1
|
Marion-Knudsen R, Lindberg LA, Jespersen T, Saljic A. Quantitative histologic assessment of atrial fibrillation-associated fibrosis in animal models: A systematic review. Heart Rhythm 2025:S1547-5271(25)02102-2. [PMID: 40058516 DOI: 10.1016/j.hrthm.2025.03.1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia, and cardiac fibrosis is a major component in driving its progressive nature. Quantitative histologic assessment of fibrosis in animal models is crucial for understanding AF, but current published studies present various methodologies that limit comparison. This systematic review examines 195 AF studies across multiple animal models (mice, rats, goats, dogs, pigs, and horses) to summarize (1) quantified fibrosis results and (2) methodologies for histologic fibrosis assessment; and (3) evaluate antifibrotic therapies used in these studies. The fibrosis quantified across the studies ranged from 0.34%-60.2% depending on the animal, intervention model, and quantification method. The findings underscore the need for a standardized fibrosis quantification protocol in AF research, enabling comparison across studies and offering greater insight into potential pharmacologic interventions.
Collapse
Affiliation(s)
- Rikke Marion-Knudsen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lucas Alexander Lindberg
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arnela Saljic
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Bode D, Pronto JRD, Schiattarella GG, Voigt N. Metabolic remodelling in atrial fibrillation: manifestations, mechanisms and clinical implications. Nat Rev Cardiol 2024; 21:682-700. [PMID: 38816507 DOI: 10.1038/s41569-024-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
Atrial fibrillation (AF) is a continually growing health-care burden that often presents together with metabolic disorders, including diabetes mellitus and obesity. Current treatments often fall short of preventing AF and its adverse outcomes. Accumulating evidence suggests that metabolic disturbances can promote the development of AF through structural and electrophysiological remodelling, but the underlying mechanisms that predispose an individual to AF are aetiology-dependent, thus emphasizing the need for tailored therapeutic strategies to treat AF that target an individual's metabolic profile. AF itself can induce changes in glucose, lipid and ketone metabolism, mitochondrial function and myofibrillar energetics (as part of a process referred to as 'metabolic remodelling'), which can all contribute to atrial dysfunction. In this Review, we discuss our current understanding of AF in the setting of metabolic disorders, as well as changes in atrial metabolism that are relevant to the development of AF. We also describe the potential of available and emerging treatment strategies to target metabolic remodelling in the setting of AF and highlight key questions and challenges that need to be addressed to improve outcomes in these patients.
Collapse
Affiliation(s)
- David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Hussain S, Srinivasan N, Ahsan S, Papageorgiou N. The Role of Risk Factor Modification in Atrial Fibrillation: Outcomes in Catheter Ablation. J Cardiovasc Dev Dis 2024; 11:97. [PMID: 38667715 PMCID: PMC11050342 DOI: 10.3390/jcdd11040097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
The management of atrial fibrillation has evolved significantly over the last ten years with advancements in medical and catheter ablation approaches, but these have limited success when used in isolation. Trends in the management of lifestyle modifications have surfaced, as it is now better understood that modifiable risk factors contribute significantly to the development and propagation of atrial fibrillation, as well as failure of treatment. International guidelines have integrated the role of lifestyle modification in the management of atrial fibrillation and specifically in the persistent form of atrial fibrillation; these guidelines must be addressed prior to considering catheter ablation. Effective risk factor modification is critical in increasing the likelihood of an arrhythmia-free survival following catheter ablation.
Collapse
Affiliation(s)
- Shahana Hussain
- Electrophysiology Department, Barts Heart Centre, St Bartholomew’s Hospital, London EC1A 7BE, UK; (S.H.); (S.A.)
| | - Neil Srinivasan
- Department of Cardiac Electrophysiology, Essex Cardiothoracic Centre, Basildon SS16 5NL, UK;
- Circulatory Health Research Group, Medical Technology Research Centre, School of Medicine, Anglia Ruskin University, Chelmsford CM1 1SQ, UK
| | - Syed Ahsan
- Electrophysiology Department, Barts Heart Centre, St Bartholomew’s Hospital, London EC1A 7BE, UK; (S.H.); (S.A.)
| | - Nikolaos Papageorgiou
- Electrophysiology Department, Barts Heart Centre, St Bartholomew’s Hospital, London EC1A 7BE, UK; (S.H.); (S.A.)
