (D14-D21), during 5 days of oral TMS treatment (D22-D26) and after discharge from the hospital up to 6 months later (D27-D211). After DNA extraction, 16S rRNA gene sequencing was performed on all samples. For resistome analysis, shotgun metagenomic sequencing was performed on selected samples. RESULTS Hospitalisation without antimicrobial treatment did not significantly affect microbiota composition. Oral TMS treatment reduced alpha-diversity significantly. Kiritimatiellaeota, Fibrobacteres and Verrucomicrobia significantly decreased in relative abundance, whereas Firmicutes increased. The faecal microbiota composition gradually recovered after discontinuation of TMS treatment and discharge from the hospital and, after 2 weeks, was more similar to pre-treatment composition than to composition during TMS treatment. Six months later, however, microbiota composition still differed significantly from that at the start of the study and Spirochaetes and Verrucomicrobia were less abundant. TMS administration led to a significant (up to 32-fold) and rapid increase in the relative abundance of resistance genes sul2, tetQ, ant6-1a, and aph(3")-lb. lnuC significantly decreased directly after treatment. Resistance genes sul2 (15-fold) and tetQ (six-fold) remained significantly increased 6 months later. CONCLUSIONS Oral treatment with TMS has a rapid and long-lasting effect on faecal microbiota composition and resistome, making the equine hindgut a reservoir and potential source of resistant bacteria posing a risk to animal and human health through transmission. These findings support the judicious use of antimicrobials to minimise long-term faecal presence, excretion and the spread of antimicrobial resistance in the environment. Video Abstract.
Collapse
Affiliation(s)
- Mathijs J. P. Theelen
- Department of Clinical Sciences (Equine Sciences), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, the Netherlands
- Department of Biomolecular Health Sciences (Infectious Diseases and Immunology), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Roosmarijn E. C. Luiken
- Department of Biomolecular Health Sciences (Infectious Diseases and Immunology), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Jaap A. Wagenaar
- Department of Biomolecular Health Sciences (Infectious Diseases and Immunology), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective/OIE Reference Laboratory for Campylobacteriosis, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | | | - John W. A. Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, Ste #1100, Salt Lake City, Utah 84112 USA
| | - Femke J. W. C. Schaafstra
- HAS University of Applied Sciences, Onderwijsboulevard 221, 5223 DE ‘s-Hertogenbosch, the Netherlands
- Department of Population Health Sciences (Farm Animal Health), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - David A. van Doorn
- Department of Clinical Sciences (Equine Sciences), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, the Netherlands
- Department of Population Health Sciences (Farm Animal Health), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Aldert L. Zomer
- Department of Biomolecular Health Sciences (Infectious Diseases and Immunology), Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective/OIE Reference Laboratory for Campylobacteriosis, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| |
Collapse
|
6
|
Lv S, Zhang Y, Zhang Z, Meng S, Pu Y, Liu X, Liu L, Ma Y, Liu W, Jiang L. Diversity of the fecal microbiota in Chinese ponies. Front Vet Sci 2023; 10:1102186. [PMID: 36777669 PMCID: PMC9909481 DOI: 10.3389/fvets.2023.1102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The gut microbiomes of equine are plentiful and intricate, which plays an important part in the growth. However, there is a relative lack of information on the microbial diversity in the pony's gut. Methods In this article, 118 fecal samples from DeBa pony, NiQi pony and GuZh horse were studied by 16S rRNA amplicon sequencing. Results Diversity analysis was used to determine the difference of gut microbiota composition among different breeds. Alpha diversity analysis showed that the gut microbiota of NiQi ponies were abundant and various. Beta diversity analysis showed that the microorganisms constitution of DeBa ponies was more similar to that of NiQi ponies. LDA Effect Size (LEfSe) analysis result that the microorganism biomarkers for NiQi pony at the genus level were Phascolarctobacterium, Paludibacter, and Fibrobacter; the bacterial biomarker for DeBa pony was Streptococcus and Prevotella; and the bacterial biomarkers for GuZh horses was Treponema, Treponema Mogibacterium, Adlercreutzia, and Blautia. The correlation analysis between genera with >1% abundance and horse height found that Streptococcus (P < 0.01), Treponema (P < 0.01), Coprococcus (P < 0.01), Prevotella (P < 0.01), Phascolarctobacterium (P < 0.01), and Mogibacterium (P < 0.01) were significantly associated with horses' height. The functional prediction results indicated that DeBa pony have a microbiota functional more similar to NiQi pony. Discussion For the first time, our results announce the species composition and structure of the gut microbiota in Chinese ponies. At the same time, our results can provide theoretical reference for further understanding the healthy breeding, feeding management and disease prevention of horses.
Collapse
Affiliation(s)
- Shipeng Lv
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China,Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yanli Zhang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhengkai Zhang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Sihan Meng
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yabin Pu
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xuexue Liu
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Lingling Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Yuehui Ma
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China,*Correspondence: Wujun Liu ✉
| | - Lin Jiang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China,Lin Jiang ✉
| |
Collapse
|
7
|
Pfeifle RL, Ericsson AC, McCoy AM, Boothe DM, Wooldridge AA, Groover ES, Sierra-Rodriguez T, Lascola KM. Multidose misoprostol pharmacokinetics and its effect on the fecal microbiome in healthy, adult horses. Am J Vet Res 2023. [DOI: 10.2460/ajvr.22.09.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract
OBJECTIVE
To compare the pharmacokinetics between repeated doses and to characterize changes in the fecal microbiome after oral and rectal multidose misoprostol administration.
ANIMALS
6 healthy university-owned geldings.
