1
|
Wu KC, Leong IL, Leung YM. Ca 2+-sensing receptor-TRP channel-mediated Ca 2+ signaling: Functional diversity and pharmacological complexity. Eur J Pharmacol 2024; 977:176717. [PMID: 38857682 DOI: 10.1016/j.ejphar.2024.176717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The Ca2+-sensing receptor (CaSR) is a G-protein-coupled receptor activated by elevated concentrations of extracellular Ca2+, and was initially known for its regulation of parathyroid hormone (PTH) release. Ubiquitous expression of CaSR in different tissues and organs was later noted and CaSR participation in various physiological functions was demonstrated. Accumulating evidence has suggested that CaSR functionally interacts with transient receptor potential (TRP) channels, which are mostly non-selective cation channels involved in sensing temperature, pain and stress. This review describes the interactions of CaSR with TRP channels in diverse cell types to trigger a variety of biological responses. CaSR has been known to interact with different types of G proteins. Possible involvements of G proteins, other signaling and scaffolding protein intermediates in CaSR-TRP interaction are discussed. In addition, an attempt will be made to extend the current understanding of biased agonism of CaSR.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi, Taiwan; Chang Gung University of Science and Technology, Chiayi, Taiwan; Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Iat-Lon Leong
- Division of Cardiology, University Hospital, Macau University of Science and Technology, Macau
| | - Yuk-Man Leung
- Department of Physiology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Pan T, Gao Y, Xu G, Yu L, Xu Q, Yu J, Liu M, Zhang C, Ma Y, Li Y. Widespread transcriptomic alterations of transient receptor potential channel genes in cancer. Brief Funct Genomics 2024; 23:214-227. [PMID: 37288496 DOI: 10.1093/bfgp/elad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Ion channels, in particular transient-receptor potential (TRP) channels, are essential genes that play important roles in many physiological processes. Emerging evidence has demonstrated that TRP genes are involved in a number of diseases, including various cancer types. However, we still lack knowledge about the expression alterations landscape of TRP genes across cancer types. In this review, we comprehensively reviewed and summarised the transcriptomes from more than 10 000 samples in 33 cancer types. We found that TRP genes were widespreadly transcriptomic dysregulated in cancer, which was associated with clinical survival of cancer patients. Perturbations of TRP genes were associated with a number of cancer pathways across cancer types. Moreover, we reviewed the functions of TRP family gene alterations in a number of diseases reported in recent studies. Taken together, our study comprehensively reviewed TRP genes with extensive transcriptomic alterations and their functions will directly contribute to cancer therapy and precision medicine.
Collapse
Affiliation(s)
- Tao Pan
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yueying Gao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Gang Xu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | | | - Qi Xu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Jinyang Yu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Meng Liu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Can Zhang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yongsheng Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| |
Collapse
|
3
|
Liu W, Deng W, Hu L, Zou H. Advances in TRPV6 inhibitors for tumors by targeted therapies: Macromolecular proteins, synthetic small molecule compounds, and natural compounds. Eur J Med Chem 2024; 270:116379. [PMID: 38588625 DOI: 10.1016/j.ejmech.2024.116379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
TRPV6, a Ca2+-selective member of the transient receptor potential vanilloid (TRPV) family, plays a key role in extracellular calcium transport, calcium ion reuptake, and maintenance of a local low calcium environment. An increasing number of studies have shown that TRPV6 is involved in the regulation of various diseases. Notably, overexpression of TRPV6 is closely related to the occurrence of various cancers. Research confirmed that knocking down TRPV6 could effectively reduce the proliferation and invasiveness of tumors by mainly mediating the calcium signaling pathway. Hence, TRPV6 has become a promising new drug target for numerous tumor treatments. However, the development of TRPV6 inhibitors is still in the early stage, and the existing TRPV6 inhibitors have poor selectivity and off-target effects. In this review, we focus on summarizing and describing the structure characters, and mechanisms of existing TRPV6 inhibitors to provide new ideas and directions for the development of novel TRPV6 inhibitors.
