1
|
Wang N, Chen J, Dang Y, Zhao X, Tibenda JJ, Li N, Zhu Y, Wang X, Zhao Q, Sun L. Research progress of traditional Chinese medicine in the treatment of ischemic stroke by regulating mitochondrial dysfunction. Life Sci 2024; 357:123045. [PMID: 39251017 DOI: 10.1016/j.lfs.2024.123045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Ischemic stroke (IS) is a severe cerebrovascular disease with increasing incidence and mortality rates in recent years. The pathogenesis of IS is highly complex, with mitochondrial dysfunction playing a critical role in its onset and progression. Thus, preserving mitochondrial function is a pivotal aspect of treating ischemic brain injury. In response, there has been growing interest among scholars in the regulation of mitochondrial function through traditional Chinese medicine (TCM), including herb-derived compounds, individual herbs, and herbal prescriptions. This article reviews recent research on the mechanisms of mitochondrial dysfunction in IS and explores the potential of TCM in treating this condition by targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Niuniu Wang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Jun Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanning Dang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xinlin Zhao
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Jonnea Japhet Tibenda
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Nuan Li
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Yafei Zhu
- School of Nursing, Ningxia Medical University, Yinchuan, China
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qipeng Zhao
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China.
| | - Lei Sun
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
2
|
Li H, Dai X, Zhou J, Wang Y, Zhang S, Guo J, Shen L, Yan H, Jiang H. Mitochondrial dynamics in pulmonary disease: Implications for the potential therapeutics. J Cell Physiol 2024:e31370. [PMID: 38988059 DOI: 10.1002/jcp.31370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Mitochondria are dynamic organelles that continuously undergo fusion/fission to maintain normal cell physiological activities and energy metabolism. When mitochondrial dynamics is unbalanced, mitochondrial homeostasis is broken, thus damaging mitochondrial function. Accumulating evidence demonstrates that impairment in mitochondrial dynamics leads to lung tissue injury and pulmonary disease progression in a variety of disease models, including inflammatory responses, apoptosis, and barrier breakdown, and that the role of mitochondrial dynamics varies among pulmonary diseases. These findings suggest that modulation of mitochondrial dynamics may be considered as a valid therapeutic strategy in pulmonary diseases. In this review, we discuss the current evidence on the role of mitochondrial dynamics in pulmonary diseases, with a particular focus on its underlying mechanisms in the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis (PF), pulmonary arterial hypertension (PAH), lung cancer and bronchopulmonary dysplasia (BPD), and outline effective drugs targeting mitochondrial dynamics-related proteins, highlighting the great potential of targeting mitochondrial dynamics in the treatment of pulmonary disease.
Collapse
Affiliation(s)
- Hui Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xinyan Dai
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Junfu Zhou
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yujuan Wang
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shiying Zhang
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jiacheng Guo
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Lidu Shen
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Hengxiu Yan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Huiling Jiang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Zhang T, Yuan X, Jiang M, Liu B, Zhai N, Zhang Q, Song X, Lv C, Zhang J, Li H. Proteomic analysis reveals the aging-related pathways contribute to pulmonary fibrogenesis. Aging (Albany NY) 2023; 15:15382-15401. [PMID: 38147026 PMCID: PMC10781470 DOI: 10.18632/aging.205355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/16/2023] [Indexed: 12/27/2023]
Abstract
Aging usually causes lung-function decline and susceptibility to chronic lung diseases, such as pulmonary fibrosis. However, how aging affects the lung-fibrosis pathways and leads to the occurrence of pulmonary fibrosis is not completely understood. Here, mass spectrometry-based proteomics was used to chart the lung proteome of young and old mice. Micro computed tomography imaging, RNA immunoprecipitation, dual-fluorescence mRFP-GFP-LC3 adenovirus monitoring, transmission electron microscopy, and other experiments were performed to explore the screened differentially expressed proteins related to abnormal ferroptosis, autophagy, mitochondria, and mechanical force in vivo, in vitro, and in healthy people. Combined with our previous studies on pulmonary fibrosis, we further demonstrated that these biological processes and underlying molecular players were also involved in the aging process. Our work depicted a comprehensive cellular and molecular atlas of the aging lung and attempted to explain why aging is a risk factor for pulmonary fibrosis and the role that aging plays in the progression of pulmonary fibrosis. The abnormalities of aging triggered an increase in mechanical force and ferroptosis, autophagy blockade, and mitochondrial dysfunction, which often appear during pulmonary fibrogenesis. We hope that the elucidation of these anomalies will help to enhance our understanding of senescence-inducing pulmonary fibrosis, thereby guiding the use of anti-senescence as an entry point for early intervention in pulmonary fibrosis and age-related diseases.
Collapse
Affiliation(s)
- Tingwei Zhang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Xinglong Yuan
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Mengqi Jiang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai 264003, China
| | - Bo Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Nailiang Zhai
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Xiaodong Song
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Jinjin Zhang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai 264003, China
| | - Hongbo Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| |
Collapse
|
4
|
Zhou J, Song Y, Wang X, Li X, Liu C, Tian C, Wang C, Li L, Yan G, Cui H. JTE-013 Alleviates Pulmonary Fibrosis by Affecting the RhoA/YAP Pathway and Mitochondrial Fusion/Fission. Pharmaceuticals (Basel) 2023; 16:1444. [PMID: 37895915 PMCID: PMC10609863 DOI: 10.3390/ph16101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Pulmonary fibrosis may be due to the proliferation of fibroblasts and the aggregation of extracellular matrix, resulting in the stimulation of inflammation damage, destroying lung tissue structure, seriously affecting the patient's respiratory function, and even leading to death. We investigated the role and mechanism of JTE-013 in attenuating bleomycin (BLM)-induced pulmonary fibrosis. BLM-induced pulmonary fibrosis was established in mice. Type 2 alveolar epithelial cells (MLE-12) were stimulated with sphingosine monophosphate (S1P) in vitro. JTE-013, an S1PR2 (sphingosine 1-phosphate receptor 2) antagonist, and Verteporfin were administered in vivo and in vitro. IL-4, IL-5, TNF-α, and IFN-γ were measured by ELISA. IL-4 and IFN-γ positive cells were detected by flow cytometry. Inhibition of S1PR2 with JTE-013 significantly ameliorated BLM-induced pathological changes and inflammatory cytokine levels. JTE-013 also significantly reduced the expression of RHOA/YAP pathway proteins and mitochondrial fission protein Drp1, apoptosis, and the colocalization of α-SMA with YAP, Drp1, and Tom20, as detected by immunohistochemistry, immunofluorescence staining, TUNEL, and Western blot. In vitro, S1PR2 and YAP knockdown downregulated RHOA/YAP pathway protein expression, Drp1 phosphorylation, and Drp1 translocation, promoted YAP phosphorylation and phenotypic transformation of MFN2, and inhibited the up-regulation of mitochondrial membrane potential, reactive oxygen species production, and cell apoptosis (7.13% vs. 18.14%), protecting the integrity of the mitochondrial dynamics. JTE-013 also inhibited the expression of fibrosis markers α-SMA, MMP-9, and COL1A1, and alleviated the symptoms of pulmonary fibrosis. Conclusively, JTE-013 has great anti-pulmonary fibrosis potential by regulating RHOA/YAP and mitochondrial fusion/fission.