PROCEDURES
In a randomized, crossover study, misoprostol (5 μg/kg) was administered orally or rectally every 8 hours for 10 doses, or not administered (control), with a 21-day washout between treatments. Concentration-versus-time data for dose 1 and dose 10 were subject to noncompartmental analysis. For microbiota analysis using 16S rRNA amplicon sequencing, manure was collected 7 days before study onset, immediately before dose 1, and 6 hours, 7 days, and 14 days after dose 10, with time-matched points in controls.
RESULTS
Repeated dosing-related differences in pharmacokinetic parameters were not detected for either administration route. The area under the concentration-versus-time curve was greater (P < .04) after oral versus rectal administration. The relative bioavailability of rectal administration was 4 to 86% of that of oral administration. Microbial composition, richness, and β-diversity differed among subjects (P < .001 all) while only composition differed between treatments (P ≤ .01). Richness was decreased 6 hours after dose 10 and at the control-matched time point (P = .0109) in all subjects. No other differences for time points, treatments, or their interactions were observed.
CLINICAL RELEVANCE
Differences in systemic exposure were associated with the route of administration but were not detected after repeated administration of misoprostol. Differences in microbiota parameters were primarily associated with interindividual variation and management rather than misoprostol administration.
Collapse
Affiliation(s)
- Rachel L. Pfeifle
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Aaron C. Ericsson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri Colombia, MO
| | - Annette M. McCoy
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana, IL
| | - Dawn M. Boothe
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Anne A. Wooldridge
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Erin S. Groover
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Tamara Sierra-Rodriguez
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Kara M. Lascola
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL
| |
Collapse
|
8
|
Chaucheyras-Durand F, Sacy A, Karges K, Apper E. Gastro-Intestinal Microbiota in Equines and Its Role in Health and Disease: The Black Box Opens. Microorganisms 2022; 10:microorganisms10122517. [PMID: 36557769 PMCID: PMC9783266 DOI: 10.3390/microorganisms10122517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Horses are large non-ruminant herbivores and rely on microbial fermentation for energy, with more than half of their maintenance energy requirement coming from microbial fermentation occurring in their enlarged caecum and colon. To achieve that, the gastro-intestinal tract (GIT) of horses harbors a broad range of various microorganisms, differing in each GIT segment, which are essential for efficient utilization of feed, especially to use nutrients that are not or little degraded by endogenous enzymes. In addition, like in other animal species, the GIT microbiota is in permanent interplay with the host's cells and is involved in a lot of functions among which inflammation, immune homeostasis, and energy metabolism. As for other animals and humans, the horse gut microbiome is sensitive to diet, especially consumption of starch, fiber, and fat. Age, breeds, stress during competitions, transportation, and exercise may also impact the microbiome. Because of its size and its complexity, the equine GIT microbiota is prone to perturbations caused by external or internal stressors that may result in digestive diseases like gastric ulcer, diarrhea, colic, or colitis, and that are thought to be linked with systemic diseases like laminitis, equine metabolic syndrome or obesity. Thus, in this review we aim at understanding the common core microbiome -in terms of structure and function- in each segment of the GIT, as well as identifying potential microbial biomarkers of health or disease which are crucial to anticipate putative perturbations, optimize global practices and develop adapted nutritional strategies and personalized nutrition.
Collapse
Affiliation(s)
- Frédérique Chaucheyras-Durand
- Lallemand SAS, 31702 Blagnac, France
- UMR MEDIS, INRAE, Université Clermont-Auvergne, 63122 Saint-Genès Champanelle, France
| | | | - Kip Karges
- Lallemand Specialities Inc., Milwaukee, WI 53218, USA
| | | |
Collapse
|
9
|
Mach N, Midoux C, Leclercq S, Pennarun S, Le Moyec L, Rué O, Robert C, Sallé G, Barrey E. Mining the equine gut metagenome: poorly-characterized taxa associated with cardiovascular fitness in endurance athletes. Commun Biol 2022; 5:1032. [PMID: 36192523 PMCID: PMC9529974 DOI: 10.1038/s42003-022-03977-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
Emerging evidence indicates that the gut microbiome contributes to endurance exercise performance. Still, the extent of its functional and metabolic potential remains unknown. Using elite endurance horses as a model system for exercise responsiveness, we built an integrated horse gut gene catalog comprising ~25 million unique genes and 372 metagenome-assembled genomes. This catalog represents 4179 genera spanning 95 phyla and functional capacities primed to exploit energy from dietary, microbial, and host resources. The holo-omics approach shows that gut microbiomes enriched in Lachnospiraceae taxa are negatively associated with cardiovascular capacity. Conversely, more complex and functionally diverse microbiomes are associated with higher glucose concentrations and reduced accumulation of long-chain acylcarnitines and non-esterified fatty acids in plasma, suggesting increased ß-oxidation capacity in the mitochondria. In line with this hypothesis, more fit athletes show upregulation of mitochondrial-related genes involved in energy metabolism, biogenesis, and Ca2+ cytosolic transport, all of which are necessary to improve aerobic work power, spare glycogen usage, and enhance cardiovascular capacity. The results identify an associative link between endurance performance and gut microbiome composition and gene function, laying the basis for nutritional interventions that could benefit horse athletes. An integrated gene catalog of the gut microbiome in elite endurance horses is build. The holo-omics analyses identify an associative link between endurance performance and gut microbiome composition and gene function.