Collapse
Affiliation(s)
- Weikang Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Wenwen Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Liqing Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China.
| | - Hui Zou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China.
| |
Collapse
|
4
|
Neuberger A, Sobolevsky AI. Molecular pharmacology of the onco-TRP channel TRPV6. Channels (Austin) 2023; 17:2266669. [PMID: 37838981 PMCID: PMC10578198 DOI: 10.1080/19336950.2023.2266669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
TRPV6, a representative of the vanilloid subfamily of TRP channels, serves as the principal calcium uptake channel in the gut. Dysregulation of TRPV6 results in disturbed calcium homeostasis leading to a variety of human diseases, including many forms of cancer. Inhibitors of this oncochannel are therefore particularly needed. In this review, we provide an overview of recent advances in structural pharmacology that uncovered the molecular mechanisms of TRPV6 inhibition by a variety of small molecules, including synthetic and natural, plant-derived compounds as well as some prospective and clinically approved drugs.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | |
Collapse
|
5
|
Marini M, Titiz M, Souza Monteiro de Araújo D, Geppetti P, Nassini R, De Logu F. TRP Channels in Cancer: Signaling Mechanisms and Translational Approaches. Biomolecules 2023; 13:1557. [PMID: 37892239 PMCID: PMC10605459 DOI: 10.3390/biom13101557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Ion channels play a crucial role in a wide range of biological processes, including cell cycle regulation and cancer progression. In particular, the transient receptor potential (TRP) family of channels has emerged as a promising therapeutic target due to its involvement in several stages of cancer development and dissemination. TRP channels are expressed in a large variety of cells and tissues, and by increasing cation intracellular concentration, they monitor mechanical, thermal, and chemical stimuli under physiological and pathological conditions. Some members of the TRP superfamily, namely vanilloid (TRPV), canonical (TRPC), melastatin (TRPM), and ankyrin (TRPA), have been investigated in different types of cancer, including breast, prostate, lung, and colorectal cancer. TRP channels are involved in processes such as cell proliferation, migration, invasion, angiogenesis, and drug resistance, all related to cancer progression. Some TRP channels have been mechanistically associated with the signaling of cancer pain. Understanding the cellular and molecular mechanisms by which TRP channels influence cancer provides new opportunities for the development of targeted therapeutic strategies. Selective inhibitors of TRP channels are under initial scrutiny in experimental animals as potential anti-cancer agents. In-depth knowledge of these channels and their regulatory mechanisms may lead to new therapeutic strategies for cancer treatment, providing new perspectives for the development of effective targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139 Florence, Italy; (M.M.); (M.T.); (D.S.M.d.A.); (P.G.); (F.D.L.)
| | | |
Collapse
|
6
|
Jha S, Simonds WF. Molecular and Clinical Spectrum of Primary Hyperparathyroidism. Endocr Rev 2023; 44:779-818. [PMID: 36961765 PMCID: PMC10502601 DOI: 10.1210/endrev/bnad009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Recent data suggest an increase in the overall incidence of parathyroid disorders, with primary hyperparathyroidism (PHPT) being the most prevalent parathyroid disorder. PHPT is associated with morbidities (fractures, kidney stones, chronic kidney disease) and increased risk of death. The symptoms of PHPT can be nonspecific, potentially delaying the diagnosis. Approximately 15% of patients with PHPT have an underlying heritable form of PHPT that may be associated with extraparathyroidal manifestations, requiring active surveillance for these manifestations as seen in multiple endocrine neoplasia type 1 and 2A. Genetic testing for heritable forms should be offered to patients with multiglandular disease, recurrent PHPT, young onset PHPT (age ≤40 years), and those with a family history of parathyroid tumors. However, the underlying genetic cause for the majority of patients with heritable forms of PHPT remains unknown. Distinction between sporadic and heritable forms of PHPT is useful in surgical planning for parathyroidectomy and has implications for the family. The genes currently known to be associated with heritable forms of PHPT account for approximately half of sporadic parathyroid tumors. But the genetic cause in approximately half of the sporadic parathyroid tumors remains unknown. Furthermore, there is no systemic therapy for parathyroid carcinoma, a rare but potentially fatal cause of PHPT. Improved understanding of the molecular characteristics of parathyroid tumors will allow us to identify biomarkers for diagnosis and novel targets for therapy.
