1
|
Kuan CH, Chang L, Ho CY, Tsai CH, Liu YC, Huang WY, Wang YN, Wang WH, Wang TW. Immunomodulatory hydrogel orchestrates pro-regenerative response of macrophages and angiogenesis for chronic wound healing. Biomaterials 2025; 314:122848. [PMID: 39342917 DOI: 10.1016/j.biomaterials.2024.122848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/22/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Chronic wound healing often encounters challenges characterized by prolonged inflammation and impaired angiogenesis. While the immune response plays a pivotal role in orchestrating the intricate process of wound healing, excessive inflammation can hinder tissue repair. In this study, a bilayer alginate hydrogel system encapsulating polyelectrolyte complex nanoparticles (PCNs) loaded with anti-inflammatory cytokines and angiogenic growth factors is developed to address the challenges of chronic wound healing. The alginate hydrogel is designed using two distinct crosslinking methods to achieve differential degradation, thereby enabling precise spatial and temporal controlled release of PCNs. Initially, interleukin-10 (IL-10) is released to mitigate inflammation, while unsaturated PCNs bind and remove accumulated pro-inflammatory cytokines at the wound site. Subsequently, angiogenic growth factors, including vascular endothelial growth factor and platelet-derived growth factor, are released to promote vascularization and vessel maturation. Our results demonstrate that the bilayer hydrogel exhibits distinct degradation kinetics between the two layers, facilitating the staged release of multiple signaling molecules. In vitro experiments reveal that IL-10 can activate the Jak1/STAT3 pathway, thereby suppressing pro-inflammatory cytokines and chemokines while down-regulating inflammation-related genes. In vivo studies demonstrate that application of the hydrogel in chronic wounds using diabetic murine model promotes healing by positively modulating multiple integral reparative mechanisms. These include reducing inflammation, promoting macrophage polarization towards a pro-regenerative phenotype, enhancing keratinocyte migration, stimulating angiogenesis, and expediting wound closure. In conclusion, our hydrogel system effectively mitigates inflammatory responses and provides essential physiological cues by inducing a synergistic angiogenic effect, thus offering a promising approach for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Chen-Hsiang Kuan
- Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taiwan.
| | - Ling Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Yu Ho
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan; Department of Bioengineering, Rice University, Houston, USA
| | - Chia-Hsuan Tsai
- Division of Plastic Surgery, Department of Surgery, Chang Gung Memorial Hospital, Keelung Branch, Taiwan
| | - Yu-Chung Liu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan; Department of Biomedical Engineering, University of Michigan-Ann Arbor, Michigan, USA
| | - Wei-Yuan Huang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Ning Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Hung Wang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Tzu-Wei Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Lechuga S, Marino-Melendez A, Naydenov NG, Zafar A, Braga-Neto MB, Ivanov AI. Regulation of Epithelial and Endothelial Barriers by Molecular Chaperones. Cells 2024; 13:370. [PMID: 38474334 PMCID: PMC10931179 DOI: 10.3390/cells13050370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
The integrity and permeability of epithelial and endothelial barriers depend on the formation of tight junctions, adherens junctions, and a junction-associated cytoskeleton. The establishment of this junction-cytoskeletal module relies on the correct folding and oligomerization of its protein components. Molecular chaperones are known regulators of protein folding and complex formation in different cellular compartments. Mammalian cells possess an elaborate chaperone network consisting of several hundred chaperones and co-chaperones. Only a small part of this network has been linked, however, to the regulation of intercellular adhesions, and the systematic analysis of chaperone functions at epithelial and endothelial barriers is lacking. This review describes the functions and mechanisms of the chaperone-assisted regulation of intercellular junctions. The major focus of this review is on heat shock protein chaperones, their co-chaperones, and chaperonins since these molecules are the focus of the majority of the articles published on the chaperone-mediated control of tissue barriers. This review discusses the roles of chaperones in the regulation of the steady-state integrity of epithelial and vascular barriers as well as the disruption of these barriers by pathogenic factors and extracellular stressors. Since cytoskeletal coupling is essential for junctional integrity and remodeling, chaperone-assisted assembly of the actomyosin cytoskeleton is also discussed.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Armando Marino-Melendez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Atif Zafar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| | - Manuel B. Braga-Neto
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (S.L.); (A.M.-M.); (N.G.N.); (A.Z.); (M.B.B.-N.)
| |
Collapse
|
3
|
Zhang X, Evans TD, Chen S, Sergin I, Stitham J, Jeong SJ, Rodriguez-Velez A, Yeh YS, Park A, Jung IH, Diwan A, Schilling JD, Rom O, Yurdagul A, Epelman S, Cho J, Lodhi IJ, Mittendorfer B, Razani B. Loss of Macrophage mTORC2 Drives Atherosclerosis via FoxO1 and IL-1β Signaling. Circ Res 2023; 133:200-219. [PMID: 37350264 PMCID: PMC10527041 DOI: 10.1161/circresaha.122.321542] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND The mTOR (mechanistic target of rapamycin) pathway is a complex signaling cascade that regulates cellular growth, proliferation, metabolism, and survival. Although activation of mTOR signaling has been linked to atherosclerosis, its direct role in lesion progression and in plaque macrophages remains poorly understood. We previously demonstrated that mTORC1 (mTOR complex 1) activation promotes atherogenesis through inhibition of autophagy and increased apoptosis in macrophages. METHODS Using macrophage-specific Rictor- and mTOR-deficient mice, we now dissect the distinct functions of mTORC2 pathways in atherogenesis. RESULTS In contrast to the atheroprotective effect seen with blockade of macrophage mTORC1, macrophage-specific mTORC2-deficient mice exhibit an atherogenic phenotype, with larger, more complex lesions and increased cell death. In cultured macrophages, we show that mTORC2 signaling inhibits the FoxO1 (forkhead box protein O1) transcription factor, leading to suppression of proinflammatory pathways, especially the inflammasome/IL (interleukin)-1β response, a key mediator of vascular inflammation and atherosclerosis. In addition, administration of FoxO1 inhibitors efficiently rescued the proinflammatory response caused by mTORC2 deficiency both in vitro and in vivo. Interestingly, collective deletion of macrophage mTOR, which ablates mTORC1- and mTORC2-dependent pathways, leads to minimal change in plaque size or complexity, reflecting the balanced yet opposing roles of these signaling arms. CONCLUSIONS Our data provide the first mechanistic details of macrophage mTOR signaling in atherosclerosis and suggest that therapeutic measures aimed at modulating mTOR need to account for its dichotomous functions.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Trent D. Evans
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Sunny Chen
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Ismail Sergin
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Jeremiah Stitham
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St Louis, MO, USA
| | - Se-Jin Jeong
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | | | - Yu-Sheng Yeh
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Arick Park
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - In-Hyuk Jung