Collapse
Affiliation(s)
- Núria Mach
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France. .,Université de Toulouse, INRAE, ENVT, IHAP, Toulouse, France.
| | - Cédric Midoux
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, PROSE, Antony, France
| | | | | | - Laurence Le Moyec
- Université d'Évry Val d'Essonne, Université Paris-Saclay, Évry, France.,Muséum National d'Histoire Naturelle, CNRS, MCAM, Paris, France
| | - Olivier Rué
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, Jouy-en-Josas, France
| | - Céline Robert
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France.,École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Guillaume Sallé
- Université François Rabelais de Tours, INRAE, ISP, Nouzilly, France
| | - Eric Barrey
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| |
Collapse
|
10
|
Fecal Microbiota Comparison between Healthy Teaching Horses and Client-Owned Horses. J Equine Vet Sci 2022; 118:104105. [PMID: 36058504 DOI: 10.1016/j.jevs.2022.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022]
Abstract
The objective of this study was to compare the fecal microbiota of 2 healthy teaching horse herds with that of client-owned horses from the same geographic areas. The fecal microbiota of client-owned horses from Ontario Canada (n = 15) and Florida, USA (n = 11) was compared with that teaching horses from the University of Guelph, Ontario, Canada (n = 10) and the University of Florida, Florida, USA (n = 15). The fecal microbiota was characterized by sequencing of bacterial DNA using the V4 hypervariable region of the 16S rRNA gene. The diversity (inverse Simpson index) of the fecal microbiota was significantly higher in teaching than client owned horses from the same geographical area (P < 0.05). The community membership (Jaccard Index) and structure (Yue and Clayton index) of teaching horses was also significantly different from that of client owned horses from the same geographical area (AMOVA P < 0.001). The bacterial membership and structure of the fecal microbiota of Ontario and Florida teaching horses were significantly different, while the bacterial membership, but not the structure of Ontario and Florida client owned horses was significantly different (AMOVA P < 0.001). In all 4 groups of healthy horses, Lachnospiraceae, Ruminococcaceae, Bacteroidales, Clostridiales, and Treponema were detected in high relative abundance. The fecal microbiota of healthy horses from teaching herds kept in the same environment with identical management practices differs significantly from that of horses housed in different facilities with dissimilar management practices. Our results suggest an effect of the environment and management practices on the gastrointestinal microbiota. Researchers should attempt to include healthy horses from the same farm with similar management as control groups when comparing with diseased horses.
Collapse
|
11
|
Wen X, Luo S, Lv D, Jia C, Zhou X, Zhai Q, Xi L, Yang C. Variations in the fecal microbiota and their functions of Thoroughbred, Mongolian, and Hybrid horses. Front Vet Sci 2022; 9:920080. [PMID: 35968025 PMCID: PMC9366519 DOI: 10.3389/fvets.2022.920080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
The horse gut is colonized by a rich and complex microbial community that has important roles in horse physiology, metabolism, nutrition, and immune functions. Fewer across-breed variations in horse gut microbial diversity have been illustrated. In this article, the gut microbiota of Thoroughbred, Mongolian, and Hybrid horses [first filial generation (F1) of Mongolian (maternal) and Thoroughbred (paternal)] were studied by second-generation high-throughput sequencing technology. Differences in gut microbiota composition and function between breeds were determined using diversity and functional prediction analysis. The alpha diversity analysis showed that Thoroughbred horses had a more abundant and diverse gut microbiota, while the diversity of gut microbiota in Hybrid horses was intermediate between Thoroughbred and Mongolian horses. Subsequent cluster analysis showed that Hybrid horses have a microbiota composition more similar to Mongolian horses. LEfSe analysis revealed that the bacterial biomarkers for Thoroughbred horses at the family level were Prevotellaceae, Rikenellaceae, Fibrobacteraceae, p_251_o5, Lactobacillaceae, and uncultured_bacterium_o_WCHB1_41; the bacterial biomarker for Mongolian horses was Planococcaceae; and the bacterial biomarkers for Hybrid horses were Moraxellaceae, Enterobacteriaceae, and Ruminococcaceae. The functional prediction results indicated that the metabolic pathways differ significantly between the breeds. Regarding metabolism, the Hybrid horses had the lowest proportion of the carbohydrate metabolic pathways, while the energy metabolic pathway had the highest proportion. The abundance ratios of the remaining eight metabolic pathways in Hybrid horses were between Thoroughbred and Mongolian horses. In conclusion, the results of this study showed an association between horse breeds and gut microbiota.