Collapse
Affiliation(s)
- Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1752, USA
| |
Collapse
|
7
|
Danese A, Leo S, Rimessi A, Wieckowski MR, Fiorica F, Giorgi C, Pinton P. Cell death as a result of calcium signaling modulation: A cancer-centric prospective. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119061. [PMID: 33991539 DOI: 10.1016/j.bbamcr.2021.119061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
Calcium ions (Ca2+) and the complex regulatory system governed by Ca2+ signaling have been described to be of crucial importance in numerous aspects related to cell life and death decisions, especially in recent years. The growing attention given to this second messenger is justified by the pleiotropic nature of Ca2+-binding proteins and transporters and their consequent involvement in cell fate decisions. A growing number of works highlight that deregulation of Ca2+ signaling and homoeostasis is often deleterious and drives pathological conditions; in particular, a disruption of the main Ca2+-mediated death mechanisms may lead to uncontrolled cell growth that results in cancer. In this work, we review the latest useful evidence to better understand the complex network of pathways by which Ca2+ regulates cell life and death decisions.
Collapse
Affiliation(s)
- Alberto Danese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy
| | - Sara Leo
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Pasteur 3 Str., 02-093 Warsaw, Poland
| | | | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy.
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
8
|
Yelshanskaya MV, Nadezhdin KD, Kurnikova MG, Sobolevsky AI. Structure and function of the calcium-selective TRP channel TRPV6. J Physiol 2020; 599:2673-2697. [PMID: 32073143 DOI: 10.1113/jp279024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/03/2020] [Indexed: 12/23/2022] Open
Abstract
Epithelial calcium channel TRPV6 is a member of the vanilloid subfamily of TRP channels that is permeable to cations and highly selective to Ca2+ ; it shows constitutive activity regulated negatively by Ca2+ and positively by phosphoinositol and cholesterol lipids. In this review, we describe the molecular structure of TRPV6 and discuss how its structural elements define its unique functional properties. High Ca2+ selectivity of TRPV6 originates from the narrow selectivity filter, where Ca2+ ions are directly coordinated by a ring of anionic aspartate side chains. Divalent cations Ca2+ and Ba2+ permeate TRPV6 pore according to the knock-off mechanism, while tight binding of Gd3+ to the aspartate ring blocks the channel and prevents Na+ from permeating the pore. The iris-like channel opening is accompanied by an α-to-π helical transition in the pore-lining transmembrane helix S6. As a result of this transition, the intracellular halves of the S6 helices bend and rotate by about 100 deg, exposing different residues to the channel pore in the open and closed states. Channel opening is also associated with changes in occupancy of the transmembrane domain lipid binding sites. The inhibitor 2-aminoethoxydiphenyl borate (2-APB) binds to TRPV6 in a pocket formed by the cytoplasmic half of the S1-S4 transmembrane helical bundle and shifts open-closed channel equilibrium towards the closed state by outcompeting lipids critical for activation. Ca2+ inhibits TRPV6 via binding to calmodulin (CaM), which mediates Ca2+ -dependent inactivation. The TRPV6-CaM complex exhibits 1:1 stoichiometry; one TRPV6 tetramer binds both CaM lobes, which adopt a distinct head-to-tail arrangement. The CaM C-terminal lobe plugs the channel through a unique cation-π interaction by inserting the side chain of lysine K115 into a tetra-tryptophan cage at the ion channel pore intracellular entrance. Recent studies of TRPV6 structure and function described in this review advance our understanding of the role of this channel in physiology and pathophysiology and inform new therapeutic design.
