1
|
Ferreres JR, Vinyals A, Campos‐Martin R, Espín R, Podlipnik S, Ramos R, Bertran E, Carrera C, Marcoval J, Malvehy J, Fabregat I, Puig S, Fabra À. PRRX1 silencing is required for metastatic outgrowth in melanoma and is an independent prognostic of reduced survival in patients. Mol Oncol 2024; 18:2471-2494. [PMID: 38978350 PMCID: PMC11459042 DOI: 10.1002/1878-0261.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
Paired related homeobox 1 (PRRX1) is an inducer of epithelial-to-mesenchymal transition (EMT) in different types of cancer cells. We detected low PRRX1 expression in nevus but increased levels in primary human melanoma and cell lines carrying the BRAFV600E mutation. High expression of PRRX1 correlates with invasiveness and enrichment of genes belonging to the EMT programme. Conversely, we found that loss of PRRX1 in metastatic samples is an independent prognostic predictor of poor survival for melanoma patients. Here, we show that stable depletion of PRRX1 improves the growth of melanoma xenografts and increases the number of distant spontaneous metastases, compared to controls. We provide evidence that loss of PRRX1 counteracts the EMT phenotype, impairing the expression of other EMT-related transcription factors, causing dysregulation of the ERK and signal transducer and activator of transcription 3 (STAT3) signaling pathways, and abrogating the invasive and migratory properties of melanoma cells while triggering the up-regulation of proliferative/melanocytic genes and the expression of the neural-crest-like markers nerve growth factor receptor (NGFR; also known as neurotrophin receptor p75NTR) and neural cell adhesion molecule L1 (L1CAM). Overall, our results indicate that loss of PRRX1 triggers a switch in the invasive programme, and cells de-differentiate towards a neural crest stem cell (NCSC)-like phenotype that accounts for the metastatic aggressiveness.
Collapse
Affiliation(s)
- Josep R. Ferreres
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)Hospital Duran i ReynalsBarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)ISCIIIInstituto de Salud Carlos IIIMadridSpain
- Dermatology Service, IDIBELLHospital Universitari de BellvitgeBarcelonaSpain
| | - Antònia Vinyals
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)Hospital Duran i ReynalsBarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| | - Rafael Campos‐Martin
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and PsychotherapyUniversity of CologneGermany
| | - Roderic Espín
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Oncobell Program (IDIBELL)BarcelonaSpain
| | - Sebastian Podlipnik
- Dermatology Department, Melanoma Unit, Hospital ClínicIDIBAPS & University of BarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| | - Raquel Ramos
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)Hospital Duran i ReynalsBarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| | - Esther Bertran
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)Hospital Duran i ReynalsBarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| | - Cristina Carrera
- Dermatology Department, Melanoma Unit, Hospital ClínicIDIBAPS & University of BarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| | - Joaquim Marcoval
- Dermatology Service, IDIBELLHospital Universitari de BellvitgeBarcelonaSpain
| | - Josep Malvehy
- Dermatology Department, Melanoma Unit, Hospital ClínicIDIBAPS & University of BarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| | - Isabel Fabregat
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)Hospital Duran i ReynalsBarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| | - Susana Puig
- Dermatology Department, Melanoma Unit, Hospital ClínicIDIBAPS & University of BarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| | - Àngels Fabra
- TGF‐β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)Hospital Duran i ReynalsBarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)ISCIIIInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
2
|
Lv ZD, Wang HB, Dong Q, Kong B, Li JG, Yang ZC, Qu HL, Cao WH, Xu HM. Retraction Note to: Mesothelial cells differentiate into fibroblast-like cells under the scirrhous gastric cancer microenvironment and promote peritoneal carcinomatosis in vitro and in vivo. Mol Cell Biochem 2024; 479:197-198. [PMID: 38038799 DOI: 10.1007/s11010-023-04911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Affiliation(s)
- Zhi-Dong Lv
- Department of Breast Surgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
- Department of Surgical Oncology, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Hai-Bo Wang
- Department of Breast Surgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.
| | - Qian Dong
- Department of Pediatric Surgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Bin Kong
- Department of Breast Surgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Jian-Guo Li
- Department of Breast Surgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Zhao-Chuan Yang
- Department of Child Health Care, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Hui-Li Qu
- Department of Breast Surgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Wei-Hong Cao
- Department of Breast Surgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Hui-Mian Xu
- Department of Surgical Oncology, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.
| |
Collapse
|
3
|
Anilkumar KV, Rema LP, John MC, Vanesa John T, George A. miRNAs in the prognosis of triple-negative breast cancer: A review. Life Sci 2023; 333:122183. [PMID: 37858714 DOI: 10.1016/j.lfs.2023.122183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Triple-Negative Breast Cancer (TNBC) is a highly aggressive and invasive type of breast cancer (BC) with high mortality rate wherein effective target medicaments are lacking. It is a very heterogeneous group with several subtypes that account for 10-20% of cancer among women globally, being negative for three most important receptors (estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)), with an early and high recurrence resulting in poor survival rate. Therefore, a more thorough knowledge on carcinogenesis of TNBC is required for the development of personalized treatment options. miRNAs can either promote or suppress tumorigenesis and have been linked to a number of features of cancer progression, including proliferation, metastasis, apoptosis, and epithelial-mesenchymal transition (EMT). Recent miRNA research shows that there is great potential for the development of novel biomarkers as they have emerged as drivers of tumorigenesis and provide opportunities to target various components involved in TNBC, thus helping to solve this difficult-to-treat disease. In this review, we summarize the most relevant miRNAs that play an essential role in TNBC biology. Their role with regard to molecular mechanisms underlying TNBC progression has been discussed, and their potential use as therapeutic or prognostic markers to unravel the intricacy of TNBC based on the pieces of evidence obtained from various works of literature has been briefly addressed.