Collapse
Affiliation(s)
- Jiaxu Zhou
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji 133002, China;
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, China
| | - Xingmei Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji 133002, China;
| | - Xinrui Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji 133002, China;
| | - Chang Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji 133002, China;
| | - Chenchen Tian
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji 133002, China;
| | - Chongyang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, China
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, China
| | - Hong Cui
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji 133002, China;
| |
Collapse
|
5
|
Su M, Liu J, Wu X, Chen X, Xiao Q, Jiang N. Construction of a TFs-miRNA-mRNA network related to idiopathic pulmonary fibrosis. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:78. [PMID: 36819574 PMCID: PMC9929790 DOI: 10.21037/atm-22-6161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/07/2023] [Indexed: 01/18/2023]
Abstract
Background The transcription factors (TFs)-microRNA (miRNA)-messenger RNA (mRNA) network plays an important role in a variety of diseases. However, the relationship between the TFs-miRNA-mRNA network and idiopathic pulmonary fibrosis (IPF) remains unclear. Methods The GSE110147 and GSE53845 datasets from the Gene Expression Omnibus (GEO) database were used to process differentially expressed genes (DEGs) analysis, gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), as well as Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The GSE13316 dataset was used to perform differentially expressed miRNAs (DEMs) analysis and TFs prediction. Finally, a TFs-miRNA-mRNA network related to IPF was constructed, and its function was evaluated by Gene Ontology (GO) and KEGG analyses. Also, 19 TFs in the network were verified by quantitative real time polymerase chain reaction (qRT-PCR). Results Through our analysis, 53 DEMs and 2,630 DEGs were screened. The GSEA results suggested these genes were mainly related to protein digestion and absorption. The WGCNA results showed that these DEGs were divided into eight modules, and the GO and KEGG analyses results of blue module genes showed that these 86 blue module genes were mainly enriched in cilium assembly and cilium organization. Moreover, a TFs-miRNA-mRNA network comprising 25 TFs, 11 miRNAs, and 60 mRNAs was constructed. Ultimately, the functional enrichment analysis showed that the TFs-miRNA-mRNA network was mainly related to the cell cycle and the phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt) signaling pathway. Furthermore, experimental verification of the TFs showed that ARNTL, TRIM28, EZH2, BCOR, and ASXL1 were sufficiently up-regulated in the transforming growth factor (TGF)-β1 treatment groups, while BCL6, BHLHE40, FOXA1, and EGR1 were significantly down-regulated. Conclusions The novel TFs-miRNA-mRNA network that we constructed could provide new insights into the underlying molecular mechanisms of IPF. ARNTL, TRIM28, EZH2, BCOR, ASXL1, BCL6, BHLHE40, FOXA1, and EGR1 may play important roles in IPF and become effective biomarkers for diagnosis and treatment.
Collapse
Affiliation(s)
- Minhong Su
- Department of Respiratory and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junfang Liu
- Department of Respiratory and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiping Wu
- Department of Respiratory and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Respiratory and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Xiao
- Department of Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University, Foshan, China
| | - Ning Jiang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Zhang T, Zhang M, Yang L, Gao L, Sun W. Potential targeted therapy based on deep insight into the relationship between the pulmonary microbiota and immune regulation in lung fibrosis. Front Immunol 2023; 14:1032355. [PMID: 36761779 PMCID: PMC9904240 DOI: 10.3389/fimmu.2023.1032355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Pulmonary fibrosis is an irreversible disease, and its mechanism is unclear. The lung is a vital organ connecting the respiratory tract and the outside world. The changes in lung microbiota affect the progress of lung fibrosis. The latest research showed that lung microbiota differs in healthy people, including idiopathic pulmonary fibrosis (IPF) and acute exacerbation-idiopathic pulmonary fibrosis (AE-IPF). How to regulate the lung microbiota and whether the potential regulatory mechanism can become a necessary targeted treatment of IPF are unclear. Some studies showed that immune response and lung microbiota balance and maintain lung homeostasis. However, unbalanced lung homeostasis stimulates the immune response. The subsequent biological effects are closely related to lung fibrosis. Core fucosylation (CF), a significant protein functional modification, affects the lung microbiota. CF regulates immune protein modifications by regulating key inflammatory factors and signaling pathways generated after immune response. The treatment of immune regulation, such as antibiotic treatment, vitamin D supplementation, and exosome micro-RNAs, has achieved an initial effect in clearing the inflammatory storm induced by an immune response. Based on the above, the highlight of this review is clarifying the relationship between pulmonary microbiota and immune regulation and identifying the correlation between the two, the impact on pulmonary fibrosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Tao Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Min Zhang
- Department of Geriatric Endocrinology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Liqing Yang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu, China
| | - Lingyun Gao
- Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, China,Medical College, University of Electronic Science and Technology, Chengdu, China,Guanghan People's Hospital, Guanghan, China,*Correspondence: Wei Sun, ; Lingyun Gao,
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu, China,Medical College, University of Electronic Science and Technology, Chengdu, China,*Correspondence: Wei Sun, ; Lingyun Gao,
| |
Collapse
|
7
|
Yang T, Wang J, Zhao J, Liu Y. Current and prospective applications of exosomal microRNAs in pulmonary fibrosis (Review). Int J Mol Med 2022; 49:37. [PMID: 35088880 PMCID: PMC8815412 DOI: 10.3892/ijmm.2022.5092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive, irreversible and life‑threatening lung disease. However, the pathogenesis and molecular mechanisms of this condition remain unclear. Extracellular vesicles (EVs) are structures derived from the plasma membrane, with a diameter ranging from 30 nm to 5 µm, that play an important role in cell‑to‑cell communications in lung disease, particularly between epithelial cells and the pulmonary microenvironment. In particular, exosomes are a type of EV that can deliver cargo molecules, including endogenous proteins, lipids and nucleic acids, such as microRNAs (miRNAs/miRs). These cargo molecules are encapsulated in lipid bilayers through target cell internalization, receptor‑ligand interactions or lipid membrane fusion. miRNAs are single‑stranded RNA molecules that regulate cell differentiation, proliferation and apoptosis by degrading target mRNAs or inhibiting translation to modulate gene expression. The aim of the present review was to discuss the current knowledge available on exosome biogenesis, composition and isolation methods. The role of miRNAs in the pathogenesis of PF was also reviewed. In addition, emerging diagnostic and therapeutic properties of exosomes and exosomal miRNAs in PF were described, in order to highlight the potential applications of exosomal miRNAs in PF.
Collapse
Affiliation(s)
- Tao Yang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
- The First Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jiaying Zhao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
8
|
Kornmueller K, Amri EZ, Scheideler M, Prassl R. Delivery of miRNAs to the adipose organ for metabolic health. Adv Drug Deliv Rev 2022; 181:114110. [PMID: 34995679 DOI: 10.1016/j.addr.2021.114110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
Despite the increasing prevalence of obesity and diabetes, there is no efficient treatment to combat these epidemics. The adipose organ is the main site for energy storage and plays a pivotal role in whole body lipid metabolism and energy homeostasis, including remodeling and dysfunction of adipocytes and adipose tissues in obesity and diabetes. Thus, restoring and balancing metabolic functions in the adipose organ is in demand. MiRNAs represent a novel class of drugs and drug targets, as they are heavily involved in the regulation of many cellular and metabolic processes and diseases, likewise in adipocytes. In this review, we summarize key regulatory activities of miRNAs in the adipose organ, discuss various miRNA replacement and inhibition strategies, promising delivery systems for miRNAs and reflect the future of novel miRNA-based therapeutics to target adipose tissues with the ultimate goal to combat metabolic disorders.
Collapse
Affiliation(s)
- Karin Kornmueller
- Department of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | | | - Marcel Scheideler
- Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ruth Prassl
- Department of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Austria.
| |
Collapse
|
9
|
Huang Q, Chen L, Bai Q, Tong T, Zhou Y, Li Z, Lu C, Chen S, Chen L. The roles of microRNAs played in lung diseases via regulating cell apoptosis. Mol Cell Biochem 2021; 476:4265-4275. [PMID: 34398353 DOI: 10.1007/s11010-021-04242-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/10/2021] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are a type of endogenous non-coding short-chain RNA, which plays a crucial role in the regulation of many essential cellular functions, including cellular migration, proliferation, invasion, autophagy, oxidative stress, apoptosis, and differentiation. The lung can be damaged by pathogenic microorganisms, as well as physical or chemical factors. Research has confirmed that miRNAs and lung cell apoptosis can affect the development and progression of several lung diseases. This article reviews the role of miRNAs in the development of lung disease through regulating host cell apoptosis.
