1
|
Heidari F, Shamshiripour P, Rahnama M, Saadatmand M, Ahmadvand D, Simorgh S, Moradi AR. 3D morphometry of endothelial cells angiogenesis in an extracellular matrix composite hydrogel. Heliyon 2024; 10:e39616. [PMID: 39524796 PMCID: PMC11546153 DOI: 10.1016/j.heliyon.2024.e39616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Human umbilical vein endothelial cells (HUVECs) play a fundamental role in angiogenesis. Herein, we introduce digital holographic microscopy (DHM) for the 3D quantitative morphological analysis of HUVECs in extracellular matrix (ECM)-based biomaterials as an angiogenesis model. The combination of volumetric information from DHM and the physicochemical and cytobiocompatibility data provided by fluorescence microscopy and cytology offers a comprehensive understanding of the angiogenesis-related parameters of HUVECs within the ECM. DHM enables label-free, non-contact, and non-invasive 3D monitoring of living samples in real time, in a quantitative manner. In this study, the human amniotic membrane (HAM) is decellularized, pulverized, and combined with sodium alginate hydrogel to provide an in vitro substrate for modeling HUVEC angiogenesis. Our results demonstrate that modifying alginate hydrogel with HAM enhances its biofunctionality due to the presence of ECM components. Moreover, the DHM results reveal an increase in its porous properties, which, in turn, aids in interpreting the tubulation results.
Collapse
Affiliation(s)
- Faranak Heidari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Parisa Shamshiripour
- Department of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mehrana Rahnama
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Davoud Ahmadvand
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sara Simorgh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1591639675, Iran
| | - Ali-Reza Moradi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531, Iran
| |
Collapse
|
2
|
Alekseeva P, Makarov V, Efendiev K, Shiryaev A, Reshetov I, Loschenov V. Devices and Methods for Dosimetry of Personalized Photodynamic Therapy of Tumors: A Review on Recent Trends. Cancers (Basel) 2024; 16:2484. [PMID: 39001546 PMCID: PMC11240380 DOI: 10.3390/cancers16132484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Significance: Despite the widespread use of photodynamic therapy in clinical practice, there is a lack of personalized methods for assessing the sufficiency of photodynamic exposure on tumors, depending on tissue parameters that change during light irradiation. This can lead to different treatment results. Aim: The objective of this article was to conduct a comprehensive review of devices and methods employed for the implicit dosimetric monitoring of personalized photodynamic therapy for tumors. Methods: The review included 88 peer-reviewed research articles published between January 2010 and April 2024 that employed implicit monitoring methods, such as fluorescence imaging and diffuse reflectance spectroscopy. Additionally, it encompassed computer modeling methods that are most often and successfully used in preclinical and clinical practice to predict treatment outcomes. The Internet search engine Google Scholar and the Scopus database were used to search the literature for relevant articles. Results: The review analyzed and compared the results of 88 peer-reviewed research articles presenting various methods of implicit dosimetry during photodynamic therapy. The most prominent wavelengths for PDT are in the visible and near-infrared spectral range such as 405, 630, 660, and 690 nm. Conclusions: The problem of developing an accurate, reliable, and easily implemented dosimetry method for photodynamic therapy remains a current problem, since determining the effective light dose for a specific tumor is a decisive factor in achieving a positive treatment outcome.
Collapse
Affiliation(s)
- Polina Alekseeva
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
| | - Vladimir Makarov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Kanamat Efendiev
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Artem Shiryaev
- Department of Oncology and Radiotherapy, Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Igor Reshetov
- Department of Oncology and Radiotherapy, Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Victor Loschenov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| |
Collapse
|
3
|
Zhang C, Li L. Study on electrochemical sensor for sunitinib cancer medicine based on metal-organic frameworks and carbon nanotubes nanocomposite. ALEXANDRIA ENGINEERING JOURNAL 2024; 97:8-13. [DOI: 10.1016/j.aej.2024.03.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
|
4
|
Bu S, Singh A, Nguyen HC, Peddi B, Bhatt K, Ravendranathan N, Frisbee JC, Singh KK. Protein Disulfide Isomerase 4 Is an Essential Regulator of Endothelial Function and Survival. Int J Mol Sci 2024; 25:3913. [PMID: 38612722 PMCID: PMC11011381 DOI: 10.3390/ijms25073913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Endothelial autophagy plays an important role in the regulation of endothelial function. The inhibition of endothelial autophagy is associated with the reduced expression of protein disulfide isomerase 4 (PDIA-4); however, its role in endothelial cells is not known. Here, we report that endothelial cell-specific loss of PDIA-4 leads to impaired autophagic flux accompanied by loss of endothelial function and apoptosis. Endothelial cell-specific loss of PDIA-4 also induced marked changes in endothelial cell architecture, accompanied by the loss of endothelial markers and the gain of mesenchymal markers consistent with endothelial-to-mesenchymal transition (EndMT). The loss of PDIA-4 activated TGFβ-signaling, and inhibition of TGFβ-signaling suppressed EndMT in PDIA-4-silenced endothelial cells in vitro. Our findings help elucidate the role of PDIA-4 in endothelial autophagy and endothelial function and provide a potential target to modulate endothelial function and/or limit autophagy and EndMT in (patho-)physiological conditions.
Collapse
Affiliation(s)
- Shuhan Bu
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 3K7, Canada; (S.B.); (A.S.); (H.C.N.); (B.P.); (K.B.); (N.R.); (J.C.F.)
| | - Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 3K7, Canada; (S.B.); (A.S.); (H.C.N.); (B.P.); (K.B.); (N.R.); (J.C.F.)
| | - Hien C. Nguyen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 3K7, Canada; (S.B.); (A.S.); (H.C.N.); (B.P.); (K.B.); (N.R.); (J.C.F.)
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Bharatsinai Peddi
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 3K7, Canada; (S.B.); (A.S.); (H.C.N.); (B.P.); (K.B.); (N.R.); (J.C.F.)
| | - Kriti Bhatt
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 3K7, Canada; (S.B.); (A.S.); (H.C.N.); (B.P.); (K.B.); (N.R.); (J.C.F.)
| | - Naresh Ravendranathan
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 3K7, Canada; (S.B.); (A.S.); (H.C.N.); (B.P.); (K.B.); (N.R.); (J.C.F.)
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 3K7, Canada; (S.B.); (A.S.); (H.C.N.); (B.P.); (K.B.); (N.R.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 3K7, Canada; (S.B.); (A.S.); (H.C.N.); (B.P.); (K.B.); (N.R.); (J.C.F.)
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
5
|
Li Z, Yu D, Zhou C, Wang F, Lu K, Liu Y, Xu J, Xuan L, Wang X. Engineering vascularised organoid-on-a-chip: strategies, advances and future perspectives. BIOMATERIALS TRANSLATIONAL 2024; 5:21-32. [PMID: 39220668 PMCID: PMC11362354 DOI: 10.12336/biomatertransl.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 09/04/2024]
Abstract
In recent years, advances in microfabrication technology and tissue engineering have propelled the development of a novel drug screening and disease modelling platform known as organoid-on-a-chip. This platform integrates organoids and organ-on-a-chip technologies, emerging as a promising approach for in vitro modelling of human organ physiology. Organoid-on-a-chip devices leverage microfluidic systems to simulate the physiological microenvironment of specific organs, offering a more dynamic and flexible setting that can mimic a more comprehensive human biological context. However, the lack of functional vasculature has remained a significant challenge in this technology. Vascularisation is crucial for the long-term culture and in vitro modelling of organoids, holding important implications for drug development and personalised medical approaches. This review provides an overview of research progress in developing vascularised organoid-on-a-chip models, addressing methods for in vitro vascularisation and advancements in vascularised organoids. The aim is to serve as a reference for future endeavors in constructing fully functional vascularised organoid-on-a-chip platforms.
Collapse
Affiliation(s)
- Zhangjie Li
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Dingyuan Yu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chenyang Zhou
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Feifan Wang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Kangyi Lu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yijun Liu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Xu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lian Xuan
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolin Wang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
6
|
Stepanova D, Byrne HM, Maini PK, Alarcón T. Computational modeling of angiogenesis: The importance of cell rearrangements during vascular growth. WIREs Mech Dis 2024; 16:e1634. [PMID: 38084799 DOI: 10.1002/wsbm.1634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 03/16/2024]
Abstract
Angiogenesis is the process wherein endothelial cells (ECs) form sprouts that elongate from the pre-existing vasculature to create new vascular networks. In addition to its essential role in normal development, angiogenesis plays a vital role in pathologies such as cancer, diabetes and atherosclerosis. Mathematical and computational modeling has contributed to unraveling its complexity. Many existing theoretical models of angiogenic sprouting are based on the "snail-trail" hypothesis. This framework assumes that leading ECs positioned at sprout tips migrate toward low-oxygen regions while other ECs in the sprout passively follow the leaders' trails and proliferate to maintain sprout integrity. However, experimental results indicate that, contrary to the snail-trail assumption, ECs exchange positions within developing vessels, and the elongation of sprouts is primarily driven by directed migration of ECs. The functional role of cell rearrangements remains unclear. This review of the theoretical modeling of angiogenesis is the first to focus on the phenomenon of cell mixing during early sprouting. We start by describing the biological processes that occur during early angiogenesis, such as phenotype specification, cell rearrangements and cell interactions with the microenvironment. Next, we provide an overview of various theoretical approaches that have been employed to model angiogenesis, with particular emphasis on recent in silico models that account for the phenomenon of cell mixing. Finally, we discuss when cell mixing should be incorporated into theoretical models and what essential modeling components such models should include in order to investigate its functional role. This article is categorized under: Cardiovascular Diseases > Computational Models Cancer > Computational Models.
Collapse
Affiliation(s)
- Daria Stepanova
- Laboratorio Subterráneo de Canfranc, Canfranc-Estación, Huesca, Spain
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Tomás Alarcón
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Centre de Recerca Matemàtica, Bellaterra, Barcelona, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
7
|
MacRaild M, Sarrami-Foroushani A, Lassila T, Frangi AF. Accelerated simulation methodologies for computational vascular flow modelling. J R Soc Interface 2024; 21:20230565. [PMID: 38350616 PMCID: PMC10864099 DOI: 10.1098/rsif.2023.0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Vascular flow modelling can improve our understanding of vascular pathologies and aid in developing safe and effective medical devices. Vascular flow models typically involve solving the nonlinear Navier-Stokes equations in complex anatomies and using physiological boundary conditions, often presenting a multi-physics and multi-scale computational problem to be solved. This leads to highly complex and expensive models that require excessive computational time. This review explores accelerated simulation methodologies, specifically focusing on computational vascular flow modelling. We review reduced order modelling (ROM) techniques like zero-/one-dimensional and modal decomposition-based ROMs and machine learning (ML) methods including ML-augmented ROMs, ML-based ROMs and physics-informed ML models. We discuss the applicability of each method to vascular flow acceleration and the effectiveness of the method in addressing domain-specific challenges. When available, we provide statistics on accuracy and speed-up factors for various applications related to vascular flow simulation acceleration. Our findings indicate that each type of model has strengths and limitations depending on the context. To accelerate real-world vascular flow problems, we propose future research on developing multi-scale acceleration methods capable of handling the significant geometric variability inherent to such problems.