Collapse
Affiliation(s)
- Kavya V Anilkumar
- PG and Research Department of Zoology, Maharaja's College, Ernakulam, 682011, India; Cell and Molecular Biology Facility, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - L P Rema
- PG and Research Department of Zoology, Maharaja's College, Ernakulam, 682011, India
| | - Mithun Chacko John
- Department of Medical Oncology, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - T Vanesa John
- Department of Pathology, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Alex George
- Cell and Molecular Biology Facility, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India.
| |
Collapse
|
4
|
Chen M, Xia Z, Deng J. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles carrying miR-655-3p inhibit the development of esophageal cancer by regulating the expression of HIF-1α via a LMO4/HDAC2-dependent mechanism. Cell Biol Toxicol 2023; 39:1319-1339. [PMID: 36222945 DOI: 10.1007/s10565-022-09759-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/26/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study clarified the function of human umbilical cord mesenchymal stem cell (hUCMSC)-derived extracellular vesicle (EV)-enclosed miR-655-3p in esophageal squamous cell carcinoma (ESCC). METHODS A Chi-square test and the Kaplan-Meier estimator were used to analyze the prognosis of ESCC in relation to the expression of miR-655-3p. ESCC cells were incubated with PBS or hUCMSC-derived EVs (hUCMSC-EVs) in the conditions of gene modification, after which the malignant behaviors of ESCC cells were assessed and the molecular interactions were determined. The effect of hUCMSC-derived EV-miR-655-3p was also investigated in a nude mouse model of ESCC. RESULTS Low expression of miR-655-3p indicated poor prognosis of ESCC. hUCMSC-EVs suppressed the malignant behaviors of ESCC cells and the growth and liver metastasis of transplanted tumors. Inhibition of miR-655-3p in hUCMSCs impaired the therapeutic effect of hUCMSC-EVs. LMO4, targeted by miR-655-3p, activated the transcription of HIF-1α by sequestering HDAC2 from HIF-1α promoter. Knockdown of LMO4 suppressed ESCC cell activities, while overexpression of HIF-1α counteracted the tumor suppressive effect of LMO4 knockdown. CONCLUSION miR-655-3p enclosed in hUCMSC-derived EVs inhibits ESCC progression partially by inactivating HIF-1α via the LMO4/HDAC2 axis.
Collapse
Affiliation(s)
- Mingjiu Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Jie Deng
- Department of Respiratory Medicine, The First Hospital of Changsha, Changsha, Hunan, 410005, People's Republic of China.
| |
Collapse
|
5
|
Zhong L, Tan W, Yang Q, Zou Z, Zhou R, Huang Y, Qiu Z, Zheng K, Huang Z. PRRX1 promotes colorectal cancer stemness and chemoresistance via the JAK2/STAT3 axis by targeting IL-6. J Gastrointest Oncol 2022; 13:2989-3008. [PMID: 36636075 PMCID: PMC9830354 DOI: 10.21037/jgo-22-1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Stemness acquirement is one of the hallmarks of cancer and the major reason for the chemoresistance and poor prognosis of colorectal cancer (CRC). Previous research has revealed the stimulatory role of paired related homeobox 1 (PRRX1) on CRC metastasis. However, the role of PRRX1 in stemness acquirement and chemoresistance of CRC is still not clear. Methods A retrospective cohort study was performed to investigate the relationship between PRRX1 expression and multiple clinicopathological characteristics of CRC patients. The functional effects of PRRX1 on stemness and chemoresistance of CRC cells were validated by in vitro and in vivo assays. Gene set enrichment analysis (GSEA) and JASPAR software were performed to predict the underlying mechanisms. Enzyme-linked immunosorbent assay (ELISA), Western blot, immunofluorescence, and dual-luciferase reporter assays were used to confirm the PRRX1-mediated signaling and its downstream factors. Results The expression of PRRX1 was up-regulated in CRC tissues and cell lines compared to normal epithelial tissues and cell lines. High expression of PRRX1 was tightly associated with the metastasis, chemoresistance, and poor prognosis of CRC patients. Additionally, PRRX1 significantly promoted the proliferation, viability, stemness, and chemoresistance of CRC cells, as well as the activation of the interleukin-6 (IL-6)/JAK2/STAT3 axis. Inhibiting the expression of IL-6 dramatically eliminated the effects of PRRX1 on CRC cell stemness and chemoresistance. Conclusions PRRX1 plays a vital role in the stemness and chemoresistance of CRC cells via JAK2/STAT3 signaling by targeting IL-6. Further, PRRX1 may be a valid biomarker for predicting the effect of chemotherapy and prognosis of CRC patients.
Collapse
Affiliation(s)
- Longzhu Zhong
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China;,Department of General Surgery, Liwan Central Hospital, Guangzhou, China
| | - Wanlin Tan
- Department of Pathology, Cancer center, Sun Yat-sen University, Guangzhou, China
| | - Qianqiong Yang
- Department of Pathology, Cancer center, Sun Yat-sen University, Guangzhou, China
| | - Zhaowei Zou
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yongsheng Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenghua Qiu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kehong Zheng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zonghai Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Zhu G, Xia Y, Zhao Z, Li A, Li H, Xiao T. LncRNA XIST from the bone marrow mesenchymal stem cell derived exosome promotes osteosarcoma growth and metastasis through miR-655/ACLY signal. Cancer Cell Int 2022; 22:330. [PMID: 36309693 PMCID: PMC9617450 DOI: 10.1186/s12935-022-02746-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background Long non-coding RNA X-inactive specific transcript (XIST) regulates the progression of a variety of tumors, including osteosarcoma. Bone marrow mesenchymal stem cells (BMSCs) can be recruited into osteosarcoma tissue and affect the progression by secreting exosomes. However, whether BMSCs derived exosomes transmit XIST to regulate the growth and metastasis of osteosarcoma and the related mechanism are still unclear. Method In this study, BMSCs derived exosomes were used to treat human osteosarcoma cells MG63 and 143B, and the level of XIST in BMSCs was intervened by siRNA. CCK-8, EdU, transwell assays were used to analyze the changes of cell proliferation, migration and invasion. Bioinformatics analysis, RNA pulldown and dual-luciferase reporter gene assays validated the targeted relationship of XIST with miR-655 and the interaction between miR-655 and ACLY 3’-UTR. 143B/LUC cell line was used to establish an animal model of in situ osteosarcoma to verify the found effects of XIST on osteosarcoma. Oil Red O staining, Western blot and so on were used to detect the changes of lipid deposition and protein expression. Results It was found that BMSCs derived exosomes promoted the proliferation, migration and invasion of osteosarcoma cells, and the down-regulation of XIST inhibited this effect. miR-655 mediated the role of BMSCs derived exosomal XIST in promoting the progression of osteosarcoma and down-regulation of miR-655 could reverse the effects of inhibiting XIST on the proliferation, migration and invasion of osteosarcoma cells. Meanwhile, animal level results confirmed that BMSCs derived exosomal XIST could promote osteosarcoma growth and lung metastasis by combining with miR-655. In-depth mechanism study showed that BMSCs derived exosomal XIST combined with miR-655 to increase the protein level of ACLY, which led to lipid deposition and activate β-catenin signal to promote the proliferation, migration and invasion of osteosarcoma cells. Conclusion This study showed that BMSCs derived exosomal XIST could enter osteosarcoma cells, bind and down-regulates the level of miR-655, resulting in an increase in the level of ACLY, thus increasing the lipid deposition and the activity of β-catenin signal to promote the growth and metastasis of osteosarcoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02746-0.