Collapse
Affiliation(s)
- Qiaoling Huang
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Li Chen
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Qinqin Bai
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Ting Tong
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - You Zhou
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Zhongyu Li
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Chunxue Lu
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China
| | - Shenghua Chen
- Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.
| | - Lili Chen
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China. .,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, College of Public Health, University of South China, 28 West Changsheng Rd, Hengyang, 421001, Hunan, China.
| |
Collapse
|
10
|
Role of various imbalances centered on alveolar epithelial cell/fibroblast apoptosis imbalance in the pathogenesis of idiopathic pulmonary fibrosis. Chin Med J (Engl) 2021; 134:261-274. [PMID: 33522725 PMCID: PMC7846426 DOI: 10.1097/cm9.0000000000001288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There have been recent extensive studies and rapid advancement on the pathogenesis underlying idiopathic pulmonary fibrosis (IPF), and intricate pathogenesis of IPF has been suggested. The purpose of this study was to clarify the logical relationship between these mechanisms. An extensive search was undertaken of the PubMed using the following keywords: “etiology,” “pathogenesis,” “alveolar epithelial cell (AEC),” “fibroblast,” “lymphocyte,” “macrophage,” “epigenomics,” “histone,” acetylation,” “methylation,” “endoplasmic reticulum stress,” “mitochondrial dysfunction,” “telomerase,” “proteases,” “plasminogen,” “epithelial-mesenchymal transition,” “oxidative stress,” “inflammation,” “apoptosis,” and “idiopathic pulmonary fibrosis.” This search covered relevant research articles published up to April 30, 2020. Original articles, reviews, and other articles were searched and reviewed for content; 240 highly relevant studies were obtained after screening. IPF is likely the result of complex interactions between environmental, genetic, and epigenetic factors: environmental exposures affect epigenetic marks; epigenetic processes translate environmental exposures into the regulation of chromatin; epigenetic processes shape gene expression profiles; in turn, an individual's genetic background determines epigenetic marks; finally, these genetic and epigenetic factors act in concert to dysregulate gene expression in IPF lung tissue. The pathogenesis of IPF involves various imbalances including endoplasmic reticulum, telomere length homeostasis, mitochondrial dysfunction, oxidant/antioxidant imbalance, Th1/Th2 imbalance, M1–M2 polarization of macrophages, protease/antiprotease imbalance, and plasminogen activation/inhibition imbalance. These affect each other, promote each other, and ultimately promote AEC/fibroblast apoptosis imbalance directly or indirectly. Excessive AEC apoptosis and impaired apoptosis of fibroblasts contribute to fibrosis. IPF is likely the result of complex interactions between environmental, genetic, and epigenetic factors. The pathogenesis of IPF involves various imbalances centered on AEC/fibroblast apoptosis imbalance.
Collapse
|
11
|
Bartczak K, Białas AJ, Kotecki MJ, Górski P, Piotrowski WJ. More than a Genetic Code: Epigenetics of Lung Fibrosis. Mol Diagn Ther 2020; 24:665-681. [PMID: 32926347 PMCID: PMC7677145 DOI: 10.1007/s40291-020-00490-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At the end of the last century, genetic studies reported that genetic information is not transmitted solely by DNA, but is also transmitted by other mechanisms, named as epigenetics. The well-described epigenetic mechanisms include DNA methylation, biochemical modifications of histones, and microRNAs. The role of altered epigenetics in the biology of various fibrotic diseases is well-established, and recent advances demonstrate its importance in the pathogenesis of pulmonary fibrosis-predominantly referring to idiopathic pulmonary fibrosis, the most lethal of the interstitial lung diseases. The deficiency in effective medications suggests an urgent need to better understand the underlying pathobiology. This review summarizes the current knowledge concerning epigenetic changes in pulmonary fibrosis and associations of these changes with several cellular pathways of known significance in its pathogenesis. It also designates the most promising substances for further research that may bring us closer to new therapeutic options.
Collapse
Affiliation(s)
- Krystian Bartczak
- Department of Pneumology and Allergology, The Medical University of Lodz, Kopcińskiego 22, 90-153, Lodz, Poland.
| | - Adam J Białas
- Department of Pathobiology of Respiratory Diseases, The Medical University of Lodz, Lodz, Poland
| | - Mateusz J Kotecki
- Department of Pneumology and Allergology, The Medical University of Lodz, Kopcińskiego 22, 90-153, Lodz, Poland
| | - Paweł Górski
- Department of Pneumology and Allergology, The Medical University of Lodz, Kopcińskiego 22, 90-153, Lodz, Poland
| | - Wojciech J Piotrowski
- Department of Pneumology and Allergology, The Medical University of Lodz, Kopcińskiego 22, 90-153, Lodz, Poland
| |
Collapse
|
12
|
Rezaei S, Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Jalili A, Movahedpour A, Khan H, Moghoofei M, Shojaei Z, R Hamblin M, Mirzaei H. Autophagy-related MicroRNAs in chronic lung diseases and lung cancer. Crit Rev Oncol Hematol 2020; 153:103063. [DOI: 10.1016/j.critrevonc.2020.103063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/11/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022] Open
|
13
|
Manevski M, Muthumalage T, Devadoss D, Sundar IK, Wang Q, Singh KP, Unwalla HJ, Chand HS, Rahman I. Cellular stress responses and dysfunctional Mitochondrial-cellular senescence, and therapeutics in chronic respiratory diseases. Redox Biol 2020; 33:101443. [PMID: 32037306 PMCID: PMC7251248 DOI: 10.1016/j.redox.2020.101443] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
The abnormal inflammatory responses due to the lung tissue damage and ineffective repair/resolution in response to the inhaled toxicants result in the pathological changes associated with chronic respiratory diseases. Investigation of such pathophysiological mechanisms provides the opportunity to develop the molecular phenotype-specific diagnostic assays and could help in designing the personalized medicine-based therapeutic approaches against these prevalent diseases. As the central hubs of cell metabolism and energetics, mitochondria integrate cellular responses and interorganellar signaling pathways to maintain cellular and extracellular redox status and the cellular senescence that dictate the lung tissue responses. Specifically, as observed in chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis, the mitochondria-endoplasmic reticulum (ER) crosstalk is disrupted by the inhaled toxicants such as the combustible and emerging electronic nicotine-delivery system (ENDS) tobacco products. Thus, the recent research efforts have focused on understanding how the mitochondria-ER dysfunctions and oxidative stress responses can be targeted to improve inflammatory and cellular dysfunctions associated with these pathologic illnesses that are exacerbated by viral infections. The present review assesses the importance of these redox signaling and cellular senescence pathways that describe the role of mitochondria and ER on the development and function of lung epithelial responses, highlighting the cause and effect associations that reflect the disease pathogenesis and possible intervention strategies.
Collapse
Affiliation(s)
- Marko Manevski
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dinesh Devadoss
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kameshwar P Singh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hoshang J Unwalla
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Hitendra S Chand
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
14
|
Bueno M, Calyeca J, Rojas M, Mora AL. Mitochondria dysfunction and metabolic reprogramming as drivers of idiopathic pulmonary fibrosis. Redox Biol 2020; 33:101509. [PMID: 32234292 PMCID: PMC7251240 DOI: 10.1016/j.redox.2020.101509] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease of unknown etiology. It is characterized by deposition of extracellular matrix proteins, like collagen and fibronectin in the lung interstitium leading to respiratory failure. Our understanding of the pathobiology underlying IPF is still incomplete; however, it is accepted that aging is a major risk factor in the disease while growing evidence suggests that the mitochondria plays an important role in the initiation and progression of pulmonary fibrosis. Mitochondria dysfunction and metabolic reprogramming had been identified in different IPF lung cells (alveolar epithelial cells, fibroblasts, and macrophages) promoting low resilience and increasing susceptibility to activation of profibrotic responses. Here we summarize changes in mitochondrial numbers, biogenesis, turnover and associated metabolic adaptations that promote disrepair and fibrosis in the lung. Finally, we highlight new possible therapeutic approaches focused on ameliorate mitochondrial dysfunction.