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Abhinav Diwan
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
- John Cochran VA Medical Center, St. Louis, MO, USA
| | - Joel D. Schilling
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology and Department of Molecular and Cellular Physiology, Louisiana State University, Shreveport, LA
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology and Department of Molecular and Cellular Physiology, Louisiana State University, Shreveport, LA
| | - Slava Epelman
- Ted Rogers Centre for Heart Research, Peter Munk Cardiac Center, Toronto General Hospital Research Institute, University Health Network and University of Toronto, Toronto, Canada
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Irfan J. Lodhi
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St Louis, MO, USA
| | - Bettina Mittendorfer
- Division of Geriatrics and Nutritional Science, and Washington University School of Medicine, St Louis, MO, USA
| | - Babak Razani
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
- Pittsburgh VA Medical Center, Pittsburgh, PA
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA
- John Cochran VA Medical Center, St. Louis, MO, USA
| |
Collapse
|
4
|
Tang Y, Chen Y, Guo Q, Zhang L, Liu H, Wang S, Wu X, Shen X, Tao L. MiR-126-Loaded Immunoliposomes against Vascular Endothelial Inflammation In Vitro and Vivo Evaluation. Pharmaceutics 2023; 15:pharmaceutics15051379. [PMID: 37242620 DOI: 10.3390/pharmaceutics15051379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Due to the accompaniment of vascular endothelial inflammation during the occurrence and development of cardiovascular diseases (CVD), treatment modalities against vascular endothelial inflammation have been intensively investigated for CVD prevention and/or treatment. Vascular cell adhesion molecule-1 (VCAM-1) is a typical transmembrane inflammatory protein specifically expressed by inflammatory vascular endothelial. By inhibiting VCAM-1 expression through the miR-126 mediated pathway, vascular endothelial inflammation can be efficiently relieved. Inspired by this, we developed a miR-126-loaded immunoliposome with VCAM-1 monoclonal antibody (VCAMab) decorated at its surface. This immunoliposome can be directly targeted to VCAM-1 at the inflammatory vascular endothelial membrane surface and achieve highly efficient treatment against inflammation response. The cellular experiment results showed the immunoliposome had a higher uptake rate towards inflammatory human vein endothelial cells (HUVECs) and can significantly downregulate the VCAM-1 expression level of inflammatory HUVECs. In vivo investigation further demonstrated that this immunoliposome displayed a higher accumulation rate at vascular inflammatory dysfunction sites than its non-VCAMab-modified counterpart. These results suggest that this novel nanoplatform can effectively deliver miR-126 to vascular inflammatory endothelium, opening a new avenue for the safe and effective delivery of miRNA for potential clinical application.
Collapse
Affiliation(s)
- Yongyu Tang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Ying Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Lidan Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Huanhuan Liu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Sibu Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Xingjie Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550031, China
| |
Collapse
|
5
|
Liu X, Zhang L, Tang W, Zhang T, Xiang P, Shen Q, Ye T, Xiao Y. Transcriptomic profiling and differential analysis reveal the renal toxicity mechanisms of mice under cantharidin exposure. Toxicol Appl Pharmacol 2023; 465:116450. [PMID: 36907384 DOI: 10.1016/j.taap.2023.116450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Cantharidin (CTD), extracted from the traditional Chinese medicine mylabris, has shown significant curative effects against a variety of tumors, but its clinical application is limited by its high toxicity. Studies have revealed that CTD can cause toxicity in the kidneys; however, the underlying molecular mechanisms remain unclear. In this study, we investigated the toxic effects in mouse kidneys following CTD treatment by pathological and ultrastructure observations, biochemical index detection, and transcriptomics, and explored the underlying molecular mechanisms by RNA sequencing (RNA-seq). The results showed that after CTD exposure, the kidneys had different degrees of pathological damage, altered uric acid and creatinine levels in serum, and the antioxidant indexes in tissues were significantly increased. These changes were more pronounced at medium and high doses of CTD. RNA-seq analysis revealed 674 differentially expressed genes compared with the control group, of which 131 were upregulated and 543 were downregulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that many differentially expressed genes were closely related to the stress response, the CIDE protein family, and the transporter superfamily, as well as the MAPK, AMPK, and HIF-1 pathways. The reliability of the RNA-seq results was verified by qRT-PCR of the six target genes. These findings offer insight into the molecular mechanisms of renal toxicity caused by CTD and provide an important theoretical basis for the clinical treatment of CTD-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xin Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Linghan Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenchao Tang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, China.
| | - Tingting Zhang
- Chongqing university three gorges hospital, Chongqing, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Qin Shen
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Taotao Ye
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanyuan Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
6
|
Chen X, Qi D, Fan S, He Y, Jing H, Wang D. Interferon regulatory factor 1 (IRF1) inhibits lung endothelial regeneration following inflammation-induced acute lung injury. Clin Sci (Lond) 2023; 137:367-383. [PMID: 36857175 PMCID: PMC10011169 DOI: 10.1042/cs20220876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a respiratory condition caused by severe endothelial barrier dysfunction within the lung. In ARDS, excessive inflammation, tissue edema, and immune cell influx prevents endothelial cell regeneration that is crucial in repairing the endothelial barrier. However, little is known about the molecular mechanism that underpin endothelial cell regeneration in ARDS. METHODS R-based bioinformatics tools were used to analyze microarray-derived transcription profiles in human lung microvascular endothelial cells (HLMVECs) subjected to non-treatment or lipopolysaccharide (LPS) exposure. We generated endothelial cell-specific interferon regulatory factor 1 (Irf1) knockout (Irf1EC-/-) and Irf1fl/fl control mice for use in an endotoxemic murine model of acute lung injury (ALI). In vitro studies (qPCR, immunoblotting, and ChIP-qPCR) were conducted in mouse lung endothelial cells (MLECs) and HLMVECs. Dual-luciferase promoter reporter assays were performed in HLMVECs. RESULTS Bioinformatics analyses identified IRF1 as a key up-regulated gene in HLMVECs post-LPS exposure. Endothelial-specific knockout of Irf1 in ALI mice resulted in enhanced regeneration of lung endothelium, while liposomal delivery of endothelial-specific Irf1 to wild-type ALI mice inhibited lung endothelial regeneration in a leukemia inhibitory factor (Lif)-dependent manner. Mechanistically, we demonstrated that LPS-induced Stat1Ser727 phosphorylation promotes Irf1 transactivation, resulting in downstream up-regulation of Lif that inhibits endothelial cell proliferation. CONCLUSIONS These results demonstrate the existence of a p-Stat1Ser727-Irf1-Lif axis that inhibits lung endothelial cell regeneration post-LPS injury. Thus, direct inhibition of IRF1 or LIF may be a promising strategy for enhancing endothelial cell regeneration and improving clinical outcomes in ARDS patients.