Collapse
|
7
|
Zhan D, Chen Z, Yang D, Wen J, Liu W. Clinical Effect of Apatinib Mesylate Tablets Combined with Paclitaxel Concurrent Radiotherapy and Chemotherapy in the First-Line Treatment of Locally Advanced Nasopharyngeal Carcinoma. Emerg Med Int 2022; 2022:6293816. [PMID: 35990372 PMCID: PMC9388316 DOI: 10.1155/2022/6293816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
Objective To explore the clinical efficacy and safety of apatinib combined with paclitaxel in the first-line treatment of locally advanced nasopharyngeal carcinoma. Methods From March 2016 to June 2018, 114 patients with locally advanced nasopharyngeal carcinoma who received first-line treatment in our hospital were selected as the patient group, and those who received apatinib combined with paclitaxel concurrent radiotherapy and chemotherapy were selected as the research group (n = 54), while those who received paclitaxel concurrent radiotherapy and chemotherapy were selected as the control group (n = 60). Sixty healthy individuals in our hospital were recruited in the same period as the healthy group. The clinical effective rate, adverse reactions, 2-year overall survival rate (OS), 2-year progression-free survival rate (PFS), and quality of life were compared between the two groups, and the expression of miR-655 in the serum of each group was tested by RT-qPCR. Results The total clinical effective rate of the research group was higher than that of the control group, and the 2-year OS and PFS of the research group were also higher than those of the control group (P < 0.05). Both groups of patients could tolerate the treatment, but the incidence of hypertension and proteinuria in the research group was higher than that in the control group (P < 0.05). The expression of miR-655 in the serum of patients was lower than that of the healthy group (P < 0.05). After treatment, miR-655 in serum increased in both the groups and miR-655 in the research group was higher than that in the control group (P < 0.05). The 2-year survival rate of OS and PFS in patients with low expression of miR-655 was significantly lower than that in patients with high expression of miR-655 (P < 0.05). Conclusion Apatinib combined with paclitaxel concurrent radiotherapy and chemotherapy is effective and well-tolerated in the treatment of locally advanced nasopharyngeal carcinoma, which improves the quality of life of patients and can be popularized in clinical practice. In addition, the increase of miR-655 may be a target for treating nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Dechao Zhan
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Zihong Chen
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Donghong Yang
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Jiyu Wen
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| | - Wanwan Liu
- Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong, China
| |
Collapse
|
8
|
The Role of MicroRNA in the Regulation of Tumor Epithelial–Mesenchymal Transition. Cells 2022; 11:cells11131981. [PMID: 35805066 PMCID: PMC9265548 DOI: 10.3390/cells11131981] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Consistently, the high metastasis of cancer cells is the bottleneck in the process of tumor treatment. In this process of metastasis, a pivotal role is executed by epithelial–mesenchymal transition (EMT). The epithelial-to-mesenchymal transformation was first proposed to occur during embryonic development. Later, its important role in explaining embryonic developmental processes was widely reported. Recently, EMT and its intermediate state were also identified as crucial drivers in tumor progression with the gradual deepening of research. To gain insights into the potential mechanism, increasing attention has been focused on the EMT-related transcription factors. Correspondingly, miRNAs target transcription factors to control the EMT process of tumor cells in different types of cancers, while there are still many exciting and challenging questions about the phenomenon of microRNA regulation of cancer EMT. We describe the relevant mechanisms of miRNAs regulating EMT, and trace the regulatory roles and functions of major EMT-related transcription factors, including Snail, Twist, zinc finger E-box-binding homeobox (ZEB), and other families. In addition, on the basis of the complex regulatory network, we hope that the exploration of the regulatory relationship of non-transcription factors will provide a better understanding of EMT and cancer metastasis. The identification of the mechanism leading to the activation of EMT programs during diverse disease processes also provides a new protocol for the plasticity of distinct cellular phenotypes and possible therapeutic interventions. Here, we summarize the recent progress in this direction, with a promising path for further insight into this fast-moving field.
Collapse
|
9
|
Mei L. Multiple types of noncoding RNA are involved in potential modulation of PTTG1's expression and function in breast cancer. Genomics 2022; 114:110352. [PMID: 35351581 DOI: 10.1016/j.ygeno.2022.110352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/17/2022] [Accepted: 03/24/2022] [Indexed: 01/14/2023]
Abstract
Breast cancer is a malignant type with morbidity ranking the first of women globally. As widely acknowledged, there exist close links between ncRNA-mRNA axis and breast cancer. In this study, we first overviewed expression and prognostic values of pituitary tumor transforming gene (PTTGs) in breast cancer. Next, two binding miRNAs (miR-186-5p and miR-655-3p) of PTTG1 in breast cancer were identified. Subsequently, several potential upstream ncRNAs of PTTG1-miR-186-5p/miR-655-3p axis in breast cancer were successively screened out, consisting of 11 lncRNAs, 17 circRNAs and 12 pseudogene-derived RNAs. Enrichment analysis for downstream target genes of PTTG1-miR-186-5p/miR-655-3p axis revealed that this axis is associated with TGF-beta signaling and MAPK signaling pathways. Further investigation demonstrated AURKA was one of the most key hub genes. Collectively, we established a potential PTTG1-related ncRNA-mRNA regulatory network in breast cancer.