Collapse
Affiliation(s)
- Marta Bueno
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jazmin Calyeca
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Dorothy and Richard Simmons Center for Interstitial Lung Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana L Mora
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Rosdah AA, Smiles WJ, Oakhill JS, Scott JW, Langendorf CG, Delbridge LMD, Holien JK, Lim SY. New perspectives on the role of Drp1 isoforms in regulating mitochondrial pathophysiology. Pharmacol Ther 2020; 213:107594. [PMID: 32473962 DOI: 10.1016/j.pharmthera.2020.107594] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are dynamic organelles constantly undergoing fusion and fission. A concerted balance between the process of mitochondrial fusion and fission is required to maintain cellular health under different physiological conditions. Mutation and dysregulation of Drp1, the major driver of mitochondrial fission, has been associated with various neurological, oncological and cardiovascular disorders. Moreover, when subjected to pathological insults, mitochondria often undergo excessive fission, generating fragmented and dysfunctional mitochondria leading to cell death. Therefore, manipulating mitochondrial fission by targeting Drp1 has been an appealing therapeutic approach for cytoprotection. However, studies have been inconsistent. Studies employing Drp1 constructs representing alternate Drp1 isoforms, have demonstrated differing impacts of these isoforms on mitochondrial fission and cell death. Furthermore, there are distinct expression patterns of Drp1 isoforms in different tissues, suggesting idiosyncratic engagement in specific cellular functions. In this review, we will discuss these inherent variations among human Drp1 isoforms and how they could affect Drp1-mediated mitochondrial fission and cell death.
Collapse
Affiliation(s)
- Ayeshah A Rosdah
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria, Australia; Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia; Department of Surgery, University of Melbourne, Victoria, Australia
| | - William J Smiles
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Victoria, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria, Australia
| | - John W Scott
- Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria, Australia; Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | - Christopher G Langendorf
- Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Jessica K Holien
- Department of Surgery, University of Melbourne, Victoria, Australia; Structural Bioinformatics and Drug Discovery, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria, Australia; Department of Surgery, University of Melbourne, Victoria, Australia.
| |
Collapse
|
16
|
Role of HIF-1α-miR30a-Snai1 Axis in Neonatal Hyperoxic Lung Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8327486. [PMID: 31772711 PMCID: PMC6854945 DOI: 10.1155/2019/8327486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by a severe impairment in lung alveolarization and vascular development. We have previously shown that pulmonary angiogenesis is preserved in hyperoxia-exposed female mice accompanied by increased miR-30a expression, which is a proangiogenic miRNA. Also, miR-30a expression is decreased in human BPD. HIF-1α plays an essential role in postnatal lung development, especially in recovery from hyperoxic injury. Snai1 activation promotes pathological fibrosis through many mechanisms including Endo-MT, which may in turn adversely impact lung vascular development. Our objective was to test the hypothesis that higher miR-30a expression through HIF-1α decreases Snai1 expression in females and attenuates injury in the developing lung. Neonatal male and female mice (C57BL/6) were exposed to hyperoxia (P1-5, 0.95 FiO2) and euthanized on P21. Neonatal human pulmonary microvascular endothelial cells (HPMECs; 18-24-week gestation donors; 3/group either sex) were subjected to hyperoxia (95% O2 and 5% CO2) or normoxia (air and 5% CO2) up to 72 h. Snai1 expression was measured in HPMECs in vitro and in neonatal mouse lungs in vivo. Also, Snai1 expression was measured in HPMECs after miR-30a mimic and miR-30a inhibitor treatment. To further establish the potential regulation of miR-30a by Hif-1α, miR-30a expression after Hif-1α inhibition was measured in HPMECs. In vivo, Snai1 expression was decreased in neonatal female lungs compared to males at P7. Increased Snai1 expression was seen in male HPMECs upon exposure to hyperoxia in vitro. Treatment with the miR-30a mimic decreased Snai1 expression in HPMECs, while miR-30a inhibition significantly increased Snai1 expression in HPMECs. siRNA-mediated loss of Hif-1α expression in HPMECs decreased miR-30a expression. Hif-1α may lead to differential sex-specific miR-30a expression and may contribute to protection from hyperoxic lung injury in female neonatal mice through decreased Snai1 expression.
Collapse
|
17
|
Li R, Wang Y, Song X, Sun W, Zhang J, Liu Y, Li H, Meng C, Zhang J, Zheng Q, Lv C. Potential regulatory role of circular RNA in idiopathic pulmonary fibrosis. Int J Mol Med 2018; 42:3256-3268. [PMID: 30272257 PMCID: PMC6202105 DOI: 10.3892/ijmm.2018.3892] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive type of interstitial pneumonia with unknown causes, poor prognosis and no effective therapy available. Circular RNAs (circRNAs), which serve as potential therapeutic targets and diagnostic biomarkers for certain diseases, represent a recent hotspot in the field of RNA research. In the present study, a total of 67 significantly dysregulated circRNAs were identified in the plasma of IPF patients by using a circRNA microarray. Among these circRNAs, 38 were upregulated, whereas 29 were downregulated. Further validation of the results by polymerase chain reaction analysis indicated that Homo sapiens (hsa)_circRNA_100906, hsa_circRNA_102100 and hsa_circRNA_102348 were significantly upregulated, whereas hsa_circRNA_101225, hsa_circRNA_104780 and hsa_circRNA_101242 were downregulated in plasma samples of IPF patients compared with those in samples from healthy controls. The majority of differentially expressed circRNAs were generated from exonic regions. The host genes of the differentially expressed circRNAs were involved in the regulation of the cell cycle, adherens junctions and RNA transport. The competing endogenous RNA (ceRNA) network of the circRNAs/micro(mi)RNAs/mRNAs indicated that circRNA-protected mRNA participated in transforming growth factor-β1, hypoxia-inducible factor-1, Wnt, Janus kinase, Rho-associated protein kinase, vascular endothelial growth factor, mitogen-activated protein kinase, Hedgehog and nuclear factor κB signalling pathways or functioned as biomarkers for pulmonary fibrosis. Furthermore, luciferase reporter assays confirmed that hsa_circRNA_100906 and hsa_circRNA_102348 directly interact with miR-324-5p and miR-630, respectively, which were downregulated in IPF patients. The present study provided a novel avenue for exploring the underlying molecular mechanisms of IPF disease.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256602, P.R. China
| | - Youlei Wang
- School of Special Education, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiaodong Song
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Wenjing Sun
- School of Life Sciences, Ludong University, Yantai, Shandong 264025, P.R. China
| | - Jinjin Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yuxia Liu
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256602, P.R. China
| | - Hongbo Li
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256602, P.R. China
| | - Chao Meng
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Jie Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Qingyin Zheng
- School of Special Education, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Changjun Lv
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256602, P.R. China
| |
Collapse
|
18
|
Huang W, Li K, Liu A, Yang Z, Hu C, Chen D, Wang H. miR‑330‑5p inhibits H2O2‑induced adipogenic differentiation of MSCs by regulating RXRγ. Int J Mol Med 2018; 42:2042-2052. [PMID: 30015907 PMCID: PMC6108853 DOI: 10.3892/ijmm.2018.3773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/06/2018] [Indexed: 01/07/2023] Open
Abstract
The elucidation of the underlying molecular mechanism of H2O2‑induced adipocyte differentiation in mesenchymal stem cells (MSCs) is important for the development of treatments for metabolic diseases. The aim of the present study was to identify microRNA (miR)‑330‑5p, which targets retinoid X receptor γ (RXRγ) and to determine the function of H2O2‑induced adipogenic differentiation of MSCs. During differentiation of MSCs into adipocytes induced by H2O2, miR‑330‑5p expression was decreased with a concomitant increase in RXRγ expression. A luciferase assay with RXRγ 3'‑untranslated region (UTR) reporter plasmid, including the miR‑330‑5p‑binding sequences, identified that the introduction of miR‑330‑5p decreases luciferase activity. However, it did not affect the activity of mutated RXRγ 3'‑UTR reporter. Enforced expression of miR‑330‑5p significantly inhibited adipocyte differentiation by decreasing RXRγ mRNA and protein levels. In contrast, inhibition of the endogenous miR‑330‑5p promoted the formation of lipid droplets by rescuing RXRγ expression. Furthermore, the effects of inhibition of RXRγ were similar to those of overexpression of miR‑330‑5p on H2O2‑induced adipogenic differentiation from MSCs. miR‑330‑5p inhibits H2O2‑induced adipogenic differentiation of MSCs, and this is dependent on RXRγ. Taken together, the results of the present study revealed that miR‑330‑5p acts as a critical regulator of RXRγ, and is able to determinate the fate of MSCs to differentiate into adipocytes. This suggests that miR‑330‑5p and RXRγ may be target molecules for controlling metabolic diseases.