Collapse
Affiliation(s)
- Xiaorui Chen
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Correspondence: Xiaorui Chen () or Daoxin Wang ()
| | - Di Qi
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shulei Fan
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yirui He
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hekun Jing
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Correspondence: Xiaorui Chen () or Daoxin Wang ()
| |
Collapse
|
7
|
Nguyen HC, Bu S, Nikfarjam S, Rasheed B, Michels DCR, Singh A, Singh S, Marszal C, McGuire JJ, Feng Q, Frisbee JC, Qadura M, Singh KK. Loss of fatty acid binding protein 3 ameliorates lipopolysaccharide-induced inflammation and endothelial dysfunction. J Biol Chem 2023; 299:102921. [PMID: 36681124 PMCID: PMC9988587 DOI: 10.1016/j.jbc.2023.102921] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
Circulating fatty acid-binding protein 3 (FABP3) is an effective biomarker of myocardial injury and peripheral artery disease (PAD). The endothelium, which forms the inner most layer of every blood vessel, is exposed to higher levels of FABP3 in PAD or following myocardial injury, but the pathophysiological role of endothelial FABP3, the effect of FABP3 exposure on endothelial cells, and related mechanisms are unknown. Here, we aimed to evaluate the pathophysiological role of endothelial FABP3 and related mechanisms in vitro. Our molecular and functional in vitro analyses show that (1) FABP3 is basally expressed in endothelial cells; (2) inflammatory stress in the form of lipopolysaccharide (LPS) upregulated endothelial FABP3 expression; (3) loss of endogenous FABP3 protected endothelial cells against LPS-induced endothelial dysfunction; however, exogenous FABP3 exposure exacerbated LPS-induced inflammation; (4) loss of endogenous FABP3 protected against LPS-induced endothelial dysfunction by promoting cell survival and anti-inflammatory and pro-angiogenic signaling pathways. Together, these findings suggest that gain-of endothelial FABP3 exacerbates, whereas loss-of endothelial FABP3 inhibits LPS-induced endothelial dysfunction by promoting cell survival and anti-inflammatory and pro-angiogenic signaling. We propose that an increased circulating FABP3 in myocardial injury or PAD patients may be detrimental to endothelial function, and therefore, therapies aimed at inhibiting FABP3 may improve endothelial function in diseased states.
Collapse
Affiliation(s)
- Hien C Nguyen
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Shuhan Bu
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Sepideh Nikfarjam
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Berk Rasheed
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - David C R Michels
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Shweta Singh
- Department of Applied Science, Fanshawe College, London, Ontario, Canada
| | - Caroline Marszal
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - John J McGuire
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Qingping Feng
- Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Mohammad Qadura
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Krishna K Singh
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
8
|
Bei YR, Zhang SC, Song Y, Tang ML, Zhang KL, Jiang M, He RC, Wu SG, Liu XH, Wu LM, Dai XY, Hu YW. EPSTI1 promotes monocyte adhesion to endothelial cells in vitro via upregulating VCAM-1 and ICAM-1 expression. Acta Pharmacol Sin 2023; 44:71-80. [PMID: 35778487 DOI: 10.1038/s41401-022-00923-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/21/2022] [Indexed: 01/18/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of arterial wall, and circulating monocyte adhesion to endothelial cells is a crucial step in the pathogenesis of atherosclerosis. Epithelial-stromal interaction 1 (EPSTI1) is a novel gene, which is dramatically induced by epithelial-stromal interaction in human breast cancer. EPSTI1 expression is not only restricted to the breast but also in other normal tissues. In this study we investigated the role of EPSTI1 in monocyte-endothelial cell adhesion and its expression pattern in atherosclerotic plaques. We showed that EPSTI1 was dramatically upregulated in human and mouse atherosclerotic plaques when compared with normal arteries. In addition, the expression of EPSTI1 in endothelial cells of human and mouse atherosclerotic plaques is significantly higher than that of the normal arteries. Furthermore, we demonstrated that EPSTI1 promoted human monocytic THP-1 cell adhesion to human umbilical vein endothelial cells (HUVECs) via upregulating VCAM-1 and ICAM-1 expression in HUVECs. Treatment with LPS (100, 500, 1000 ng/mL) induced EPSTI1 expression in HUVECs at both mRNA and protein levels in a dose- and time-dependent manner. Knockdown of EPSTI1 significantly inhibited LPS-induced monocyte-endothelial cell adhesion via downregulation of VCAM-1 and ICAM-1. Moreover, we revealed that LPS induced EPSTI1 expression through p65 nuclear translocation. Thus, we conclude that EPSTI1 promotes THP-1 cell adhesion to endothelial cells by upregulating VCAM-1 and ICAM-1 expression, implying its potential role in the development of atherosclerosis.
Collapse
Affiliation(s)
- Yan-Rou Bei
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shun-Chi Zhang
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, 510620, China
| | - Yu Song
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Mao-Lin Tang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Ke-Lan Zhang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Min Jiang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Run-Chao He
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Shao-Guo Wu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, 510620, China
| | - Xue-Hui Liu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, 510620, China
| | - Li-Mei Wu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, 510620, China
| | - Xiao-Yan Dai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, 510620, China.
| |
Collapse
|
9
|
HSPA12A Stimulates p38/ERK-AP-1 Signaling to Promote Angiogenesis and Is Required for Functional Recovery Postmyocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2333848. [PMID: 35783189 PMCID: PMC9247843 DOI: 10.1155/2022/2333848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Angiogenesis plays a critical role in wound healing postmyocardial infarction (MI). However, there is still a lack of ideal angiogenic therapeutics for rescuing ischemic hearts clinically, suggesting that a more understanding regarding angiogenesis regulation is urgently needed. Heat shock protein A12A (HSPA12A) is an atypical member of the HSP70 family. Here, we demonstrated that HSPA12A was upregulated during endothelial tube formation, a characteristic of in vitro angiogenesis. Intriguingly, overexpression of HSPA12A promoted in vitro angiogenic characteristics including proliferation, migration, and tube formation of endothelial cells. By contrast, deficiency of HSPA12A impaired myocardial angiogenesis and worsened cardiac dysfunction post-MI in mice. The expression of genes related to angiogenesis (VEGF, VEGFR2, and Ang-1) was decreased by HSPA12A deficiency in MI hearts of mice, whereas their expression was increased by HSPA12A overexpression in endothelial cells. HSPA12A overexpression in endothelial cells increased phosphorylation levels and nuclear localization of AP-1, a transcription factor dominating angiogenic gene expression. Also, HSPA12A increased p38 and ERK phosphorylation levels, whereas inhibition of p38 or ERKs diminished the HSPA12A-promoted AP-1 phosphorylation and nuclear localization, as well as VEGF and VEGFR2 expression in endothelial cells. Notably, inhibition of either p38 or ERKs diminished the HSPA12A-promoted in vitro angiogenesis characteristics. The findings identified HSPA12A as a novel angiogenesis activator, and HSPA12A might represent a viable strategy for the management of myocardial healing in patients with ischemic heart diseases.
