1
|
Dubey H, Dubey A, Gulati K, Ray A. S-nitrosoglutathione modulates HDAC2 and BDNF levels in the brain and improves cognitive deficits in experimental model of Alzheimer's disease in rats. Int J Neurosci 2024; 134:777-785. [PMID: 36408590 DOI: 10.1080/00207454.2022.2150190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
AIM Alzheimer's disease (AD) is a neurodegenerative disorder which is characterized by cognitive deficits and abnormal memory formation. Histone acetylation is essential for hippocampal memory formation and improving the cognitive deficits, and histone deacetylase 2 (HDAC2) is increased in the hippocampus of AD patients. The present study evaluated the effects of the nitric oxide (NO) mimetics, L-arginine and the nitrosothiol NO donor, s-nitrosoglutathione (GSNO), on memory and brain HDAC2 levels in experimental animal model of sporadic Alzheimer's disease (sAD). METHODS AD was induced experimentally in rats by intracerebroventricular injection of streptozotocin (STZ, 3mg/kg). The effects of NO mimetics, GSNO and L-arginine, were assessed on STZ induced cognitive deficits in the Morris water maze (MWM) test, and, following this, the hippocampal homogenates were assayed for amyloid-β, brain derived neurotropic factor (BDNF) and HDAC2 levels. The neurobehavioral and biochemical data of the drug treated groups were compared with those of experimental control group. RESULTS The results showed that icv-STZ induced cognitive deficits were differentially attenuated by GSNO (50µg/kg) and, to a lesser extent, L-arginine (100mg/kg) with improvement in the spatial learning tasks in MWM test. These behavioral changes were associated with decreased levels of biochemical markers viz. amyloid β, BDNF and HDAC2 levels in hippocampus. CONCLUSIONS It is inferred that NO donors like GSNO could influence AD pathophysiology via epigenetic modification of HDAC2 inhibition.
Collapse
Affiliation(s)
- Harikesh Dubey
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Anamika Dubey
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Kavita Gulati
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Arunabha Ray
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research, Hamdard University, New Delhi, India
| |
Collapse
|
2
|
Beljkas M, Ilic A, Cebzan A, Radovic B, Djokovic N, Ruzic D, Nikolic K, Oljacic S. Targeting Histone Deacetylases 6 in Dual-Target Therapy of Cancer. Pharmaceutics 2023; 15:2581. [PMID: 38004560 PMCID: PMC10674519 DOI: 10.3390/pharmaceutics15112581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Histone deacetylases (HDACs) are the major regulators of the balance of acetylation of histone and non-histone proteins. In contrast to other HDAC isoforms, HDAC6 is mainly involved in maintaining the acetylation balance of many non-histone proteins. Therefore, the overexpression of HDAC6 is associated with tumorigenesis, invasion, migration, survival, apoptosis and growth of various malignancies. As a result, HDAC6 is considered a promising target for cancer treatment. However, none of selective HDAC6 inhibitors are in clinical use, mainly because of the low efficacy and high concentrations used to show anticancer properties, which may lead to off-target effects. Therefore, HDAC6 inhibitors with dual-target capabilities represent a new trend in cancer treatment, aiming to overcome the above problems. In this review, we summarize the advances in tumor treatment with dual-target HDAC6 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katarina Nikolic
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (A.I.); (A.C.); (B.R.); (N.D.); (D.R.)
| | - Slavica Oljacic
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (A.I.); (A.C.); (B.R.); (N.D.); (D.R.)
| |
Collapse
|
3
|
Zhou WH, Luo Y, Li RX, Degrace P, Jourdan T, Qiao F, Chen LQ, Zhang ML, Du ZY. Inhibition of mitochondrial fatty acid β-oxidation activates mTORC1 pathway and protein synthesis via Gcn5-dependent acetylation of Raptor in zebrafish. J Biol Chem 2023; 299:105220. [PMID: 37660921 PMCID: PMC10540046 DOI: 10.1016/j.jbc.2023.105220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Pharmacological inhibition of mitochondrial fatty acid oxidation (FAO) has been clinically used to alleviate certain metabolic diseases by remodeling cellular metabolism. However, mitochondrial FAO inhibition also leads to mechanistic target of rapamycin complex 1 (mTORC1) activation-related protein synthesis and tissue hypertrophy, but the mechanism remains unclear. Here, by using a mitochondrial FAO inhibitor (mildronate or etomoxir) or knocking out carnitine palmitoyltransferase-1, we revealed that mitochondrial FAO inhibition activated the mTORC1 pathway through general control nondepressible 5-dependent Raptor acetylation. Mitochondrial FAO inhibition significantly promoted glucose catabolism and increased intracellular acetyl-CoA levels. In response to the increased intracellular acetyl-CoA, acetyltransferase general control nondepressible 5 activated mTORC1 by catalyzing Raptor acetylation through direct interaction. Further investigation also screened Raptor deacetylase histone deacetylase class II and identified histone deacetylase 7 as a potential regulator of Raptor. These results provide a possible mechanistic explanation for the mTORC1 activation after mitochondrial FAO inhibition and also bring light to reveal the roles of nutrient metabolic remodeling in regulating protein acetylation by affecting acetyl-CoA production.
Collapse
Affiliation(s)
- Wen-Hao Zhou
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Rui-Xin Li
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Pascal Degrace
- Pathophysiology of Dyslipidemia Research Group, INSERM UMR1231 CTM (Center for Translational and Molecular Medicine) Ex-Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Tony Jourdan
- Pathophysiology of Dyslipidemia Research Group, INSERM UMR1231 CTM (Center for Translational and Molecular Medicine) Ex-Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, P.R. China.
| |
Collapse
|
4
|
Imamura J, Ganguly S, Muskara A, Liao RS, Nguyen JK, Weight C, Wee CE, Gupta S, Mian OY. Lineage plasticity and treatment resistance in prostate cancer: the intersection of genetics, epigenetics, and evolution. Front Endocrinol (Lausanne) 2023; 14:1191311. [PMID: 37455903 PMCID: PMC10349394 DOI: 10.3389/fendo.2023.1191311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Androgen deprivation therapy is a cornerstone of treatment for advanced prostate cancer, and the development of castrate-resistant prostate cancer (CRPC) is the primary cause of prostate cancer-related mortality. While CRPC typically develops through a gain in androgen receptor (AR) signaling, a subset of CRPC will lose reliance on the AR. This process involves genetic, epigenetic, and hormonal changes that promote cellular plasticity, leading to AR-indifferent disease, with neuroendocrine prostate cancer (NEPC) being the quintessential example. NEPC is enriched following treatment with second-generation anti-androgens and exhibits resistance to endocrine therapy. Loss of RB1, TP53, and PTEN expression and MYCN and AURKA amplification appear to be key drivers for NEPC differentiation. Epigenetic modifications also play an important role in the transition to a neuroendocrine phenotype. DNA methylation of specific gene promoters can regulate lineage commitment and differentiation. Histone methylation can suppress AR expression and promote neuroendocrine-specific gene expression. Emerging data suggest that EZH2 is a key regulator of this epigenetic rewiring. Several mechanisms drive AR-dependent castration resistance, notably AR splice variant expression, expression of the adrenal-permissive 3βHSD1 allele, and glucocorticoid receptor expression. Aberrant epigenetic regulation also promotes radioresistance by altering the expression of DNA repair- and cell cycle-related genes. Novel therapies are currently being developed to target these diverse genetic, epigenetic, and hormonal mechanisms promoting lineage plasticity-driven NEPC.