Collapse
Affiliation(s)
- Weiping Huang
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Ke Li
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Aijun Liu
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zeyu Yang
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Chenxia Hu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Dongfeng Chen
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hongqi Wang
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
19
|
Miao C, Xiong Y, Zhang G, Chang J. MicroRNAs in idiopathic pulmonary fibrosis, new research progress and their pathophysiological implication. Exp Lung Res 2018; 44:178-190. [DOI: 10.1080/01902148.2018.1455927] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chenggui Miao
- Department of Pharmacy, School of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Youyi Xiong
- Department of Pharmacy, School of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Guoxue Zhang
- School of Science and Technology of Tea and Food, Anhui Agricultural University, Hefei, China
| | - Jun Chang
- Fourth Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
MicroRNA-708-3p as a potential therapeutic target via the ADAM17-GATA/STAT3 axis in idiopathic pulmonary fibrosis. Exp Mol Med 2018; 50:e465. [PMID: 29869625 PMCID: PMC5898903 DOI: 10.1038/emm.2017.311] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are important diagnostic markers and therapeutic targets for many diseases. However, the miRNAs that control the pathogenesis of idiopathic pulmonary fibrosis (IPF) and act as potential therapeutic targets for the disease are rarely studied. In the present study, we analyzed the function and regulatory mechanism of microRNA-708-3p (miR-708-3p) and evaluated this marker’s potential as a therapeutic target in IPF. The clinical and biological relevance of fibrogenesis for miR-708-3p was assessed in vivo and in vitro, specifically in matching plasma and tissue samples from 78 patients with IPF. The data showed that the miR-708-3p levels decreased during fibrosis and inversely correlated with IPF. The experiments showed that the decreased miR-708 promoter activity and primer-miR-708(pri-miR-708) expression were the potential causes. By computational analysis, a dual luciferase reporter system, rescue experiments and a Cignal Finder 45-Pathway system with siADAM17 and a miR-708-3p mimic, we identified that miR-708-3p directly regulates its target gene, a disintegrin and metalloproteinase 17 (ADAM17), through a binding site in the 3′ untranslated region, which depends on the GATA/STAT3 signaling pathway. Finally, an miR-708-3p agomir was designed and used to test the therapeutic effects of the miR-708-3p in an animal model. Small-animal imaging technology and other experiments showed that the dynamic image distribution of the miR-708-3p agomir was mainly concentrated in the lungs and could block fibrogenesis. In conclusion, the miR-708-3p–ADAM17 axis aggravates IPF, and miR-708-3p can serve as a potential therapeutic target for IPF.
Collapse
|
21
|
Guo Y, Ni J, Chen S, Bai M, Lin J, Ding G, Zhang Y, Sun P, Jia Z, Huang S, Yang L, Zhang A. MicroRNA-709 Mediates Acute Tubular Injury through Effects on Mitochondrial Function. J Am Soc Nephrol 2018; 29:449-461. [PMID: 29042455 PMCID: PMC5791060 DOI: 10.1681/asn.2017040381] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/20/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction has important roles in the pathogenesis of AKI, yet therapeutic approaches to improve mitochondrial function remain limited. In this study, we investigated the pathogenic role of microRNA-709 (miR-709) in mediating mitochondrial impairment and tubular cell death in AKI. In a cisplatin-induced AKI mouse model and in biopsy samples of human AKI kidney tissue, miR-709 was significantly upregulated in the proximal tubular cells (PTCs). The expression of miR-709 in the renal PTCs of patients with AKI correlated with the severity of kidney injury. In cultured mouse PTCs, overexpression of miR-709 markedly induced mitochondrial dysfunction and cell apoptosis, and inhibition of miR-709 ameliorated cisplatin-induced mitochondrial dysfunction and cell injury. Further analyses showed that mitochondrial transcriptional factor A (TFAM) is a target gene of miR-709, and genetic restoration of TFAM attenuated mitochondrial dysfunction and cell injury induced by cisplatin or miR-709 overexpression in vitro Moreover, antagonizing miR-709 with an miR-709 antagomir dramatically attenuated cisplatin-induced kidney injury and mitochondrial dysfunction in mice. Collectively, our results suggest that miR-709 has an important role in mediating cisplatin-induced AKI via negative regulation of TFAM and subsequent mitochondrial dysfunction. These findings reveal a pathogenic role of miR-709 in acute tubular injury and suggest a novel target for the treatment of AKI.
Collapse
Affiliation(s)
- Yan Guo
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiajia Ni
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Chen
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; and
| | - Jiajuan Lin
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Pingping Sun
- Renal Division, Peking University First Hospital, Beijing, China
| | - Zhanjun Jia
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; and
| | - Songming Huang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Li Yang
- Renal Division, Peking University First Hospital, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China;
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; and
| |
Collapse
|
22
|
Gao Y, Zhang J, Liu Y, Zhang S, Wang Y, Liu B, Liu H, Li R, Lv C, Song X. Regulation of TERRA on telomeric and mitochondrial functions in IPF pathogenesis. BMC Pulm Med 2017; 17:163. [PMID: 29197377 PMCID: PMC5712138 DOI: 10.1186/s12890-017-0516-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/21/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Aging is a known risk factor of idiopathic pulmonary fibrosis (IPF). However, the pathogenic mechanisms underlying the effects of advanced aging remain largely unknown. Telomeric repeat-containing RNA (TERRA) represents a type of long noncoding RNA. In this study, the regulatory roles of TERRA on human telomeres and mitochondria and IPF epithelial injury model were identified. METHODS Blood samples were collected from patients with IPF (n = 24) and matched control individuals (n = 24). The significance of clinical research on the TERRA expression correlated with pulmonary fibrosis was assessed. The expression levels of TERRA in vivo and in vitro were determined through quantitative real-time polymerase chain reaction analysis. Telomerase activity was observed using a fluorescent quantitative TRAP assay kit. The functions of telomeres, mitochondria, and associated genes were analyzed through RNA interference on TERRA. RESULTS TERRA expression levels significantly increased in the peripheral blood mononuclear cells of IPF patients. The expression levels also exhibited a direct and significantly inverse correlation with the percentage of predicted force vital capacity, which is a physiological indicator of fibrogenesis during IPF progression. This finding was confirmed in the epithelial injury model of IPF in vitro. RNA interference on TERRA expression can ameliorate the functions of telomeres; mitochondria; associated genes; components associated with telomeres, such as telomerase reverse transcriptase, telomerase, and cell nuclear antigen, cyclin D1; and mitochondria-associated cyclin E genes, including the MMP and Bcl-2 family. The RNA interference on TERRA expression can also improve the functions of oxidative-stress-associated genes, such as reactive oxygen species, superoxide dismutase, and catalase, and apoptosis-related genes, such as cytochrome c, caspase-9, and caspase-3. CONCLUSIONS In this study, the regulation of TERRA expression on telomeres and mitochondria during IPF pathogenesis was identified for the first time. The results may provide valuable insights for the discovery of a novel biomarker or therapeutic approach for IPF treatment.