Collapse
Affiliation(s)
- Michael MacRaild
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), University of Leeds, Leeds, UK
- EPSRC Centre for Doctoral Training in Fluid Dynamics, University of Leeds, Leeds, UK
| | - Ali Sarrami-Foroushani
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), University of Leeds, Leeds, UK
- School of Health Science, University of Manchester, Manchester, UK
| | - Toni Lassila
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), University of Leeds, Leeds, UK
- School of Computing, University of Leeds, Leeds, UK
| | - Alejandro F. Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), University of Leeds, Leeds, UK
- School of Computer Science, University of Manchester, Manchester, UK
- School of Health Science, University of Manchester, Manchester, UK
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Kmiotek-Wasylewska K, Łabędź-Masłowska A, Bobis-Wozowicz S, Karnas E, Noga S, Sekuła-Stryjewska M, Woźnicka O, Madeja Z, Dawn B, Zuba-Surma EK. Induced pluripotent stem cell-derived extracellular vesicles enriched with miR-126 induce proangiogenic properties and promote repair of ischemic tissue. FASEB J 2024; 38:e23415. [PMID: 38243682 DOI: 10.1096/fj.202301836r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024]
Abstract
Emerging evidence suggests that stem cell-derived extracellular vesicles (EVs) may induce pro-regenerative effects in ischemic tissues by delivering bioactive molecules, including microRNAs. Recent studies have also shown pro-regenerative benefits of EVs derived from induced pluripotent stem (iPS) cells. However, the underlying mechanisms of EV benefits and the role of their transferred regulatory molecules remain incompletely understood. Accordingly, we investigated the effects of human iPS-derived EVs (iPS-EVs) enriched in proangiogenic miR-126 (iPS-miR-126-EVs) on functional properties of human endothelial cells (ECs) in vitro. We also examined the outcomes following EV injection in a murine model of limb ischemia in vivo. EVs were isolated from conditioned media from cultures of unmodified and genetically modified human iPS cells overexpressing miR-126. The iPS-miR-126-EVs were enriched in miR-126 when compared with control iPS-EVs and effectively transferred miR-126 along with other miRNAs to recipient ECs improving their functional properties essential for ischemic tissue repair, including proliferation, metabolic activity, cell survival, migration, and angiogenic potential. Injection of iPS-miR-126-EVs in vivo in a murine model of acute limb ischemia promoted angiogenesis, increased perfusion, and enhanced functional recovery. These observations corresponded with elevated expression of genes for several proangiogenic factors in ischemic tissues following iPS-miR-126-EV transplantation. These results indicate that innate pro-regenerative properties of iPS-EVs may be further enhanced by altering their molecular composition via controlled genetic modifications. Such iPS-EVs overexpressing selected microRNAs, including miR-126, may represent a novel acellular tool for therapy of ischemic tissues in vivo.
Collapse
Affiliation(s)
- Katarzyna Kmiotek-Wasylewska
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Anna Łabędź-Masłowska
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Sylwia Bobis-Wozowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Elżbieta Karnas
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Sylwia Noga
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
- Malopolska Centre of Biotechnology, Laboratory of Stem Cell Biotechnology, Jagiellonian University, Kraków, Poland
| | - Małgorzata Sekuła-Stryjewska
- Malopolska Centre of Biotechnology, Laboratory of Stem Cell Biotechnology, Jagiellonian University, Kraków, Poland
| | - Olga Woźnicka
- Faculty of Biology, Institute of Zoology and Biomedical Research, Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | - Zbigniew Madeja
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Ewa K Zuba-Surma
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
9
|
Li Y, Xie D, Li L, Jiang P. Comprehensive analysis of metabolic changes in spontaneously hypertensive rats. Clin Exp Hypertens 2023; 45:2190529. [PMID: 36922753 DOI: 10.1080/10641963.2023.2190529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/02/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVES Hypertension is a chronic disease with multiple causative factors that involve metabolic disturbances and can cause various complications. However, the metabolic characteristics of hypertension at different stages are still unclear. This study aimed to explore the metabolic changes induced by hypertension at different ages. METHODS Spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats were divided into four groups according to age: 5-week-old SHR (n = 6), 5-week-old WKY rats (n = 6), 32-week-old SHR (n = 6), and 32-week-old WKY rats (n = 6). Metabolites were analyzed in primary tissues (serum, heart, lung, kidney, brain, and brown adipose) using a non-targeted metabolomics approach. RESULTS Thirty-five metabolites and nine related metabolic pathways were identified in 5-week-old SHR, mainly related to the metabolism of amino acids. Fifty-one metabolites and seven related metabolic pathways were identified in the 32-week-old SHR, involving glycolysis, lipid, and amino acid metabolisms. CONCLUSION This experiment elucidates the metabolic profile of SHR at different ages and provides a basis for predicting and diagnosing hypertension. It also provides a reference for the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Yanan Li
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Dadi Xie
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, China
| | - Luxi Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China
| |
Collapse
|
10
|
Inoue O, Goten C, Hashimuko D, Yamaguchi K, Takeda Y, Nomura A, Ootsuji H, Takashima S, Iino K, Takemura H, Halurkar M, Lim HW, Hwa V, Sanchez-Gurmaches J, Usui S, Takamura M. Single-cell transcriptomics identifies adipose tissue CD271 + progenitors for enhanced angiogenesis in limb ischemia. Cell Rep Med 2023; 4:101337. [PMID: 38118404 PMCID: PMC10772587 DOI: 10.1016/j.xcrm.2023.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023]
Abstract
Therapeutic angiogenesis using mesenchymal stem/stromal cell grafts have shown modest and controversial effects in preventing amputation for patients with critical limb ischemia. Through single-cell transcriptomic analysis of human tissues, we identify CD271+ progenitors specifically from subcutaneous adipose tissue (AT) as having the most prominent pro-angiogenic gene profile distinct from other stem cell populations. AT-CD271+ progenitors demonstrate robust in vivo angiogenic capacity over conventional adipose stromal cell grafts, characterized by long-term engraftment, augmented tissue regeneration, and significant recovery of blood flow in a xenograft model of limb ischemia. Mechanistically, the angiogenic capacity of CD271+ progenitors is dependent on functional CD271 and mTOR signaling. Notably, the number and angiogenic capacity of CD271+ progenitors are strikingly reduced in insulin-resistant donors. Our study highlights the identification of AT-CD271+ progenitors with in vivo superior efficacy for limb ischemia. Furthermore, we showcase comprehensive single-cell transcriptomics strategies for identification of suitable grafts for cell therapy.
Collapse
Affiliation(s)
- Oto Inoue
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chiaki Goten
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Daiki Hashimuko
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kosei Yamaguchi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yusuke Takeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ayano Nomura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ootsuji
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinichiro Takashima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenji Iino
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hirofumi Takemura
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Manasi Halurkar
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vivian Hwa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Premium Research Institute for Human Medicine (WPI-PRIMe), Osaka University, Osaka, Japan; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joan Sanchez-Gurmaches
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
11
|
Accolla RP, Deller M, Lansberry TR, Simmons A, Liang JP, Patel SN, Jiang K, Stabler CL. 3D printed elastomeric biomaterial mitigates compaction during in vitro vasculogenesis. Acta Biomater 2023; 171:363-377. [PMID: 37739251 PMCID: PMC11146342 DOI: 10.1016/j.actbio.2023.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
A key parameter for the success of most cellular implants is the formation of a complete and comprehensive intra-implant vessel network. Pre-vascularization, the generation of vessel structures in vitro prior to transplantation, provides accelerated implant perfusion via anastomosis, but scalability and ease of integration hinder clinical translation. For fibrin-based vasculogenesis approaches, the remodeling and degradation of the fragile, hydrogel matrix during the formation of vessel-like structures results in rapid, cell-mediated construct compaction leading to dense, capillary-like structures with ineffective network coverage. To resolve these challenges, vasculogenic hydrogels were embedded within a highly porous, biostable three-dimensional (3D) polydimethylsiloxane (PDMS) scaffold. Using reverse-casting of 3D-printed molds, scaffolds exhibited highly interconnected and reproducible pore structures. Pore size was optimized via in vivo screening of intra-device angiogenesis. The inclusion of the PDMS frame with vasculogenic hydrogels significantly reduced fibrin compaction in vitro, resulting in easily manipulated constructs with predictable dimensionality and increased surface area compared to fibrin hydrogel alone. Globally, vascular morphogenesis was altered by the PDMS frame, with significantly larger and less dense network structures. Vasculogenic proteomic evaluation showed a temporal impact of the addition of the PDMS frame, indicating altered cellular proliferation and migration signaling. This work establishes a platform for improving the generation of translational pre-vascularized networks for greater flexibility to meet the needs of clinically scaled, engineered tissues. STATEMENT OF SIGNIFICANCE: Competent intra-implant vascularization is a significant issue hindering the success of engineered tissues. Pre-vascularization approaches, whereby a vascular network is formed in vitro and subsequently implanted into the host to anastomose, is a promising approach but it is limited by the compacted, dense, and poorly functional microcapillary structures typically formed using soft hydrogels. Herein, we have uniquely addressed this challenge by adding a 3D printed PDMS-based open framework structure that serves to prevent hydrogel compaction. Globally, we observed distinct differences in overall construct geometry, vascular network density, compaction, and morphogenesis, indicating that this PDMS framework lead to elevated maturity of this in vitro network while retaining its global dimensions. Overall, this novel approach elevates the translational potential of pre-vascularized constructs.
Collapse
Affiliation(s)
- Robert P Accolla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Madison Deller
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Taylor R Lansberry
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Amberlyn Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jia-Pu Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Smit N Patel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Kaiyuan Jiang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Immunology and Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
12
|
Letafati A, Mozhgani SH, Marjani A, Amiri A, Siami Z, Mohammaditabar M, Molaverdi G, Hedayatyaghoobi M. Decoding dysregulated angiogenesis in HTLV-1 asymptomatic carriers compared to healthy individuals. Med Oncol 2023; 40:317. [PMID: 37792095 DOI: 10.1007/s12032-023-02177-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the first identified human retrovirus responsible for two significant diseases: HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukemia/lymphoma (ATLL). Although the majority of infected individuals remain asymptomatic carriers, a small percentage may develop ATLL or HAM/TSP. In tumorigenesis, a crucial process is angiogenesis, which involves the formation of new blood vessels. However, the precise mechanism of HTLV-1 associated angiogenesis remains unclear. This study aims to investigate the gene regulation involved in the angiogenesis signaling pathway associated with HTLV-1 infection. The research enrolled 20 male participants, including asymptomatic carriers and healthy individuals. Blood samples were collected and screened using ELISA for HTLV-1 confirmation, and PCR was performed for both Tax and HBZ for validation. RNA extraction and cDNA synthesis were carried out, followed by RT-qPCR analysis targeting cellular genes involved in angiogenesis. Our findings indicate that gene expression related to angiogenesis was elevated in HTLV-1 ACs patients. However, the differences in gene expression of the analyzed genes, including HSP27, Paxillin, PDK1, PTEN, RAF1, SOS1, and VEGFR2 between ACs and healthy individuals were not statistically significant. This suggests that although angiogenesis-related genes may show increased expression in HTLV-1 infection, they might not be robust indicators of ATLL progression in asymptomatic carriers. The results of our study demonstrate that angiogenesis gene expression is altered in ACs of HTLV-1, indicating potential involvement of angiogenesis in the early stages before ATLL development. While we observed elevated angiogenesis gene expression in ACs, the lack of statistical significance between ACs and healthy individuals suggests that these gene markers may not be sufficient on their own to predict the development of ATLL in asymptomatic carriers.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Arezoo Marjani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdollah Amiri
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Zeinab Siami
- Department of Infectious Diseases, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Ghazale Molaverdi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Mojtaba Hedayatyaghoobi
- Department of Infectious Diseases, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
13
|
Hossain MMN, Hu NW, Abdelhamid M, Singh S, Murfee WL, Balogh P. Angiogenic Microvascular Wall Shear Stress Patterns Revealed Through Three-dimensional Red Blood Cell Resolved Modeling. FUNCTION 2023; 4:zqad046. [PMID: 37753184 PMCID: PMC10519277 DOI: 10.1093/function/zqad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
The wall shear stress (WSS) exerted by blood flowing through microvascular capillaries is an established driver of new blood vessel growth, or angiogenesis. Such adaptations are central to many physiological processes in both health and disease, yet three-dimensional (3D) WSS characteristics in real angiogenic microvascular networks are largely unknown. This marks a major knowledge gap because angiogenesis, naturally, is a 3D process. To advance current understanding, we model 3D red blood cells (RBCs) flowing through rat angiogenic microvascular networks using state-of-the-art simulation. The high-resolution fluid dynamics reveal 3D WSS patterns occurring at sub-endothelial cell (EC) scales that derive from distinct angiogenic morphologies, including microvascular loops and vessel tortuosity. We identify the existence of WSS hot and cold spots caused by angiogenic surface shapes and RBCs, and notably enhancement of low WSS regions by RBCs. Spatiotemporal characteristics further reveal how fluctuations follow timescales of RBC "footprints." Altogether, this work provides a new conceptual framework for understanding how shear stress might regulate EC dynamics in vivo.