Collapse
Affiliation(s)
- Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
| | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
| |
Collapse
|
9
|
Guerlain J, Perie S, Lefevre M, Perez J, Vandermeersch S, Jouanneau C, Huguet L, Frochot V, Letavernier E, Weil R, Rouziere S, Bazin D, Daudon M, Haymann JP. Localization and characterization of thyroid microcalcifications: A histopathological study. PLoS One 2019; 14:e0224138. [PMID: 31648281 PMCID: PMC6812851 DOI: 10.1371/journal.pone.0224138] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 10/07/2019] [Indexed: 11/19/2022] Open
Abstract
Thyroid calcification is frequent in thyroid nodules. The aim of our study was to evaluate the prevalence of calcifications in thyroid tissue samples of patients with various thyroid diseases, and to identify their composition according to their localization. Among 50 thyroid samples included, 56% were malignant (papillary carcinoma) and 44% were benign (adenoma, multinodular goiter, Graves' disease, sarcoidosis). Calcifications were found in 95% of samples using polarised light microscopy, whereas only 12% were described in initial pathological reports. Three types were individualised and analyzed by infrared spectrometry (μFTIR): colloid calcifications composed of calcium oxalate, capsular calcifications and psammoma bodies, both composed of calcium phosphate. Of notice, psammoma bodies characterized by FE-SEM were composed of concentric structure suggesting a slow process for crystal deposition. Calcium phosphates were found only in malignant samples whereas calcium oxalate was not associated with a define pathology. Proliferation assessed by KI67 staining was high (33% of positive follicles), and RUNX2, OPN, and CD44 positive staining were detected in thyrocytes with a broad variation between samples. However, thyrocyte proliferation and differentiation markers were not associated with the number of crystals. TRPV5 and CaSR expression was also detected in thyrocytes. mRNA transcripts expression was confirmed in a subgroup of 10 patients, altogether with other calcium transporters such as PMCA1 or Cav1.3. Interestingly, TRPV5 mRNA expression was significantly associated with number of colloid calcifications (rho = -0.72; p = 0.02). The high prevalence of calcium oxalate crystals within colloid gel raises intriguing issues upon follicle physiology for calcium and oxalate transport.
Collapse
Affiliation(s)
- Joanne Guerlain
- Sorbonne Université, INSERM, UMR_S 1155, AP-HP, Hôpital Tenon, Paris, France
- * E-mail:
| | - Sophie Perie
- Service d’Oto-rhino-laryngologie et de Chirurgie Cervico-Faciale, Hôpital Tenon, Paris, France
| | - Marine Lefevre
- Service d’Anatomopathologie, Hôpital Tenon, Paris, France
| | - Joëlle Perez
- Sorbonne Université, INSERM, UMR_S 1155, AP-HP, Hôpital Tenon, Paris, France
| | | | | | - Léa Huguet
- Sorbonne Université, INSERM, UMR_S 1155, AP-HP, Hôpital Tenon, Paris, France
| | - Vincent Frochot
- Service d’Explorations Fonctionnelles Multidisciplinaires, Assistance Publique—Hôpitaux de Paris (AP-HP), Hôpital Tenon, Paris, France
| | - Emmanuel Letavernier
- Sorbonne Université, INSERM, UMR_S 1155, AP-HP, Hôpital Tenon, Paris, France
- Service d’Explorations Fonctionnelles Multidisciplinaires, Assistance Publique—Hôpitaux de Paris (AP-HP), Hôpital Tenon, Paris, France
| | - Raphael Weil
- Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Sud, Université Paris Saclay, Orsay Cedex, France
| | - Stéphan Rouziere
- Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Sud, Université Paris Saclay, Orsay Cedex, France
| | - Dominique Bazin
- Laboratoire de Chimie Physique, Université Paris Sud, Orsay, France
| | - Michel Daudon
- Service d’Explorations Fonctionnelles Multidisciplinaires, Assistance Publique—Hôpitaux de Paris (AP-HP), Hôpital Tenon, Paris, France