Collapse
Affiliation(s)
- Yulin Gao
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai City, 264003 China
| | - Jinjin Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai City, 264003 China
| | - Yuxia Liu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai City, 264003 China
| | - Songzi Zhang
- School of Pharmaceutical Sciences, Taishan Medical University, Taian, 271016 China
| | - Youlei Wang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai City, 264003 China
| | - Bo Liu
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou, 256602 China
| | - Huizhu Liu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai City, 264003 China
| | - Rongrong Li
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou, 256602 China
| | - Changjun Lv
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai City, 264003 China
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou, 256602 China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, No. 346, Guanhai Road, Laishan District, Yantai City, 264003 China
| |
Collapse
|
23
|
Baicalin attenuates in vivo and in vitro hyperglycemia-exacerbated ischemia/reperfusion injury by regulating mitochondrial function in a manner dependent on AMPK. Eur J Pharmacol 2017; 815:118-126. [DOI: 10.1016/j.ejphar.2017.07.041] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022]
|
24
|
Liu H, Wang B, Zhang J, Zhang S, Wang Y, Zhang J, Lv C, Song X. A novel lnc-PCF promotes the proliferation of TGF-β1-activated epithelial cells by targeting miR-344a-5p to regulate map3k11 in pulmonary fibrosis. Cell Death Dis 2017; 8:e3137. [PMID: 29072702 PMCID: PMC5682666 DOI: 10.1038/cddis.2017.500] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/10/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022]
Abstract
Emerging evidence suggests that microRNA (miRNA) and long noncoding RNA (lncRNA) play important roles in disease development. However, the mechanism underlying mRNA interaction with miRNA and lncRNA in idiopathic pulmonary fibrosis (IPF) remains unknown. This study presents a novel lnc-PCF that promotes the proliferation of TGF-β1-activated epithelial cells through the regulation of map3k11 by directly targeting miR-344a-5p during pulmonary fibrogenesis. Bioinformatics and in vitro translation assay were performed to confirm whether or not lnc-PCF is an actual lncRNA. RNA fluorescent in situ hybridization (FISH) and nucleocytoplasmic separation showed that lnc-PCF is mainly expressed in the cytoplasm. Knockdown and knockin of lnc-PCF indicated that lnc-PCF could promote fibrogenesis by regulating the proliferation of epithelial cells activated by TGF-β1 according to the results of xCELLigence real-time cell analysis system, flow cytometry, and western blot analysis. Computational analysis and a dual-luciferase reporter system were used to identify the target gene of miR-344a-5p, whereas RNA pull down, anti-AGO2 RNA immunoprecipitation, and rescue experiments were conducted to confirm the identity of this direct target. Further experiments verified that lnc-PCF promotes the proliferation of activated epithelial cells that were dependent on miR-344a-5p, which exerted its regulatory functions through its target gene map3k11. Finally, adenovirus packaging sh-lnc-PCF was sprayed into rat lung tissues to evaluate the therapeutic effect of lnc-PCF. These findings revealed that lnc-PCF can accelerate pulmonary fibrogenesis by directly targeting miR-344a-5p to regulate map3k11, which may be a potential therapeutic target in IPF.
Collapse
Affiliation(s)
- Huizhu Liu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Bingsi Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Jinjin Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Songzi Zhang
- School of Pharmaceutical Sciences, Taishan Medical University, Taian 271016, China
| | - Youlei Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China
| | - Xiaodong Song
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
25
|
Interaction network of coexpressed mRNA, miRNA, and lncRNA activated by TGF‑β1 regulates EMT in human pulmonary epithelial cell. Mol Med Rep 2017; 16:8045-8054. [PMID: 28983614 PMCID: PMC5779888 DOI: 10.3892/mmr.2017.7653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/15/2017] [Indexed: 11/05/2022] Open
Abstract
Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), play increasingly important roles in pathological processes involved in disease development. However, whether mRNAs interact with miRNAs and lncRNAs to form an interacting regulatory network in diseases remains unknown. In this study, the interaction of coexpressed mRNAs, miRNAs and lncRNAs during tumor growth factor-β1-activated (TGF-β1) epithelial-mesenchymal transition (EMT) was systematically analyzed in human alveolar epithelial cells. For EMT regulation, 24 mRNAs, 11 miRNAs and 33 lncRNAs were coexpressed, and interacted with one another. The interaction among coexpressed mRNAs, miRNAs and lncRNAs were further analyzed, and the results showed the lack of competing endogenous RNAs (ceRNAs) among them. The mutual regulation may be correlated with other modes, such as histone modification and transcription factor recruitment. However, the possibility of ceRNA existence cannot be ignored because of the generally low abundance of lncRNAs and frequent promiscuity of protein-RNA interactions. Thus, conclusions need further experimental identification and validation. In this context, disrupting many altered disease pathways remains one of the challenges in obtaining effective pathway-based therapy. The reason being that one specific mRNA, miRNA or lncRNA may target multiple genes that are potentially implicated in a disease. Nevertheless, the results of the present study provide basic mechanistic information, possible biomarkers and novel treatment strategies for diseases, particularly pulmonary tumor and fibrosis.
Collapse
|
26
|
Zhang S, Liu H, Liu Y, Zhang J, Li H, Liu W, Cao G, Xv P, Zhang J, Lv C, Song X. miR-30a as Potential Therapeutics by Targeting TET1 through Regulation of Drp-1 Promoter Hydroxymethylation in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2017; 18:ijms18030633. [PMID: 28294974 PMCID: PMC5372646 DOI: 10.3390/ijms18030633] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 01/16/2023] Open
Abstract
Several recent studies have indicated that miR-30a plays critical roles in various biological processes and diseases. However, the mechanism of miR-30a participation in idiopathic pulmonary fibrosis (IPF) regulation is ambiguous. Our previous study demonstrated that miR-30a may function as a novel therapeutic target for lung fibrosis by blocking mitochondrial fission, which is dependent on dynamin-related protein1 (Drp-1). However, the regulatory mechanism between miR-30a and Drp-1 is yet to be investigated. Additionally, whether miR-30a can act as a potential therapeutic has not been verified in vivo. In this study, the miR-30a expression in IPF patients was evaluated. Computational analysis and a dual-luciferase reporter assay system were used to identify the target gene of miR-30a, and cell transfection was utilized to confirm this relationship. Ten–eleven translocation 1 (TET1) was validated as a direct target of miR-30a, and miR-30a mimic and inhibitor transfection significantly reduced and increased the TET1 protein expression, respectively. Further experimentation verified that the TET1 siRNA interference could inhibit Drp-1 promoter hydroxymethylation. Finally, miR-30a agomir was designed and applied to identify and validate the therapeutic effect of miR-30a in vivo. Our study demonstrated that miR-30a could inhibit TET1 expression through base pairing with complementary sites in the 3′untranslated region to regulate Drp-1 promoter hydroxymethylation. Furthermore, miR-30a could act as a potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Songzi Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
- Department of Clinical Pharmacology, School of Pharmaceutical Sciences, Taishan Medical University, Taishan 271016, China.
| | - Huizhu Liu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Yuxia Liu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Jie Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Hongbo Li
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China.
| | - Weili Liu
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China.
| | - Guohong Cao
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China.
| | - Pan Xv
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China.
| | - Jinjin Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Changjun Lv
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China.