Collapse
|
10
|
Dai Y, Liu J, Zhang X, Min X, Wu J, Du S, Li T, Liu L, Ding Z. HSPA12A improves endothelial integrity to attenuate lung injury during endotoxemia through activating ERKs and Akt-dependent signaling. Int Immunopharmacol 2021; 99:107987. [PMID: 34343936 DOI: 10.1016/j.intimp.2021.107987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Acute lung injury (ALI) is a critical manifestation of sepsis/septic shock. Disruption of endothelial barrier function is critical for ALI pathogenesis; however, the regulation of endothelial barrier integrity remains largely unclear. Heat shock protein A12A (HSPA12A) is an atypical member of HSP70 family. We have recently demonstrated that hepatocyte HSPA12A attenuated the bacteria endotoxin (lipopolysaccharide, LPS)-induced liver injury. However, the role of HSPA12A in endothelial barrier function and ALI is unknown. Here in this study, HSPA12A showed upregulation in lungs of mice during bacteria endotoxin (lipopolysaccharide, LPS)-induced lung injury in vivo and in primary human umbilical vein endothelial cells (HUVECs) during LPS-induced barrier disruption in vitro. Knockout of HSPA12A in mice exacerbated LPS-induced ALI. Intriguingly, overexpression of HSPA12A in HUVECs attenuated the LPS-induced endothelial hyperpermeability. In line with this, HSPA12A overexpression increased VE-cadherin and decreased VEGF expression following LPS treatment in HUVECs. Also, knockout of HSPA12A enhanced the LPS-evoked pulmonary endothelial cell apoptosis in mice whereas overexpression of HSPA12A inhibited the LPS-induced death of HUVECs. The levels of ERKs and Akt phosphorylation in HUVECs were promoted by HSPA12A overexpression when cells exposed to LPS. Importantly, inhibition of either ERKs or Akt diminished the HSPA12A-induced protection from LPS-induced endothelial hyperpermeability and death. Taken together, these findings indicated that HSPA12A is a novel regulator of endothelial barrier function through both ERKs and Akt-mediated signaling. HSPA12A might represent a viable strategy for the pulmonary protection against endotoxemia challenge.
Collapse
Affiliation(s)
- Yuan Dai
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiali Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinxu Min
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Wu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuya Du
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tingting Li
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
11
|
Han Y, Liu Y, Ma X, Shen A, Liu Y, Weeranoppanant N, Dong H, Li Y, Ren T, Kuai L, Li B, An M, Li Y. Antibiotics armed neutrophils as a potential therapy for brain fungal infection caused by chemotherapy-induced neutropenia. Biomaterials 2021; 274:120849. [PMID: 34022739 DOI: 10.1016/j.biomaterials.2021.120849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
Chemotherapy-induced neutropenia, a symptom of neutrophil depletion, makes cancer patients highly susceptible to invasive fungal infection with substantial morbidity and mortality. To address the cryptococcal brain infection in this condition, this study attempts to arm neutrophils (NEs) with antibiotics to potentiate the antifungal capability of NEs. To allow effective integration, amphotericin B, a potent antibiotic, is assembled with albumin nanoparticles through hydrophobic and hydrogen-bond interactions to form AmB@BSA nanoparticles (A-NPs). The nutrient composition (albumin) and virus-like size (~40 nm) facilitate efficient uptake of A-NPs by NEs to construct the antibiotics-armed NEs. It is demonstrated that the armed NEs can maintain the intrinsic biological functions of NEs, such as cell viability and capacity of migration to an inflammatory site. In a neutropenic mouse model of brain fungal infection, the treatment with the armed NEs allows for preventing fungal invasion more effectively than that with the native NEs, without the apparent systemic toxicity. Such a synergistic anti-infection system maximizes the antifungal effects by taking advantage of NEs and antibiotics. It provides a potential NEs-mediated therapeutic approach for treating fungal infection caused by chemotherapy-induced neutropenia.
Collapse
Affiliation(s)
- Yi Han
- Shanghai Tenth People's Hospital, Department of Medical Ultrasound, Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, PR China
| | - Yanchao Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, PR China
| | - Xiaoyi Ma
- Shanghai Tenth People's Hospital, Department of Medical Ultrasound, Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, PR China
| | - Aijun Shen
- Department of Medical Imaging, Tongji Hospital, Tongji University, Shanghai, 200065, PR China
| | - Yiqiong Liu
- Shanghai Tenth People's Hospital, Department of Medical Ultrasound, Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, PR China
| | - Nopphon Weeranoppanant
- Department of Chemical Engineering, Burapha University, 169 Longhard Bangsaen, Saensook, Chonburi, 20131, Thailand
| | - Haiqing Dong
- Shanghai Tenth People's Hospital, Department of Medical Ultrasound, Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, PR China
| | - Yan Li
- Shanghai Tenth People's Hospital, Department of Medical Ultrasound, Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, PR China
| | - Tianbin Ren
- Shanghai Tenth People's Hospital, Department of Medical Ultrasound, Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, PR China
| | - Le Kuai
- Shanghai Dermatology Hospital, Tongji University School of Medicine, Shanghai, 200092, PR China
| | - Bin Li
- Shanghai Dermatology Hospital, Tongji University School of Medicine, Shanghai, 200092, PR China.
| | - Maomao An
- Shanghai Tenth People's Hospital, Department of Medical Ultrasound, Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, PR China.
| | - Yongyong Li
- Shanghai Tenth People's Hospital, Department of Medical Ultrasound, Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, PR China.
| |
Collapse
|
12
|
Fan M, Yang K, Wang X, Wang Y, Tu F, Ha T, Liu L, Williams DL, Li C. Endothelial cell HSPA12B and yes-associated protein cooperatively regulate angiogenesis following myocardial infarction. JCI Insight 2020; 5:139640. [PMID: 32790647 PMCID: PMC7526558 DOI: 10.1172/jci.insight.139640] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is essential for cardiac functional recovery after myocardial infarction (MI). HSPA12B is predominately expressed in endothelial cells and required for angiogenesis. Yes-associated protein (YAP) plays an important role in tumor angiogenesis. This study investigated the cooperative role of HSPA12B and YAP in angiogenesis after MI. Silencing of either HSPA12B or YAP impaired hypoxia-promoted endothelial cell proliferation and angiogenesis. Deficiency of HSPA12B suppressed YAP expression and nuclear translocation after hypoxia. Knockdown of YAP attenuated hypoxia-stimulated HSPA12B nuclear translocation and abrogated HSPA12B-promoted endothelial cell angiogenesis. Mechanistically, hypoxia induced an interaction between endothelial HSPA12B and YAP. ChIP assay showed that HSPA12B is a target gene of YAP/transcriptional enhanced associated domain 4 (TEAD4) and a coactivator in YAP-associated angiogenesis. In vivo studies using the MI model showed that endothelial cell-specific deficiency of HSPA12B (eHspa12b-/-) or YAP (eYap-/-) impaired angiogenesis and exacerbated cardiac dysfunction compared with WT mice. MI increased YAP expression and nuclear translocation in WT hearts but not eHspa12b-/- hearts. HSPA12B expression and nuclear translocation were upregulated in WT MI hearts but not eYap-/- MI myocardium. Our data demonstrate that endothelial HSPA12B is a target and coactivator for YAP/TEAD4 and cooperates with YAP to regulate endothelial angiogenesis after MI.