Collapse
Affiliation(s)
- Xiaohui Wen
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shengjun Luo
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dianhong Lv
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chunling Jia
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiurong Zhou
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qi Zhai
- Institute of Animal Health, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Li Xi
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- *Correspondence: Li Xi
| | - Caijuan Yang
- National S&T Innovation Center for Modern Agricultural Industry, Guangzhou, China
- Caijuan Yang
| |
Collapse
|
12
|
Feng Y, Liu D, Liu Y, Yang X, Zhang M, Wei F, Li D, Hu Y, Guo Y. Host-genotype-dependent cecal microbes are linked to breast muscle metabolites in Chinese chickens. iScience 2022; 25:104469. [PMID: 35707722 PMCID: PMC9189123 DOI: 10.1016/j.isci.2022.104469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/08/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
In chickens, the effect of host genetics on the gut microbiota is not fully understood, and the extent to which the heritable gut microbes affect chicken metabolism and physiology is still an open question. Here, we explored the interactions among chicken genetics, the cecal microbiota and metabolites in breast muscle from ten chicken breeds in China. We found that different chicken breeds displayed distinct cecal microbial community structures and functions, and 15 amplicon sequence variants (ASVs) were significantly associated with host genetics through different genetic loci, such as those related to the intestinal barrier function. We identified five heritable ASVs significantly associated with 53 chicken muscle metabolites, among which the Megamonas probably affected lipid metabolism through the production of propionate. Our study revealed that the chicken genetically associated cecal microbes may have the potential to affect the bird’s physiology and metabolism. The cecal microbiota are different among ten chicken breeds The chicken genetics influences the cecal microbiota structures and functions The chicken heritable cecal microbes are associated with muscle metabolites Megamonas may affect lipid metabolism by the production of propionate
Collapse
Affiliation(s)
- Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Meihong Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Fuxiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Depeng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
- Corresponding author
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
- Corresponding author
| |
Collapse
|
13
|
Gilroy R, Leng J, Ravi A, Adriaenssens EM, Oren A, Baker D, La Ragione RM, Proudman C, Pallen MJ. Metagenomic investigation of the equine faecal microbiome reveals extensive taxonomic diversity. PeerJ 2022; 10:e13084. [PMID: 35345588 PMCID: PMC8957277 DOI: 10.7717/peerj.13084] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
Background The horse plays crucial roles across the globe, including in horseracing, as a working and companion animal and as a food animal. The horse hindgut microbiome makes a key contribution in turning a high fibre diet into body mass and horsepower. However, despite its importance, the horse hindgut microbiome remains largely undefined. Here, we applied culture-independent shotgun metagenomics to thoroughbred equine faecal samples to deliver novel insights into this complex microbial community. Results We performed metagenomic sequencing on five equine faecal samples to construct 123 high- or medium-quality metagenome-assembled genomes from Bacteria and Archaea. In addition, we recovered nearly 200 bacteriophage genomes. We document surprising taxonomic diversity, encompassing dozens of novel or unnamed bacterial genera and species, to which we have assigned new Candidatus names. Many of these genera are conserved across a range of mammalian gut microbiomes. Conclusions Our metagenomic analyses provide new insights into the bacterial, archaeal and bacteriophage components of the horse gut microbiome. The resulting datasets provide a key resource for future high-resolution taxonomic and functional studies on the equine gut microbiome.
Collapse
Affiliation(s)
- Rachel Gilroy
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Joy Leng
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Anuradha Ravi
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | | - Aharon Oren
- The Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dave Baker
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | | | | - Mark J. Pallen
- Quadram Institute Bioscience, Norwich, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
14
|
Ang L, Vinderola G, Endo A, Kantanen J, Jingfeng C, Binetti A, Burns P, Qingmiao S, Suying D, Zujiang Y, Rios-Covian D, Mantziari A, Beasley S, Gomez-Gallego C, Gueimonde M, Salminen S. Gut Microbiome Characteristics in feral and domesticated horses from different geographic locations. Commun Biol 2022; 5:172. [PMID: 35217713 PMCID: PMC8881449 DOI: 10.1038/s42003-022-03116-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Domesticated horses live under different conditions compared with their extinct wild ancestors. While housed, medicated and kept on a restricted source of feed, the microbiota of domesticated horses is hypothesized to be altered. We assessed the fecal microbiome of 57 domestic and feral horses from different locations on three continents, observing geographical differences. A higher abundance of eukaryota (p < 0.05) and viruses (p < 0.05) and lower of archaea (p < 0.05) were found in feral animals when compared with domestic ones. The abundance of genes coding for microbe-produced enzymes involved in the metabolism of carbohydrates was significantly higher (p < 0.05) in feral animals regardless of the geographic origin. Differences in the fecal resistomes between both groups of animals were also noted. The domestic/captive horse microbiomes were enriched in genes conferring resistance to tetracycline, likely reflecting the use of this antibiotic in the management of these animals. Our data showed an impoverishment of the fecal microbiome in domestic horses with diet, antibiotic exposure and hygiene being likely drivers. The results offer a view of the intestinal microbiome of horses and the impact of domestication or captivity, which may uncover novel targets for modulating the microbiome of horses to enhance animal health and well-being. Li Ang et al. present an investigation of feral and domesticated horse gut microbiomes across three continents. Their results provide new insight into how changes in horse lifestyle are reflected in the resident gut microbiome.
Collapse
Affiliation(s)
- Li Ang
- Health Management Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Henan Gene Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Infection Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland, Jokioinen, Finland
| | - Chen Jingfeng
- Health Management Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ana Binetti
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Patricia Burns
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Shi Qingmiao
- Department of Henan Gene Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Infection Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding Suying
- Health Management Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Zujiang
- Department of Henan Gene Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Infection Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - David Rios-Covian
- Department and Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain
| | - Anastasia Mantziari
- Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Shea Beasley
- Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Carlos Gomez-Gallego
- Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland.,Institute of Public Health and Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Miguel Gueimonde
- Department and Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain.
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland.
| |
Collapse
|
15
|
Aleman M, Sheldon SA, Jospin G, Coil D, Stratton‐Phelps M, Eisen J. Caecal microbiota in horses with trigeminal‐mediated headshaking. Vet Med Sci 2022; 8:1049-1055. [PMID: 35060350 PMCID: PMC9122421 DOI: 10.1002/vms3.735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Trigeminal‐mediated headshaking (TMHS) in horses is a form of neuropathic pain of undetermined cause that often results in euthanasia. The role of microbiota in TMHS has not been investigated in diseased horses. Objective To investigate if gastrointestinal microbiota in the cecum is different in horses with TMHS compared to a control population, during a summer season with clinical manifestations of disease. Animals Ten castrated horses: five with TMHS and five neurologically normal controls. Methods All horses were sourced from our institution and kept under the same husbandry and dietary conditions. All horses were fed orchard grass hay for 30 days and then were euthanized due to chronic untreatable conditions including TMHS and orthopedic disease (control group). Caecal samples for microbiota analysis were collected within 20 min after euthanasia. Sequencing was performed using an Illumina MiSeq platform and the microbiome was analyzed. Results The caecal microbiota of horses with TMHS was similar to control horses in terms of diversity but differed significantly with Methanocorpusculum spp. having higher abundance in horses with TMHS. Conclusions and clinical importance Methanocorpusculum spp. was more abundant in the cecum of horses with TMHS. However, its role in disease is unknown. Furthermore, it could also represent an incidental finding due to our small population size.