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
27
|
Mesenchymal Stromal Cells Derived Extracellular Vesicles Ameliorate Acute Renal Ischemia Reperfusion Injury by Inhibition of Mitochondrial Fission through miR-30. Stem Cells Int 2016; 2016:2093940. [PMID: 27799943 PMCID: PMC5069372 DOI: 10.1155/2016/2093940] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/22/2016] [Accepted: 08/28/2016] [Indexed: 01/08/2023] Open
Abstract
Background. The immoderation of mitochondrial fission is one of the main contributors in ischemia reperfusion injury (IRI) and mesenchymal stromal cells (MSCs) derived extracellular vesicles have been regarded as a potential therapy method. Here, we hypothesized that extracellular vesicles (EVs) derived from human Wharton Jelly mesenchymal stromal cells (hWJMSCs) ameliorate acute renal IRI by inhibiting mitochondrial fission through miR-30b/c/d. Methods. EVs isolated from the condition medium of MCS were injected intravenously in rats immediately after monolateral nephrectomy and renal pedicle occlusion for 45 minutes. Animals were sacrificed at 24 h after reperfusion and samples were collected. MitoTracker Red staining was used to see the morphology of the mitochondria. The expression of DRP1 was measured by western blot. miR-30 in EVs and rat tubular epithelial cells was assessed by qRT-PCR. Apoptosis pathway was identified by immunostaining. Results. We found that the expression of miR-30 in injured kidney tissues was declined and mitochondrial dynamics turned to fission. But they were both restored in EVs group in parallel with reduced cell apoptosis. What is more, when the miR-30 antagomirs were used to reduce the miRNA levels, all the related effects of EVs reduced remarkably. Conclusion. A single administration of hWJMSC-EVs could protect the kidney from IRI by inhibition of mitochondrial fission via miR-30.
Collapse
|
28
|
Agarwal S, Yadav A, Tiwari SK, Seth B, Chauhan LKS, Khare P, Ray RS, Chaturvedi RK. Dynamin-related Protein 1 Inhibition Mitigates Bisphenol A-mediated Alterations in Mitochondrial Dynamics and Neural Stem Cell Proliferation and Differentiation. J Biol Chem 2016; 291:15923-39. [PMID: 27252377 DOI: 10.1074/jbc.m115.709493] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 11/06/2022] Open
Abstract
The regulatory dynamics of mitochondria comprises well orchestrated distribution and mitochondrial turnover to maintain the mitochondrial circuitry and homeostasis inside the cells. Several pieces of evidence suggested impaired mitochondrial dynamics and its association with the pathogenesis of neurodegenerative disorders. We found that chronic exposure of synthetic xenoestrogen bisphenol A (BPA), a component of consumer plastic products, impaired autophagy-mediated mitochondrial turnover, leading to increased oxidative stress, mitochondrial fragmentation, and apoptosis in hippocampal neural stem cells (NSCs). It also inhibited hippocampal derived NSC proliferation and differentiation, as evident by the decreased number of BrdU- and β-III tubulin-positive cells. All these effects were reversed by the inhibition of oxidative stress using N-acetyl cysteine. BPA up-regulated the levels of Drp-1 (dynamin-related protein 1) and enhanced its mitochondrial translocation, with no effect on Fis-1, Mfn-1, Mfn-2, and Opa-1 in vitro and in the hippocampus. Moreover, transmission electron microscopy studies suggested increased mitochondrial fission and accumulation of fragmented mitochondria and decreased elongated mitochondria in the hippocampus of the rat brain. Impaired mitochondrial dynamics by BPA resulted in increased reactive oxygen species and malondialdehyde levels, disruption of mitochondrial membrane potential, and ATP decline. Pharmacological (Mdivi-1) and genetic (Drp-1siRNA) inhibition of Drp-1 reversed BPA-induced mitochondrial dysfunctions, fragmentation, and apoptosis. Interestingly, BPA-mediated inhibitory effects on NSC proliferation and neuronal differentiations were also mitigated by Drp-1 inhibition. On the other hand, Drp-1 inhibition blocked BPA-mediated Drp-1 translocation, leading to decreased apoptosis of NSC. Overall, our studies implicate Drp-1 as a potential therapeutic target against BPA-mediated impaired mitochondrial dynamics and neurodegeneration in the hippocampus.
Collapse
Affiliation(s)
- Swati Agarwal
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group and the Academy of Scientific and Innovative Research and
| | - Anuradha Yadav
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group and the Academy of Scientific and Innovative Research and
| | - Shashi Kant Tiwari
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group and the Academy of Scientific and Innovative Research and
| | - Brashket Seth
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group and the Academy of Scientific and Innovative Research and
| | - Lalit Kumar Singh Chauhan
- the Central Instrumentation Facility, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Puneet Khare
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group and
| | - Ratan Singh Ray
- the Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group
| | - Rajnish Kumar Chaturvedi
- From the Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group and the Academy of Scientific and Innovative Research and
| |
Collapse
|
29
|
Derlet A, Rasper T, Roy Choudhury A, Bothur S, Rieger MA, Namgaladze D, Fischer A, Schürmann C, Brandes RP, Tschulena U, Steppan S, Assmus B, Dimmeler S, Zeiher AM, Seeger FH. Metabolism Regulates Cellular Functions of Bone Marrow-Derived Cells used for Cardiac Therapy. Stem Cells 2016; 34:2236-48. [PMID: 27145479 DOI: 10.1002/stem.2394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 02/27/2016] [Accepted: 03/30/2016] [Indexed: 01/07/2023]
Abstract
Administration of bone marrow-derived mononuclear cells (BMC) may increase cardiac function after myocardial ischemia. However, the functional capacity of BMC derived from chronic heart failure (CHF) patients is significantly impaired. As modulation of the energy metabolism allows cells to match the divergent demands of the environment, we examined the regulation of energy metabolism in BMC from patients and healthy controls (HC). The glycolytic capacity of CHF-derived BMC is reduced compared to HC, whereas BMC of metabolically activated bone marrow after acute myocardial infarction reveal increased metabolism. The correlation of metabolic pathways with the functional activity of cells indicates an influence of metabolism on cell function. Reducing glycolysis without profoundly affecting ATP-production reversibly reduces invasion as well as colony forming capacity and abolishes proliferation of CD34(+) CD38(-) lin(-) hematopoietic stem and progenitor cells (HSPC). Ex vivo inhibition of glycolysis further reduced the pro-angiogenic activity of transplanted cells in a hind limb ischemia model in vivo. In contrast, inhibition of respiration, without affecting total ATP production, leads to a compensatory increase in glycolytic capacity correlating with increased colony forming capacity. Isolated CD34(+) , CXCR4(+) , and CD14(+) cells showed higher glycolytic activity compared to their negative counterparts. Metabolic activity was profoundly modulated by the composition of media used to store or culture BMC. This study provides first evidence that metabolic alterations influence the functional activity of human HSPC and BMC independent of ATP production. Changing the balance between respiration and glycolysis might be useful to improve patient-derived cells for clinical cardiac cell therapy. Stem Cells 2016;34:2236-2248.