Collapse
Affiliation(s)
- Mir Md Nasim Hossain
- Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07114, USA
| | - Nien-Wen Hu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Maram Abdelhamid
- Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07114, USA
| | - Simerpreet Singh
- Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07114, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Peter Balogh
- Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07114, USA
| |
Collapse
|
14
|
Roldan L, Isaza C, Ospina J, Montoya C, Domínguez J, Orrego S, Correa S. A Comparative Study of HA/DBM Compounds Derived from Bovine and Porcine for Bone Regeneration. J Funct Biomater 2023; 14:439. [PMID: 37754853 PMCID: PMC10532284 DOI: 10.3390/jfb14090439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
This comparative study investigated the tissue regeneration and inflammatory response induced by xenografts comprised of hydroxyapatite (HA) and demineralized bone matrix (DBM) extracted from porcine (P) and bovine (B) sources. First, extraction of HA and DBM was independently conducted, followed by chemical and morphological characterization. Second, mixtures of HA/DBM were prepared in 50/50 and 60/40 concentrations, and the chemical, morphological, and mechanical properties were evaluated. A rat calvarial defect model was used to evaluate the tissue regeneration and inflammatory responses at 3 and 6 months. The commercial allograft DBM Puros® was used as a clinical reference. Different variables related to tissue regeneration were evaluated, including tissue thickness regeneration (%), amount of regenerated bone area (%), and amount of regenerated collagen area (%). The inflammatory response was evaluated by quantifying the blood vessel area. Overall, tissue regeneration from porcine grafts was superior to bovine. After 3 months of implantation, the tissue thickness regeneration in the 50/50P compound and the commercial DBM was significantly higher (~99%) than in the bovine materials (~23%). The 50/50P and DBM produced higher tissue regeneration than the naturally healed controls. Similar trends were observed for the regenerated bone and collagen areas. The blood vessel area was correlated with tissue regeneration in the first 3 months of evaluation. After 6 months of implantation, HA/DBM compounds showed less regenerated collagen than the DBM-only xenografts. In addition, all animal-derived xenografts improved tissue regeneration compared with the naturally healed defects. No clinical complications associated with any implanted compound were noted.
Collapse
Affiliation(s)
- Lina Roldan
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19122, USA; (C.M.); (S.O.)
| | - Catalina Isaza
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
| | - Juan Ospina
- Centro de Investigación y Desarrollo Cárnico, Industrias de Alimentos Zenú S.A.S., Grupo Nutresa, Medellín 050044, Colombia;
| | - Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19122, USA; (C.M.); (S.O.)
| | - José Domínguez
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19122, USA; (C.M.); (S.O.)
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA 191122, USA
| | - Santiago Correa
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
- Escuela de Ciencias Aplicadas e Ingeniería, Universidad EAFIT, Medellín 050022, Colombia
| |
Collapse
|
15
|
Küchler EC, Teodoro VB, Schröder A, Nazet U, Meger MN, Kunz PVM, Baratto-Filho F, Spanier G, Scariot R, Proff P, Kirschneck C. Effect of genetic polymorphisms rs2301113 and rs2057482 in the expression of HIF-1α protein in periodontal ligament fibroblasts subjected to compressive force. J Appl Oral Sci 2023; 31:e20220151. [PMID: 37255180 DOI: 10.1590/1678-7757-2022-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/06/2023] [Indexed: 06/01/2023] Open
Abstract
OBJECTIVE Many genes and signaling molecules are involved in orthodontic tooth movement, with mechanically and hypoxically stabilized HIF-1α having been shown to play a decisive role in periodontal ligament signaling during orthodontic tooth movement. Thus, this in vitro study aimed to investigate if genetic polymorphisms in HIF1A (Hypoxia-inducible factor α-subunits) influence the expression pattern of HIF-1α protein during simulated orthodontic compressive pressure. METHODOLOGY Samples from human periodontal ligament fibroblasts were used and their DNA was genotyped using real time Polymerase chain reaction for the genetic polymorphisms rs2301113 and rs2057482 in HIF1A . For cell culture and protein expression experiments, six human periodontal ligament fibroblast cell lines were selected based on the patients' genotype. To simulate orthodontic compressive pressure in fibroblasts, a 2 g/cm2 force was applied under cell culture conditions for 48 hours. Protein expression was evaluated by Western Blot. Paired t-tests were used to compare HIF-1α expression with and without compressive pressure application and unpaired t-tests were used to compare expression between the genotypes in rs2057482 and rs2301113 (p<0.05). RESULTS The expression of HIF-1α protein was significantly enhanced by compressive pressure application regardless of the genotype (p<0.0001). The genotypes in the genetic polymorphisms rs2301113 and rs2057482 were not associated with HIF-1α protein expression (p>0.05). CONCLUSIONS Our study confirms that compressive pressure application enhances HIF-1α protein expression. We could not prove that the genetic polymorphisms in HIF1A affect HIF-1α protein expression by periodontal ligament fibroblasts during simulated orthodontic compressive force.
Collapse
Affiliation(s)
| | | | - Agnes Schröder
- University of Regensburg, Department of Orthodontics, Germany
| | - Ute Nazet
- University of Regensburg, Department of Orthodontics, Germany
| | | | | | | | - Gerrit Spanier
- University of Regensburg, Department of Maxillofacial Surgery, Germany
| | - Rafaela Scariot
- Universidade Federal do Paraná, Departamento de Estomatologia, Curitiba, Brasil
| | - Peter Proff
- University of Regensburg, Department of Orthodontics, Germany
| | | |
Collapse
|
16
|
Wang G, Ju S, Li X, Cai Y, Li Y, Li W, Zhou S, He H, Dong Z, Fu W. Preclinical animal study of electrospun poly (l-lactide-co-caprolactone) and formulated porcine fibrinogen for full-thickness diabetic wound regeneration. Biomed Pharmacother 2023; 162:114734. [PMID: 37084560 DOI: 10.1016/j.biopha.2023.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
Diabetic foot ulcer is one of the most serious chronic complications of diabetes mellitus. It may lead to amputation of the lower extremities for diabetics. Our study was to evaluate the effect of electrospun poly (L-lactide-co-caprolactone) and formulated porcine fibrinogen (PLCL/Fg) wound dressing on animal wound model. A blend ratio of PLCL/Fg scaffold was 4 (PLCL):1 (Fg). The scanning electron microscopy findings showed that the fibers' diameter was 122.5 ± 80.3 nm, and the tensile strength was 9.2 ± 0.2 MPa. In-vivo study of the hog normal model demonstrated that PLCL/Fg dressing had better biocompatibility, degradability, and ability to restore the skin's normal structure. We evaluated the wound healing processes in the rat diabetic model by macroscopic observation and histological observation at 1, 2, and 3 post-operation weeks. In our study, the PLCL/Fg group performed better 3 weeks after surgery, in terms of macroscopic healing and scarring. After surgery, the PLCL/Fg group showed better fibroblast accumulation, tissue granulation, and collagen expression than the control group. Topical treatment with PLCL/Fg dressing effectively enhanced wound healing in both normal and hyperglycemic conditions, suggesting that it may possess wound-healing potential.
Collapse
Affiliation(s)
- Guili Wang
- Department of Vascular and Wound Center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuai Ju
- Department of Vascular and Wound Center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoyan Li
- Department of Vascular and Wound Center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Yunmin Cai
- Department of Vascular and Wound Center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Yao Li
- Department of Vascular and Wound Center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenqiang Li
- Department of Vascular and Wound Center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Siyuan Zhou
- Department of Vascular and Wound Center, Jinshan Hospital, Fudan University, Shanghai 200032, China
| | - Hongbing He
- PINE&POWER Biotech Co., Ltd, Shanghai, China; Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Vascular Surgery Institute of Fudan University, Shanghai 200032, China
| | - Zhihui Dong
- Department of Vascular and Wound Center, Jinshan Hospital, Fudan University, Shanghai 200032, China; Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Vascular Surgery Institute of Fudan University, Shanghai 200032, China.
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Vascular Surgery Institute of Fudan University, Shanghai 200032, China
| |
Collapse
|
17
|
Inoue O, Goten C, Hashimuko D, Yamaguchi K, Takeda Y, Nomura A, Ootsuji H, Takashima S, Iino K, Takemura H, Halurkar M, Lim HW, Hwa V, Sanchez-Gurmaches J, Usui S, Takamura M. Single cell transcriptomics identifies adipose tissue CD271+ progenitors for enhanced angiogenesis in limb ischemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527726. [PMID: 36865239 PMCID: PMC9980009 DOI: 10.1101/2023.02.09.527726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Therapeutic angiogenesis using mesenchymal stem/stromal cell grafts have shown modest and controversial effects in preventing amputation for patients with critical limb ischemia. Through single-cell transcriptomic analysis of human tissues, we identified CD271 + progenitors specifically from subcutaneous adipose tissue (AT) as having the most prominent pro-angiogenic gene profile distinct from other stem cell populations. AT-CD271 + progenitors demonstrated robust in vivo angiogenic capacity, over conventional adipose stromal cell grafts, characterized by long-term engraftment, augmented tissue regeneration, and significant recovery of blood flow in a xenograft model of limb ischemia. Mechanistically, the angiogenic capacity of CD271 + progenitors is dependent on functional CD271 and mTOR signaling. Notably, the number and angiogenic capacity of CD271 + progenitors was strikingly reduced in insulin resistant donors. Our study highlights the identification of AT-CD271 + progenitors with in vivo superior efficacy for limb ischemia. Furthermore, we showcase comprehensive single-cell transcriptomics strategies for identification of suitable grafts for cell therapy. HIGHLIGHTS Adipose tissue stromal cells have a distinct angiogenic gene profile among human cell sources. CD271 + progenitors in adipose tissue have a prominent angiogenic gene profile. CD271 + progenitors show superior therapeutic capacities for limb ischemia. CD271 + progenitors are reduced and functionally impaired in insulin resistant donors. GRAPHICAL ABSTRACT
Collapse
|
18
|
Bardag-Gorce F, Hoffman C, Meepe I, Ferrini M, Hoft RH, Oliva J, Niihara Y. Thrombospondin-1 induction and VEGF reduction by proteasome inhibition. Heliyon 2023; 9:e13397. [PMID: 36846655 PMCID: PMC9950833 DOI: 10.1016/j.heliyon.2023.e13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The present study focuses on investigating the expression of thrombospondin-1 (TSP-1), a natural inhibitor of neovascularization. Immunofluorescent staining was used to detect the expression of TSP-1 in rabbit corneal tissue with vascularization induced by limbectomy. TSP-1 was detected in healthy and Cultured Autologous Oral Mucosal Epithelial Cell Sheet (CAOMECS) grafted rabbit corneas. TSP-1 was not detected in diseased corneas. Rabbit and human primary oral mucosal and corneal epithelial cells were cultured and treated with proteasome inhibitor (PI) in vitro. Changes in the expression of TSP-1, HIF-1 alpha and 2 alpha, VEGF-A, and VEGF receptor were analyzed by Western blotting. Neovascularization developed in rabbits' corneas as early as 1 month after limbectomy and was stable for at least 3 months. HIF-1 alpha and VEGF-A expression was reduced in CAOMECS grafted corneas, as compared to sham corneas. While TSP-1 expression was decreased in injured corneas, it was expressed in CAOMECS grafted corneas, but still less expressed compared to healthy corneas. PI treatment, of human oral mucosal and corneal epithelial cells increased TSP-1 expression and reduced VEGF-A expression. The results showed that TSP-1 expression was lost in injured corneal surface and that CAOMECS grafting restored TSP-1 expression to certain extent. Proteasome inhibition treatment increased TSP-1 and decreased VEGF-A expression in human oral mucosal and corneal epithelial cells. The result suggests that corneal neovascularization could be managed with the inhibition of the proteasome after CAOMECS grafting and increase corneal transparency.