Collapse
Affiliation(s)
- Jarrell Imamura
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shinjini Ganguly
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andrew Muskara
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ross S. Liao
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jane K. Nguyen
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christopher Weight
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christopher E. Wee
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shilpa Gupta
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Omar Y. Mian
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
5
|
Xie H, Rutz J, Maxeiner S, Grein T, Thomas A, Juengel E, Chun FKH, Cinatl J, Haferkamp A, Tsaur I, Blaheta RA. Plant-Derived Sulforaphane Suppresses Growth and Proliferation of Drug-Sensitive and Drug-Resistant Bladder Cancer Cell Lines In Vitro. Cancers (Basel) 2022; 14:cancers14194682. [PMID: 36230603 PMCID: PMC9564120 DOI: 10.3390/cancers14194682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary The natural compound sulforaphane is highly popular among tumor patients, since it is suggested to prevent oncogenesis and cancer progression. However, knowledge about its precise mode of action, particularly when drug resistance has been established, remains poor. The present study demonstrates the proliferation-blocking effects of SFN on a panel of drug-resistant bladder cancer cell lines. Abstract Combined cisplatin–gemcitabine (GC) application is standard for treating muscle-invasive bladder cancer. However, since rapid resistance to treatment often develops, many patients turn to supplements in the form of plant-based compounds. Sulforaphane (SFN), derived from cruciferous vegetables, is one such compound, and the present study was designed to investigate its influence on growth and proliferation in a panel of drug-sensitive bladder cancer cell lines, as well as their gemcitabine- and cisplatin-resistant counterparts. Chemo-sensitive and -resistant RT4, RT112, T24, and TCCSUP cell lines were exposed to SFN in different concentrations, and tumor growth, proliferation, and clone formation were evaluated, in addition to apoptosis and cell cycle progression. Means of action were investigated by assaying cell-cycle-regulating proteins and the mechanistic target of rapamycin (mTOR)/AKT signaling cascade. SFN significantly inhibited growth, proliferation, and clone formation in all four tumor cell lines. Cells were arrested in the G2/M and/or S phase, and alteration of the CDK–cyclin axis was closely associated with cell growth inhibition. The AKT/mTOR signaling pathway was deactivated in three of the cell lines. Acetylation of histone H3 was up-regulated. SFN, therefore, does exert tumor-suppressive properties in cisplatin- and gemcitabine-resistant bladder cancer cells and could be beneficial in optimizing bladder cancer therapy.
Collapse
Affiliation(s)
- Hui Xie
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Jochen Rutz
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Sebastian Maxeiner
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Timothy Grein
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Anita Thomas
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Felix K.-H. Chun
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Roman A. Blaheta
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
6
|
Allyl-, Butyl- and Phenylethyl-Isothiocyanate Modulate Akt–mTOR and Cyclin–CDK Signaling in Gemcitabine- and Cisplatin-Resistant Bladder Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms231910996. [PMID: 36232303 PMCID: PMC9570347 DOI: 10.3390/ijms231910996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Combined cisplatin–gemcitabine treatment causes rapid resistance development in patients with advanced urothelial carcinoma. The present study investigated the potential of the natural isothiocyanates (ITCs) allyl-isothiocyanate (AITC), butyl-isothiocyanate (BITC), and phenylethyl-isothiocyanate (PEITC) to suppress growth and proliferation of gemcitabine- and cisplatin-resistant bladder cancer cells lines. Sensitive and gemcitabine- and cisplatin-resistant RT112, T24, and TCCSUP cells were treated with the ITCs, and tumor cell growth, proliferation, and clone formation were evaluated. Apoptosis induction and cell cycle progression were investigated as well. The molecular mode of action was investigated by evaluating cell cycle-regulating proteins (cyclin-dependent kinases (CDKs) and cyclins A and B) and the mechanistic target of the rapamycin (mTOR)-AKT signaling pathway. The ITCs significantly inhibited growth, proliferation and clone formation of all tumor cell lines (sensitive and resistant). Cells were arrested in the G2/M phase, independent of the type of resistance. Alterations of both the CDK–cyclin axis and the Akt–mTOR signaling pathway were observed in AITC-treated T24 cells with minor effects on apoptosis induction. In contrast, AITC de-activated Akt–mTOR signaling and induced apoptosis in RT112 cells, with only minor effects on CDK expression. It is concluded that AITC, BITC, and PEITC exert tumor-suppressive properties on cisplatin- and gemcitabine-resistant bladder cancer cells, whereby the molecular action may differ among the cell lines. The integration of these ITCs into the gemcitabine-/cisplatin-based treatment regimen might optimize bladder cancer therapy.
Collapse
|
7
|
Agarwal D, Kumari R, Ilyas A, Tyagi S, Kumar R, Poddar NK. Crosstalk between epigenetics and mTOR as a gateway to new insights in pathophysiology and treatment of Alzheimer's disease. Int J Biol Macromol 2021; 192:895-903. [PMID: 34662652 DOI: 10.1016/j.ijbiomac.2021.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
Epigenetics in the current times has become a gateway to acquire answers to questions that were left unanswered by classical and modern genetics, be it resolving the complex mystery behind neurodegenerative disorders or understanding the complexity behind life-threatening cancers. It has presented to the world an entirely new dimension and has added a dynamic angle to an otherwise static field of genetics. Alzheimer's disease is one of the most prevalent neurodegenerative disorders is largely found to be a result of alterations in epigenetic pathways. These changes majorly comprise an imbalance in DNA methylation levels and altered acetylation and methylation of histones. They are often seen to cross-link with metabolic regulatory pathways such as that of mTOR, contributing significantly to the pathophysiology of AD. This review focusses on the study of the interplay of the mTOR regulatory pathway with that of epigenetic machinery that may elevate the rate of early diagnosis and prove to be a gateway to the development of an efficient and novel therapeutic strategy for the treatment of Alzheimer's disease at an early stage.