Collapse
Affiliation(s)
- Monica Aleman
- Department of Medicine and Epidemiology University of California Davis Davis California USA
| | - Shara. A. Sheldon
- Department of Medicine and Epidemiology University of California Davis Davis California USA
| | - Guillaume Jospin
- The Genome Center University of California Davis Davis California USA
| | - David Coil
- The Genome Center University of California Davis Davis California USA
| | | | - Jonathan Eisen
- The Genome Center University of California Davis Davis California USA
| |
Collapse
|
16
|
Freccero F, Lanci A, Mariella J, Viciani E, Quercia S, Castagnetti A, Castagnetti C. Changes in the Fecal Microbiota Associated with a Broad-Spectrum Antimicrobial Administration in Hospitalized Neonatal Foals with Probiotics Supplementation. Animals (Basel) 2021; 11:ani11082283. [PMID: 34438741 PMCID: PMC8388449 DOI: 10.3390/ani11082283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Post-antibiotic intestinal dysbiosis leads to an overall reduction in bacterial and functional diversity, along with a minor resistance against pathogens. The study aimed to determine the changes on the fecal microbiota in hospitalized neonatal foals administered with broad-spectrum antimicrobials and supplemented probiotics. Fecal samples were collected at hospital admission, at the end of the antimicrobial treatment and at discharge. Seven foals treated with intravenous ampicillin and aminoglycosides for a mean of seven days were included. The results suggest that the fecal microbiota of neonatal foals rapidly returns to a high diversity after treatment. While the findings need to be confirmed in a larger population, the study suggests that in foals, the effect of antimicrobials may be strongly influenced by the changes that occur over time in the developing gut microbiota. Of note, the findings are influenced by the use of probiotics, and whether the changes would be consistent in antimicrobial-administered but not supplemented foals remains to be elucidated. Abstract There is a wide array of evidence across species that exposure to antibiotics is associated with dysbiosis, and due to their widespread use, this also raises concerns also in medicine. The study aimed to determine the changes on the fecal microbiota in hospitalized neonatal foals administered with broad-spectrum antimicrobials and supplemented probiotics. Fecal samples were collected at hospital admission (Ta), at the end of the antimicrobial treatment (Te) and at discharge (Td). Feces were analysed by next-generation sequencing of the 16S rRNA gene on Illumina MiSeq. Seven foals treated with IV ampicillin and amikacin/gentamicin were included. The mean age at Ta was 19 h, the mean treatment length was 7 days and the mean time between Te and Td was 4.3 days. Seven phyla were identified: Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, Proteobacteria, TM7 and Verrucomicrobia. At Ta, Firmicutes (48.19%) and Proteobacteria (31.56%) were dominant. The alpha diversity decreased from Ta to Te, but it was the highest at Td. The beta diversity was higher at Ta than at Te and higher at Td than at Te. An increase in Akkermansia over time was detected. The results suggest that the intestinal microbiota of neonatal foals rapidly returns to a high diversity after treatment. It is possible that in foals, the effect of antimicrobials is strongly influenced or overshadowed by the time-dependent changes in the developing gut microbiota.
Collapse
Affiliation(s)
- Francesca Freccero
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano Dell’Emilia, 40064 Bologna, Italy; (F.F.); (J.M.); (C.C.)
| | - Aliai Lanci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano Dell’Emilia, 40064 Bologna, Italy; (F.F.); (J.M.); (C.C.)
- Correspondence:
| | - Jole Mariella
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano Dell’Emilia, 40064 Bologna, Italy; (F.F.); (J.M.); (C.C.)
| | - Elisa Viciani
- Wellmicro srl, Via Piero Gobetti 101, 40127 Bologna, Italy; (E.V.); (S.Q.); (A.C.)
| | - Sara Quercia
- Wellmicro srl, Via Piero Gobetti 101, 40127 Bologna, Italy; (E.V.); (S.Q.); (A.C.)
| | - Andrea Castagnetti
- Wellmicro srl, Via Piero Gobetti 101, 40127 Bologna, Italy; (E.V.); (S.Q.); (A.C.)