Collapse
Affiliation(s)
- Fawzia Bardag-Gorce
- The Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA, 90502, USA,Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA,Corresponding author. The Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA, 90502, USA.
| | - Carter Hoffman
- The Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA, 90502, USA,Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Imara Meepe
- The Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA, 90502, USA
| | - Monica Ferrini
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Richard H. Hoft
- The Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA, 90502, USA
| | - Joan Oliva
- Emmaus Medical, 21250 Hawthorne Blvd, Suite 800, Torrance, CA, 90505, USA
| | - Yutaka Niihara
- The Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA, 90502, USA,Emmaus Medical, 21250 Hawthorne Blvd, Suite 800, Torrance, CA, 90505, USA
| |
Collapse
|
19
|
Kolatt TS, Shufaro Y, Mashiach S, Czernobilsky B, Aviel-Ronen S, Apel-Sarid L, Dahan M, Or Y. Revealing the uterine blood vessel network via virtual pathology. REPRODUCTION AND FERTILITY 2023; 4:RAF-22-0135. [PMID: 36757338 PMCID: PMC10083648 DOI: 10.1530/raf-22-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/09/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND The distribution of the blood vessel network at any point in time in any body tissue, may provide valuable information with regards to the tissue condition and its angiogenesis functionality. The blood vessel three-dimensional network of the endometrium goes through a process of change over a relatively short period of 4 weeks on average. It is well accepted that this angiogenesis is closely related to the success or failure of the implantation of the embryo Objective and rationale: Our study aims to present a method to follow the three-dimensional evolution of the superficial blood vessel distribution in the endometrium throughout the uterine cycle. METHOD This method utilizes differences in the observed broadband colors of the blood vessels in order to assess their depth coordinate below the endometrial tissue surface. We implemented the method using microscopic images of fresh, ex-vivo, endometrial samples of different cycle days to obtain the statistical evolution track of the superficial blood vessel population in both human and animal (swine) samples. OUTCOMES In human samples we observed a systematic and consistent trend in the BV diameter distribution at different tissue depths. We demonstrate that the magnitude of this trend evolves throughout the course of the female cycle. WIDER IMPLICATIONS This method has the potential to further our understanding of the mechanisms of angiogenesis in tissues other than the endometrium. We propose that this method may also contribute to more precise endometrial dating and may assist in more accurate determination of embryo transfer timing within IVF treatments.
Collapse
Affiliation(s)
- Tsafrir S Kolatt
- Iyar – Institute for Advanced Research, Israel
- Fertigo Medical Ltd., Zichron Yaakov, Israel
| | - Yoel Shufaro
- Rabin Medical Center, Petach Tikva, Israel
- The Felsenstein Medical Research Center, the Sackler Faculty of Medicine, Tel-Aviv University
| | | | | | - Sarit Aviel-Ronen
- Assuta Medical Center, Tel-Aviv, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Mazal Dahan
- Fertigo Medical Ltd., Zichron Yaakov, Israel
| | - Yuval Or
- Kaplan Medical Center, Rehovot, Israel
| |
Collapse
|
20
|
Watson E, Mikos AG. Advances in In Vitro and In Vivo Bioreactor-Based Bone Generation for Craniofacial Tissue Engineering. BME FRONTIERS 2023; 4:0004. [PMID: 37849672 PMCID: PMC10521661 DOI: 10.34133/bmef.0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 10/19/2023] Open
Abstract
Craniofacial reconstruction requires robust bone of specified geometry for the repair to be both functional and aesthetic. While native bone from elsewhere in the body can be harvested, shaped, and implanted within a defect, using either an in vitro or in vivo bioreactors eliminates donor site morbidity while increasing the customizability of the generated tissue. In vitro bioreactors utilize cells harvested from the patient, a scaffold, and a device to increase mass transfer of nutrients, oxygen, and waste, allowing for generation of larger viable tissues. In vivo bioreactors utilize the patient's own body as a source of cells and of nutrient transfer and involve the implantation of a scaffold with or without growth factors adjacent to vasculature, followed by the eventual transfer of vascularized, mineralized tissue to the defect site. Several different models of in vitro bioreactors exist, and several different implantation sites have been successfully utilized for in vivo tissue generation and defect repair in humans. In this review, we discuss the specifics of each bioreactor strategy, as well as the advantages and disadvantages of each and the future directions for the engineering of bony tissues for craniofacial defect repair.
Collapse
Affiliation(s)
- Emma Watson
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
21
|
HIF1A Knockout by Biallelic and Selection-Free CRISPR Gene Editing in Human Primary Endothelial Cells with Ribonucleoprotein Complexes. Biomolecules 2022; 13:biom13010023. [PMID: 36671408 PMCID: PMC9856017 DOI: 10.3390/biom13010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Primary endothelial cells (ECs), especially human umbilical vein endothelial cells (HUVECs), are broadly used in vascular biology. Gene editing of primary endothelial cells is known to be challenging, due to the low DNA transfection efficiency and the limited proliferation capacity of ECs. We report the establishment of a highly efficient and selection-free CRISPR gene editing approach for primary endothelial cells (HUVECs) with ribonucleoprotein (RNP) complex. We first optimized an efficient and cost-effective protocol for messenger RNA (mRNA) delivery into primary HUVECs by nucleofection. Nearly 100% transfection efficiency of HUVECs was achieved with EGFP mRNA. Using this optimized DNA-free approach, we tested RNP-mediated CRISPR gene editing of primary HUVECs with three different gRNAs targeting the HIF1A gene. We achieved highly efficient (98%) and biallelic HIF1A knockout in HUVECs without selection. The effects of HIF1A knockout on ECs' angiogenic characteristics and response to hypoxia were validated by functional assays. Our work provides a simple method for highly efficient gene editing of primary endothelial cells (HUVECs) in studies and manipulations of ECs functions.
Collapse
|
22
|
Moradi SZ, Jalili F, Hoseinkhani Z, Mansouri K. Regenerative Medicine and Angiogenesis; Focused on Cardiovascular Disease. Adv Pharm Bull 2022; 12:686-699. [PMID: 36415645 PMCID: PMC9675929 DOI: 10.34172/apb.2022.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 03/26/2021] [Accepted: 09/27/2021] [Indexed: 10/11/2023] Open
Abstract
Cardiovascular disease (CVD) is a major concern for health with high mortality rates around the world. CVD is often associated with partial or full occlusion of the blood vessel network. Changes in lifestyle can be useful for management early-stage disease but in the advanced stage, surgical interventions or pharmacological are needed to increase the blood flow through the affected tissue or to reduce the energy requirements. Regeneration medicine is a new science that has provided many different options for treating various diseases, especially in CVD over the years. Stem cell therapy, gene therapy, and tissue engineering are some of the powerful branches of the field that have given patients great hope in improving their condition. In this review, we attempted to examine the beneficial effects, challenges, and contradictory effects of angiogenesis in vivo, and in vitro models' studies of CVD. We hope that this information will be able to help other researchers to design new effective structures and open new avenues for the treatment of CVD with the help of angiogenesis and regeneration medicine in the future.
Collapse
Affiliation(s)
- Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faramarz Jalili
- Gradute Studies Student, Sobey School of Business, Saint Mary‚S University, Halifax, NS,Canada
| | - Zohreh Hoseinkhani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Molecular Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
23
|
Azevedo AR, Pais AS, Almeida-Santos T, Pires VMR, Pessa P, Marques CC, Nolasco S, Castelo-Branco P, Prates JAM, Lopes-da-Costa L, Laranjo M, Botelho MF, Pereira RMLN, Pimenta JMBGA. Medical Grade Honey as a Promising Treatment to Improve Ovarian Tissue Transplantation. Bioengineering (Basel) 2022; 9:357. [PMID: 36004882 PMCID: PMC9405527 DOI: 10.3390/bioengineering9080357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian tissue cryopreservation is a female fertility preservation technique that presents major challenges for the maintenance of follicular viability after transplantation. The aim of this study was to evaluate and compare the application of L-Mesitran Soft®, a product containing 40% medical grade honey (MGH), with other strategies to improve ovarian grafts' viability. For this purpose, bovine ovarian tissue was vitrified, warmed and randomly assigned to culture groups: (1) control, (2) MGH 0.2% in vitro, (3) MGH in vivo (direct application in the xenotransplantation), (4) vascular endothelial growth factor (VEGF 50 ng/mL) and (5) vitamin D (100 Nm), during a 48 h period. A sixth group (6) of fragments was thawed on transplantation day and was not cultured. The tissue was xenotransplanted into immunodeficient (Rowett nude homozygous) ovariectomized rats. Grafts were analyzed 48 h after culture, and 7 and 28 days after transplantation. The tissue was subjected to histological and immunohistochemical analysis. Treatments using MGH showed the highest angiogenic and cell proliferation stimulation, with cellular apoptosis, within a healthy cellular turnover pathway. In conclusion, MGH should be considered as a potentially effective and less expensive strategy to improve ovarian tissue transplantation.
Collapse
Affiliation(s)
- Ana Rita Azevedo
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária I.P., Unidade de Biotecnologia e Recursos Genéticos, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (C.C.M.); (R.M.L.N.P.); (J.M.B.G.A.P.)
| | - Ana Sofia Pais
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (A.S.P.); (T.A.-S.)
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.L.); (M.F.B.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-504 Coimbra, Portugal
| | - Teresa Almeida-Santos
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (A.S.P.); (T.A.-S.)
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Azinhaga de Santa Comba, Celas, 3004-504 Coimbra, Portugal
| | - Virgínia M. R. Pires
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (V.M.R.P.); (S.N.); (J.A.M.P.); (L.L.-d.-C.)
- NZYTech—Genes and Enzymes, Campos do Lumiar, Edifício E, 1649-038 Lisboa, Portugal
| | - Pedro Pessa
- Serviço de Anatomia Patológica, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
| | - Carla C. Marques
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária I.P., Unidade de Biotecnologia e Recursos Genéticos, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (C.C.M.); (R.M.L.N.P.); (J.M.B.G.A.P.)
| | - Sofia Nolasco
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (V.M.R.P.); (S.N.); (J.A.M.P.); (L.L.-d.-C.)
- ESTeSl—Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal
| | | | - José A. M. Prates
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (V.M.R.P.); (S.N.); (J.A.M.P.); (L.L.-d.-C.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Luís Lopes-da-Costa
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (V.M.R.P.); (S.N.); (J.A.M.P.); (L.L.-d.-C.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Mafalda Laranjo
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.L.); (M.F.B.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Maria Filomena Botelho
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (M.L.); (M.F.B.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Rosa M. L. N. Pereira
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária I.P., Unidade de Biotecnologia e Recursos Genéticos, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (C.C.M.); (R.M.L.N.P.); (J.M.B.G.A.P.)
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (V.M.R.P.); (S.N.); (J.A.M.P.); (L.L.-d.-C.)
| | - Jorge M. B. G. A. Pimenta
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária I.P., Unidade de Biotecnologia e Recursos Genéticos, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (C.C.M.); (R.M.L.N.P.); (J.M.B.G.A.P.)