| | - Jean-Philippe Haymann
- Sorbonne Université, INSERM, UMR_S 1155, AP-HP, Hôpital Tenon, Paris, France
- Service d’Explorations Fonctionnelles Multidisciplinaires, Assistance Publique—Hôpitaux de Paris (AP-HP), Hôpital Tenon, Paris, France
| |
Collapse
|
10
|
Vitamin D receptor suppresses proliferation and metastasis in renal cell carcinoma cell lines via regulating the expression of the epithelial Ca2+ channel TRPV5. PLoS One 2018; 13:e0195844. [PMID: 29659618 PMCID: PMC5901920 DOI: 10.1371/journal.pone.0195844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/01/2018] [Indexed: 02/05/2023] Open
Abstract
We previously demonstrated that transient receptor potential vanilloid subfamily 5 (TRPV5) expression was decreased in renal cell carcinoma (RCC) compared with that in normal kidney tissues, a finding that was correlated with vitamin D receptor (VDR) expression, but further investigations is warranted. The aim of this study was to elucidate whether VDR could regulate the expression of TRPV5 and affect proliferation and metastasis in RCC. In this study, we used lentivirus to conduct the model of VDR overexpression and knockdown caki-1 and 786-O RCC cell lines in vitro. The results demonstrated that VDR overexpression significantly inhibited RCC cells proliferation, migration and invasion, and promoted apoptosis by the MTT, transwell cell migration/invasion and flow cytometry assays, respectively. However, VDR knockdown in RCC cells had the opposite effect. The RNA-sequence assay, which was assessed in caki-1 cells after VDR overexpression and knockdown, also indicated that significantly differentially expressed genes were associated with cell apoptotic, differentiation, proliferation and migration. RT-PCR and western blot analysis showed that VDR knockdown increased TRPV5 expression and VDR overexpression decreased TRPV5 expression in caki-1 cells. Furthermore, knockdown of TRPV5 expression suppressed the VDR knockdown-induced change in the proliferation, migration and invasion in caki-1 cells. Taken together, these findings confirmed that VDR functions as a tumour suppressor in RCC cells and suppresses the proliferation, migration and invasion of RCC through regulating the expression of TRPV5.
Collapse
|
11
|
Kumar S, Singh U, Goswami C, Singru PS. Transient receptor potential vanilloid 5 (TRPV5), a highly Ca 2+ -selective TRP channel in the rat brain: relevance to neuroendocrine regulation. J Neuroendocrinol 2017; 29. [PMID: 28235149 DOI: 10.1111/jne.12466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 11/28/2022]
Abstract
Recent studies suggest an important role for transient receptor potential vanilloid (TRPV) ion channels in neural and neuroendocrine regulation. The TRPV subfamily consists of six members: TRPV1-6. While the neuroanatomical and functional correlates of TRPV1-4 have been studied extensively, relevant information about TRPV5 and TRPV6, which are highly selective for Ca2+ , is limited. We detected TRPV5 mRNA expression in the olfactory bulb, cortex, hypothalamus, hippocampus, midbrain, brainstem and cerebellum of the rat. TRPV5-immunoreactive neurones were conspicuously seen in the hypothalamic paraventricular (PVN), supraoptic (SON), accessory neurosecretory (ANS), supraoptic nucleus, retrochiasmatic part (SOR), arcuate (ARC) and medial tuberal nuclei, hippocampus, midbrain, brainstem and cerebellum. Glial cells also showed TRPV5-immunoreactivity. To test the neuroendocrine relevance of TRPV5, we focused on vasopressin, oxytocin and cocaine- and amphetamine-regulated transcript (CART) as representative candidate markers with which TRPV5 may co-exist. In the hypothalamic neurones, co-expression of TRPV5 was observed with vasopressin (PVN: 50.73±3.82%; SON: 75.91±2.34%; ANS: 49.12±4.28%; SOR: 100%) and oxytocin (PVN: 6.88±1.21; SON: 63.34±5.69%; ANS: 20.4±4.14; SOR: 