Collapse
Affiliation(s)
- Min Fan
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| | - Kun Yang
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| | - Xiaohui Wang
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | | | - Fei Tu
- Department of Surgery and
| | - Tuanzhu Ha
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| | - Li Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - David L. Williams
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| | - Chuanfu Li
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| |
Collapse
|
13
|
Zhou J, Zhang A, Fan L. HSPA12B Secreted by Tumor-Associated Endothelial Cells Might Induce M2 Polarization of Macrophages via Activating PI3K/Akt/mTOR Signaling. Onco Targets Ther 2020; 13:9103-9111. [PMID: 32982299 PMCID: PMC7494226 DOI: 10.2147/ott.s254985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose The intratumoral microenvironment of head and neck squamous cell carcinoma (HNSC) is highly immunosuppressive. In this study, we explored the potential functional role of HSPA12B secreted by tumor-associated endothelial cells (TECs) in M2 polarization of macrophages. Materials and Methods Bulk-seq data from TCGA-HNSC and single-cell RNA-seq data from GSE103322 (with over 5000 cells from 18 primary HNSC cases) were used for bioinformatic analysis. RAW264.7 cell line was used for in vitro studies. Results TECs in HNSC had significantly higher expression and secretion of HSPA12B, compared to normal human umbilical vein endothelial cells (HUVECs). Exogenous HSPA12B treatment increased the expression of M2 macrophage marker CD163 and CD206 on RAW264.7 cells in a dose-dependent manner but had no significant influence on CD86, an M1 macrophage marker. OLR1, a known receptor of HSP70 proteins, was specifically expressed in tumor-associated macrophages (TAMs) in HNSC. OLR1 knockdown significantly impaired HSPA12B uptake by RAW264.7 cells and weakened HSPA12B-induced CD163 and CD206 upregulation. HSPA12B treatment increased the expression of p-PI3K, p-Akt and p-mTOR in a dose-dependent manner in RAW264.7 cells. OLR1 inhibition and LY294002 treatment significantly weakened the effects HSPA12B on activating the PI3K/Akt/mTOR signaling and M2 marker expression. Conclusion Based on these findings, we speculated that aberrantly expressed and secreted HSPA12B by TECs could be taken by macrophages partly via OLR1, leading to subsequent activation of the PI3K/Akt/mTOR signaling pathway and elevated expression of M2 markers. This mechanism shows a novel cross-talk between TECs and TAMs, which contributes to the intratumoral immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Jingjie Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, People's Republic of China
| | - Aiping Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, People's Republic of China
| | - Liang Fan
- Department of Otorhinolaryngology-Head and Neck Surgery, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, People's Republic of China
| |
Collapse
|
14
|
Nam U, Kim S, Park J, Jeon JS. Lipopolysaccharide-Induced Vascular Inflammation Model on Microfluidic Chip. MICROMACHINES 2020; 11:mi11080747. [PMID: 32751936 PMCID: PMC7465530 DOI: 10.3390/mi11080747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Inflammation is the initiation of defense of our body against harmful stimuli. Lipopolysaccharide (LPS), originating from outer membrane of Gram-negative bacteria, causes inflammation in the animal’s body and can develop several diseases. In order to study the inflammatory response to LPS of blood vessels in vitro, 2D models have been mainly used previously. In this study, a microfluidic device was used to investigate independent inflammatory response of endothelial cells by LPS and interaction of inflamed blood vessel with monocytic THP-1 cells. Firstly, the diffusion of LPS across the collagen gel into blood vessel was simulated using COMSOL. Then, inflammatory response to LPS in engineered blood vessel was confirmed by the expression of Intercellular Adhesion Molecule 1 (ICAM-1) and VE-cadherin of blood vessel, and THP-1 cell adhesion and migration assay. Upregulation of ICAM-1 and downregulation of VE-cadherin in an LPS-treated condition was observed compared to normal condition. In the THP-1 cell adhesion and migration assay, the number of adhered and trans-endothelial migrated THP-1 cells were not different between conditions. However, migration distance of THP-1 was longer in the LPS treatment condition. In conclusion, we recapitulated the inflammatory response of blood vessels and the interaction of THP-1 cells with blood vessels due to the diffusion of LPS.
Collapse
Affiliation(s)
- Ungsig Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141S, Korea; (U.N.); (S.K.); (J.P.)
| | - Seunggyu Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141S, Korea; (U.N.); (S.K.); (J.P.)
| | - Joonha Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141S, Korea; (U.N.); (S.K.); (J.P.)
| | - Jessie S. Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141S, Korea; (U.N.); (S.K.); (J.P.)
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Correspondence: ; Tel.: +82-42-350-3226
| |
Collapse
|
15
|
Tu F, Wang X, Zhang X, Ha T, Wang Y, Fan M, Yang K, Gill PS, Ozment TR, Dai Y, Liu L, Williams DL, Li C. Novel Role of Endothelial Derived Exosomal HSPA12B in Regulating Macrophage Inflammatory Responses in Polymicrobial Sepsis. Front Immunol 2020; 11:825. [PMID: 32457753 PMCID: PMC7221167 DOI: 10.3389/fimmu.2020.00825] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022] Open
Abstract
Endothelial cell dysfunction contributes to sepsis induced initiate immune response and the infiltration of immune cells into organs, resulting in organ injury. Heat shock protein A12B (HSPA12B) is predominantly expressed in endothelial cells. The present study investigated whether endothelial HSPA12B could regulate macrophage pro-inflammatory response during sepsis. Wild type (WT) and endothelial cell-specific HSPA12B deficient (HSPA12B-/-) mice were subjected to CLP sepsis. Mortality and cardiac function were monitored. Higher mortality, worsened cardiac dysfunction, and greater infiltrated macrophages in the myocardium and spleen were observed in HSPA12B-/- septic mice compared with the WT septic mice. The serum levels of TNF-α and IL-1β were higher and the levels of IL-10 were lower in HSPA12B-/- septic mice than in WT septic mice. Importantly, endothelial exosomes contain HSPA12B which can be uptaken by macrophages. Interestingly, endothelial exosomal HSPA12B significantly increases IL-10 levels and decreases TNF-α and IL-1β production in LPS-stimulated macrophages. Mechanistic studies show that endothelial exosomal HSPA12B downregulates NF-κB activation and nuclear translocation in LPS stimulated macrophages. These data suggest that endothelial HSPA12B plays a novel role in the regulation of macrophage pro-inflammatory response via exosomes during sepsis and that sepsis induced cardiomyopathy and mortality are associated with endothelial cell deficiency of HSPA12B.
Collapse
Affiliation(s)
- Fei Tu
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Xia Zhang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yana Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kun Yang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - P Spencer Gill
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tammy R Ozment
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yuan Dai
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Li Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - David L Williams
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
16
|
Ni Y, Wang J, Wang Z, Zhang X, Cao X, Ding Z. Alpha-lipoic acid inhibits proliferation and migration of human vascular endothelial cells through downregulating HSPA12B/VEGF signaling axis. Cell Stress Chaperones 2020; 25:455-466. [PMID: 32219685 PMCID: PMC7192994 DOI: 10.1007/s12192-020-01086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 11/30/2022] Open
Abstract
Endothelial cells play essential roles in angiogenesis. Heat shock protein A12B (HSPA12B), a novel member of the multigene Hsp70 family, expresses specifically in endothelial cells. Alpha-lipoic acid (LA) has been used for the treatment of human diabetic complications for more than 20 years. However, little is known whether LA impacts endothelial proliferation and migration. To address these questions, primary human umbilical vein endothelial cells (HUVECs) were isolated and treated with LA. We found that LA reduced viable HUVECs but not caused LDH leakage and nuclear condensation, suggesting an inhibitory effect of LA on HUVEC proliferation. We also noticed that LA impeded wound closure of HUVEC monolayers. The expressions of C-Myc, VEGF, and eNOS and phosphorylation of focal adhesion kinase were reduced by LA. Moreover, LA decreased the expression of heat shock protein A12B (HSPA12B). Notably, overexpression of HSPA12B in endothelial cells prevented the LA-induced loss of VEGF. More importantly, HSPA12B overexpression attenuated the LA-induced inhibition of endothelial proliferation and migration. Collectively, the results demonstrated that LA inhibited proliferative and migratory abilities in human vascular endothelial cells through the downregulation of the HSPA12B/VEGF signaling axis. The data suggest that besides the treatment in diabetic complications, LA might represent a viable therapeutic potential for human diseases that involve high angiogenic activities such as cancers.