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (V.M.R.P.); (S.N.); (J.A.M.P.); (L.L.-d.-C.)
| |
Collapse
|
24
|
Stepien TL, Secomb TW. Spreading mechanics and differentiation of astrocytes during retinal development. J Theor Biol 2022; 549:111208. [DOI: 10.1016/j.jtbi.2022.111208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/27/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
|
25
|
Biazar E, Heidari Keshel S, Rezaei Tavirani M, Kamalvand M. Healing effect of acellular fish skin with plasma rich in growth factor on full-thickness skin defects. Int Wound J 2022; 19:2154-2162. [PMID: 35441469 DOI: 10.1111/iwj.13821] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Acellular skin as a scaffold has a good potential to regenerate or repair damaged tissues. Growth factors such as Plasma Rich in Growth Factor (PRGF) as a rich source of active proteins can accelerate tissue regeneration. In this study, an acellular scaffold derived from fish skin with growth factors was used to repair full-thickness skin defects in a rat model. Cellular results demonstrated that epithelial cells adhere well to acellular scaffolds. The results of animal studies showed that the groups treated with acellular scaffold and growth factor have a high ability to close and heal wounds on the 28th day after surgery. Histological and staining results showed that in the treated groups with scaffold and growth factor, an epidermal layer was formed with some skin appendages similar to normal skin. Overall, such scaffolds with biological agents can cause an acceptable synergistic effect on skin regeneration and wound healing.
Collapse
Affiliation(s)
- Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahshad Kamalvand
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
26
|
Ma X, Chen Y, Mo C, Li L, Nong S, Gui C. The role of circRNAs in the regulation of myocardial angiogenesis in coronary heart disease. Microvasc Res 2022; 142:104362. [PMID: 35337818 DOI: 10.1016/j.mvr.2022.104362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
During myocardial ischemia, timely reperfusion is critical to limit infarct area and the overall loss of cardiac contractile function. New treatment strategies need to be developed for patients who are neither able to receive interventional treatment nor suitable for surgical blood transport reconstruction surgery. Therapeutic angiogenesis is a promising approach that can be used to guide new treatment strategies. The goal of these therapies is to form new blood vessels or promote the maturation of existing vasculature systems, bypassing blocked arteries to maintain organ perfusion, thereby relieving symptoms and preventing the remodeling of bad organs. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), have been attracted much attention for their roles in various physiological and pathological processes. There is growing evidence that ncRNAs, especially circRNAs, play an important role in the regulation of cardiomyopathy angiogenesis due to its diversity of functions. Therefore, this article reviews the role and mechanisms of circRNA in myocardial angiogenesis to better understand the role of circRNAs in myocardial angiogenesis, which may provide useful insights and new revelations for the research field of identifying diagnostic markers and therapeutic approaches for the treatment of coronary artery disease.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yuanxin Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Changhua Mo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Longcang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Shuxiong Nong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China..
| |
Collapse
|
27
|
Gallego I, Villate-Beitia I, Saenz-Del-Burgo L, Puras G, Pedraz JL. Therapeutic Opportunities and Delivery Strategies for Brain Revascularization in Stroke, Neurodegeneration, and Aging. Pharmacol Rev 2022; 74:439-461. [PMID: 35302047 DOI: 10.1124/pharmrev.121.000418] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/25/2022] Open
Abstract
Central nervous system (CNS) diseases, especially acute ischemic events and neurodegenerative disorders, constitute a public health problem with no effective treatments to allow a persistent solution. Failed therapies targeting neuronal recovery have revealed the multifactorial and intricate pathophysiology underlying such CNS disorders as ischemic stroke, Alzheimeŕs disease, amyotrophic lateral sclerosis, vascular Parkisonism, vascular dementia, and aging, in which cerebral microvasculature impairment seems to play a key role. In fact, a reduction in vessel density and cerebral blood flow occurs in these scenarios, contributing to neuronal dysfunction and leading to loss of cognitive function. In this review, we provide an overview of healthy brain microvasculature structure and function in health and the effect of the aforementioned cerebral CNS diseases. We discuss the emerging new therapeutic opportunities, and their delivery approaches, aimed at recovering brain vascularization in this context. SIGNIFICANCE STATEMENT: The lack of effective treatments, mainly focused on neuron recovery, has prompted the search of other therapies to treat cerebral central nervous system diseases. The disruption and degeneration of cerebral microvasculature has been evidenced in neurodegenerative diseases, stroke, and aging, constituting a potential target for restoring vascularization, neuronal functioning, and cognitive capacities by the development of therapeutic pro-angiogenic strategies.
Collapse
Affiliation(s)
- Idoia Gallego
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Laura Saenz-Del-Burgo
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Gustavo Puras
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - José Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| |
Collapse
|
28
|
Pérez Regalado S, León J, Feriche B. Therapeutic approach for digestive system cancers and potential implications of exercise under hypoxia condition: what little is known? a narrative review. J Cancer Res Clin Oncol 2022; 148:1107-1121. [PMID: 35157120 DOI: 10.1007/s00432-022-03918-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/04/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cancer, like other chronic pathologies, is associated with the presence of hypoxic regions due to the uncontrolled cell growth. Under this pathological hypoxic condition, various molecular signaling pathways are activated to ensure cell survival, such as those that govern angiogenesis, erythropoiesis, among others. These molecular processes are very similar to the physiological response caused by exposure to altitude (natural hypobaric systemic hypoxia), the use of artificial hypoxia devices (systemic normobaric simulated hypoxia) or the delivery of vascular occlusion to the extremities (also called local hypoxia by the blood flow restriction technique). "Tumor hypoxia" has gained further clinical importance due to its crucial role in both tumor progression and resistance to treatment. However, the ability to manipulate this pathway through physical exercise and systemic hypoxia-mediated signaling pathways could offer an important range of therapeutic opportunities that should be further investigated. METHODS This review is focused on the potential implications of systemic hypoxia combined with exercise in digestive system neoplasms prognosis. Articles included in the review were retrieved by searching among the three main scientific databases: PubMed, Scopus, and Embase. FINDINGS The findings of this review suggest that exercise performed under systemic hypoxic conditions could have a positive impact in prognosis and quality of life of the population with digestive system cancers. CONCLUSIONS Further studies are needed to consider this paradigm as a new potential intervention in digestive oncological population.
Collapse
Affiliation(s)
- Sergio Pérez Regalado
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Josefa León
- Clinical Management Unit of Digestive System, San Cecilio Hospital, Ibs.GRANADA, Granada, Spain.
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
29
|
Zhang Y, Wang H, Oliveira RHM, Zhao C, Popel AS. Systems biology of angiogenesis signaling: Computational models and omics. WIREs Mech Dis 2021; 14:e1550. [PMID: 34970866 PMCID: PMC9243197 DOI: 10.1002/wsbm.1550] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023]
Abstract
Angiogenesis is a highly regulated multiscale process that involves a plethora of cells, their cellular signal transduction, activation, proliferation, differentiation, as well as their intercellular communication. The coordinated execution and integration of such complex signaling programs is critical for physiological angiogenesis to take place in normal growth, development, exercise, and wound healing, while its dysregulation is critically linked to many major human diseases such as cancer, cardiovascular diseases, and ocular disorders; it is also crucial in regenerative medicine. Although huge efforts have been devoted to drug development for these diseases by investigation of angiogenesis‐targeted therapies, only a few therapeutics and targets have proved effective in humans due to the innate multiscale complexity and nonlinearity in the process of angiogenic signaling. As a promising approach that can help better address this challenge, systems biology modeling allows the integration of knowledge across studies and scales and provides a powerful means to mechanistically elucidate and connect the individual molecular and cellular signaling components that function in concert to regulate angiogenesis. In this review, we summarize and discuss how systems biology modeling studies, at the pathway‐, cell‐, tissue‐, and whole body‐levels, have advanced our understanding of signaling in angiogenesis and thereby delivered new translational insights for human diseases. This article is categorized under:Cardiovascular Diseases > Computational Models Cancer > Computational Models
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rebeca Hannah M Oliveira
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chen Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Chennakesavalu M, Somala SRR, Dommaraju SR, Peesapati MP, Guo K, Rosenblatt MI, Chang JH, Azar DT. Corneal lymphangiogenesis as a potential target in dry eye disease - a systematic review. Surv Ophthalmol 2021; 66:960-976. [PMID: 33811911 PMCID: PMC9991079 DOI: 10.1016/j.survophthal.2021.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 02/03/2023]
Abstract
Dry eye disease (DED) is a common ocular surface condition causing symptoms of significant discomfort, visual disturbance, and pain. With recent advancements, DED has become recognized as a chronic self-perpetuating inflammatory condition triggered by various internal and environmental factors. DED has been shown to arise from the activation of both the innate and adaptive immune systems, leading to corneal epithelium and lacrimal gland dysfunction. While the cornea is normally avascular and thus imbued with angiogenic and lymphangiogenic privilege, various DED models have revealed activated corneal antigen-presenting cells in regional lymph nodes, suggesting the formation of new corneal lymphatic vessels in DED. The recent availability of reliable lymphatic cell surface markers such as LYVE-1 has made it possible to study lymphangiogenesis. Accordingly, numerous studies have been published within the last decade discussing the role of lymphangiogenesis in DED pathology. We systematically review the literature to identify and evaluate studies presenting data on corneal lymphangiogenesis in DED. There is considerable evidence supporting corneal lymphangiogenesis as a central mediator of DED pathogenesis. These findings suggest that anti-lymphangiogenic therapeutic strategies may be a viable option for the treatment of DED, a conclusion supported by the limited number of reported clinical trials examining anti-lymphangiogenic modalities in DED.
Collapse
Affiliation(s)
- Mohansrinivas Chennakesavalu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Sri Raghurama R Somala
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Sunil R Dommaraju
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Meghna Priyanka Peesapati
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
31
|
Ye M, Lin Y, Pan S, Wang ZW, Zhu X. Applications of Multi-omics Approaches for Exploring the Molecular Mechanism of Ovarian Carcinogenesis. Front Oncol 2021; 11:745808. [PMID: 34631583 PMCID: PMC8497990 DOI: 10.3389/fonc.2021.745808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer ranks as the fifth most common cause of cancer-related death in females. The molecular mechanisms of ovarian carcinogenesis need to be explored in order to identify effective clinical therapies for ovarian cancer. Recently, multi-omics approaches have been applied to determine the mechanisms of ovarian oncogenesis at genomics (DNA), transcriptomics (RNA), proteomics (proteins), and metabolomics (metabolites) levels. Multi-omics approaches can identify some diagnostic and prognostic biomarkers and therapeutic targets for ovarian cancer, and these molecular signatures are beneficial for clarifying the development and progression of ovarian cancer. Moreover, the discovery of molecular signatures and targeted therapy strategies could noticeably improve the prognosis of ovarian cancer patients.
Collapse
Affiliation(s)
| | | | | | - Zhi-wei Wang
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Lust ST, Shanahan CM, Shipley RJ, Lamata P, Gentleman E. Design considerations for engineering 3D models to study vascular pathologies in vitro. Acta Biomater 2021; 132:114-128. [PMID: 33652164 PMCID: PMC7611653 DOI: 10.1016/j.actbio.2021.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Many cardiovascular diseases (CVD) are driven by pathological remodelling of blood vessels, which can lead to aneurysms, myocardial infarction, ischaemia and strokes. Aberrant remodelling is driven by changes in vascular cell behaviours combined with degradation, modification, or abnormal deposition of extracellular matrix (ECM) proteins. The underlying mechanisms that drive the pathological remodelling of blood vessels are multifaceted and disease specific; however, unravelling them may be key to developing therapies. Reductionist models of blood vessels created in vitro that combine cells with biomaterial scaffolds may serve as useful analogues to study vascular disease progression in a controlled environment. This review presents the main considerations for developing such in vitro models. We discuss how the design of blood vessel models impacts experimental readouts, with a particular focus on the maintenance of normal cellular phenotypes, strategies that mimic normal cell-ECM interactions, and approaches that foster intercellular communication between vascular cell types. We also highlight how choice of biomaterials, cellular arrangements and the inclusion of mechanical stimulation using fluidic devices together impact the ability of blood vessel models to mimic in vivo conditions. In the future, by combining advances in materials science, cell biology, fluidics and modelling, it may be possible to create blood vessel models that are patient-specific and can be used to develop and test therapies. STATEMENT OF SIGNIFICANCE: Simplified models of blood vessels created in vitro are powerful tools for studying cardiovascular diseases and understanding the mechanisms driving their progression. Here, we highlight the key structural and cellular components of effective models and discuss how including mechanical stimuli allows researchers to mimic native vessel behaviour in health and disease. We discuss the primary methods used to form blood vessel models and their limitations and conclude with an outlook on how blood vessel models that incorporate patient-specific cells and flows can be used in the future for personalised disease modelling.