Collapse
Affiliation(s)
- Disha Agarwal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Ruchika Kumari
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Ashal Ilyas
- Department of Biotechnology, Invertis University, Bareilly 243 123, India
| | - Shweta Tyagi
- HNo-88, Ranjit Avenue, Bela Chowk, Kota Nihang, Punjab 140001, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh. India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
8
|
Welling DB, Collier KA, Burns SS, Oblinger JL, Shu E, Miles‐Markley BA, Hofmeister CC, Makary MS, Slone HW, Blakeley JO, Mansouri SA, Neff BA, Jackler RK, Mortazavi A, Chang L. Early phase clinical studies of AR-42, a histone deacetylase inhibitor, for neurofibromatosis type 2-associated vestibular schwannomas and meningiomas. Laryngoscope Investig Otolaryngol 2021; 6:1008-1019. [PMID: 34667843 PMCID: PMC8513424 DOI: 10.1002/lio2.643] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Two pilot studies of AR-42, a pan-histone deacetylase inhibitor, in human neurofibromatosis type 2 (NF2), vestibular schwannomas (VS), and meningiomas are presented. Primary endpoints included safety, and intra-tumoral pharmacokinetics (PK) and pharmacodynamics (PD). METHODS Pilot 1 is a subset analysis of a phase 1 study of AR-42 in solid tumors, which included NF2 or sporadic meningiomas. Tumor volumes and treatment-related adverse events (TRAEs) are reported (NCT01129193).Pilot 2 is a phase 0 surgical study of AR-42 assessing intra-tumoral PK and PD. AR-42 was administered for 3 weeks pre-operatively. Plasma and tumor drug concentrations and p-AKT expression were measured (NCT02282917). RESULTS Pilot 1: Five patients with NF2 and two with sporadic meningiomas experienced a similar incidence of TRAEs to the overall phase I trial. The six evaluable patients had 15 tumors (8 VS, 7 meningiomas). On AR-42, tumor volume increased in six, remained stable in eight, and decreased in one tumor. The annual percent growth rate decreased in eight, remained stable in three, and increased in four tumors. Pilot 2: Four patients with sporadic VS and one patient with meningioma experienced no grade 3/4 toxicities. Expression of p-AKT decreased in three of four VS. All tumors had higher AR-42 concentrations than plasma. CONCLUSIONS AR-42 is safe. Tumor volumes showed a mixed response, but most slowed growth. On a 40-mg regimen, drug concentrated in tumors and growth pathways were suppressed in most tumors, suggesting this may be a well-tolerated and effective dose. A phase 2 study of AR-42 for NF2-associated tumors appears warranted. LEVEL OF EVIDENCE 1b, 4.
Collapse
Affiliation(s)
- D. Bradley Welling
- Department of Otolaryngology Head and Neck SurgeryHarvard Medical School, Massachusetts Eye and Ear Infirmary, Massachusetts General HospitalBostonMassachusettsUSA
| | - Katharine A. Collier
- Division of Medical Oncology, Department of Internal MedicineThe Ohio State University College of Medicine and the Comprehensive Cancer CenterColumbusOhioUSA
| | - Sarah S. Burns
- Center for Childhood Cancer and Blood diseasesAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| | - Janet L. Oblinger
- Center for Childhood Cancer and Blood diseasesAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| | - Edina Shu
- Department of Otolaryngology Head and Neck SurgeryHarvard Medical School, Massachusetts Eye and Ear Infirmary, Massachusetts General HospitalBostonMassachusettsUSA
| | - Beth A. Miles‐Markley
- Department of Otolaryngology‐Head and Neck SurgeryThe Ohio State University College of MedicineColumbusOhioUSA
| | - Craig C. Hofmeister
- Department of Hematology & OncologyWinship Cancer Institute of Emory UniversityAtlantaGeorgiaUSA
| | - Mina S. Makary
- Department of RadiologyThe Ohio State University College of MedicineColumbusOhioUSA
| | - H. Wayne Slone
- Department of RadiologyThe Ohio State University College of MedicineColumbusOhioUSA
| | - Jaishri O. Blakeley
- Departments of Neurology, Neurosurgery, & OncologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - S. Alireza Mansouri
- Departments of Neurology, Neurosurgery, & OncologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Brian A. Neff
- Department of Otolaryngology Head and Neck SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Robert K. Jackler
- Department of Otolaryngology Head and Neck SurgeryStanford UniversityPalo AltoCaliforniaUSA
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal MedicineThe Ohio State University College of Medicine and the Comprehensive Cancer CenterColumbusOhioUSA
| | - Long‐Sheng Chang
- Center for Childhood Cancer and Blood diseasesAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
- Department of Otolaryngology‐Head and Neck SurgeryThe Ohio State University College of MedicineColumbusOhioUSA
| |
Collapse
|
9
|
Yao D, Jiang J, Zhang H, Huang Y, Huang J, Wang J. Design, synthesis and biological evaluation of dual mTOR/HDAC6 inhibitors in MDA-MB-231 cells. Bioorg Med Chem Lett 2021; 47:128204. [PMID: 34139324 DOI: 10.1016/j.bmcl.2021.128204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
The excessive activation of histone deacetylase (HDAC) and mammalian target of rapamycin (mTOR) signaling promotes tumor growth and progression. We proposed that dual targeting mTOR and HDAC inhibitors is a promising strategy for triple negative breast cancer (TNBC) treatment. In this study, a series of dual mTOR/HDAC6 inhibitors were designed and synthesized by structure-based strategy. 10g was documented to be a potent dual mTOR/HDAC6 inhibitor with IC50 value of 133.7 nM against mTOR and 56 nM against HDAC6, presenting mediate antiproliferative activity in TNBC cells. Furthermore, we predicted the binding mode of 10g and mTOR/HDAC6 by molecule docking. In addition, 10g was documented to induce significant autophagy, apoptosis and suppress migration in MDA-MB-231 cells. Collectively, these findings revealed that 10g is a novel potent dual mTOR/HDAC6 inhibitor, which provides promising rationale for the combination of dual mTOR/HDAC6 inhibitors for TNBC treatment.
Collapse
Affiliation(s)
- Dahong Yao
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Baojian Road 157, Nangang District, Harbin 150081, PR China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Jin Jiang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Baojian Road 157, Nangang District, Harbin 150081, PR China
| | - Hualin Zhang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Baojian Road 157, Nangang District, Harbin 150081, PR China
| | - Yelan Huang
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518118, PR China
| | - Jian Huang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Baojian Road 157, Nangang District, Harbin 150081, PR China.