Collapse
Affiliation(s)
- Yan Ni
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Juan Wang
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Zhuyao Wang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiaofei Cao
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
17
|
Hadjichristou C, Papachristou E, Bonovolias I, Bakopoulou A. Three-dimensional tissue engineering-based Dentin/Pulp tissue analogue as advanced biocompatibility evaluation tool of dental restorative materials. Dent Mater 2019; 36:229-248. [PMID: 31791732 DOI: 10.1016/j.dental.2019.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Two-dimensional (2D) in vitro models have been extensively utilized for cytotoxicity assessment of dental materials, but with certain limitations in terms of direct in vitro-in vivo extrapolation (IVIVE). Three-dimensional (3D) models seem more appropriate, recapitulating the structure of human tissues. This study established a 3D dentin/pulp analogue, as advanced cytotoxicity assessment tool of dental restorative materials (DentCytoTool). METHODS DentCytoTool comprised two compartments: the upper, representing the dentin component, with a layer of odontoblast-like cells expanded on microporous membrane of a cell culture insert and covered by a treated dentin matrix; and the lower, representing a pulp analogue, incorporating HUVEC/SCAP co-cultures into collagen I/fibrin hydrogels. Representative resinous monomers (HEMA: 1-8mM; TEGDMA: 0.5-5mM) and bacterial components (LPS: 1μg/ml) were applied into the construct. Cytotoxicity was assessed by MTT and LDH assays, live/dead staining and real-time PCR for odontogenesis- and angiogenesis-related markers. RESULTS DentCytoTool supported cell viability and promoted capillary-like network formation inside the pulp analogue. LPS induced expression of odontogenesis-related markers (RUNX2, ALP, DSPP) without compromising viability of the odontoblast-like cells, while co-treatment with LPS and resin monomers induced cytotoxic effects (live/dead staining, MTT and LDH assays) in cells of both upper and lower compartments and reduced expression angiogenesis-related markers (VEGF, VEGFR2, ANGPT-1, Tie-2, PECAM-1) in a concentration- and time- dependent manner. LPS treatment aggravated TEGDMA-induced and -in certain concentrations (2-4mM)- HEMA-induced cytotoxicity. SIGNIFICANCE DentCytoTool represents a promising tissue-engineering-based cytotoxicity assessment tool, providing more insight into the mechanistic aspects of interactions of dental materials to the dentin/pulp complex.
Collapse
Affiliation(s)
- Christina Hadjichristou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece
| | - Eleni Papachristou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece
| | - Ioannis Bonovolias
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), GR-54124 Thessaloniki, Greece.
| |
Collapse
|
18
|
Platelet microparticles contribute to aortic vascular endothelial injury in diabetes via the mTORC1 pathway. Acta Pharmacol Sin 2019; 40:468-476. [PMID: 30446735 DOI: 10.1038/s41401-018-0186-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/10/2018] [Indexed: 11/08/2022] Open
Abstract
Platelet microparticles (PMPs) are closely associated with diabetic macrovascular complications. The present study aimed to investigate the effects of PMPs in diabetes on aortic vascular endothelial injury and to explore the underlying mechanisms. Peritoneal injection of streptozotocin was used to generate a diabetic rat model in vivo, and human umbilical vein endothelial cells (HUVECs) treated with PMPs were used in vitro. PMP levels in the circulation and aorta tissues were time-dependently increased in streptozotocin-induced diabetic rats at weeks 4, 8, and 12 (P < 0.05). Aspirin significantly inhibited the PMP levels at each time point (P < 0.05). In diabetic rats, the endothelial nitric oxide levels were decreased significantly combined with increased endothelial permeability. PMPs were internalized by HUVECs and primarily accumulated around the nuclei. PMPs inhibited endothelial nitric oxide levels to about 50% and caused approximately twofold increase in reactive oxygen species production. Furthermore, PMPs significantly decreased the endothelial glycocalyx area and expression levels of glypican-1 and occludin (P < 0.05). Interestingly, the PMP-induced endothelial injuries were prevented by raptor siRNA and rapamycin. In conclusion, increased PMPs levels contribute to aortic vascular endothelial injuries in diabetes through activating the mTORC1 pathway.
Collapse
|
19
|
Jin F, Liu D, Yu H, Qi J, You Y, Xu X, Kang X, Wang X, Lu K, Ying X, You J, Du Y, Ji J. Sialic Acid-Functionalized PEG-PLGA Microspheres Loading Mitochondrial-Targeting-Modified Curcumin for Acute Lung Injury Therapy. Mol Pharm 2018; 16:71-85. [PMID: 30431285 DOI: 10.1021/acs.molpharmaceut.8b00861] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) is a serious illness without resultful therapeutic methods commonly. Recent studies indicate the importance of oxidative stress in the occurrence and development of ALI, and mitochondria targeted antioxidant has become a difficult and hot topic in the research of ALI. Therefore, a sialic acid (SA)-modified lung-targeted microsphere (MS) for ALI therapy are developed, with triphenylphosphonium cation (TPP)-modified curcumin (Cur-TPP) loaded, which could specifically target the mitochondria, increasing the effect of antioxidant. The results manifest that with the increase of microsphere, lung distribution of microsphere is also increased in murine mice, and after SA modification, the microsphere exhibits the ideal lung-targeted characteristic in ALI model mice, due to SA efficiently targeting to E-selectin expressed on inflammatory tissues. Further investigations indicate that SA/Cur-TPP/MS has better antioxidative capacity, decreases intracellular ROS generation, and increases mitochondrial membrane potential, contributing to a lower apoptosis rate in human umbilical vein endothelial cells (HUVECs) compared to H2O2 group. In vivo efficacy of SA/Cur-TPP/MS demonstrates that the inflammation has been alleviated markedly and the oxidative stress is ameliorated efficiently. Significant histological improvements by SA/Cur-TPP/MS are further proved via HE stains. In conclusion, SA/Cur-TPP/MS might act as a promising drug formulation for ALI therapy.