Collapse
Affiliation(s)
- Suzette T Lust
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom; School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Catherine M Shanahan
- School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, United Kingdom
| | - Rebecca J Shipley
- Institute of Healthcare Engineering and Department of Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Pablo Lamata
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom.
| |
Collapse
|
33
|
Miroshnikova YA, Manet S, Li X, Wickström SA, Faurobert E, Albiges-Rizo C. Calcium signaling mediates a biphasic mechanoadaptive response of endothelial cells to cyclic mechanical stretch. Mol Biol Cell 2021; 32:1724-1736. [PMID: 34081532 PMCID: PMC8684738 DOI: 10.1091/mbc.e21-03-0106] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The vascular system is precisely regulated to adjust blood flow to organismal demand, thereby guaranteeing adequate perfusion under varying physiological conditions. Mechanical forces, such as cyclic circumferential stretch, are among the critical stimuli that dynamically adjust vessel distribution and diameter, but the precise mechanisms of adaptation to changing forces are unclear. We find that endothelial monolayers respond to cyclic stretch by transient remodeling of the vascular endothelial cadherin–based adherens junctions and the associated actomyosin cytoskeleton. Time-resolved proteomic profiling reveals that this remodeling is driven by calcium influx through the mechanosensitive Piezo1 channel, triggering Rho activation to increase actomyosin contraction. As the mechanical stimulus persists, calcium signaling is attenuated through transient down-regulation of Piezo1 protein. At the same time, filamins are phosphorylated to increase monolayer stiffness, allowing mechanoadaptation to restore junctional integrity despite continuing exposure to stretch. Collectively, this study identifies a biphasic response to cyclic stretch, consisting of an initial calcium-driven junctional mechanoresponse, followed by mechanoadaptation facilitated by monolayer stiffening.
Collapse
Affiliation(s)
- Yekaterina A Miroshnikova
- Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38042, France.,INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France.,CNRS UMR 5039, Institute for Advanced Biosciences, F-38700 La Tronche, France.,Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany.,Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sandra Manet
- Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38042, France.,INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France.,CNRS UMR 5039, Institute for Advanced Biosciences, F-38700 La Tronche, France
| | - Xinping Li
- Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Sara A Wickström
- Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany.,Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Eva Faurobert
- Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38042, France.,INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France.,CNRS UMR 5039, Institute for Advanced Biosciences, F-38700 La Tronche, France
| | - Corinne Albiges-Rizo
- Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38042, France.,INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France.,CNRS UMR 5039, Institute for Advanced Biosciences, F-38700 La Tronche, France
| |
Collapse
|
34
|
Soliman M, Sadek AA, Abdelhamid HN, Hussein K. Graphene oxide-cellulose nanocomposite accelerates skin wound healing. Res Vet Sci 2021; 137:262-273. [PMID: 34052571 DOI: 10.1016/j.rvsc.2021.05.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
The usage of materials with the potential to accelerate wound healing is a great benefit for patients and health care systems. This study evaluated the impact of using graphene oxide (GO)-cellulose nanocomposite on skin wound healing via in vitro and in vivo investigations. The nanomaterial was synthesized and characterized. Cytocompatibility performance of the GO-cellulose was investigated through in vitro testing based on MTT and live/dead assays by EA.hy926 human endothelial cells (ECs). Additionally, the effect of GO-cellulose on induced wound scratch model using EA.hy926 ECs was investigated. Finally, the therapeutic effect of GO-cellulose was evaluated in vivo after the creation of two full-thickness wounds in the dorsum of rats (8 mm diameter). These wounds were randomly placed into two groups, the control group (10 wounds) and the GO-cellulose group (10 wounds), and monitored for gross and histopathological changes at 7 and 21 days after wound induction. MTT and Live/Dead assays showed excellent GO-cellulose cytocompatibility, whereas no difference in ECs viability was observed after culturing using conditioned media. GO-cellulose nanocomposite enhanced cell migration in the in vitro wound scratch assay. As compared to the control group, the GO-cellulose nanocomposite group's wound healing process was promoted in the in vivo rat skin wounds. Interestingly, wound re-epithelization and neovascularization were significantly accelerated in the GO-cellulose-treated rats. Furthermore, thick granulation tissue formation and intense collagen deposition were found in the GO-cellulose group. These findings showed that GO-cellulose has a promoting effect on skin wound healing, suggesting its promising and potential application in tissue regeneration.
Collapse
Affiliation(s)
- Mahmoud Soliman
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| | - Ahmed Abdelrahiem Sadek
- Department of Animal Surgery, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt; Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry, Assiut University, Assiut, Egypt.
| | - Kamal Hussein
- Department of Animal Surgery, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
35
|
Fantinatti BEA, Perez ES, Zanella BTT, Valente JS, de Paula TG, Mareco EA, Carvalho RF, Piazza S, Denti MA, Dal-Pai-Silva M. Integrative microRNAome analysis of skeletal muscle of Colossoma macropomum (tambaqui), Piaractus mesopotamicus (pacu), and the hybrid tambacu, based on next-generation sequencing data. BMC Genomics 2021; 22:237. [PMID: 33823787 PMCID: PMC8022549 DOI: 10.1186/s12864-021-07513-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/07/2021] [Indexed: 12/19/2022] Open
Abstract
Background Colossoma macropomum (tambaqui) and Piaractus mesopotamicus (pacu) are good fish species for aquaculture. The tambacu, individuals originating from the induced hybridization of the female tambaqui with the male pacu, present rapid growth and robustness, characteristics which have made the tambacu a good choice for Brazilian fish farms. Here, we used small RNA sequencing to examine global miRNA expression in the genotypes pacu (PC), tambaqui (TQ), and hybrid tambacu (TC), (Juveniles, n = 5 per genotype), to better understand the relationship between tambacu and its parental species, and also to clarify the mechanisms involved in tambacu muscle growth and maintenance based on miRNAs expression. Results Regarding differentially expressed (DE) miRNAs between the three genotypes, we observed 8 upregulated and 7 downregulated miRNAs considering TC vs. PC; 14 miRNAs were upregulated and 10 were downregulated considering TC vs. TQ, and 15 miRNAs upregulated and 9 were downregulated considering PC vs. TQ. The majority of the miRNAs showed specific regulation for each genotype pair, and no miRNA were shared between the 3 genotype pairs, in both up- and down-regulated miRNAs. Considering only the miRNAs with validated target genes, we observed the miRNAs miR-144-3p, miR-138-5p, miR-206-3p, and miR-499-5p. GO enrichment analysis showed that the main target genes for these miRNAs were grouped in pathways related to oxygen homeostasis, blood vessel modulation, and oxidative metabolism. Conclusions Our global miRNA analysis provided interesting DE miRNAs in the skeletal muscle of pacu, tambaqui, and the hybrid tambacu. In addition, in the hybrid tambacu, we identified some miRNAs controlling important molecular muscle markers that could be relevant for the farming maximization. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07513-5.
Collapse
Affiliation(s)
- Bruno E A Fantinatti
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil.,Ninth of July University - UNINOVE, Bauru, Sao Paulo, Brazil.,Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Erika S Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Bruna T T Zanella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Jéssica S Valente
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Tassiana G de Paula
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Edson A Mareco
- University of Western Sao Paulo - UNOESTE, Presidente Prudente, Sao Paulo, Brazil
| | - Robson F Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Silvano Piazza
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Michela A Denti
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil.
| |
Collapse
|
36
|
Galeano-Otero I, Del Toro R, Khatib AM, Rosado JA, Ordóñez-Fernández A, Smani T. SARAF and Orai1 Contribute to Endothelial Cell Activation and Angiogenesis. Front Cell Dev Biol 2021; 9:639952. [PMID: 33748129 PMCID: PMC7970240 DOI: 10.3389/fcell.2021.639952] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Angiogenesis is a multistep process that controls endothelial cells (ECs) functioning to form new blood vessels from preexisting vascular beds. This process is tightly regulated by pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), which promote signaling pathways involving the increase in the intracellular Ca2+ concentration ([Ca2+]i). Recent evidence suggests that store-operated calcium entry (SOCE) might play a role in angiogenesis. However, little is known regarding the role of SARAF, SOCE-associated regulatory factor, and Orai1, the pore-forming subunit of the store-operated calcium channel (SOCC), in angiogenesis. Here, we show that SOCE inhibition with GSK-7975A blocks aorta sprouting, as well as human umbilical vein endothelial cell (HUVEC) tube formation and migration. The intraperitoneal injection of GSK-7975A also delays the development of retinal vasculature assessed at postnatal day 6 in mice, since it reduces vessel length and the number of junctions, while it increases lacunarity. Moreover, we find that SARAF and Orai1 are involved in VEGF-mediated [Ca2+]i increase, and their knockdown using siRNA impairs HUVEC tube formation, proliferation, and migration. Finally, immunostaining and in situ proximity ligation assays indicate that SARAF likely interacts with Orai1 in HUVECs. Therefore, these findings show for the first time a functional interaction between SARAF and Orai1 in ECs and highlight their essential role in different steps of the angiogenesis process.
Collapse
Affiliation(s)
- Isabel Galeano-Otero
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain.,CIBERCV, Madrid, Spain
| | - Raquel Del Toro
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain.,CIBERCV, Madrid, Spain
| | | | | | - Antonio Ordóñez-Fernández
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain.,CIBERCV, Madrid, Spain.,Department of Surgery, University of Seville, Seville, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain.,CIBERCV, Madrid, Spain
| |
Collapse
|
37
|
Stolerman LM, Ghosh P, Rangamani P. Stability Analysis of a Signaling Circuit with Dual Species of GTPase Switches. Bull Math Biol 2021; 83:34. [PMID: 33609194 PMCID: PMC8378325 DOI: 10.1007/s11538-021-00864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
GTPases are molecular switches that regulate a wide range of cellular processes, such as organelle biogenesis, position, shape, function, vesicular transport between organelles, and signal transduction. These hydrolase enzymes operate by toggling between an active ("ON") guanosine triphosphate (GTP)-bound state and an inactive ("OFF") guanosine diphosphate (GDP)-bound state; such a toggle is regulated by GEFs (guanine nucleotide exchange factors) and GAPs (GTPase activating proteins). Here we propose a model for a network motif between monomeric (m) and trimeric (t) GTPases assembled exclusively in eukaryotic cells of multicellular organisms. We develop a system of ordinary differential equations in which these two classes of GTPases are interlinked conditional to their ON/OFF states within a motif through coupling and feedback loops. We provide explicit formulae for the steady states of the system and perform classical local stability analysis to systematically investigate the role of the different connections between the GTPase switches. Interestingly, a coupling of the active mGTPase to the GEF of the tGTPase was sufficient to provide two locally stable states: one where both active/inactive forms of the mGTPase can be interpreted as having low concentrations and the other where both m- and tGTPase have high concentrations. Moreover, when a feedback loop from the GEF of the tGTPase to the GAP of the mGTPase was added to the coupled system, two other locally stable states emerged. In both states the tGTPase is inactivated and active tGTPase concentrations are low. Finally, the addition of a second feedback loop, from the active tGTPase to the GAP of the mGTPase, gives rise to a family of steady states that can be parametrized by a range of inactive tGTPase concentrations. Our findings reveal that the coupling of these two different GTPase motifs can dramatically change their steady-state behaviors and shed light on how such coupling may impact signaling mechanisms in eukaryotic cells.