Collapse
Affiliation(s)
- Linhang Mei
- Department of Oncological surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China.
| |
Collapse
|
10
|
Paul U, Banerjee S. The functional significance and cross-talk of non-coding RNAs in triple negative and quadruple negative breast cancer. Mol Biol Rep 2022; 49:6899-6918. [PMID: 35235157 DOI: 10.1007/s11033-022-07288-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/18/2022] [Indexed: 12/13/2022]
Abstract
One of the leading causes of cancer-related deaths worldwide is breast cancer, among which triple-negative breast cancer (TNBC) is the most malignant and lethal subtype. This cancer accounts for 10-20% of all breast cancer deaths. Proliferation, tumorigenesis, and prognosis of TNBC are affected when the androgen receptor (AR) is not expressed, and it is classified as quadruple negative breast cancer (QNBC). Non-coding RNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play a significant role in tumorigenesis by virtue of their oncogenic and tumor-suppressive properties. To regulate tumorigenesis, miRNAs interact with their target mRNAs and modulate their expression, whereas lncRNAs can either act alone or interact with miRNAs or other molecules through various signaling pathways. Conversely, circRNAs regulate tumorigenesis by acting as miRNA sponges predominantly. Recently, non-coding RNAs were studied comprehensively for their roles in tumor proliferation, progression, and metastasis. As a result of existing studies and research progress, non-coding RNAs have been implicated in TNBC, necessitating their use as biomarkers for future diagnostic applications. In this review, the non-coding RNAs are explicitly implicated in the regulation of breast cancer, and their cross-talk between TNBC and QNBC is also discussed.
Collapse
Affiliation(s)
- Utpalendu Paul
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
11
|
Yang Y, Wu H, Fan S, Bi Y, Hao M, Shang J. Cancer‑associated fibroblast‑derived LRRC15 promotes the migration and invasion of triple‑negative breast cancer cells via Wnt/β‑catenin signalling pathway regulation. Mol Med Rep 2021; 25:2. [PMID: 34726255 PMCID: PMC8600416 DOI: 10.3892/mmr.2021.12518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive tumour subtype associated with poor prognosis. The function of leucine-rich repeat-containing protein 15 (LRRC15), a member of the leucine-rich repeat superfamily, in TNBC has not yet been elucidated. The aim of this study was to identify the combined role of LRRC15 and Wnt/β-catenin signalling pathway in the development of TNBC. The expression of LRRC15 in TNBC tissues was analysed using data from The Cancer Genome Atlas. Cell migration and invasion assays were conducted to study the function of LRRC15 in TNBC. The expression of Wnt/β-catenin signalling proteins was analysed via western blotting. The effect of LRRC15 on β-catenin nuclear localisation was measured by performing western blotting and luciferase assays. It was found that high LRRC15 expression was associated with poor prognosis in patients with TNBC. High expression of LRRC15 in cancer-associated fibroblasts (CAFs) promoted cell migration and invasion in TNBC cells. In addition, TNBC cells with LRRC15 overexpression in CAFs showed an aberrant increase in β-catenin activity concomitant with nuclear localisation of β-catenin, which inhibited its degradation. These results showed that LRRC15 promoted tumour migration and invasion in TNBC cells by regulating the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Yang Yang
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Haiying Wu
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Shaoxia Fan
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Yanqing Bi
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Min Hao
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Jian Shang
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| |
Collapse
|
12
|
Block CJ, Mitchell AV, Wu L, Glassbrook J, Craig D, Chen W, Dyson G, DeGracia D, Polin L, Ratnam M, Gibson H, Wu G. RNA binding protein RBMS3 is a common EMT effector that modulates triple-negative breast cancer progression via stabilizing PRRX1 mRNA. Oncogene 2021; 40:6430-6442. [PMID: 34608266 PMCID: PMC9421946 DOI: 10.1038/s41388-021-02030-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) has been recognized as a driving force for tumor progression in breast cancer. Recently, our group identified the RNA Binding Motif Single Stranded Interacting Protein 3 (RBMS3) to be significantly associated with an EMT transcriptional program in breast cancer. Additional expression profiling demonstrated that RBMS3 was consistently upregulated by multiple EMT transcription factors and correlated with mesenchymal gene expression in breast cancer cell lines. Functionally, RBMS3 was sufficient to induce EMT in two immortalized mammary epithelial cell lines. In triple-negative breast cancer (TNBC) models, RBMS3 was necessary for maintaining the mesenchymal phenotype and invasion and migration in vitro. Loss of RBMS3 significantly impaired both tumor progression and spontaneous metastasis in vivo. Using a genome-wide approach to interrogate mRNA stability, we found that ectopic expression of RBMS3 upregulates many genes that are resistant to degradation following transcriptional blockade by actinomycin D (ACTD). Specifically, RBMS3 was shown to interact with the mRNA of EMT transcription factor PRRX1 and promote PRRX1 mRNA stability. PRRX1 is required for RBMS3-mediated EMT and is partially sufficient to rescue the effect of RBMS3 knockdown in TNBC cell lines. Together, this study identifies RBMS3 as a novel and common effector of EMT, which could be a promising therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- C. James Block
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Allison V. Mitchell
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Ling Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA.,Department of Molecular and Cellular Biology, McNair Medical Institute Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - James Glassbrook
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Douglas Craig
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Wei Chen
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Gregory Dyson
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Donald DeGracia
- Department of Physiology, Wayne State University school of Medicine, Detroit, MI 48201, USA
| | - Lisa Polin
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Manohar Ratnam
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Heather Gibson
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA.
| |
Collapse
|
13
|
Xu J, Wu KJ, Jia QJ, Ding XF. Roles of miRNA and lncRNA in triple-negative breast cancer. J Zhejiang Univ Sci B 2021; 21:673-689. [PMID: 32893525 PMCID: PMC7519626 DOI: 10.1631/jzus.b1900709] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) is currently the most malignant subtype of breast cancer without effective targeted therapies, which makes its pathogenesis an important target for research. A growing number of studies have shown that non-coding RNA (ncRNA), including microRNA (miRNA) and long non-coding RNA (lncRNA), plays a significant role in tumorigenesis. This review summarizes the roles of miRNA and lncRNA in the progression, diagnosis, and neoadjuvant chemotherapy of TNBC. Aberrantly expressed miRNA and lncRNA are listed according to their roles. Further, it describes the multiple mechanisms that lncRNA shows for regulating gene expression in the nucleus and cytoplasm, and more importantly, describes lncRNA-regulated TNBC progression through complete combining with miRNA at the post-transcriptional level. Focusing on miRNA and lncRNA associated with TNBC can provide new insights for early diagnosis and treatment-they can be targeted in the future as a novel anticancer target of TNBC.