Collapse
Affiliation(s)
- Feiyang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Hui Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Yuchan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Xuqi Kang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Xiaojuan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Kongjun Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Xiaoying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Jian You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research , Lishui Hospital of Zhejiang University , Lishui 323000 , China
| |
Collapse
|
20
|
Hu S, Park J, Liu A, Lee J, Zhang X, Hao Q, Lee JW. Mesenchymal Stem Cell Microvesicles Restore Protein Permeability Across Primary Cultures of Injured Human Lung Microvascular Endothelial Cells. Stem Cells Transl Med 2018; 7:615-624. [PMID: 29737632 PMCID: PMC6090509 DOI: 10.1002/sctm.17-0278] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
Our previous study demonstrated that mesenchymal stem cell (MSC) microvesicles (MV) reduced lung inflammation, protein permeability, and pulmonary edema in endotoxin-induced acute lung injury in mice. However, the underlying mechanisms for restoring lung protein permeability were not fully understood. In this current study, we hypothesized that MSC MV would restore protein permeability across injured human lung microvascular endothelial cells (HLMVEC) in part through the transfer of angiopoietin-1 (Ang1) mRNA to the injured endothelium. A transwell coculture system was used to study the effect of MSC MV on protein permeability across HLMVECs injured by cytomix, a mixture of IL-1β, TNF-α, and IFN-γ (50 ng/ml). Our result showed that cytomix significantly increased permeability to FITC-dextran (70 kDa) across HLMVECs over 24 hours. Administration of MSC MVs restored this permeability in a dose dependent manner, which was associated with an increase in Ang1 mRNA and protein secretion in the injured endothelium. This beneficial effect was diminished when MSC MV was pretreated with an anti-CD44 antibody, suggesting that internalization of MV into the HLMVEC was required for the therapeutic effect. Fluorescent microscopy showed that MSC MV largely prevented the reorganization of cytoskeleton protein F-actin into "actin stress fiber" and restored the location of the tight junction protein ZO-1 and adherens junction protein VE-cadherin in injured HLMVECs. Ang1 siRNA pretreatment of MSC MV prior to administration to injured HLMVECs eliminated the therapeutic effect of MV. In summary, MSC MVs restored protein permeability across HLMVEC in part by increasing Ang1 secretion by injured HLMVEC. Stem Cells Translational Medicine 2018;7:615-624.
Collapse
Affiliation(s)
- Shuling Hu
- Department of Anesthesiology, University of California San Francisco, San Francisco, California, USA
| | - Jeonghyun Park
- Department of Anesthesiology, University of California San Francisco, San Francisco, California, USA
| | - Airan Liu
- Department of Anesthesiology, University of California San Francisco, San Francisco, California, USA
| | - JaeHoon Lee
- Department of Anesthesiology, University of California San Francisco, San Francisco, California, USA
| | - Xiwen Zhang
- Department of Anesthesiology, University of California San Francisco, San Francisco, California, USA
| | - Qi Hao
- Department of Anesthesiology, University of California San Francisco, San Francisco, California, USA
| | - Jae-Woo Lee
- Department of Anesthesiology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
21
|
Zhang X, Chen Y, Wang L, Kang Q, Yu G, Wan X, Wang J, Zhu K. MiR-4505 aggravates lipopolysaccharide-induced vascular endothelial injury by targeting heat shock protein A12B. Mol Med Rep 2017; 17:1389-1395. [PMID: 29115487 DOI: 10.3892/mmr.2017.7936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Abstract
Heat shock protein family A member 12B (HSPA12B) is a heat shock protein primarily expressed in endothelial cells. Our previous study showed that it was protective against endothelial injury induced by lipopolysaccharide (LPS). The present study was performed to investigate whether micro (mi)RNA was involved in HSPA12B expression in endothelial cells challenged by LPS. We first screened the miRNA candidates potentially related to HSPA12B by bioinformatics analysis. Then the mimics of the miRNA candidates were transfected into human umbilical vein endothelial cells (HUVECs) to investigate the miRNAs that negatively regulated HSPA12B expression. The miRNA expression was also determined in LPS‑stimulated HUVECs. Dual luciferase activity assay was performed to confirm the relationship between the candidate miRNA and HSPA12B. Role of nuclear factor (NF)‑κB in the miRNA expression was investigated by using its inhibitor. Finally, the role of the miRNA on LPS induced injury was investigated. Eleven miRNAs were screened by bioinformatics analysis and 4 of them could inhibit HSPA12B expression at both mRNA and protein levels. Among the 4 miRNA candidates, only miR‑4505 was highly expressed in HUVECs stimulated by LPS. Luciferase analysis showed that miR‑4505 directly interacted with the 3'untranslated region of HSPA12B. LPS‑induced upregulation of miR‑4505 was blocked by NF‑κB inhibitor. Transfection with miR‑4505 mimics reduced the transendothelial electrical resistance and vascular endothelial‑cadherin expression. The scratch test demonstrated that miR‑4505 inhibited endothelial migration capacity. In conclusion, miR‑4505 downregulates the expression of HSPA12B and aggravates the LPS‑induced vascular endothelial cell injury.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Yi Chen
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Lei Wang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Qiuxiang Kang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Guifang Yu
- Department of Anesthesiology, The Third People's Hospital, Shanghai Jiaotong University, Shanghai 201999, P.R. China
| | - Xiaojian Wan
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Jiafeng Wang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Keming Zhu
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
22
|
Hu JB, Kang XQ, Liang J, Wang XJ, Xu XL, Yang P, Ying XY, Jiang SP, Du YZ. E-selectin-targeted Sialic Acid-PEG-dexamethasone Micelles for Enhanced Anti-Inflammatory Efficacy for Acute Kidney Injury. Theranostics 2017; 7:2204-2219. [PMID: 28740545 PMCID: PMC5505054 DOI: 10.7150/thno.19571] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
The effective treatment for acute kidney injury (AKI) is currently limited, and care is primarily supportive. Sialic acid (SA) is main component of Sialyl Lewisx antigen on the mammalian cell surface, which participates in E-selectin binding. Therefore, dexamethasone(DXM)-loaded E-selectin-targeting sialic acid-polyethylene glycol-dexamethasone (SA-PEG-DXM/DXM) conjugate micelles are designed for ameliorating AKI. The conjugates are synthesized via the esterification reaction between PEG and SA or DXM, and can spontaneously form micelles in an aqueous solution with a 65.6 µg/mL critical micelle concentration. Free DXM is incorporated into the micelles with 6.28 ± 0.21% drug loading content. In vitro DXM release from SA-PEG-DXM/DXM micelles can be prolonged to 48h. Much more SA-PEG-DXM micelles can be internalized by lipopolysaccharide (LPS)-activated human umbilical vein endothelial cells (HUVECs) in comparison to PEG-DXM micelles due to specific interaction between SA and E-selectin expressed on HUVECs, and consequently more SA-PEG-DXM micelles are accumulated in the kidney of AKI murine model. Furthermore, SA in SA-PEG-DXM conjugates can significantly ameliorate LPS-induced production of pro-inflammatory cytokines via suppressing LPS-activated Beclin-1/Atg5-Atg12-mediated autophagy to attenuate toxicity. Compared with free DXM and PEG-DXM/DXM micelles, SA-PEG-DXM/DXM micelles show better therapeutical effects, as reflected by the improved renal function, histopathological changes, pro-inflammatory cytokines, oxidative stress and expression of apoptotic related proteins.