Collapse
Affiliation(s)
- Anja Derlet
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University
| | - Tina Rasper
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University
| | - Aaheli Roy Choudhury
- LOEWE Center for Cell and Gene Therapy, Internal Medicine III, Goethe University, Hematology/Oncology
| | - Sabrina Bothur
- LOEWE Center for Cell and Gene Therapy, Internal Medicine III, Goethe University, Hematology/Oncology
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy, Internal Medicine III, Goethe University, Hematology/Oncology
| | - Dmitry Namgaladze
- Faculty of Medicine, Institute of Biochemistry I/ZAFES, Goethe University
| | - Ariane Fischer
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University
| | - Christoph Schürmann
- Faculty of Medicine, Institute for Cardiovascular Physiology, Goethe University
| | - Ralf P Brandes
- Faculty of Medicine, Institute for Cardiovascular Physiology, Goethe University
| | - Ulrich Tschulena
- Department for Biomedical Research and Project Evaluation, Fresenius Medical Care Deutschland GmbH, Goethe University, Bad Homburg, Germany
| | - Sonja Steppan
- Department for Biomedical Research and Project Evaluation, Fresenius Medical Care Deutschland GmbH, Goethe University, Bad Homburg, Germany
| | - Birgit Assmus
- Department of Cardiology, Internal Medicine III, Goethe University, Frankfurt (Main), Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University
| | - Andreas M Zeiher
- Department of Cardiology, Internal Medicine III, Goethe University, Frankfurt (Main), Germany
| | - Florian H Seeger
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University.,Department of Cardiology, Internal Medicine III, Goethe University, Frankfurt (Main), Germany
| |
Collapse
|
30
|
Park D, Kim H, Kim Y, Jeoung D. miR-30a Regulates the Expression of CAGE and p53 and Regulates the Response to Anti-Cancer Drugs. Mol Cells 2016; 39:299-309. [PMID: 26912082 PMCID: PMC4844936 DOI: 10.14348/molcells.2016.2242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/22/2022] Open
Abstract
We have previously reported the role of miR-217 in anti-cancer drug-resistance. miRNA array and miRNA hybridization analysis predicted miR-30a-3p as a target of miR-217. miR-30a-3p and miR-217 formed a negative feedback loop and regulated the expression of each other. Ago1 immunoprecipitation and co-localization analysis revealed a possible interaction between miR-30a-3p and miR-217. miR-30a-3p conferred resistance to anti-cancer drugs and enhanced the invasion, migration, angiogenic, tumorigenic, and metastatic potential of cancer cells in CAGE-dependent manner. CAGE increased the expression of miR-30a-3p by binding to the promoter sequences of miR-30a-3p, suggesting a positive feedback loop between CAGE and miR-30a-3p. miR-30a-3p decreased the expression of p53, which showed the binding to the promoter sequences of miR-30a-3p and CAGE in anti-cancer drug-sensitive cancer cells. Luciferase activity assays showed that p53 serves as a target of miR-30a. Thus, the miR-30a-3p-CAGE-p53 feedback loop serves as a target for overcoming resistance to anti-cancer drugs.
Collapse
Affiliation(s)
- Deokbum Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701,
Korea
| | - Hyuna Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701,
Korea
| | - Youngmi Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701,
Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701,
Korea
| |
Collapse
|
31
|
Zhang D, Lee H, Cao Y, Dela Cruz CS, Jin Y. miR-185 mediates lung epithelial cell death after oxidative stress. Am J Physiol Lung Cell Mol Physiol 2016; 310:L700-10. [PMID: 26747785 DOI: 10.1152/ajplung.00392.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
Abstract
Lung epithelial cell death is a prominent feature involved in the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Hyperoxia-induced ALI is an established animal model mimicking human ARDS. Small noncoding RNAs such as microRNAs (miRNAs) have potent physiological and pathological functions involving multiple disease processes. Emerging interests focus on the potential of miRNAs to serve as novel therapeutic targets and diagnostic biomarkers. We found that hyperoxia highly induces miR-185 and its precursor in human lung epithelial cells in a time-dependent manner, and this observation is confirmed using mouse primary lung epithelial cells. The hyperoxia-induced miR-185 is mediated by reactive oxygen species. Furthermore, histone deacetylase 4 (HDAC4) locates in the promoter region of miR-185. We found that hyperoxia suppresses HDAC4 specifically in a time-dependent manner and subsequently affects histone deacetylation, resulting in an elevated miR-185 transcription. Using MC1586, an inhibitor of class IIa HDACs, we showed that inhibition of class IIa HDACs upregulates the expression of miR-185, mimicking the effects of hyperoxia. Functionally, miR-185 promotes hyperoxia-induced lung epithelial cell death through inducing DNA damage. We confirmed functional roles of miR-185 using both the loss- and gain-of-function approaches. Moreover, multiple 14-3-3δ pathway proteins are highly attenuated by miR-185 in the presence of hyperoxia. Taken together, hyperoxia-induced miR-185 in lung epithelial cells contributes to oxidative stress-associated epithelial cell death through enhanced DNA damage and modulation of 14-3-3δ pathways.
Collapse
Affiliation(s)
- Duo Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, Massachusetts
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, Massachusetts
| | - Yong Cao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, Massachusetts; Department of Respiratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, Massachusetts;
| |
Collapse
|
32
|
LIAO YUXIANG, LV GUOHUA, WANG BING, KUANG LEI, WANG XIAOBIN. Imatinib promotes apoptosis of giant cell tumor cells by targeting microRNA-30a-mediated runt-related transcription factor 2. Mol Med Rep 2015; 13:1739-45. [DOI: 10.3892/mmr.2015.4722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 09/25/2015] [Indexed: 11/06/2022] Open
|
33
|
Yuan CT, Li XX, Cheng QJ, Wang YH, Wang JH, Liu CL. MiR-30a regulates the atrial fibrillation-induced myocardial fibrosis by targeting snail 1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:15527-15536. [PMID: 26884822 PMCID: PMC4730035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE Our study aims at assessing the association between miR-30a along with its target gene snail 1 and atrial fibrillation (AF)-induced myocardial fibrosis. METHODS Ang II was used to up-regulate cardiac fibroblasts fibrosis in vitro, and then the cardiac fibroblasts were divided into the mimics group (mimics miR-30a), inhibitors group (inhibitors miR-30a), NC group (transfected miR-30a, negative control) and blank control group (non-transfected cells). Two-group (sham operated group and rapid pacing group) AF rabbit models were constructed according to whether rapid pacing was presented in the subject. Then the establishment of rabbit models was examined using histopathology after Masson staining. The mRNA and protein expression levels of snail 1 and periostin in cardiac fibroblasts and myocardial tissues were detected using the method of RT-PCR and Western blot, respectively. RESULTS In vitro, our experiment showed that overexpression of miR-30a in cardiac fibroblasts contribute to a significant decrease in the average expression level of snail 1 and periostin (P < 0.05) whereas inhibition of miR-30a significantly increased the average expression level of snail 1 and periostin (P < 0.05). In vivo, the average expression level of miR-30a significantly decreased in myocardial tissues with an increased degree of myocardial fibrosis, while the snail 1 and periostin expression level significantly increased during a certain period of time (P < 0.05). CONCLUSION Our results suggest that miR-30a target snail 1 protein may be related to AF-induced myocardial fibrosis. The average expression levels of snail 1 increased significantly in both myocardial cells and tissues, while miR-30a could inhibit the expression of snail 1. Thus, we speculate that miR-30a and snail 1 may be potential therapeutic targets for curing AF-induced myocardial fibrosis.
Collapse
Affiliation(s)
- Chuan-Tao Yuan
- Department of Pathology, Affiiated Hospital of Jining Medical UniversityShandong, China
| | - Xiao-Xia Li
- Department of Pathology, Affiiated Hospital of Jining Medical UniversityShandong, China
| | - Qian-Jin Cheng
- Department of Cardiovascular, Affiiated Hospital of Jining Medical UniversityShandong, China
| | - Yan-Hui Wang
- Department of CT, The Affiiated Hospital of Jining Medical UniversityJining, Shandong Province, China
| | - Jie-Huan Wang
- Department of Cardiovascular, Affiiated Hospital of Jining Medical UniversityShandong, China
| | - Chao-Liang Liu
- Department of Cardiovascular, Affiiated Hospital of Jining Medical UniversityShandong, China
| |
Collapse
|