Collapse
|
14
|
Emerging Evidence of the Functional Impact of the miR379/miR656 Cluster (C14MC) in Breast Cancer. Biomedicines 2021; 9:biomedicines9070827. [PMID: 34356891 PMCID: PMC8301419 DOI: 10.3390/biomedicines9070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Many microRNAs exist in clusters that share comparable sequence homology and may target genes in a common pathway. The miR-379/miR-656 (C14MC) cluster is imprinted in the DLK1-Dio3 region of 14q32.3 and contains 42 miRNAs. It plays a functional role in numerous biological pathways including vascular remodeling and early development. With many C14MC miRNAs highlighted as potential tumor suppressors in a variety of cancers, the role of this cluster in breast cancer (BC) has garnered increased attention in recent years. This review focuses on C14MC in BC, providing an overview of the constituent miRNAs and addressing each in terms of functional impact, potential target genes/pathways, and, where relevant, biomarker capacity. Studies have revealed the regulation of key factors in disease progression and metastasis including tyrosine kinase pathways and factors critical to epithelial–mesenchymal transition (EMT). This has potentially important clinical implications, with EMT playing a critical role in BC metastasis and tyrosine kinase inhibitors (TKIs) in widespread use for the treatment of BC. While the majority of studies have reported tumor-suppressing roles for these miRNAs, some have highlighted their potential as oncomiRs. Understanding the collective contribution of miRNAs within C14MC to BC may support improved understanding of disease etiology and present novel approaches to targeted therapy.
Collapse
|
15
|
Du W, Liu X, Yang M, Wang W, Sun J. The Regulatory Role of PRRX1 in Cancer Epithelial-Mesenchymal Transition. Onco Targets Ther 2021; 14:4223-4229. [PMID: 34295164 PMCID: PMC8291965 DOI: 10.2147/ott.s316102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
PRRX1 (paired related homeobox 1), a member of the paired homeobox family, exhibits an important role in tumor. It is closely correlated to the occurrence of epithelial-mesenchymal transition (EMT). PRRX1 is an important transcription factor regulating EMT and plays an important role in tumor progression. In the process of tumor metastasis, PRRX1 mainly regulates the occurrence of EMT in tumor cells through TGF-β signaling pathway, Wnt/β-catenin signaling pathway and Notch signaling pathway. PRRX1 is not only closely related to the tumor cell stemness but also involved in miRNA regulation of EMT. Therefore, PRRX1 may be a target for inhibiting the proliferation, metastasis and stemness of tumor cells. The current review provides a systemic profile of the regulatory role of PRRX1 in cancer epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Wenjiao Du
- Institute of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, Jiangsu, 215009, People's Republic of China
| | - Xinchang Liu
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Man Yang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jing Sun
- Institute of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, Jiangsu, 215009, People's Republic of China
| |
Collapse
|
16
|
Wu X, Bao H. Tumor suppressive microRNA-485-5p targets PRRX1 in human skin melanoma cells, regulating epithelial-mesenchymal transition and apoptosis. Cell Biol Int 2021; 45:1404-1414. [PMID: 33620119 DOI: 10.1002/cbin.11575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 01/12/2021] [Indexed: 12/17/2022]
Abstract
Melanoma is one of the most aggressive skin cancers. Existing evidence has reported the aberrant expression of microRNAs (miRNAs) in melanoma, but their putative targets and underlying downstream effects remain to be further understood. Herein, we explored the suppressive role of miR-485-5p in melanoma progression. Initial bioinformatics analyses showed that the PRRX1 gene was differentially expressed in melanoma, while miR-485-5p was predicted to be a potential regulatory miRNA binding to PRRX1 mRNA. We confirmed that PRRX1 was upregulated, while miR-485-5p was downregulated in human melanoma samples compared with adjacent normal skin tissues. We then showed that PRRX1 was a target gene of miR-485-5p by dual-luciferase reporter gene assay. Moreover, a reduction in the expression of PRRX1 and downregulation of important proteins of the transforming growth factor-beta (TGFβ) signaling pathway was observed after miR-485-5p overexpression. Furthermore, miR-485-5p overexpression or PRRX1 knockdown suppressed epithelial-mesenchymal transition, cell viability, migration, and invasion, and promoted cell apoptosis in melanoma cells. Our study demonstrates the tumor-suppressive functions of miR-485-5p in the development of human melanoma, providing a potential target for therapy.
Collapse
Affiliation(s)
- Xiaolin Wu
- School of Traditional Chinese Medicine, Jilin Agriculture University, Changchun, Jilin, PR China.,College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Changchun, Jilin, PR China
| | - Haiying Bao
- School of Traditional Chinese Medicine, Jilin Agriculture University, Changchun, Jilin, PR China
| |
Collapse
|
17
|
The Anticancer Effects of Flavonoids through miRNAs Modulations in Triple-Negative Breast Cancer. Nutrients 2021; 13:nu13041212. [PMID: 33916931 PMCID: PMC8067583 DOI: 10.3390/nu13041212] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022] Open
Abstract
Triple- negative breast cancer (TNBC) incidence rate has regularly risen over the last decades and is expected to increase in the future. Finding novel treatment options with minimum or no toxicity is of great importance in treating or preventing TNBC. Flavonoids are new attractive molecules that might fulfill this promising therapeutic option. Flavonoids have shown many biological activities, including antioxidant, anti-inflammatory, and anticancer effects. In addition to their anticancer effects by arresting the cell cycle, inducing apoptosis, and suppressing cancer cell proliferation, flavonoids can modulate non-coding microRNAs (miRNAs) function. Several preclinical and epidemiological studies indicate the possible therapeutic potential of these compounds. Flavonoids display a unique ability to change miRNAs' levels via different mechanisms, either by suppressing oncogenic miRNAs or activating oncosuppressor miRNAs or affecting transcriptional, epigenetic miRNA processing in TNBC. Flavonoids are not only involved in the regulation of miRNA-mediated cancer initiation, growth, proliferation, differentiation, invasion, metastasis, and epithelial-to-mesenchymal transition (EMT), but also control miRNAs-mediated biological processes that significantly impact TNBC, such as cell cycle, immune system, mitochondrial dysregulation, modulating signaling pathways, inflammation, and angiogenesis. In this review, we highlighted the role of miRNAs in TNBC cancer progression and the effect of flavonoids on miRNA regulation, emphasizing their anticipated role in the prevention and treatment of TNBC.