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Baojian Road 157, Nangang District, Harbin 150081, PR China.
| |
Collapse
|
10
|
Macedo-Silva C, Benedetti R, Ciardiello F, Cappabianca S, Jerónimo C, Altucci L. Epigenetic mechanisms underlying prostate cancer radioresistance. Clin Epigenetics 2021; 13:125. [PMID: 34103085 PMCID: PMC8186094 DOI: 10.1186/s13148-021-01111-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) is one of the mainstay treatments for prostate cancer (PCa), a highly prevalent neoplasm among males worldwide. About 30% of newly diagnosed PCa patients receive RT with a curative intent. However, biochemical relapse occurs in 20–40% of advanced PCa treated with RT either alone or in combination with adjuvant-hormonal therapy. Epigenetic alterations, frequently associated with molecular variations in PCa, contribute to the acquisition of a radioresistant phenotype. Increased DNA damage repair and cell cycle deregulation decreases radio-response in PCa patients. Moreover, the interplay between epigenome and cell growth pathways is extensively described in published literature. Importantly, as the clinical pattern of PCa ranges from an indolent tumor to an aggressive disease, discovering specific targetable epigenetic molecules able to overcome and predict PCa radioresistance is urgently needed. Currently, histone-deacetylase and DNA-methyltransferase inhibitors are the most studied classes of chromatin-modifying drugs (so-called ‘epidrugs’) within cancer radiosensitization context. Nonetheless, the lack of reliable validation trials is a foremost drawback. This review summarizes the major epigenetically induced changes in radioresistant-like PCa cells and describes recently reported targeted epigenetic therapies in pre-clinical and clinical settings. ![]()
Collapse
Affiliation(s)
- Catarina Macedo-Silva
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.,Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.
| |
Collapse
|
11
|
Epigenetic Regulation of Hepatocellular Carcinoma Progression through the mTOR Signaling Pathway. Can J Gastroenterol Hepatol 2021; 2021:5596712. [PMID: 34123955 PMCID: PMC8169250 DOI: 10.1155/2021/5596712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/11/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, is an aggressive tumor with a high mortality rate because of the limited systemic and locoregional treatment modalities. The development and progression of HCC depend on epigenetic changes that result in the activation or inhibition of some signaling pathways. The mTOR signaling pathway is essential for many pathophysiological processes and is considered a major regulator of cancer. Increasing evidence has shown that epigenetics plays a key role in HCC biology by regulating the mTOR signaling pathway. Therefore, epigenetic regulation through the mTOR signaling pathway to diagnose and treat HCC will become a very promising strategy.
Collapse
|
12
|
Li YY, Guo L, Li H, Lei WL, Fan LH, Ouyang YC, Hou Y, Wang ZB, Sun QY, Lu SS, Han Z. PTHrP promotes development of mouse preimplantation embryos through the AKT/cyclin D1 pathway and nuclear translocation of HDAC4. J Cell Physiol 2021; 236:7001-7013. [PMID: 33724469 DOI: 10.1002/jcp.30362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 11/09/2022]
Abstract
Parathyroid hormone-related protein (PTHrP), the main cause of humoral hypercalcemia in malignancies, promotes cell proliferation and delays terminal cell maturation during embryonic development. Our previous study reported that PTHrP plays important roles in blastocyst formation, pluripotency gene expression, and histone acetylation during mouse preimplantation embryonic development. In this study, we further investigated the mechanism of preimplantation embryonic development regulated by PTHrP. Our results showed that Pthrp depletion decreased both the developmental rate of embryos at the cleavage stage and the cell number of morula-stage embryos. Pthrp-depleted embryos had significantly decreased levels of cyclin D1, phospho (p)-AKT (Thr308) and E2F1. However, Pthrp depletion did not cause significant changes in CDK4, β-catenin or RUNX2 expression. In addition, our results indicated that Pthrp depletion promoted HDAC4 translocation from the cytoplasm to the nucleus in cleavage-stage embryos by stimulating the activity of protein phosphatase 2A (PP2A), which resulted in dephosphorylation of HDAC4. Taken together, these results suggest that PTHrP regulates cleavage division progression and blastocyst formation through the AKT/cyclin D1 pathway and that PTHrP modulates histone acetylation patterns through nuclear translocation of HDAC4 via PP2A-dependent HDAC4 dephosphorylation during preimplantation embryonic development in mice.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lei Guo
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hui Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li-Hua Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Sheng-Sheng Lu
- Agri-animal Industrial Development Institute, Guangxi University, Nanning, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
13
|
Martins MD, Silveira FM, Martins MAT, Almeida LO, Bagnato VS, Squarize CH, Castilho RM. Photobiomodulation therapy drives massive epigenetic histone modifications, stem cells mobilization and accelerated epithelial healing. JOURNAL OF BIOPHOTONICS 2021; 14:e202000274. [PMID: 33025746 DOI: 10.1002/jbio.202000274] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Emerging evidence indicates the clinical benefits of photobiomodulation therapy (PBMT) in the management of skin and mucosal wounds. Here, we decided to explore the effects of different regiments of PBMT on epithelial cells and stem cells, and the potential implications over the epigenetic circuitry during healing. Scratch-wound migration, immunofluorescence (anti-acetyl-Histone H3, anti-acetyl-CBP/p300 and anti-BMI1), nuclear morphometry and western blotting (anti-Phospho-S6, anti-methyl-CpG binding domain protein 2 [MBD2]) were performed. Epithelial stem cells were identified by the aldehyde dehydrogenase enzymatic levels and sphere-forming assay. We observed that PBMT-induced accelerated epithelial migration and chromatin relaxation along with increased levels of histones acetylation, the transcription cofactors CBP/p300 and mammalian target of rapamycin. We further observed a reduction of the transcription repression-associated protein MBD2 and a reduced number of epithelial stem cells and spheres. In this study, we showed that PBMT could induce epigenetic modifications of epithelial cells and control stem cell fate, leading to an accelerated healing phenotype.