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| |
Collapse
|
4
|
Sha R, Baines O, Hayes A, Tompkins K, Kalla M, Holmes AP, O'Shea C, Pavlovic D. Impact of Obesity on Atrial Fibrillation Pathogenesis and Treatment Options. J Am Heart Assoc 2024; 13:e032277. [PMID: 38156451 PMCID: PMC10863823 DOI: 10.1161/jaha.123.032277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. AF increases the risk of stroke, heart failure, dementia, and hospitalization. Obesity significantly increases AF risk, both directly and indirectly, through related conditions, like hypertension, diabetes, and heart failure. Obesity-driven structural and electrical remodeling contribute to AF via several reported mechanisms, including adiposity, inflammation, fibrosis, oxidative stress, ion channel alterations, and autonomic dysfunction. In particular, expanding epicardial adipose tissue during obesity has been suggested as a key driver of AF via paracrine signaling and direct infiltration. Weight loss has been shown to reverse these changes and reduce AF risk and recurrence after ablation. However, studies on how obesity affects pharmacologic or interventional AF treatments are limited. In this review, we discuss mechanisms by which obesity mediates AF and treatment outcomes, aiming to provide insight into obesity-drug interactions and guide personalized treatment for this patient subgroup.
Collapse
Affiliation(s)
- Rina Sha
- Institute of Cardiovascular Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Olivia Baines
- Institute of Cardiovascular Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Abbie Hayes
- Institute of Cardiovascular Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Katie Tompkins
- Institute of Cardiovascular Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Manish Kalla
- Institute of Cardiovascular Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
5
|
Limpitikul WB, Das S. Obesity-Related Atrial Fibrillation: Cardiac Manifestation of a Systemic Disease. J Cardiovasc Dev Dis 2023; 10:323. [PMID: 37623336 PMCID: PMC10455513 DOI: 10.3390/jcdd10080323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide and is associated with increased morbidity and mortality. The mechanisms underlying AF are complex and multifactorial. Although it is well known that obesity is a strong risk factor for AF, the mechanisms underlying obesity-related AF are not completely understood. Current evidence proposes that in addition to overall hemodynamic changes due to increased body weight, excess adiposity raises systemic inflammation and oxidative stress, which lead to adverse atrial remodeling. This remodeling includes atrial fibrosis, atrial dilation, decreased electrical conduction between atrial myocytes, and altered ionic currents, making atrial tissue more vulnerable to both the initiation and maintenance of AF. However, much remains to be learned about the mechanistic links between obesity and AF. This knowledge will power the development of novel diagnostic tools and treatment options that will help combat the rise of the global AF burden among the obesity epidemic.
Collapse
Affiliation(s)
- Worawan B. Limpitikul
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
- Demoulas Family Foundation Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
6
|
Gawałko M, Saljic A, Li N, Abu-Taha I, Jespersen T, Linz D, Nattel S, Heijman J, Fender A, Dobrev D. Adiposity-associated atrial fibrillation: molecular determinants, mechanisms, and clinical significance. Cardiovasc Res 2023; 119:614-630. [PMID: 35689487 PMCID: PMC10409902 DOI: 10.1093/cvr/cvac093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is an important contributing factor to the pathophysiology of atrial fibrillation (AF) and its complications by causing systemic changes, such as altered haemodynamic, increased sympathetic tone, and low-grade chronic inflammatory state. In addition, adipose tissue is a metabolically active organ that comprises various types of fat deposits with discrete composition and localization that show distinct functions. Fatty tissue differentially affects the evolution of AF, with highly secretory active visceral fat surrounding the heart generally having a more potent influence than the rather inert subcutaneous fat. A variety of proinflammatory, profibrotic, and vasoconstrictive mediators are secreted by adipose tissue, particularly originating from cardiac fat, that promote atrial remodelling and increase the susceptibility to AF. In this review, we address the role of obesity-related factors and in particular specific adipose tissue depots in driving AF risk. We discuss the distinct effects of key secreted adipokines from different adipose tissue depots and their participation in cardiac remodelling. The possible mechanistic basis and molecular determinants of adiposity-related AF are discussed, and finally, we highlight important gaps in current knowledge, areas requiring future investigation, and implications for clinical management.