| | - Carolina Castagnetti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano Dell’Emilia, 40064 Bologna, Italy; (F.F.); (J.M.); (C.C.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, Ozzano dell’Emilia, 40064 Bologna, Italy
| |
Collapse
|
17
|
Arnold CE, Pilla R, Chaffin MK, Leatherwood JL, Wickersham TA, Callaway TR, Lawhon SD, Lidbury JA, Steiner JM, Suchodolski JS. The effects of signalment, diet, geographic location, season, and colitis associated with antimicrobial use or Salmonella infection on the fecal microbiome of horses. J Vet Intern Med 2021; 35:2437-2448. [PMID: 34268795 PMCID: PMC8478058 DOI: 10.1111/jvim.16206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The fecal microbiome of healthy horses may be influenced by signalment, diet, environmental factors, and disease. OBJECTIVES To assess the effects of age, breed, sex, geographic location, season, diet, and colitis caused by antibiotic use (antimicrobial-associated diarrhea [AAD]) and Salmonella infection on fecal microbiota. ANIMALS Healthy horses (n = 80) were sampled from nonhospital environments across multiple geographical locations in the United States. Horses with AAD (n = 14) were defined as those that developed diarrhea secondary to antimicrobial use. Horses with Salmonella infection (n = 12) were presented with spontaneous onset of colitis and subsequently tested positive on Salmonella quantitative polymerase chain reaction. All horses were >1 year of age and stratified by a dietary scale that included forages (pasture and hay) and concentrates grouped by percentage of fiber and amount. METHODS Illumina sequencing of 16S rRNA genes was performed on fecal DNA. RESULTS Healthy horses fed higher amounts of grain clustered separately from those fed lower amounts of grain (analysis of similarities [ANOSIM], R = 0.356-0.385, Q = 0.002). Horses with AAD and Salmonella had decreased richness and evenness compared to healthy horses (P < .05). Univariable analysis of the 3 groups identified increases in Bacteroidetes (Q = 0.002) and Protebacteria (Q = 0.001) and decreases in Verrucomicrobia (Q = 0.001) in AAD horses whereas Salmonella horses had less Firmicutes (Q = 0.001) when compared to healthy horses. CONCLUSIONS AND CLINICAL IMPORTANCE Although the amount of grain in the diet had some impact on the fecal microbiome, colitis had a significantly larger influence. Horses with ADD have a more severe dysbiosis than do horses with Salmonella.
Collapse
Affiliation(s)
- Carolyn E Arnold
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Rachel Pilla
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - M Keith Chaffin
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | - Tryon A Wickersham
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Todd R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jonathan A Lidbury
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Joerg M Steiner
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
18
|
Alterations in the Fecal Microbiome and Metabolome of Horses with Antimicrobial-Associated Diarrhea Compared to Antibiotic-Treated and Non-Treated Healthy Case Controls. Animals (Basel) 2021; 11:ani11061807. [PMID: 34204371 PMCID: PMC8235368 DOI: 10.3390/ani11061807] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 12/16/2022] Open
Abstract
Diarrhea is an adverse effect of antimicrobial therapy in horses. This matched, case-controlled study compared the fecal microbiome and metabolome of horses on antibiotics that developed diarrhea (AAD, n = 17) to those that did not develop diarrhea (ABX, n = 15) and to a control population not exposed to antibiotics (CON, n = 31). Fecal samples were collected from horses that were matched for diet and antimicrobial agent (including dose, route, and duration of therapy). Illumina sequencing of 16S rRNA genes was performed, and QIIME 2.0 was used to generate alpha and beta diversity metrics. Untargeted metabolomics using GC-MS platforms was performed and analyzed using Metaboanalyst 5.0. Microbiome composition was significantly different in AAD compared to CON (ANOSIM, R = 0.568, p = 0.001) but not to ABX (ANOSIM, R = 0.121, p = 0.0012). AAD and ABX horses had significantly decreased richness and evenness compared to CON horses (p < 0.05). Horses on antimicrobials (AAD and ABX) had significant changes in 14 phyla compared to CON horses. Only Verrucomicrobia distinguished AAD from ABX and CON horses (q = 0.0005). Metabolite profiles of horses with AAD clustered separately from ABX and CON horses. Seven metabolites were found to be significantly different between groups (p < 0.05): L-tyrosine, kynurenic acid, xanthurenic acid, 5-hydroxyindole-3-acetic acid, docosahexaenoic acid ethyl ester, daidzein, and N-acetyltyramine. Metabolite profiles of horses on antimicrobials, especially those with AAD, are altered compared to CON horses.
Collapse
|
19
|
The Equine Faecal Microbiota of Healthy Horses and Ponies in The Netherlands: Impact of Host and Environmental Factors. Animals (Basel) 2021; 11:ani11061762. [PMID: 34204691 PMCID: PMC8231505 DOI: 10.3390/ani11061762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Several studies have described the bacterial composition in the intestines of horses, and several factors of influence have been detected. Variation in the results between studies, however, is substantial. Therefore, the current study aimed to study the bacterial composition in the faeces of healthy horses and ponies kept under standard housing and management condition in The Netherlands. Seventy-nine horses and ponies originating from two farms were included. Several factors, such as location, age, the season of sampling, horse type (horses vs. ponies) and pasture access significantly affected the bacterial composition. The current study provides important baseline information on variation in the bacterial composition in healthy horses and ponies under standard housing and management conditions. The aforementioned factors identified in this study to affect the bacterial population of the gut should be considered in future studies regarding the bacterial population of the equine gut. Abstract Several studies have described the faecal microbiota of horses and the factors that influence its composition, but the variation in results is substantial. This study aimed to investigate the microbiota composition in healthy equids in The Netherlands under standard housing and management conditions and to evaluate the effect of age, gender, horse type, diet, pasture access, the season of sampling and location on it. Spontaneously produced faecal samples were collected from the stall floor of 79 healthy horses and ponies at two farms. The validity of this sampling technique was evaluated in a small pilot study including five ponies showing that the microbiota composition of faecal samples collected up to 6 h after spontaneous defaecation was similar to that of the samples collected rectally. After DNA extraction, Illumina Miseq 16S rRNA sequencing was performed to determine microbiota composition. The effect of host and environmental factors on microbiota composition were determined using several techniques (NMDS, PERMANOVA, DESeq2). Bacteroidetes was the largest phylum found in the faecal microbiota (50.1%), followed by Firmicutes (28.4%). Alpha-diversity and richness decreased significantly with increasing age. Location, age, season, horse type and pasture access had a significant effect on beta-diversity. The current study provides important baseline information on variation in faecal microbiota in healthy horses and ponies under standard housing and management conditions. These results indicate that faecal microbiota composition is affected by several horse-related and environment-related factors, and these factors should be considered in future studies of the equine faecal microbiota.