Collapse
Affiliation(s)
- Jing-Bo Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xu-Qi Kang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jing Liang
- Department of Pharmacy, Zhejiang Hospital, Hangzhou 310013, China
| | - Xiao-Juan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ping Yang
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Xiao-Ying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Sai-Ping Jiang
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
23
|
Gong Y, Ji Y, Liu F, Li J, Cao Y. Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial cells: interaction with palmitate or lipopolysaccharide. J Appl Toxicol 2016; 37:895-901. [PMID: 27862064 DOI: 10.1002/jat.3415] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 10/14/2016] [Indexed: 01/05/2023]
Abstract
Recent studies showed that ZnO nanoparticles (NPs) might induce the toxicity to human endothelial cells. However, little is known about the interaction between ZnO NPs and circulatory components, which is likely to occur when NPs enter the blood. In this study, we evaluated ZnO NP-induced cytotoxicity, oxidative stress and inflammation in human umbilical vein endothelial cells (HUVECs), with the emphasis on the interaction with palmitate (PA) or lipopolysaccharide (LPS), because PA and LPS are normal components in human blood that increase in metabolic diseases. Overall, ZnO NPs induced cytotoxicity and intracellular reactive oxygen species (ROS) at a concentration of 32 μg ml-1 , but did not significantly affect the release of inflammatory cytokines or adhesion of THP-1 monocytes to HUVECs. In addition, exposure to ZnO NPs dose-dependently promoted intracellular Zn ions in HUVECs. PA and LPS have different effects. Two hundred μm PA significantly induced cytotoxicity and THP-1 monocyte adhesion, but did not affect ROS or release of inflammatory cytokines. In contrast, 1 μg ml-1 LPS significantly induced ROS, release of inflammatory cytokines and THP-1 monocyte adhesion, but not cytotoxicity. The presence of ZnO NPs did not significantly affect the toxicity induced by PA or LPS. In addition, the accumulation of Zn ions after ZnO NP exposure was not significantly affected by the presence of PA or LPS. We concluded that there was no interaction between ZnO NPs and PA or LPS on toxicity to HUVECs in vitro. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yuejia Ji
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Fang Liu
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| |
Collapse
|
24
|
Kong Q, Dai L, Wang Y, Zhang X, Li C, Jiang S, Li Y, Ding Z, Liu L. HSPA12B Attenuated Acute Myocardial Ischemia/reperfusion Injury via Maintaining Endothelial Integrity in a PI3K/Akt/mTOR-dependent Mechanism. Sci Rep 2016; 6:33636. [PMID: 27644317 PMCID: PMC5028890 DOI: 10.1038/srep33636] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
Endothelial damage is a critical mediator of myocardial ischemia/reperfusion (I/R) injury. HSPA12B is an endothelial-cell-specifically expressed heat shock protein. However, the roles of HSPA12B in acute myocardial I/R injury is unknown. Here we reported that myocardial I/R upregulated HSPA12B expression in ventricular tissues, and endothelial overexpression of HSPA12B in transgenic mice (Tg) limited infarct size, attenuated cardiac dysfunction and improved cardiomyocyte survival compared with their wild type littermates. These improvements were accompanied with the diminished myocardial no-reflow phenomenon, decreased microvascular leakage, and better maintained endothelial tight junctions. The I/R-evoked neutrophil infiltration was also suppressed in Tg hearts compared with its wild type (WT) littermates. Moreover, Tg hearts exhibited the enhanced activation of PI3K/Akt//mTOR signaling following I/R challenge. However, pharmacological inhibition of PI3K abolished the HSPA12B-induced cardioprotection against myocardial I/R injury. The data demonstrate for the first time that the endothelial HSPA12B protected hearts against myocardial I/R injury. This cardioprotective action of HSPA12B was mediated, at least in part, by improving endothelial integrity in a PI3K/Akt/mTOR-dependent mechanism. Our study suggests that targeting endothelial HSPA12B could be an alternative approach for the management of patients with myocardial I/R injury.
Collapse
Affiliation(s)
- Qiuyue Kong
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Leyang Dai
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yana Wang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Xiaojin Zhang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Chuanfu Li
- Departments of Surgery, East Tennessee State University, Johnson City, TN37614, USA
| | - Surong Jiang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yuehua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 210029, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
25
|
Nakamura Y, Hasegawa H, Tsuji M, Oguchi T, Mihara M, Suzuki H, Nishida K, Inoue M, Shimizu T, Ohsawa I, Gotoh H, Goto Y, Inagaki M, Oguchi K. Linagliptin inhibits lipopolysaccharide-stimulated interleukin-6 production, intranuclear p65 expression, and p38 mitogen-activated protein kinase phosphorylation in human umbilical vein endothelial cells. RENAL REPLACEMENT THERAPY 2016. [DOI: 10.1186/s41100-016-0030-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
26
|
Kang Q, Chen Y, Zhang X, Yu G, Wan X, Wang J, Bo L, Zhu K. Heat shock protein A12B protects against sepsis-induced impairment in vascular endothelial permeability. J Surg Res 2015; 202:87-94. [PMID: 27083952 DOI: 10.1016/j.jss.2015.12.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND As a common and life-threatening infectious syndrome, sepsis contributes significantly to morbidity and mortality in clinical settings. Vascular endothelial injury and hyperpermeability play an important role in the development of sepsis-induced organ dysfunction. Heat shock protein A12B (HSPA12B) is one of the HSP70 superfamily members and is mainly expressed in vascular endothelial cells. The present study was performed to investigate the role of HSPA12B in endothelial barrier dysfunction during sepsis. METHODS Human umbilical vein endothelial cells (HUVECs) were stimulated with 1 μg/mL of lipopolysaccharide (LPS) and harvested at 0, 3, 6, 9, 12, and 24 h. The messenger RNA and protein levels of HSPA12B were detected by Real Time-polymerase chain reaction and Western blot. Upregulation of HSPA12B was induced by transfection of pIRES2-EGFP plasmid carrying the HSPA12B complementary DNA. The in vitro effect of HSPA12B overexpression on endothelial permeability was manifested by the transendothelial electrical resistance value, expression of the adhesion molecules VE-cadherin, and the level of permeability-related kinase myosin light chain, SRC, and CDC42. Mice received cecal ligation and puncture surgery followed by nasal inhalation of nano-polymer-mediated siRNA. Lung endothelial permeability was assessed via intrajugular vein injection of Evans Blue 30 h after cecal ligation and puncture. RESULTS After LPS induction, the messenger RNA and protein level of HSPA12B in HUVECs increased and peaked at 12 h, whereas they returned to the baseline level at 24 h. Overexpression of HSPA12B can reduce the permeability of HUVEC stimulated by LPS in vitro, while increasing the expression of VE-Cadherin, myosin light chain, and CDC42. On the other hand, downregulating the expression of HSPA12B can significantly increase lung permeability in mice with sepsis-induced vascular injury. CONCLUSIONS HSPA12B plays a protective role in vascular endothelial barrier dysfunction by preserving the endothelial permeability during sepsis.
Collapse
Affiliation(s)
- Qiuxiang Kang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Yi Chen
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xu Zhang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Guifang Yu
- Department of Anesthesiology, The Third People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojian Wan
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jiafeng Wang
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Lulong Bo
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Keming Zhu
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, China.
| |
Collapse
|