Collapse
Affiliation(s)
- Monika Gawałko
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-197 Warsaw, Poland
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Arnela Saljic
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Dominik Linz
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Centre for Heart Rhythm Disorders, Royal Adelaide Hospital, University of Adelaide, Port Road, SA 5000 Adelaide, Australia
- Department of Cardiology, Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
- Medicine and Research Center, Montréal Heart Institute and University de Montréal, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
- IHU LIRYC Institute, Avenue du Haut Lévêque, 33600 Pessac, Bordeaux, France
| | - Jordi Heijman
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Anke Fender
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Medicine and Research Center, Montréal Heart Institute and University de Montréal, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
7
|
Wang M, Yu G, Wang X, Xu B. Evaluation of changes in atrial fibrillation predictors(P wave parameters and left atrial diameter) in morbidly obese patients undergoing bariatric surgery. J Electrocardiol 2023; 78:12-16. [PMID: 36696818 DOI: 10.1016/j.jelectrocard.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/20/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bariatric surgery has been associated with reduced cardiovascular event in obese patients.In this study, we aimed to investigate the changes between pre-operation and post-operation atrial fibrillation predictors(p-wave parameters and left atrial diameter)in morbidly obese patients who underwent bariatric surgery. METHODS 176 obese patients undergoing bariatric surgery were enrolled. Heart rate, PR, P-wave max, P-wave min,P-wave dispersion (PWdis), average P-axis, P-wave peak time (PWPT) of lead II and lead V1, terminal force of lead V1 (PWTF V1), partial interatrial block (p-IAB), advanced interatrial block(a-IAB), and left atrial diamete were measured both before operation and 8 months post-operation. RESULTS Heart rate, PR, PW max, PW min, PWdis, mean P-axis, PWPT II, PWPT V1, and PWTF V1 were near their upper limits before operation. Left atrial diameter was larger than the upper limit before operation. All parameters showed statistically significant decrease at 8 months post-operation. The most significant changes were observed in PWPT II (55.69 ± 6.87 ms vs 50.43 ± 7.48 ms, p < 0.001), PWPT V1(54.21 ± 7.01 ms vs 48.02 ± 7.13 ms, p < 0.001), PWTF V1(74 [42.0%] vs 41 [23.3%], p < 0.001),p-IAB(41[23.2%]vs11[6.2%],p < 0.001),a-IAB(6[3.4%]vs2[1.1%], p < 0.001), and left atrial diameter(43.25 ± 9.23 mm vs 34.27 ± 6.21 mm,p < 0.001). CONCLUSIONS The results of our study showed that bariatric surgery had a positive effect on the regression of P wave parameters and left atrial diameter which are predictors of atrial fibrillation.
Collapse
Affiliation(s)
- Meng Wang
- Department of Cardiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Gang Yu
- Department of Gastroenterology, the Second Affiliated Hospital of Anhui Medical University, China
| | - Xiaochen Wang
- Department of Cardiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Banglong Xu
- Department of Cardiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Brilliant J, Yadav R, Akhtar T, Calkins H, Trayanova N, Spragg D. Clinical and Structural Factors Affecting Ablation Outcomes in Atrial Fibrillation Patients - A Review. Curr Cardiol Rev 2023; 19:83-96. [PMID: 36999694 PMCID: PMC10518883 DOI: 10.2174/1573403x19666230331103153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 04/01/2023] Open
Abstract
Catheter ablation is an effective and durable treatment option for patients with atrial fibrillation (AF). Ablation outcomes vary widely, with optimal results in patients with paroxysmal AF and diminishing results in patients with persistent or long-standing persistent AF. A number of clinical factors including obesity, hypertension, diabetes, obstructive sleep apnea, and alcohol use contribute to AF recurrence following ablation, likely through modulation of the atrial electroanatomic substrate. In this article, we review the clinical risk factors and the electro-anatomic features that contribute to AF recurrence in patients undergoing ablation for AF.