Collapse
|
18
|
Yao J, Zhang Y, Xia Y, Zhu C, Wen X, Liu T, Da M. PRRX1 promotes lymph node metastasis of gastric cancer by regulating epithelial-mesenchymal transition. Medicine (Baltimore) 2021; 100:e24674. [PMID: 33578599 PMCID: PMC10545397 DOI: 10.1097/md.0000000000024674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 01/11/2021] [Accepted: 01/17/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Gastric cancer has multiple metastasis pathways, of which lymph node metastasis plays a dominant role. However, the specific mechanism of lymph node metastasis is still not unclear. METHODS The bioinformatics technology was utilized to mine gene chip data related to gastric cancer and Epithelial-Mesenchymal Transition (EMT) in a high-throughput gene expression database (Gene Expression Omnibus, GEO), we screened out all genes that have differential expression levels in gastric cancer tissues and in adjacent normal gastric mucosa tissues. The corresponding function package of R language software were performed for gene annotation and cluster analysis, then enrichment analysis of genes with differential expression and protein interaction network diagram for correlation analysis were performed, we finally screened out the paired related homeobox 1 gene (PRRX1) related to EMT. Next, we collected 65 metastatic lymph node samples and 93 gastric cancer tissue samples. The expression levels of PRRX1 and EMT-related protein E-cadherin (E-ca) and vimentin (Vim) in gastric cancer tissues and metastatic lymph node tissues were determined by immunohistochemistry (IHC) staining of streptavidin-peroxidase (SP). The expression differences of PRRX1, E-ca and Vim in gastric cancer tissues and metastatic lymph node tissues as well as the correlation were analyzed by the experimental data, and the clinical significance was analyzed in combination with the clinicopathological data. RESULTS The PRRX1 expression levels in gastric cancer tissues are significantly higher than that in adjacent normal gastric mucosa tissues. The positive expression rates of PRRX1, Vim and E-ca in gastric cancer and in metastatic lymph node tissues were significantly different. Comparing with that in gastric cancer, expression of PRRX1 and Vim was significantly down-regulated, and E-ca expression was significantly up-regulated in metastatic lymph nodes. CONCLUSION PRRX1 may promote lymph node metastasis of gastric cancer by regulating EMT, and then affect the prognosis of patients. PRRX1 may be used as a new biological indicator to predict or prevent lymph node metastasis in gastric cancer.
Collapse
Affiliation(s)
- Jibin Yao
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou
| | - Yongbin Zhang
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou
| | - Yu Xia
- The First Clinical Medical College, Lanzhou University
| | - Chenglou Zhu
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou
| | - Xiaoxiong Wen
- Day Clinic, Gansu Provincial Maternal and Child-care Hospital, Lanzhou, China
| | - Tianxiang Liu
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou
| | - Mingxu Da
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou
| |
Collapse
|
19
|
Bai M, He C, Shi S, Wang M, Ma J, Yang P, Dong Y, Mou X, Han S. Linc00963 Promote Cell Proliferation and Tumor Growth in Castration-Resistant Prostate Cancer by Modulating miR-655/TRIM24 Axis. Front Oncol 2021; 11:636965. [PMID: 33643926 PMCID: PMC7905206 DOI: 10.3389/fonc.2021.636965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 02/01/2023] Open
Abstract
Previous studies have shown that both long intergenic non-coding RNA 00963 (Linc00963) and tripartite motif containing 24 (TRIM24) are activators of the PI3K/AKT pathway, and both are involved in the carcinogenesis and progression of prostate cancer. However, the regulatory mechanisms between Linc00963 and TRIM24 are still unclear. In this study, we aimed to elucidate the underlying relationship between Linc00963 and TRIM24 in castration-resistant prostate cancer (CRPC). We found that TRIM24, an established oncogene in CRPC, was positively correlated with Linc00963 in prostate cancer tissues. In addition, TRIM24 was positively regulated by Lin00963 in CRPC cells. Mechanistically, TRIM24 was the direct target of microRNA-655 (miR-655) in CRPC cells, and Linc00963 could competitively bind miR-655 and upregulate TRIM24 expression. Using gain- and loss-of- function assays and rescue assays, we identified that miR-655 inhibits TRIM24 expression and cell proliferation and colony forming ability in CRPC, and that Linc00963 promotes TRIM24 expression, cell proliferation, and colony forming ability of CRPC cells by directly suppressing miR-655 expression. We further identified that Linc00963 could promote tumor growth of CRPC cells by inhibiting miR-655 and upregulating TRIM24 axis in vivo. Taken together, our study reveals a new mechanism for the Linc00963/miR-655/TRIM24 competing endogenous RNA (ceRNA) network in accelerating cell proliferation in CRPC in vitro and in vivo, and suggests that Linc00963 could be considered a novel therapeutic target for CRPC.
Collapse
Affiliation(s)
- Minghua Bai
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenchen He
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shengjia Shi
- Department of Andrology, Assisted Reproductive Technology Center, Northwest Women's and Children's Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Mincong Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinlu Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengtao Yang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yiping Dong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xingyi Mou
- Department of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Zuo L, Li X, Tan Y, Zhu H, Xiao M. Prospective pathway signaling and prognostic values of MicroRNA-9 in ovarian cancer based on gene expression omnibus (GEO): a bioinformatics analysis. J Ovarian Res 2021; 14:29. [PMID: 33563317 PMCID: PMC7874475 DOI: 10.1186/s13048-021-00779-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
Objective MicroRNAs (miRNAs) play a vital role in the development of ovarian cancer (OC). The aim of this study to investigate the prognostic value and potential signaling pathways of hsa-miR-9-5p (miR-9) in OC through literature review and bioinformatics methods. Methods The expression of miR-9 in OC was assessed using the public datasets from the Gene Expression Omnibus (GEO) database. And a literature review was also performed to investigate the correlation between miR-9 expression and the OC prognosis. Two mRNA datasets (GSE18520 and GSE36668) of OC tissues and normal ovarian tissues (NOTs) were downloaded from GEO to identify the differentially expressed genes (DEGs). The target genes of hsa-miR-9-5p (TG-miR-9-5p) were predicted using miRWALK3.0 and TargetScan. Then the gene overlaps between DEGs in OC and the predicted TG-miR-9-5p were confirmed using a Venn diagram. After that, overlapping genes were subjected to Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, a protein-protein interaction (PPI) network was constructed using STRING and Cytoscape, and the impact of hub genes on OC prognosis was analyzed. Results It was found that OC patients with miR-9 low expression had poor prognosis. A total of 107 DEGs related to both OC and miR-9 were identified. Dozens of DEGs were enriched in developmental process, extracellular matrix structural constituent, cell junction, axon guidance. In the PPI network analysis, 5 of the top 10 hub genes was significantly associated with decreased overall survival of OC patients, namely FBN1 (HR = 1.64, P < 0.05), PRRX1 (HR = 1.76, P < 0.05), SMC2 (HR = 1.22, P < 0.05), SMC4 (HR = 1.31, P < 0.05), and VCAN (HR = 1.48, P < 0.05). Conclusion Low expression of miR-9 indicates poor prognosis of OC patients. MiR-9 plays a crucial role in the biological process of OC by binding to target genes, thus affecting the prognosis of patients.