Collapse
|
20
|
Wen C, Yan W, Mai C, Duan Z, Zheng J, Sun C, Yang N. Joint contributions of the gut microbiota and host genetics to feed efficiency in chickens. MICROBIOME 2021; 9:126. [PMID: 34074340 PMCID: PMC8171024 DOI: 10.1186/s40168-021-01040-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Feed contributes most to livestock production costs. Improving feed efficiency is crucial to increase profitability and sustainability for animal production. Host genetics and the gut microbiota can both influence the host phenotype. However, the association between the gut microbiota and host genetics and their joint contribution to feed efficiency in chickens is largely unclear. RESULTS Here, we examined microbial data from the duodenum, jejunum, ileum, cecum, and feces in 206 chickens and their host genotypes and confirmed that the microbial phenotypes and co-occurrence networks exhibited dramatic spatial heterogeneity along the digestive tract. The correlations between host genetic kinship and gut microbial similarities within different sampling sites were weak, with coefficients ranging from - 0.07 to 0.08. However, microbial genome-wide analysis revealed that genetic markers near or inside the genes MTHFD1L and LARGE1 were associated with the abundances of cecal Megasphaera and Parabacteroides, respectively. The effect of host genetics on residual feed intake (RFI) was 39%. We further identified three independent genetic variations that were related to feed efficiency and had a modest effect on the gut microbiota. The contributions of the gut microbiota from the different parts of the intestinal tract on RFI were distinct. The cecal microbiota accounted for 28% of the RFI variance, a value higher than that explained by the duodenal, jejunal, ileal, and fecal microbiota. Additionally, six bacteria exhibited significant associations with RFI. Specifically, lower abundances of duodenal Akkermansia muciniphila and cecal Parabacteroides and higher abundances of cecal Lactobacillus, Corynebacterium, Coprobacillus, and Slackia were related to better feed efficiency. CONCLUSIONS Our findings solidified the notion that both host genetics and the gut microbiota, especially the cecal microbiota, can drive the variation in feed efficiency. Although host genetics has a limited effect on the entire microbial community, a small fraction of gut microorganisms tends to interact with host genes, jointly contributing to feed efficiency. Therefore, the gut microbiota and host genetic variations can be simultaneously targeted by favoring more-efficient taxa and selective breeding to improve feed efficiency in chickens. Video abstract.
Collapse
Affiliation(s)
- Chaoliang Wen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Wei Yan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Chunning Mai
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Zhongyi Duan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- National Animal Husbandry Service, Beijing, 100125, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Mach N, Moroldo M, Rau A, Lecardonnel J, Le Moyec L, Robert C, Barrey E. Understanding the Holobiont: Crosstalk Between Gut Microbiota and Mitochondria During Long Exercise in Horse. Front Mol Biosci 2021; 8:656204. [PMID: 33898524 PMCID: PMC8063112 DOI: 10.3389/fmolb.2021.656204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Endurance exercise has a dramatic impact on the functionality of mitochondria and on the composition of the intestinal microbiome, but the mechanisms regulating the crosstalk between these two components are still largely unknown. Here, we sampled 20 elite horses before and after an endurance race and used blood transcriptome, blood metabolome and fecal microbiome to describe the gut-mitochondria crosstalk. A subset of mitochondria-related differentially expressed genes involved in pathways such as energy metabolism, oxidative stress and inflammation was discovered and then shown to be associated with butyrate-producing bacteria of the Lachnospiraceae family, especially Eubacterium. The mechanisms involved were not fully understood, but through the action of their metabolites likely acted on PPARγ, the FRX-CREB axis and their downstream targets to delay the onset of hypoglycemia, inflammation and extend running time. Our results also suggested that circulating free fatty acids may act not merely as fuel but drive mitochondrial inflammatory responses triggered by the translocation of gut bacterial polysaccharides following endurance. Targeting the gut-mitochondria axis therefore appears to be a potential strategy to enhance athletic performance.
Collapse
Affiliation(s)
- Núria Mach
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Marco Moroldo
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Andrea Rau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, Estrées-Mons, France
| | - Jérôme Lecardonnel
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Laurence Le Moyec
- Université d'Évry Val d'Essonne, Université Paris-Saclay, Évry, France ABI UMR 1313, INRAE, Université Paris-Saclay, AgroParisTech, Jouy-en-Josas, France.,MCAM UMR7245, CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Céline Robert
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.,École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Eric Barrey
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|
22
|
Mach N, Lansade L, Bars-Cortina D, Dhorne-Pollet S, Foury A, Moisan MP, Ruet A. Gut microbiota resilience in horse athletes following holidays out to pasture. Sci Rep 2021; 11:5007. [PMID: 33658551 PMCID: PMC7930273 DOI: 10.1038/s41598-021-84497-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
Elite horse athletes that live in individual boxes and train and compete for hours experience long-term physical and mental stress that compromises animal welfare and alters the gut microbiota. We therefore assessed if a temporary period out to pasture with conspecifics could improve animal welfare and in turn, favorably affect intestinal microbiota composition. A total of 27 athletes were monitored before and after a period of 1.5 months out to pasture, and their fecal microbiota and behavior profiles were compared to those of 18 horses kept in individual boxes. The overall diversity and microbiota composition of pasture and control individuals were temporally similar, suggesting resilience to environmental challenges. However, pasture exposure induced an increase in Ruminococcus and Coprococcus that lasted 1-month after the return to individual boxes, which may have promoted beneficial effects on health and welfare. Associations between the gut microbiota composition and behavior indicating poor welfare were established. Furthermore, withdrawn behavior was associated with the relative abundances of Lachnospiraceae AC2044 group and Clostridiales family XIII. Both accommodate a large part of butyrate-producing bacterial genera. While we cannot infer causality within this study, arguably, these findings suggest that management practices maintained over a longer period of time may moderate the behavior link to the gut ecosystem beyond its resilience potential.