Collapse
Affiliation(s)
- Justin Brilliant
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - Ritu Yadav
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - Tauseef Akhtar
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - Hugh Calkins
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - Natalia Trayanova
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - David Spragg
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| |
Collapse
|
9
|
Young LJ, Antwi-Boasiako S, Ferrall J, Wold LE, Mohler PJ, El Refaey M. Genetic and non-genetic risk factors associated with atrial fibrillation. Life Sci 2022; 299:120529. [PMID: 35385795 PMCID: PMC9058231 DOI: 10.1016/j.lfs.2022.120529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022]
Abstract
Atrial fibrillation (AF) is the most common arrhythmic disorder and its prevalence in the United States is projected to increase to more than twelve million cases in 2030. AF increases the risk of other forms of cardiovascular disease, including stroke. As the incidence of atrial fibrillation increases dramatically with age, it is paramount to elucidate risk factors underlying AF pathogenesis. Here, we review tissue and cellular pathways underlying AF, as well as critical components that impact AF susceptibility including genetic and environmental risk factors. Finally, we provide the latest information on potential links between SARS-CoV-2 and human AF. Improved understanding of mechanistic pathways holds promise in preventative care and early diagnostics, and also introduces novel targeted forms of therapy that might attenuate AF progression and maintenance.
Collapse
Affiliation(s)
- Lindsay J Young
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Steve Antwi-Boasiako
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Joel Ferrall
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Loren E Wold
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Peter J Mohler
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Mona El Refaey
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Patel KHK, Hwang T, Se Liebers C, Ng FS. Epicardial adipose tissue as a mediator of cardiac arrhythmias. Am J Physiol Heart Circ Physiol 2022; 322:H129-H144. [PMID: 34890279 PMCID: PMC8742735 DOI: 10.1152/ajpheart.00565.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Obesity is associated with higher risks of cardiac arrhythmias. Although this may be partly explained by concurrent cardiometabolic ill-health, growing evidence suggests that increasing adiposity independently confers risk for arrhythmias. Among fat depots, epicardial adipose tissue (EAT) exhibits a proinflammatory secretome and, given the lack of fascial separation, has been implicated as a transducer of inflammation to the underlying myocardium. The present review explores the mechanisms underpinning adverse electrophysiological remodeling as a consequence of EAT accumulation and the consequent inflammation. We first describe the physiological and pathophysiological function of EAT and its unique secretome and subsequently discuss the evidence for ionic channel and connexin expression modulation as well as fibrotic remodeling induced by cytokines and free fatty acids that are secreted by EAT. Finally, we highlight how weight reduction and regression of EAT volume may cause reverse remodeling to ameliorate arrhythmic risk.
Collapse
Affiliation(s)
| | - Taesoon Hwang
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Curtis Se Liebers
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Chahine Y, Askari-Atapour B, Kwan KT, Anderson CA, Macheret F, Afroze T, Bifulco SF, Cham MD, Ordovas K, Boyle PM, Akoum N. Epicardial adipose tissue is associated with left atrial volume and fibrosis in patients with atrial fibrillation. Front Cardiovasc Med 2022; 9:1045730. [PMID: 36386377 PMCID: PMC9664066 DOI: 10.3389/fcvm.2022.1045730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Background Obesity is a risk factor for atrial fibrillation (AF) and strongly influences the response to treatment. Atrial fibrosis shows similar associations. Epicardial adipose tissue (EAT) may be a link between these associations. We sought to assess whether EAT is associated with body mass index (BMI), left atrial (LA) fibrosis and volume. Methods LA fibrosis and EAT were assessed using late gadolinium enhancement, and Dixon MRI sequences, respectively. We derived 3D models incorporating fibrosis and EAT, then measured the distance of fibrotic and non-fibrotic areas to the nearest EAT to assess spatial colocalization. Results One hundred and three AF patients (64% paroxysmal, 27% female) were analyzed. LA volume index was 54.9 (41.2, 69.7) mL/m2, LA EAT index was 17.4 (12.7, 22.9) mL/m2, and LA fibrosis was 17.1 (12.4, 23.1)%. LA EAT was significantly correlated with BMI (R = 0.557, p < 0.001); as well as with LA volume and LA fibrosis after BSA adjustment (R = 0.579 and R = 0.432, respectively, p < 0.001 for both). Multivariable analysis showed LA EAT to be independently associated with LA volume and fibrosis. 3D registration of fat and fibrosis around the LA showed no clear spatial overlap between EAT and fibrotic LA regions. Conclusion LA EAT is associated with obesity (BMI) as well as LA volume and fibrosis. Regions of LA EAT did not colocalize with fibrotic areas, suggesting a systemic or paracrine mechanism rather than EAT infiltration of fibrotic areas.