Collapse
Affiliation(s)
- Li Zuo
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, 106 Ruili road, Minhang district, Shanghai, 200240, China
| | - Xiaoli Li
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, 106 Ruili road, Minhang district, Shanghai, 200240, China
| | - Yue Tan
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, 106 Ruili road, Minhang district, Shanghai, 200240, China
| | - Hailong Zhu
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, 106 Ruili road, Minhang district, Shanghai, 200240, China
| | - Mi Xiao
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, 106 Ruili road, Minhang district, Shanghai, 200240, China.
| |
Collapse
|
21
|
Zhang Y, Wang X, Chen X. Identification of core genes for early diagnosis and the EMT modulation of ovarian serous cancer by bioinformatics perspective. Aging (Albany NY) 2021; 13:3112-3145. [PMID: 33493131 PMCID: PMC7880353 DOI: 10.18632/aging.202524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023]
Abstract
Ovarian serous carcinoma (OSC), as a common malignant tumor, poses a serious threat to women's health in that epithelial-mesenchymal transformation (EMT)-related modulation becomes heavily implicated in the invasion and progression of OSC. In this study, two core genes (BUB1B and NDC80) among the 16 hub genes have been identified to be involved in the molecular regulation of EMT and associated with the poor early survival of OSC at stages I+II. Through the Gene Regulatory Networks (GRN) analysis of 15 EMT regulators and core genes, it was revealed that TFAP2A and hsa-miR-655 could elaborately modulate EMT development of OSC. Next genetic variation analysis indicated that EMT regulator ELF3 would also serve as a crucial part in the occurrence and progression of OSC. Eventually, survival investigation suggested that TFAP2A, ELF3 and hsa-miR-655 were significantly associated with the overall survival of progressive OSC patients. Thus, combined with diversified bioinformatic analyses, BUB1B, NDC80, TFAP2A, ELF3 and hsa-miR-655 may act as the key biomarkers for early clinical diagnosis and prognosis evaluation of OSC patients as well as potential therapeutic target-points.
Collapse
Affiliation(s)
- Yanna Zhang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, High Technological Development Zone, Chengdu 610041, Sichuan, People's Republic of China
| | - Xun Wang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, High Technological Development Zone, Chengdu 610041, Sichuan, People's Republic of China
| | - Xiancheng Chen
- State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, High Technological Development Zone, Chengdu 610041, Sichuan, People's Republic of China
| |
Collapse
|
22
|
Interplay between p53 and non-coding RNAs in the regulation of EMT in breast cancer. Cell Death Dis 2021; 12:17. [PMID: 33414456 PMCID: PMC7791039 DOI: 10.1038/s41419-020-03327-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The epithelial-mesenchymal transition (EMT) plays a pivotal role in the differentiation of vertebrates and is critically important in tumorigenesis. Using this evolutionarily conserved mechanism, cancer cells become drug-resistant and acquire the ability to escape the cytotoxic effect of anti-cancer drugs. In addition, these cells gain invasive features and increased mobility thereby promoting metastases. In this respect, the process of EMT is critical for dissemination of solid tumors including breast cancer. It has been shown that miRNAs are instrumental for the regulation of EMT, where they play both positive and negative roles often as a part of a feed-back loop. Recent studies have highlighted a novel association of p53 and EMT where the mutation status of p53 is critically important for the outcome of this process. Interestingly, p53 has been shown to mediate its effects via the miRNA-dependent mechanism that targets master-regulators of EMT, such as Zeb1/2, Snail, Slug, and Twist1. This regulation often involves interactions of miRNAs with lncRNAs. In this review, we present a detailed overview of miRNA/lncRNA-dependent mechanisms that control interplay between p53 and master-regulators of EMT and their importance for breast cancer.
Collapse
|
23
|
Bao C, Liu T, Qian L, Xiao C, Zhou X, Ai H, Wang J, Fan W, Pan J. Shikonin inhibits migration and invasion of triple-negative breast cancer cells by suppressing epithelial-mesenchymal transition via miR-17-5p/PTEN/Akt pathway. J Cancer 2021; 12:76-88. [PMID: 33391404 PMCID: PMC7738816 DOI: 10.7150/jca.47553] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is a great threat to global women's health due to its high metastatic potential. Epithelial-to-mesenchymal transition (EMT) is considered as a key event in the process of metastasis. So the pharmacological targeting of EMT might be a promising strategy in improving the therapeutic efficacy of TNBC. Here, we investigated the effect of shikonin exerting on EMT and consequently the metastasis of TNBC cells and its underlying mechanism. Methods: The invasive and migratory capacities of MDA-MB-231 and BT549 cells were tested using transwell invasion and wound healing assay. MiR-17-5p expression was examined by qRT-PCR. MiR-17-5p targeted genes were predicted with different bioinformatic algorithms from four databases (TargetScan, miRanda, PITA and picTar) and further screened by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The differential expressions of predicted genes and their correlations with miR-17-5p were identified in breast cancer patients based on The Cancer Genome Atlas (TCGA) database. The interaction between phosphatase and tensin homolog deleted on chromosome ten (PTEN) and miR-17-5p was analyzed by luciferase reporter assay. The overexpression vector and small interfering RNA were constructed to investigate the role PTEN played in metastasis and EMT regulation. The expressions of EMT markers, protein kinase B (Akt) and phospho-Akt (p-Akt) were evaluated by western blot. Results: Shikonin suppressed the migration and invasion of MDA-MB-231 and BT549 cells and meanwhile the corresponding alterations of EMT biomarkers were observed in shikonin treated MDA-MB-231 cells. Shikonin inhibited the expression of miR-17-5p, which was upregulated in breast cancer. The 3'-untranslated region (3'-UTR) of PTEN was found to be direct binding target of miR-17-5p by luciferase reporter assays. PTEN functioned as a suppressor both in the metastasis and EMT of TNBC cells. Moreover, Akt and p-Akt (Ser473) were involved in the process of inhibition in cancer cell migration, invasion and EMT by shikonin. Conclusions: Shikonin inhibits migration and invasion of TNBC cells by suppressing EMT via miR-17-5p/PTEN/Akt pathway. This suggests shikonin as a promising therapeutic agent to counteract metastasis in the TNBC patients.