Collapse
Affiliation(s)
- Núria Mach
- Animal Genetic and Integrative Biology, University of Paris-Saclay, INRAE, AGroParisTech, 78350 Jouy-en-Josas, France
| | - Léa Lansade
- grid.464126.30000 0004 0385 4036PRC, INRAE, CNRS, IFCE, University of Tours, 37380 Nouzilly, France
| | - David Bars-Cortina
- grid.15043.330000 0001 2163 1432Medicine Department, University of Lleida, 25198 Lleida, Spain
| | - Sophie Dhorne-Pollet
- Animal Genetic and Integrative Biology, University of Paris-Saclay, INRAE, AGroParisTech, 78350 Jouy-en-Josas, France
| | - Aline Foury
- grid.412041.20000 0001 2106 639XUniversity of Bordeaux, INRAE, NutriNeuro UMR 1286, 33076 Bordeaux, France
| | - Marie-Pierre Moisan
- grid.412041.20000 0001 2106 639XUniversity of Bordeaux, INRAE, NutriNeuro UMR 1286, 33076 Bordeaux, France
| | - Alice Ruet
- grid.464126.30000 0004 0385 4036PRC, INRAE, CNRS, IFCE, University of Tours, 37380 Nouzilly, France
| |
Collapse
|
23
|
Faecal bacterial composition in horses with and without free faecal liquid: a case control study. Sci Rep 2021; 11:4745. [PMID: 33637818 PMCID: PMC7910430 DOI: 10.1038/s41598-021-83897-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/09/2021] [Indexed: 12/31/2022] Open
Abstract
Free faecal liquid (FFL) is a condition in horses which manifests as differential defecation of solid and liquid phases of faeces. The etiology of FFL is currently unknown, but deviances in the hindgut microbiota has been suggested to be of importance. The present study aimed to compare the faecal bacterial composition of farm-matched horses with (case, n = 50) and without (control, n = 50) FFL. Samples were collected at three different occasions. The V3 and V4 regions of the 16S rRNA gene were amplified and sequenced using Illumina sequencing. Also, samples were cultivated for detection of Clostridioides difficile and Clostridium perfringens. Analysis revealed similar faecal bacterial composition between case and control horses, but an effect of sampling period (p = 0.0001). Within sampling periods, 14 genera were present in higher or lower proportions in case compared to control horses in at least one sampling period. Compared to controls, case horses had higher relative abundance of Alloprevotella (adjusted p < 0.04) and lower relative abundance of Bacillus spp. (adjusted p < 0.03) in at least two sampling periods. All horses tested negative for C. difficile and C. perfringens by culture of faeces. Further studies are required to establish the clinical relevance of specific bacterial taxa in FFL.
Collapse
|
24
|
Tang S, Xin Y, Ma Y, Xu X, Zhao S, Cao J. Screening of Microbes Associated With Swine Growth and Fat Deposition Traits Across the Intestinal Tract. Front Microbiol 2020; 11:586776. [PMID: 33178171 PMCID: PMC7596661 DOI: 10.3389/fmicb.2020.586776] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Pigs, as one of the most common livestock species worldwide, are expected to have a fast growth rate and lower subcutaneous fatness but higher intramuscular fat ("marbling meat"). Nowadays, it is believed that not only host genetics but also its gut microbiomes can modulate farm animal phenotypes, however, many of the mechanisms remain elusive. We measured the body weight (BW), average daily gain (ADG), backfat thickness (BFT), and intramuscular fatness (IMF) of 91 Enshi pigs at 260 days of age, then genotyped each one individually using a 50K single nucleotide polymorphism array and performed 16S ribosomal RNA gene sequencing on 455 microbial samples from the jejunum, ileum, cecum, colon, and rectum. The microbial diversity showed notable spatial variation across the entire intestinal tract, with the cecum and colon having the highest α-diversity. The cecal and colonic microbiotas made greater contributions to BW and ADG and accounted for 22-37% of the phenotypic variance. The jejunal and cecal microbiotas contributed more (13-31%) to the BFT and IMF than the other segments. Finally, from cecum, colon, and jejunum, we identified eight microbial taxa that were significantly correlated with the target traits. The genera Alloprevotella and Ruminococcaceae UCG-005 were highly positively correlated with BW and ADG. The genera Prevotellaceae UCG-001 and Alistipes in the cecum and Clostridium sensu stricto 1 in the jejunum were highly positively correlated with BFT and IMF. The genera Stenotrophomonas, Sphaerochaeta, and Desulfovibrio were negatively associated with the mentioned traits. These findings could aid in developing strategies for manipulating the gut microbiota to alter production performance in pigs.
Collapse
Affiliation(s)
- Shi Tang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production – Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan, China
| | - Ying Xin
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production – Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan, China
| | - Yunlong Ma
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production – Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan, China
| | - Xuewen Xu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production – Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan, China
| | - Shuhong Zhao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production – Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan, China
| | - Jianhua Cao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production – Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|