Collapse
Affiliation(s)
- Yaacoub Chahine
- Division of Cardiology, University of Washington, Seattle, WA, United States
| | | | - Kirsten T Kwan
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Carter A Anderson
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Fima Macheret
- Division of Cardiology, University of Washington, Seattle, WA, United States
| | - Tanzina Afroze
- Division of Cardiology, University of Washington, Seattle, WA, United States
| | - Savannah F Bifulco
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Matthew D Cham
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Karen Ordovas
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, United States
| | - Nazem Akoum
- Division of Cardiology, University of Washington, Seattle, WA, United States.,Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Atrial Fibrillation and Peri-Atrial Inflammation Measured through Adipose Tissue Attenuation on Cardiac Computed Tomography. Diagnostics (Basel) 2021; 11:diagnostics11112087. [PMID: 34829434 PMCID: PMC8622819 DOI: 10.3390/diagnostics11112087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Inflammation plays a key role in atrial fibrillation (AF). Epicardial adipose tissue around the atrial wall can influence atrial morpho-functional properties. The aim of this study was to assess whether an increased quantity and/or density of adipose tissue located around the left atrium (Fat-LA) are related to AF, independently from atrial size. METHODS eighty patients who underwent AF ablation and 80 patients without history of AF were selected. The Fat-LA mass was quantified as tissue within -190 to -30 Hounsfield Units (HU) on cardiac computed tomography angiograms (CCTA), and the mean adipose tissue attenuation was assessed. RESULTS Adipose tissue mass was higher in patients with AF (5.42 ± 2.94 mL) versus non-AF (4.16 ± 2.55 mL, p = 0.007), but relative fat quantity did not differ after adjusting for atrial size. Mean fat density was significantly higher in AF (-69.15 HU) versus non-AF (-76.82 HU, p < 0.0001) participants. In the logistic regression models, only the addition of mean Fat-LA attenuation led to a significant improvement of the model's chi-square (from 22.89 of the clinical model to 31.69 of the clinical and adipose tissue attenuation model, p < 0.01) and discrimination (AUC from 0.775 to 0.829). CONCLUSIONS Fat-LA volume is significantly greater only in absolute terms in patients with AF, but this difference does not hold after adjusting for the larger LA of AF subjects. On the contrary, a higher Fat-LA density was associated with AF, independently from LA size, providing incremental value over other variables that are associated with AF.
Collapse
|
13
|
Posterior left atrial epicardial adipose tissue: scope of the problem and impact of new technology. Curr Opin Cardiol 2021; 37:54-61. [PMID: 34508033 DOI: 10.1097/hco.0000000000000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Patients with persistent forms of atrial fibrillation are seeking treatments based on the promise of better restoration of sinus rhythm with newer therapies. Successful catheter ablation and maintenance of atrial fibrillation in this subgroup is negatively impacted by the presence of epicardial adipose tissue (EAT) associated with the posterior left atrium. RECENT FINDINGS EAT is now understood to be hormonally active and promotes adverse atrial remodelling, including fibrosis and myopathy. Despite being dominantly adipose tissue, it is known to be electrically active, comprising ganglia, neural tissue and ectopic atrial myocardium that may contribute to endo-epicardial dissociation and persistent electrical activity and atrial fibrillation despite good endocardial electrical silencing. Hybrid procedures that include direct epicardial ablation of the posterior wall, including the EAT, are associated with superior outcomes in nonparoxysmal atrial fibrillation. SUMMARY Therapies for persistent atrial fibrillation that also ablate the EAT as part of a well tolerated transmural posterior wall ablation may improve outcomes in this challenging subset of patients.
Collapse
|
14
|
Bunch TJ. Reflections from the Book of the Dead: Weighing the impact of epicardial fat on atrial fibrillation vulnerability. J Cardiovasc Electrophysiol 2021; 32:900-902. [PMID: 33600058 DOI: 10.1111/jce.14958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Affiliation(s)
- T Jared Bunch
- Department of Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|