86.5±1.74%). While ARC neurones express oestrogen receptors, 17β-oestradiol regulates TRPV5, as well as CART neurones and astrocytes, in the ARC. Furthermore, ARC CART neurones are known to project to the preoptic area, and innervate and regulate GnRH neurones. Using double-immunofluorescence, glial fibrillary acidic protein-labelled astrocytes and the majority of CART neurones in the ARC showed TRPV5-immunoreactivity. Following iontophoresis of retrograde neuronal tracer, cholera toxin β (CtB) into the anteroventral periventricular nucleus and median preoptic nucleus, retrograde accumulation of CtB was observed in most TRPV5-equipped ARC CART neurones. Next, we determined the response of TRPV5-elements in the ARC during the oestrous cycle. Compared to pro-oestrus, a significant increase (P<.001) in the percentage of TRPV5-expressing CART neurones was observed during oestrus, metoestrus, and dioestrus. TRPV5-immunoreactivity in the astrocytes, however, showed a significant increase during metoestrus and dioestrus. We suggest that the TRPV5 ion channel may serve as an important regulator of neural and neuroendocrine pathways in the brain.
Collapse
Affiliation(s)
- S Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - U Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - C Goswami
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - P S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| |
Collapse
|
12
|
Kumar S, Singh U, Singh O, Goswami C, Singru PS. Transient receptor potential vanilloid 6 (TRPV6) in the mouse brain: Distribution and estrous cycle-related changes in the hypothalamus. Neuroscience 2016; 344:204-216. [PMID: 28039038 DOI: 10.1016/j.neuroscience.2016.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/28/2016] [Accepted: 12/16/2016] [Indexed: 12/28/2022]
Abstract
Transient receptor potential vanilloid (TRPV) subfamily of cationic channels have emerged as novel players in neural regulation. Unlike other members of TRPV subfamily, TRPV5 and TRPV6 are highly Ca2+-selective. Although TRPV5/TRPV6 transcripts are expressed in mouse brain, understanding the full functional spectrum of these ion channels in the brain is however limited due to the lack of information on their neuroanatomical distribution. We have studied TRPV6 in mouse brain in further detail. In the hypothalamus, while Western blot analysis using TRPV6 specific antiserum showed a distinct ∼95 kDa band corresponding to the molecular weight of TRPV6, transcripts for TRPV6 were detected with RT-PCR. TRPV6-immunoreactive cells/fibers were observed in vascular organ of the lamina terminalis, olfactory bulb, amygdala, hippocampus, septohypothalamic, supraoptic, arcuate (ARC), dorsomedial, and subincertal nuclei. TRPV6-immunoreactive cells/fibers were also observed in the brainstem and cerebellum. Estrogen has emerged as a potential regulator of TRPV6 in peripheral tissues. TRPV6 gene promoter contains estrogen-response element, estrogen activates TRPV6 via estrogen receptor alpha (ERα), and ERα-expressing ARC neurons in mediobasal hypothalamus (MBH) serve as primary site for estradiol feedback. Using double immunofluorescence, co-expression of TRPV6 and ERα was observed in several ARC neurons. MBH of mice during different phases of estrous cycle were subjected to Western blot analysis of TRPV6. Compared to proestrus, a significant reduction (P<0.01) in intensity of TRPV6-immunoreactive band was observed in MBH during metestrus and diestrus phases. While the wide distribution of TRPV6-expressing elements in the brain suggests its role in a range of CNS functions, the ion channel may serve as novel component of the neural pathway mediating effects of estradiol in MBH.
Collapse
Affiliation(s)
- Santosh Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Uday Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|