Collapse
Affiliation(s)
- Lucas M Stolerman
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Moores Comprehensive Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
38
|
Yue T, Zhao D, Phan DTT, Wang X, Park JJ, Biviji Z, Hughes CCW, Lee AP. A modular microfluidic system based on a multilayered configuration to generate large-scale perfusable microvascular networks. MICROSYSTEMS & NANOENGINEERING 2021; 7:4. [PMID: 33456784 PMCID: PMC7787972 DOI: 10.1038/s41378-020-00229-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/19/2020] [Accepted: 11/17/2020] [Indexed: 05/03/2023]
Abstract
The vascular network of the circulatory system plays a vital role in maintaining homeostasis in the human body. In this paper, a novel modular microfluidic system with a vertical two-layered configuration is developed to generate large-scale perfused microvascular networks in vitro. The two-layer polydimethylsiloxane (PDMS) configuration allows the tissue chambers and medium channels not only to be designed and fabricated independently but also to be aligned and bonded accordingly. This method can produce a modular microfluidic system that has high flexibility and scalability to design an integrated platform with multiple perfused vascularized tissues with high densities. The medium channel was designed with a rhombic shape and fabricated to be semiclosed to form a capillary burst valve in the vertical direction, serving as the interface between the medium channels and tissue chambers. Angiogenesis and anastomosis at the vertical interface were successfully achieved by using different combinations of tissue chambers and medium channels. Various large-scale microvascular networks were generated and quantified in terms of vessel length and density. Minimal leakage of the perfused 70-kDa FITC-dextran confirmed the lumenization of the microvascular networks and the formation of tight vertical interconnections between the microvascular networks and medium channels in different structural layers. This platform enables the culturing of interconnected, large-scale perfused vascularized tissue networks with high density and scalability for a wide range of multiorgan-on-a-chip applications, including basic biological studies and drug screening.
Collapse
Affiliation(s)
- Tao Yue
- Department of Biomedical Engineering, University of California, Irvine, CA USA
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Da Zhao
- Department of Biomedical Engineering, University of California, Irvine, CA USA
| | - Duc T. T. Phan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA USA
| | - Xiaolin Wang
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, China
- National Key Laboratory of Science and Technology for Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Joshua Jonghyun Park
- Department of Electrical Engineering and Computer Science, University of California, Irvine, CA USA
| | - Zayn Biviji
- Department of Applied Mathematics - Biology, Brown University, Providence, RI USA
| | - Christopher C. W. Hughes
- Department of Biomedical Engineering, University of California, Irvine, CA USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA USA
| | - Abraham P. Lee
- Department of Biomedical Engineering, University of California, Irvine, CA USA
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA USA
| |
Collapse
|
39
|
Optical Coherence Tomography for the Investigation of Skin Adaptation in Lower-Limb Prosthesis Users. ACTA ACUST UNITED AC 2020; 33:255-265. [DOI: 10.1097/jpo.0000000000000348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Ibrahim A, Soliman M, Kotb S, Ali MM. Evaluation of fish skin as a biological dressing for metacarpal wounds in donkeys. BMC Vet Res 2020; 16:472. [PMID: 33272259 PMCID: PMC7713020 DOI: 10.1186/s12917-020-02693-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background The use of biological dressings has recently emerged in the management of burns and wounds. The aim of the present study was to evaluate the Nile tilapia skin as a biological dressing for full-thickness cutaneous metacarpal wounds in donkeys. The study was conducted on nine clinically healthy donkeys (n = 9). Here, fish skin dressings were obtained from fresh Nile tilapia (Oreochromis niloticus and sterilized by immersion in silver nanoparticles (AgNPs) solution for 5 min, with no change in collagen content. Bilateral, circular full-thickness excisional skin wounds (2 cm in diameter) were created on the dorsal aspect of the mid-metacarpals of each donkey. Wounds on the right metacarpals (treated wounds, n = 9) were dressed with sterile fish skins, while wounds on the left metacarpals (control wounds, n = 9) were dressed with sterile non-adherent dressing pads without any topical applications. Wound dressings were changed weekly. Wounds were evaluated microbiologically, grossly, and histologically on days 7, 14, and 21 post-wound inductions. Results Fish skin-dressed wounds showed a significant (P < 0.0001) reduction in microbial counts (Total viable bacterial count, Staphylococcal count, and Coliform count), a significant (P < 0.0001) decrease in the wound size, and a significant reduction (P < 0.0001) in the epithelial gap compared to the untreated wounds. No frequent dressing changes were needed. Conclusions Fish skin dressing accelerated the wound healing process and efficiently inhibited the local microbial activity and exuberant granulation tissue formation suggesting its reliable and promising application for metacarpal wounds of donkeys.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Mahmoud Soliman
- Department of Veterinary Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Saber Kotb
- Department of Animal and Poultry Hygiene, and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Magda M Ali
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
41
|
Alexandrushkina N, Nimiritsky P, Eremichev R, Popov V, Arbatskiy M, Danilova N, Malkov P, Akopyan Z, Tkachuk V, Makarevich P. Cell Sheets from Adipose Tissue MSC Induce Healing of Pressure Ulcer and Prevent Fibrosis via Trigger Effects on Granulation Tissue Growth and Vascularization. Int J Mol Sci 2020; 21:E5567. [PMID: 32759725 PMCID: PMC7432086 DOI: 10.3390/ijms21155567] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/16/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022] Open
Abstract
We report a comparative study of multipotent mesenchymal stromal cells (MSC) delivered by injection, MSC-based cell sheets (CS) or MSC secretome to induce healing of cutaneous pressure ulcer in C57Bl/6 mice. We found that transplantation of CS from adipose-derived MSC resulted in reduction of fibrosis and recovery of skin structure with its appendages (hair and cutaneous glands). Despite short retention of CS on ulcer surface (3-7 days) it induced profound changes in granulation tissue (GT) structure, increasing its thickness and altering vascularization pattern with reduced blood vessel density and increased maturation of blood vessels. Comparable effects on GT vascularization were induced by MSC secretome, yet this treatment has failed to induce repair of skin with its appendages we observed in the CS group. Study of secretome components produced by MSC in monolayer or sheets revealed that CS produce more factors involved in pericyte chemotaxis and blood vessel maturation (PDGF-BB, HGF, G-CSF) but not sprouting inducer (VEGF165). Analysis of transcriptome using RNA sequencing and Gene Ontology mapping found in CS upregulation of proteins responsible for collagen binding and GT maturation as well as fatty acid metabolism enzymes known to be negative regulators of blood vessel sprouting. At the same time, downregulated transcripts were enriched by factors activating capillary growth, suggesting that in MSC sheets paracrine activity may shift towards matrix remodeling and maturation of vasculature, but not activation of blood vessel sprouting. We proposed a putative paracrine trigger mechanism potentially rendering an impact on GT vascularization and remodeling. Our results suggest that within sheets, MSC may change their functional state and spectrum of soluble factors that influence tissue repair and induce more effective skin healing inclining towards regeneration and reduced scarring.
Collapse
Affiliation(s)
- Natalya Alexandrushkina
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Peter Nimiritsky
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Roman Eremichev
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
| | - Vladimir Popov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Mikhail Arbatskiy
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Natalia Danilova
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
| | - Pavel Malkov
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Zhanna Akopyan
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Vsevolod Tkachuk
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| | - Pavel Makarevich
- Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; (P.N.); (R.E.); (N.D.); (P.M.); (Z.A.); (V.T.); (P.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; (V.P.); (M.A.)
| |
Collapse
|
42
|
Chen D, Yuan W, Park HC, Li X. In vivo assessment of vascular-targeted photodynamic therapy effects on tumor microvasculature using ultrahigh-resolution functional optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:4316-4325. [PMID: 32923045 PMCID: PMC7449727 DOI: 10.1364/boe.397602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 05/23/2023]
Abstract
Vascular-targeted photodynamic therapy (VTP) is an emerging treatment for tumors. The change of tumor vasculatures, including a newly-formed microvascular, in response to VTP, is a key assessment parameter for optimizing the treatment effect. However, an accurate assessment of vasculature, particularly the microvasculature's changes in vivo, remains challenging due to the limited resolution afforded by existing imaging modalities. In this study, we demonstrated the in vivo imaging of VTP effects on an A431 tumor-bearing window chamber model of a mouse with an 800-nm ultrahigh-resolution functional optical coherence tomography (UHR-FOCT). We further quantitatively demonstrated the effects of VTP on the size and density of tumor microvasculature before, during, and after the treatment. Our results suggest the promising potential of UHR-FOCT for assessing the tumor treatment with VTP in vivo and in real time to achieve an optimal outcome.
Collapse
Affiliation(s)
- Defu Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- These authors contributed equally to this work
| | - Wu Yuan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- These authors contributed equally to this work
- Current address: Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hyeon-Cheol Park
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
43
|
Angiogenesis Analyzer for ImageJ - A comparative morphometric analysis of "Endothelial Tube Formation Assay" and "Fibrin Bead Assay". Sci Rep 2020; 10:11568. [PMID: 32665552 PMCID: PMC7360583 DOI: 10.1038/s41598-020-67289-8] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
Angiogenesis assays based on in vitro capillary-like growth of endothelial cells (EC) are widely used, either to evaluate the effect of anti- and pro-angiogenesis drugs of interest, or to test and compare the functional capacities of various types of EC and progenitor cells. Among the different methods applied to study angiogenesis, the most commonly used is the "Endothelial Tube Formation Assay" (ETFA). In suitable culture conditions, EC form two-dimensional (2D) branched structures that can lead to a meshed pseudo-capillary network. An alternative approach to ETFA is the "Fibrin Bead Assay" (FBA), based on the use of Cytodex 3 microspheres, which promote the growth of 3D capillary-like patterns from coated EC, suitable for high throughput in vitro angiogenesis studies. The analytical evaluation of these two widely used assays still remains challenging in terms of observation method and image analysis. We previously developed the "Angiogenesis Analyzer" for ImageJ (AA), a tool allowing analysis of ETFA-derived images, according to characteristics of the pseudo-capillary networks. In this work, we developed and implemented a new algorithm for AA able to recognize microspheres and to analyze the attached capillary-like structures from the FBA model. Such a method is presented for the first time in fully automated mode and using non-destructive image acquisition. We detailed these two algorithms and used the new AA version to compare both methods (i.e. ETFA and FBA) in their efficiency, accuracy and statistical relevance to model angiogenesis patterns of Human Umbilical Vein EC (HUVEC). Although the two methods do not assess the same biological step, our data suggest that they display specific and complementary information on the angiogenesis processes analysis.
Collapse
|
44
|
Mansoorifar A, Tahayeri A, Bertassoni LE. Bioinspired reconfiguration of 3D printed microfluidic hydrogels via automated manipulation of magnetic inks. LAB ON A CHIP 2020; 20:1713-1719. [PMID: 32363355 PMCID: PMC7395927 DOI: 10.1039/d0lc00280a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
One of the key components in controlling fluid streams in microfluidic devices is the valve and gating modules. In most situations, these components are fixed at specific locations, and a new reconfiguration of microchannels requires costly and laborious fabrication of new devices. In this study, inspired by the human vasculature microcapillary reconfiguration in response to blood transport requirements, the idea of reconfigurable gel microfluidic systems is presented for the first time. A simple approach is described to print microchannels in methacrylated gelatin (GelMA) hydrogels by using agarose fibers that are loaded with iron microparticles. The agarose fibers can then be used as valves, which are then manipulated using a permanent magnet, providing the reconfigurability of the system. The feasibility of agarose gels is tested with different iron microparticle loadings as well as their resistance to fluid flows. Further, it is shown that using this technique, multiple configurations, as well as reconfigurability, are possible from a single device. This work opens the framework to design more intricate and reconfigurable microfluidic devices, which will decrease the cost and size of the final product.