Collapse
Affiliation(s)
- Manoela D Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Felipe Martins Silveira
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Marco A T Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Oral Medicine, Hospital de Clínicas de Porto Alegre (HCPA/UFRGS), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luciana O Almeida
- Laboratory of Tissue Culture, Department of Basic and Oral Biology, University of Sao Paulo School of Dentistry, Ribeirao Preto, Rio Grande do Sul, Brazil
| | - Vanderlei S Bagnato
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, São Paulo, Brazil
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Chronic Sulforaphane Administration Inhibits Resistance to the mTOR-Inhibitor Everolimus in Bladder Cancer Cells. Int J Mol Sci 2020; 21:ijms21114026. [PMID: 32512849 PMCID: PMC7312500 DOI: 10.3390/ijms21114026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Progressive bladder cancer growth is associated with abnormal activation of the mammalian target of the rapamycin (mTOR) pathway, but treatment with an mTOR inhibitor has not been as effective as expected. Rather, resistance develops under chronic drug use, prompting many patients to lower their relapse risk by turning to natural, plant-derived products. The present study was designed to evaluate whether the natural compound, sulforaphane (SFN), combined with the mTOR inhibitor everolimus, could block the growth and proliferation of bladder cancer cells in the short- and long-term. The bladder cancer cell lines RT112, UMUC3, and TCCSUP were exposed short- (24 h) or long-term (8 weeks) to everolimus (0.5 nM) or SFN (2.5 µM) alone or in combination. Cell growth, proliferation, apoptosis, cell cycle progression, and cell cycle regulating proteins were evaluated. siRNA blockade was used to investigate the functional impact of the proteins. Short-term application of SFN and/or everolimus resulted in significant tumor growth suppression, with additive inhibition on clonogenic tumor growth. Long-term everolimus treatment resulted in resistance development characterized by continued growth, and was associated with elevated Akt-mTOR signaling and cyclin-dependent kinase (CDK)1 phosphorylation and down-regulation of p19 and p27. In contrast, SFN alone or SFN+everolimus reduced cell growth and proliferation. Akt and Rictor signaling remained low, and p19 and p27 expressions were high under combined drug treatment. Long-term exposure to SFN+everolimus also induced acetylation of the H3 and H4 histones. Phosphorylation of CDK1 was diminished, whereby down-regulation of CDK1 and its binding partner, Cyclin B, inhibited tumor growth. In conclusion, the addition of SFN to the long-term everolimus application inhibits resistance development in bladder cancer cells in vitro. Therefore, sulforaphane may hold potential for treating bladder carcinoma in patients with resistance to an mTOR inhibitor.
Collapse
|
15
|
Emamgholipour S, Ebrahimi R, Bahiraee A, Niazpour F, Meshkani R. Acetylation and insulin resistance: a focus on metabolic and mitogenic cascades of insulin signaling. Crit Rev Clin Lab Sci 2020:1-19. [DOI: 10.1080/10408363.2019.1699498] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farshad Niazpour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Menendez JA, Cuyàs E, Folguera-Blasco N, Verdura S, Martin-Castillo B, Joven J, Alarcón T. In silico clinical trials for anti-aging therapies. Aging (Albany NY) 2019; 11:6591-6601. [PMID: 31444969 PMCID: PMC6738435 DOI: 10.18632/aging.102180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022]
Abstract
Therapeutic strategies targeting the hallmarks of aging can be broadly grouped into four categories, namely systemic (blood) factors, metabolic manipulation (diet regimens and dietary restriction mimetics), suppression of cellular senescence (senolytics), and cellular reprogramming, which likely have common characteristics and mechanisms of action. In evaluating the potential synergism of combining such strategies, however, we should consider the possibility of constraining trade-off phenotypes such as impairment in wound healing and immune response, tissue dysfunction and tumorigenesis. Moreover, we are rapidly learning that the benefit/risk ratio of aging-targeted interventions largely depends on intra- and inter-individual variations of susceptibility to the healthspan-, resilience-, and/or lifespan-promoting effects of the interventions. Here, we exemplify how computationally-generated proxies of the efficacy of a given lifespan/healthspan-promoting approach can predict the impact of baseline epigenetic heterogeneity on the positive outcomes of ketogenic diet and mTOR inhibition as single or combined anti-aging strategies. We therefore propose that stochastic biomathematical modeling and computational simulation platforms should be developed as in silico strategies to accelerate the performance of clinical trials targeting human aging, and to provide personalized approaches and robust biomarkers of healthy aging at the individual-to-population levels.
Collapse
Affiliation(s)
- Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance),Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Elisabet Cuyàs
- ProCURE (Program Against Cancer Therapeutic Resistance),Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | - Sara Verdura
- ProCURE (Program Against Cancer Therapeutic Resistance),Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | - Jorge Joven
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Tomás Alarcón
- ICREA, Barcelona, Spain.,Centre de Recerca Matemàtica (CRM), Barcelona, Spain.,Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain.,Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| |
Collapse
|
17
|
Makarević J, Rutz J, Juengel E, Maxeiner S, Tsaur I, Chun FKH, Bereiter-Hahn J, Blaheta RA. Influence of the HDAC Inhibitor Valproic Acid on the Growth and Proliferation of Temsirolimus-Resistant Prostate Cancer Cells In Vitro. Cancers (Basel) 2019; 11:cancers11040566. [PMID: 31010254 PMCID: PMC6520872 DOI: 10.3390/cancers11040566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is elevated in prostate cancer, making this protein attractive for tumor treatment. Unfortunately, resistance towards mTOR inhibitors develops and the tumor becomes reactivated. We determined whether epigenetic modulation by the histone deacetylase (HDAC) inhibitor, valproic acid (VPA), may counteract non-responsiveness to the mTOR inhibitor, temsirolimus, in prostate cancer (PCa) cells. Prostate cancer cells, sensitive (parental) and resistant to temsirolimus, were exposed to VPA, and tumor cell growth behavior compared. Temsirolimus resistance enhanced the number of tumor cells in the G2/M-phase, correlating with elevated cell proliferation and clonal growth. The cell cycling proteins cdk1 and cyclin B, along with Akt-mTOR signaling increased, whereas p19, p21 and p27 decreased, compared to the parental cells. VPA significantly reduced cell growth and up-regulated the acetylated histones H3 and H4. Cdk1 and cyclin B decreased, as did phosphorylated mTOR and the mTOR sub-complex Raptor. The mTOR sub-member Rictor and phosphorylated Akt increased under VPA. Knockdown of cdk1, cyclin B, or Raptor led to significant cell growth reduction. HDAC inhibition through VPA counteracts temsirolimus resistance, probably by down-regulating cdk1, cyclin B and Raptor. Enhanced Rictor and Akt, however, may represent an undesired feedback loop, which should be considered when designing future therapeutic regimens.