Collapse
Affiliation(s)
- Amin Mansoorifar
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA.
| | | | | |
Collapse
|
45
|
Avila-Medina J, Mayoral-González I, Galeano-Otero I, Redondo PC, Rosado JA, Smani T. Pathophysiological Significance of Store-Operated Calcium Entry in Cardiovascular and Skeletal Muscle Disorders and Angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:489-504. [PMID: 31646522 DOI: 10.1007/978-3-030-12457-1_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Store-Operated Ca2+ Entry (SOCE) is an important Ca2+ influx pathway expressed by several excitable and non-excitable cell types. SOCE is recognized as relevant signaling pathway not only for physiological process, but also for its involvement in different pathologies. In fact, independent studies demonstrated the implication of essential protein regulating SOCE, such as STIM, Orai and TRPCs, in different pathogenesis and cell disorders, including cardiovascular disease, muscular dystrophies and angiogenesis. Compelling evidence showed that dysregulation in the function and/or expression of isoforms of STIM, Orai or TRPC play pivotal roles in cardiac hypertrophy and heart failure, vascular remodeling and hypertension, skeletal myopathies, and angiogenesis. In this chapter, we summarized the current knowledge concerning the mechanisms underlying abnormal SOCE and its involvement in some diseases, as well as, we discussed the significance of STIM, Orai and TRPC isoforms as possible therapeutic targets for the treatment of angiogenesis, cardiovascular and skeletal muscle diseases.
Collapse
Affiliation(s)
- Javier Avila-Medina
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Isabel Mayoral-González
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- Department of Surgery, University of Seville, Sevilla, Spain
| | - Isabel Galeano-Otero
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Pedro C Redondo
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain.
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain.
- CIBERCV, Madrid, Spain.
| |
Collapse
|
46
|
Bone Tissue Regeneration in the Oral and Maxillofacial Region: A Review on the Application of Stem Cells and New Strategies to Improve Vascularization. Stem Cells Int 2019; 2019:6279721. [PMID: 32082383 PMCID: PMC7012224 DOI: 10.1155/2019/6279721] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Bone tissue engineering techniques are a promising alternative for the use of autologous bone grafts to reconstruct bone defects in the oral and maxillofacial region. However, for successful bone regeneration, adequate vascularization is a prerequisite. This review presents and discusses the application of stem cells and new strategies to improve vascularization, which may lead to feasible clinical applications. Multiple sources of stem cells have been investigated for bone tissue engineering. The stromal vascular fraction (SVF) of human adipose tissue is considered a promising single source for a heterogeneous population of essential cells with, amongst others, osteogenic and angiogenic potential. Enhanced vascularization of tissue-engineered grafts can be achieved by different mechanisms: vascular ingrowth directed from the surrounding host tissue to the implanted graft, vice versa, or concomitantly. Vascular ingrowth into the implanted graft can be enhanced by (i) optimizing the material properties of scaffolds and (ii) their bioactivation by incorporation of growth factors or cell seeding. Vascular ingrowth directed from the implanted graft towards the host tissue can be achieved by incorporating the graft with either (i) preformed microvascular networks or (ii) microvascular fragments (MF). The latter may have stimulating actions on both vascular ingrowth and outgrowth, since they contain angiogenic stem cells like SVF, as well as vascularized matrix fragments. Both adipose tissue-derived SVF and MF are cell sources with clinical feasibility due to their large quantities that can be harvested and applied in a one-step surgical procedure. During the past years, important advancements of stem cell application and vascularization in bone tissue regeneration have been made. The development of engineered in vitro 3D models mimicking the bone defect environment would facilitate new strategies in bone tissue engineering. Successful clinical application requires innovative future investigations enhancing vascularization.
Collapse
|
47
|
Verma M, Shimizu-Motohashi Y, Asakura Y, Ennen JP, Bosco J, Zhou Z, Fong GH, Josiah S, Keefe D, Asakura A. Inhibition of FLT1 ameliorates muscular dystrophy phenotype by increased vasculature in a mouse model of Duchenne muscular dystrophy. PLoS Genet 2019; 15:e1008468. [PMID: 31877123 PMCID: PMC6932757 DOI: 10.1371/journal.pgen.1008468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disease in which the dystrophin coding for a membrane stabilizing protein is mutated. Recently, the vasculature has also shown to be perturbed in DMD and DMD model mdx mice. Recent DMD transcriptomics revealed the defects were correlated to a vascular endothelial growth factor (VEGF) signaling pathway. To reveal the relationship between DMD and VEGF signaling, mdx mice were crossed with constitutive (CAGCreERTM:Flt1LoxP/LoxP) and endothelial cell-specific conditional gene knockout mice (Cdh5CreERT2:Flt1LoxP/LoxP) for Flt1 (VEGFR1) which is a decoy receptor for VEGF. Here, we showed that while constitutive deletion of Flt1 is detrimental to the skeletal muscle function, endothelial cell-specific Flt1 deletion resulted in increased vascular density, increased satellite cell number and improvement in the DMD-associated phenotype in the mdx mice. These decreases in pathology, including improved muscle histology and function, were recapitulated in mdx mice given anti-FLT1 peptides or monoclonal antibodies, which blocked VEGF-FLT1 binding. The histological and functional improvement of dystrophic muscle by FLT1 blockade provides a novel pharmacological strategy for the potential treatment of DMD. Duchenne muscular dystrophy (DMD) is a devastating muscle disease affecting one in 5,000 newborn males, in which the gene encoding the dystrophin protein is mutated. It is a progressive muscle degenerative disease with death by either respiratory insufficiency or cardiac failure in their 20s. Recently, the vasculature has also shown to be perturbed in DMD and DMD model mdx mice with the defects correlated to a vascular endothelial growth factor (VEGF) signaling pathway. To reveal the relationship between DMD and VEGF signaling, mdx mice were crossed with mice carrying mutated a decoy receptor gene (Flt1) for VEGF. Here, we showed that Flt1 deletion resulted in increased vascular density and improvement in the DMD-associated skeletal muscle phenotype in the mdx mice. These decreases in pathology, including improved muscle histology and function, were recapitulated in mdx mice given anti-FLT1 peptides or monoclonal antibodies, which blocked VEGF-FLT1 binding. The histological and functional improvement of dystrophic muscle by FLT1 blockade provides a novel pharmacological strategy for the potential treatment of DMD.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacology
- Disease Models, Animal
- Endothelial Cells/metabolism
- Gene Knockout Techniques
- Male
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Organ Specificity
- Peptides/administration & dosage
- Peptides/pharmacology
- Signal Transduction/drug effects
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors
- Vascular Endothelial Growth Factor Receptor-1/genetics
Collapse
Affiliation(s)
- Mayank Verma
- Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Yuko Shimizu-Motohashi
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Yoko Asakura
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - James P. Ennen
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Jennifer Bosco
- Shire Human Genetic Therapies, Inc., a member of the Takeda group of companies, Lexington, MA, United States of America
| | - Zhiwei Zhou
- Shire Human Genetic Therapies, Inc., a member of the Takeda group of companies, Lexington, MA, United States of America
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut Health Center, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Serene Josiah
- Shire Human Genetic Therapies, Inc., a member of the Takeda group of companies, Lexington, MA, United States of America
| | - Dennis Keefe
- Shire Human Genetic Therapies, Inc., a member of the Takeda group of companies, Lexington, MA, United States of America
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
- * E-mail:
| |
Collapse
|
48
|
The Inhibitory Effects of Gold Nanoparticles on VEGF-A-Induced Cell Migration in Choroid-Retina Endothelial Cells. Int J Mol Sci 2019; 21:ijms21010109. [PMID: 31877924 PMCID: PMC6982177 DOI: 10.3390/ijms21010109] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Vascular endothelial growth factor (VEGF) is upregulated by hypoxia and is a crucial stimulator for choroidal neovascularization (CNV) in age-related macular degeneration and pathologic myopia, as well as retinal neovascularization in proliferative diabetic retinopathy. Retinal and choroidal endothelial cells play key roles in the development of retinal and CNV, and subsequent fibrosis. At present, the effects of gold nanoparticles (AuNPs) on the VEGF-induced choroid-retina endothelial (RF/6A) cells are still unknown. In our study, we investigated the effects of AuNPs on RF/6A cell viabilities and cell adhesion to fibronectin, a major ECM protein of fibrovascular membrane. Furthermore, the inhibitory effects of AuNPs on RF/6A cell migration induced by VEGF and its signaling were studied. Methods: The cell viability assay was used to determine the viability of cells treated with AuNPs. The migration of RF/6A cells was assessed by the Transwell migration assay. The cell adhesion to fibronectin was examined by an adhesion assay. The VEGF-induced signaling pathways were determined by western blotting. Results: The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay revealed no cytotoxicity of AuNPs on RF/6A cells. AuNPs inhibited VEGF-induced RF/6A cell migration in a concentration-dependent manner but showed no significant effects on RF/6A cell adhesion to fibronectin. Inhibitory effects of AuNPs on VEGF-induced Akt/eNOS were found. Conclusions: These results suggest that AuNPs are an effective inhibitor of VEGF-induced RF/6A cell migration through the Akt/eNOS pathways, but they have no effects on their cell viabilities and cell adhesion to fibronectin.
Collapse
|
49
|
Hesh CA, Qiu Y, Lam WA. Vascularized Microfluidics and the Blood-Endothelium Interface. MICROMACHINES 2019; 11:E18. [PMID: 31878018 PMCID: PMC7019435 DOI: 10.3390/mi11010018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
The microvasculature is the primary conduit through which the human body transmits oxygen, nutrients, and other biological information to its peripheral tissues. It does this through bidirectional communication between the blood, consisting of plasma and non-adherent cells, and the microvascular endothelium. Current understanding of this blood-endothelium interface has been predominantly derived from a combination of reductionist two-dimensional in vitro models and biologically complex in vivo animal models, both of which recapitulate the human microvasculature to varying but limited degrees. In an effort to address these limitations, vascularized microfluidics have become a platform of increasing importance as a consequence of their ability to isolate biologically complex phenomena while also recapitulating biochemical and biophysical behaviors known to be important to the function of the blood-endothelium interface. In this review, we discuss the basic principles of vascularized microfluidic fabrication, the contribution this platform has made to our understanding of the blood-endothelium interface in both homeostasis and disease, the limitations and challenges of these vascularized microfluidics for studying this interface, and how these inform future directions.
Collapse
Affiliation(s)
- Christopher A. Hesh
- Department of Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Yongzhi Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
| |
Collapse
|
50
|
Vilanova G, Burés M, Colominas I, Gomez H. Computational modelling suggests complex interactions between interstitial flow and tumour angiogenesis. J R Soc Interface 2019; 15:rsif.2018.0415. [PMID: 30185542 DOI: 10.1098/rsif.2018.0415] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis, the growth of capillaries from pre-existing ones, plays a key role in cancer progression. Tumours release tumour angiogenic factors (TAFs) into the extracellular matrix (ECM) that trigger angiogenesis once they reach the vasculature. The neovasculature provides nutrients and oxygen to the tumour. In the ECM, the interstitial fluid moves driven by pressure differences and may affect the distribution of tumour TAFs, and, in turn, tumour vascularization. In this work, we propose a hybrid mathematical model to investigate the influence of fluid flow in tumour angiogenesis. Our model shows the impact of interstitial flow in a time-evolving capillary network using a continuous approach. The flow model is coupled to a model of angiogenesis that includes tip endothelial cells, filopodia, capillaries and TAFs. The TAF transport equation considers not only diffusive mechanisms but also the convective transport produced by interstitial flow. Our simulations predict a significant alteration of the new vascular networks, which tend to grow more prominently against the flow. The model suggests that interstitial flow may produce increased tumour malignancies and hindered treatments.
Collapse
Affiliation(s)
- Guillermo Vilanova
- Laboratori de Càlcul Numèric, Universitat Politècnica de Catalunya, Campus Nord, 08034 Barcelona, Spain
| | - Miguel Burés
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Ignasi Colominas
- Group of Numerical Methods in Engineering, GMNI, Civil Engineering School, Universidade da Coruña, Campus de Elviña, 15071 A Coruña, Spain
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| |
Collapse
|