Collapse
Affiliation(s)
- Jasmina Makarević
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Jochen Rutz
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Eva Juengel
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Sebastian Maxeiner
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Igor Tsaur
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Felix K-H Chun
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Jürgen Bereiter-Hahn
- Institute for Cell Biology and Neurosciences, Goethe-University, D-60590 Frankfurt am Main, Germany.
| | - Roman A Blaheta
- Department of Urology, Goethe-University, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
18
|
HDAC Inhibition Counteracts Metastatic Re-Activation of Prostate Cancer Cells Induced by Chronic mTOR Suppression. Cells 2018; 7:cells7090129. [PMID: 30200497 PMCID: PMC6162415 DOI: 10.3390/cells7090129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
This study was designed to investigate whether epigenetic modulation by histone deacetylase (HDAC) inhibition might circumvent resistance towards the mechanistic target of rapamycin (mTOR) inhibitor temsirolimus in a prostate cancer cell model. Parental (par) and temsirolimus-resistant (res) PC3 prostate cancer cells were exposed to the HDAC inhibitor valproic acid (VPA), and tumor cell adhesion, chemotaxis, migration, and invasion were evaluated. Temsirolimus resistance was characterized by reduced binding of PC3res cells to endothelium, immobilized collagen, and fibronectin, but increased adhesion to laminin, as compared to the parental cells. Chemotaxis, migration, and invasion of PC3res cells were enhanced following temsirolimus re-treatment. Integrin α and β receptors were significantly altered in PC3res compared to PC3par cells. VPA significantly counteracted temsirolimus resistance by down-regulating tumor cell–matrix interaction, chemotaxis, and migration. Evaluation of integrin expression in the presence of VPA revealed a significant down-regulation of integrin α5 in PC3res cells. Blocking studies demonstrated a close association between α5 expression on PC3res and chemotaxis. In this in vitro model, temsirolimus resistance drove prostate cancer cells to become highly motile, while HDAC inhibition reversed the metastatic activity. The VPA-induced inhibition of metastatic activity was accompanied by a lowered integrin α5 surface level on the tumor cells.
Collapse
|
19
|
Wei M, Mao S, Lu G, Li L, Lan X, Huang Z, Chen Y, Zhao M, Zhao Y, Xia Q. Valproic acid sensitizes metformin-resistant human renal cell carcinoma cells by upregulating H3 acetylation and EMT reversal. BMC Cancer 2018; 18:434. [PMID: 29665787 PMCID: PMC5902941 DOI: 10.1186/s12885-018-4344-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/08/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Metformin (Met) is a widely available diabetic drug and shows suppressed effects on renal cell carcinoma (RCC) metabolism and proliferation. Laboratory studies in RCC suggested that metformin has remarkable antitumor activities and seems to be a potential antitumor drug. But the facts that metformin may be not effective in reducing the risk of RCC in cancer clinical trials made it difficult to determine the benefits of metformin in RCC prevention and treatment. The mechanisms underlying the different conclusions between laboratory experiments and clinical analysis remains unclear. The goal of the present study was to determine whether long-term metformin use can induce resistance in RCC, whether metformin resistance could be used to explain the disaccord in laboratory and clinical studies, and whether the drug valproic acid (VPA), which inhibits histone deacetylase, exhibits synergistic cytotoxicity with metformin and can counteract the resistance of metformin in RCC. METHODS We performed CCK8, transwell, wound healing assay, flow cytometry and western blotting to detect the regulations of proliferation, migration, cell cycle and apoptosis in 786-O, ACHN and metformin resistance 786-O (786-M-R) cells treated with VPA, metformin or a combination of two drugs. We used TGF-β, SC79, LY294002, Rapamycin, protein kinase B (AKT) inhibitor to treat the 786-O or 786-M-R cells and detected the regulations in TGF-β /pSMAD3 and AMPK/AKT pathways. RESULTS 786-M-R was refractory to metformin-induced antitumor effects on proliferation, migration, cell cycle and cell apoptosis. AMPK/AKT pathways and TGF-β/SMAD3 pathways showed low sensibilities in 786-M-R. The histone H3 acetylation diminished in the 786-M-R cells. However, the addition of VPA dramatically upregulated histone H3 acetylation, increased the sensibility of AKT and inhibited pSMAD3/SMAD4, letting the combination of VPA and metformin remarkably reappear the anti-tumour effects of metformin in 786-M-R cells. CONCLUSIONS VPA not only exhibits synergistic cytotoxicity with metformin but also counteracts resistance to metformin in renal cell carcinoma cell. The re-sensitization to metformin induced by VPA in metformin-resistant cells may help treat renal cell carcinoma patients.
Collapse
Affiliation(s)
- Muyun Wei
- Department of Center Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, 544 Jingsi Road, Jinan, 250001, Shandong Province, China
| | - Shaowei Mao
- Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong University, 9677 Jingshidong Road, Jinan, 250001, Shandong Province, China
| | - Guoliang Lu
- Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong University, 9677 Jingshidong Road, Jinan, 250001, Shandong Province, China
| | - Liang Li
- Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong University, 9677 Jingshidong Road, Jinan, 250001, Shandong Province, China
| | - Xiaopeng Lan
- Department of Urology, Qingdao center Hospital, Qingdao, 266042, Shandong Province, China
| | - Zhongxian Huang
- Department of Urology, Jinan center Hospital, Jinan, 250001, Shandong Province, China
| | - Yougen Chen
- Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong University, 9677 Jingshidong Road, Jinan, 250001, Shandong Province, China
| | - Miaoqing Zhao
- Department of pathology, Shandong Provincial Hospital Affiliated to Shandong University, 324, Jingwu weiqi Road, Jinan, 250001, Shandong Province, China
| | - Yueran Zhao
- Department of Center Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, 544 Jingsi Road, Jinan, 250001, Shandong Province, China
| | - Qinghua Xia
- Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong University, 9677 Jingshidong Road, Jinan, 250001, Shandong Province, China.
| |
Collapse
|
20
|
Zhang X, He X, Li Q, Kong X, Ou Z, Zhang L, Gong Z, Long D, Li J, Zhang M, Ji W, Zhang W, Xu L, Xuan A. PI3K/AKT/mTOR Signaling Mediates Valproic Acid-Induced Neuronal Differentiation of Neural Stem Cells through Epigenetic Modifications. Stem Cell Reports 2018; 8:1256-1269. [PMID: 28494938 PMCID: PMC5425725 DOI: 10.1016/j.stemcr.2017.04.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022] Open
Abstract
Although valproic acid (VPA), has been shown to induce neuronal differentiation of neural stem cells (NSCs), the underlying mechanisms remain poorly understood. Here we investigated if and how mammalian target of rapamycin (mTOR) signaling is involved in the neuronal differentiation of VPA-induced NSCs. Our data demonstrated that mTOR activation not only promoted but also was necessary for the neuronal differentiation of NSCs induced by VPA. We further found that inhibition of mTOR signaling blocked demethylation of neuron-specific gene neurogenin 1 (Ngn1) regulatory element in induced cells. These are correlated with the significant alterations of passive DNA demethylation and the active DNA demethylation pathway in the Ngn1 promoter, but not the suppression of lysine-specific histone methylation and acetylation in the promoter region of Ngn1. These findings highlight a potentially important role for mTOR signaling, by working together with DNA demethylation, to influence the fate of NSCs via regulating the expression of Ngn1 in VPA-induced neuronal differentiation of NSCs.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Xiaosong He
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Qingqing Li
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Xuejian Kong
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Zhenri Ou
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Le Zhang
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Zhuo Gong
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Dahong Long
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Jianhua Li
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Meng Zhang
- Department of Physiology, Augusta University, Augusta 30912, USA
| | - Weidong Ji
- The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenjuan Zhang
- Department of Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Liping Xu
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Aiguo Xuan
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China.
| |
Collapse
|
21
|
HDAC inhibition as a treatment concept to combat temsirolimus-resistant bladder cancer cells. Oncotarget 2017; 8:110016-110028. [PMID: 29299126 PMCID: PMC5746361 DOI: 10.18632/oncotarget.22454] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/12/2017] [Indexed: 12/16/2022] Open
Abstract
Introduction Although the mechanistic target of rapamycin (mTOR) might be a promising molecular target to treat advanced bladder cancer, resistance develops under chronic exposure to an mTOR inhibitor (everolimus, temsirolimus). Based on earlier studies, we proposed that histone deacetylase (HDAC) blockade might circumvent resistance and investigated whether HDAC inhibition has an impact on growth of bladder cancer cells with acquired resistance towards temsirolimus. Results The HDAC inhibitor valproic acid (VPA) significantly inhibited growth, proliferation and caused G0/G1 phase arrest in RT112res and UMUC-3res. cdk1, cyclin B, cdk2, cyclin A and Skp1 p19 were down-regulated, p27 was elevated. Akt-mTOR signaling was deactivated, whereas acetylation of histone H3 and H4 in RT112res and UMUC-3res increased in the presence of VPA. Knocking down cdk2 or cyclin A resulted in a significant growth blockade of RT112res and UMUC-3res. Materials And Methods Parental (par) and resistant (res) RT112 and UMUC-3 cells were exposed to the HDAC inhibitor VPA. Tumor cell growth, proliferation, cell cycling and expression of cell cycle regulating proteins were then evaluated. siRNA blockade was used to investigate the functional impact of the proteins. Conclusions HDAC inhibition induced a strong response of temsirolimus-resistant bladder cancer cells. Therefore, the temsirolimus-VPA-combination might be an innovative strategy for bladder cancer treatment.
Collapse
|
22
|
Ghaleb AM, Elkarim EA, Bialkowska AB, Yang VW. KLF4 Suppresses Tumor Formation in Genetic and Pharmacological Mouse Models of Colonic Tumorigenesis. Mol Cancer Res 2016; 14:385-96. [PMID: 26839262 DOI: 10.1158/1541-7786.mcr-15-0410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/27/2016] [Indexed: 01/15/2023]
Abstract
UNLABELLED The zinc finger transcription factor Krüppel-like factor 4 (KLF4) is frequently downregulated in colorectal cancer. Previous studies showed that KLF4 is a tumor suppressor in the intestinal tract and plays an important role in DNA damage-repair mechanisms. Here, the in vivo effects of Klf4 deletion were examined from the mouse intestinal epithelium (Klf4(ΔIS)) in a genetic or pharmacological setting of colonic tumorigenesis:Apc(Min/⁺) mutation or carcinogen treatment with azoxymethane (AOM), respectively.Klf4 (ΔIS)/Apc (Min/⁺) mice developed significantly more colonic adenomas with 100% penetrance as compared with Apc(Min/⁺) mice with intact Klf4 (Klf4(fl/fl)/Apc (Min/⁺)). The colonic epithelium of Klf4 (ΔIS)/Apc (Min/⁺)mice showed increased mTOR pathway activity, together with dysregulated epigenetic mechanism as indicated by altered expression of HDAC1 and p300. Colonic adenomas from both genotypes stained positive for γH2AX, indicating DNA double-strand breaks. InKlf4 (ΔIS)/Apc (Min/+) mice, this was associated with reduced nonhomologous end joining (NHEJ) repair and homologous recombination repair (HRR) mechanisms as indicated by reduced Ku70 and Rad51 staining, respectively. In a separate model, following treatment with AOM, Klf4 (ΔIS) mice developed significantly more colonic tumors than Klf4 (fl/fl) mice, with more Klf4 (ΔIS) mice harboring K-Rasmutations than Klf4 (fl/fl)mice. Compared with AOM-treated Klf4 (fl/fl)mice, adenomas of treated Klf4 (ΔIS) mice had suppressed NHEJ and HRR mechanisms, as indicated by reduced Ku70 and Rad51 staining. This study highlights the important role of KLF4 in suppressing the development of colonic neoplasia under different tumor-promoting conditions. IMPLICATIONS The study demonstrates that KLF4 plays a significant role in the pathogenesis of colorectal neoplasia.
Collapse
Affiliation(s)
- Amr M Ghaleb
- Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Enas A Elkarim
- Department of Medicine, Stony Brook University, Stony Brook, New York
| | | | - Vincent W Yang
- Department of Medicine, Stony Brook University, Stony Brook, New York. Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York.
| |
Collapse
|
23
|
Fekete T, Koncz G, Szabo B, Gregus A, Rajnavölgyi E. Interferon gamma boosts the nucleotide oligomerization domain 2-mediated signaling pathway in human dendritic cells in an X-linked inhibitor of apoptosis protein and mammalian target of rapamycin-dependent manner. Cell Mol Immunol 2015; 14:380-391. [PMID: 26521691 DOI: 10.1038/cmi.2015.90] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 11/09/2022] Open
Abstract
The cytoplasmic nucleotide oligomerization domain 2 (NOD2) receptor recognizes the bacterial cell wall component muramyl dipeptide (MDP). NOD2 ligation initiates the nuclear factor kappa B and the mitogen-activated protein kinase cascades. However, administering MDP alone is insufficient to elicit strong cytokine responses in various immune cells, including dendritic cells (DCs). Because the simultaneous presence of various microbial products and cytokines in inflamed tissues modulates DC function, we initiated this study to examine how interferon gamma (IFNγ), a central modulator of inflammation, affects the NOD2-mediated signaling pathway in human conventional DCs (cDCs). Synergistic stimulation of DCs with MDP and IFNγ increased the expression of CD40, CD80, CD83, CD86, and human leukocyte antigen DQ proteins and significantly elevated the production of pro-inflammatory cytokines IL-1β, IL-6, IL-12, and tumour necrosis factor (TNF), as well as anti-inflammatory cytokine IL-10. Furthermore, the simultaneous presence of MDP and IFNγ was necessary to decrease IkBα protein levels. By investigating various mechanisms implicated in MDP- and IFNγ-mediated signaling pathways, we revealed that the increased production of pro-inflammatory cytokines is highly dependent on the X-linked inhibitor of apoptosis protein (XIAP) but not on cellular IAP1 and IAP2. We also found that the NOD2 signaling pathway is regulated by the mammalian target of rapamycin (mTOR) but is not affected by phosphatidylinositol-3 kinase or signal transducer and activator of transcription 1 inhibition. Our results demonstrate, for the first time, that IFNγ positively affects NOD2-mediated signaling in human cDCs, in a manner considerably dependent on XIAP and partially dependent on mTOR.
Collapse
Affiliation(s)
- Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Bioengineering, Sapientia Hungarian University of Transylvania, Cluj-Napoca, Romania
| | - Brigitta Szabo
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Gregus
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eva Rajnavölgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Bioengineering, Sapientia Hungarian University of Transylvania, Cluj-Napoca, Romania
| |
Collapse
|
24
|
Bhadra U, Mondal T, Bag I, Mukhopadhyay D, Das P, Parida BB, Mainkar PS, Reddy CR, Bhadra MP. HDAC inhibitor misprocesses bantam oncomiRNA, but stimulates hid induced apoptotic pathway. Sci Rep 2015; 5:14747. [PMID: 26442596 PMCID: PMC4595805 DOI: 10.1038/srep14747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/04/2015] [Indexed: 02/08/2023] Open
Abstract
Apoptosis or programmed cell death is critical for embryogenesis and tissue homeostasis. Uncontrolled apoptosis leads to different human disorders including immunodeficiency, autoimmune disorder and cancer. Several small molecules that control apoptosis have been identified. Here, we have shown the functional role of triazole derivative (DCPTN-PT) that acts as a potent HDAC inhibitor and mis-express proto onco microRNA (miRNA) bantam. To further understanding the mechanism of action of the molecule in apoptotic pathway, a series of experiments were also performed in Drosophila, a well known model organism in which the nature of human apoptosis is very analogous. DCPTN-PT mis processes bantam microRNA and alters its down regulatory target hid function and cleavage of Caspase-3 which in turn influence components of the mitochondrial apoptotic pathway in Drosophila. However regulatory microRNAs in other pro-apoptotic genes are not altered. Simultaneously, treatment of same molecule also affects the mitochondrial regulatory pathway in human tumour cell lines suggesting its conservative nature between fly and human. It is reasonable to propose that triazole derivative (DCPTN-PT) controls bantam oncomiRNA and increases hid induced apoptosis and is also able to influence mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Utpal Bhadra
- Functional Genomics and Gene silencing group, CSIR-Centre for Cellular &Molecular Biology, Uppal Road, Hyderabad 500007, INDIA
| | - Tanmoy Mondal
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, INDIA
| | - Indira Bag
- Functional Genomics and Gene silencing group, CSIR-Centre for Cellular &Molecular Biology, Uppal Road, Hyderabad 500007, INDIA
| | - Debasmita Mukhopadhyay
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, INDIA
| | - Paromita Das
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, INDIA
| | - Bibhuti B Parida
- Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, INDIA
| | - Prathama S Mainkar
- Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, INDIA
| | - Chada Raji Reddy
- Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, INDIA
| | - Manika Pal Bhadra
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, INDIA
| |
Collapse
|
25
|
Chou YW, Lin FF, Muniyan S, Lin FC, Chen CS, Wang J, Huang CC, Lin MF. Cellular prostatic acid phosphatase (cPAcP) serves as a useful biomarker of histone deacetylase (HDAC) inhibitors in prostate cancer cell growth suppression. Cell Biosci 2015; 5:38. [PMID: 26185616 PMCID: PMC4504398 DOI: 10.1186/s13578-015-0033-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/06/2015] [Indexed: 01/17/2023] Open
Abstract
Background Prostate cancer (PCa) is the most commonly diagnosed solid tumor and the second leading cancer death in the United States, and also one of the major cancer-related deaths in Chinese. Androgen deprivation therapy (ADT) is the first line treatment for metastatic PCa. PCa ultimately relapses with subsequent ADT treatment failure and becomes castrate-resistant (CR). It is important to develop effective therapies with a surrogate marker towards CR PCa. Method Histone deacetylase (HDAC) inhibitors were examined to determine their effects in androgen receptor (AR)/cellular prostatic acid phosphatase (cPAcP)-positive PCa cells, including LNCaP C-33, C-81, C4-2 and C4-2B and MDA PCa2b androgen-sensitive and androgen-independent cells, and AR/cPAcP-negative PCa cells, including PC-3 and DU 145 cells. Cell growth was determined by cell number counting. Western blot analyses were carried out to determine AR, cPAcP and PSA protein levels. Results cPAcP protein level was increased by HDAC inhibitor treatment. Valproic acid, a HDAC inhibitor, suppressed the growth of AR/cPAcP-positive PCa cells by over 50% in steroid-reduced conditions, higher than on AR/cPAcP-negative PCa cells. Further, HDAC inhibitor pretreatments increased androgen responsiveness as demonstrated by PSA protein level quantitation. Conclusion Our results clearly demonstrate that HDAC inhibitors can induce cPAcP protein level, increase androgen responsiveness, and exhibit higher inhibitory activities on AR/cPAcP-positive PCa cells than on AR/cPAcP-negative PCa cells. Upon HDAC inhibitor pretreatment, PSA level was greatly elevated by androgens. This data indicates the potential clinical importance of cPAcP serving as a useful biomarker in the identification of PCa patient sub-population suitable for HDAC inhibitor treatment.
Collapse
Affiliation(s)
- Yu-Wei Chou
- Tissue Bank and BioBank, Kaohsiung Chang Gung Memorial Hospital, No. 123, Da-Pi Road, Niao-Song District, Kaohsiung, 833 Taiwan, ROC ; Department of Biochemistry and Molecular Biology, College of Medicine, 985870 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Fen-Fen Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, 985870 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, College of Medicine, 985870 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Frank C Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, 985870 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA ; Division of Urology, Department of Surgery, University of Arizona Medical Center, Tucson, AZ USA
| | - Ching-Shih Chen
- Division of Medicinal Chemistry and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH USA
| | - Jue Wang
- Division of Oncology/Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE USA ; University of Arizona Cancer Center, St. Joseph's Hospital and Medical Center, Phoenix, AZ USA
| | - Chao-Cheng Huang
- Tissue Bank and BioBank, Kaohsiung Chang Gung Memorial Hospital, No. 123, Da-Pi Road, Niao-Song District, Kaohsiung, 833 Taiwan, ROC ; Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, 985870 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA ; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE USA ; Department of Surgery/Urology, University of Nebraska Medical Center, Omaha, NE USA ; School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
26
|
Deng LJ, Hu LP, Peng QL, Yang XL, Bai LL, Yiu A, Li Y, Tian HY, Ye WC, Zhang DM. Hellebrigenin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells through inhibition of Akt. Chem Biol Interact 2014; 219:184-94. [DOI: 10.1016/j.cbi.2014.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/12/2014] [Accepted: 06/01/2014] [Indexed: 12/12/2022]
|