Collapse
Affiliation(s)
- Chang Bao
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
- Key Laboratory of Organ Transplantation, Hangzhou 310003, People's Republic of China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou310003, People's Republic of China
| | - Tao Liu
- Department of Respiratory Medicine, Hospital of Traditional Chinese Medicine of Pingxiang city, No.10 Pingchuxi Road, Pingxiang 337000, People's Republic of China
| | - Lingbo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, No.481 Binwen Road, Hangzhou 310053, People's Republic of China
| | - Chi Xiao
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, No.481 Binwen Road, Hangzhou 310053, People's Republic of China
| | - Xinru Zhou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, No.481 Binwen Road, Hangzhou 310053, People's Republic of China
| | - Heng Ai
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, No.481 Binwen Road, Hangzhou 310053, People's Republic of China
| | - Jue Wang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, No.481 Binwen Road, Hangzhou 310053, People's Republic of China
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
- Key Laboratory of Organ Transplantation, Hangzhou 310003, People's Republic of China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou310003, People's Republic of China
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jie Pan
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, No.481 Binwen Road, Hangzhou 310053, People's Republic of China
| |
Collapse
|
24
|
Volovat SR, Volovat C, Hordila I, Hordila DA, Mirestean CC, Miron OT, Lungulescu C, Scripcariu DV, Stolniceanu CR, Konsoulova-Kirova AA, Grigorescu C, Stefanescu C, Volovat CC, Augustin I. MiRNA and LncRNA as Potential Biomarkers in Triple-Negative Breast Cancer: A Review. Front Oncol 2020; 10:526850. [PMID: 33330019 PMCID: PMC7716774 DOI: 10.3389/fonc.2020.526850] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Noncoding RNAs (ncRNAs) include a diverse range of RNA species, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). MiRNAs, ncRNAs of approximately 19-25 nucleotides in length, are involved in gene expression regulation either via degradation or silencing of the messenger RNAs (mRNAs) and have roles in multiple biological processes, including cell proliferation, differentiation, migration, angiogenesis, and apoptosis. LncRNAs, which are longer than 200 nucleotides, comprise one of the largest and most heterogeneous RNA families. LncRNAs can activate or repress gene expression through various mechanisms, acting alone or in combination with miRNAs and other molecules as part of various pathways. Until recently, most research has focused on individual lncRNA and miRNA functions as regulators, and there is limited available data on ncRNA interactions relating to the tumor growth, metastasis, and therapy of cancer, acting either on mRNA alone or as competing endogenous RNA (ceRNA) networks. Triple-negative breast cancer (TNBC) represents approximately 10%-20% of all breast cancers (BCs) and is highly heterogenous and more aggressive than other types of BC, for which current targeted treatment options include hormonotherapy, PARP inhibitors, and immunotherapy; however, no targeted therapies for TNBC are available, partly because of a lack of predictive biomarkers. With advances in proteomics, new evidence has emerged demonstrating the implications of dysregulation of ncRNAs in TNBC etiology. Here, we review the roles of lncRNAs and miRNAs implicated in TNBC, including their interactions and regulatory networks. Our synthesis provides insight into the mechanisms involved in TNBC progression and has potential to aid the discovery of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania.,Center of Oncology Euroclinic, Iași, Romania
| | | | | | | | | | - Cristian Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy, Craiova, Romania
| | | | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, University of Medicine and Pharmacy Gr. T. Popa Iasi, Iași, Romania
| | | | - Cristina Grigorescu
- Department of Surgery, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, University of Medicine and Pharmacy Gr. T. Popa Iasi, Iași, Romania
| | | | | |
Collapse
|
25
|
Wang H, Cui G, Yu B, Sun M, Yang H. Cancer Stem Cell Niche in Colorectal Cancer and Targeted Therapies. Curr Pharm Des 2020; 26:1979-1993. [PMID: 32268862 DOI: 10.2174/1381612826666200408102305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, are a sub-population of tumor cells found in many human cancers that are endowed with self-renewal and pluripotency. CSCs may be more resistant to conventional anticancer therapies than average cancer cells, as they can easily escape the cytotoxic effects of standard chemotherapy, thereby resulting in tumor relapse. Despite significant progress in related research, effective elimination of CSCs remains an unmet clinical need. CSCs are localized in a specialized microenvironment termed the niche, which plays a pivotal role in cancer multidrug resistance. The niche components of CSCs, such as the extracellular matrix, also physically shelter CSCs from therapeutic agents. Colorectal cancer is the most common malignancy worldwide and presents a relatively transparent process of cancer initiation and development, making it an ideal model for CSC niche research. Here, we review recent advances in the field of CSCs using colorectal cancer as an example to illustrate the potential therapeutic value of targeting the CSC niche. These findings not only provide a novel theoretical basis for in-depth discussions on tumor occurrence, development, and prognosis evaluation, but also offer new strategies for the targeted treatment of cancer.
Collapse
Affiliation(s)
- Hao Wang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China.,Laboratory medical college, Jilin Medical University, Jilin, China
| | - Guihua Cui
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Bo Yu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Meiyan Sun
- Laboratory medical college, Jilin Medical University, Jilin, China
| | - Hong Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China
| |
Collapse
|
26
|
Li H, Zhang J, Yang Y, Duan S. miR-655: A promising regulator with therapeutic potential. Gene 2020; 757:144932. [PMID: 32640310 DOI: 10.1016/j.gene.2020.144932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 01/16/2023]
Abstract
miR-655 is a widely studied non-coding small RNA molecule. miR-655 is down-regulated in at least 15 cancers and up-regulated in acute myeloid leukemia (AML) and breast cancer (BC) cell lines. The expression level of miR-655 is closely related to the prognosis of cancer patients. In addition, we summarize all genes that can be down-regulated by miR-655 in cancer. In breast cancer, we also found the upstream regulatory pathway of miR-655. Here, we systematically analyze biological pathways and molecular functions of the miR-655-related genes. Our results indicate that miR-655-related genes are involved in cancer cell proliferation, migration, invasion, and apoptosis, and various biological processes such as angiogenesis, EMT, and oxidative stress. miR-655 may also affect the efficacy of many drugs through its targeted genes. This review summarizes the related research of miR-655 in various diseases and evaluates its potential application as a molecular marker for diagnosis and prognosis.
Collapse
Affiliation(s)
- Hongxiang Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jiale Zhang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yue Yang
- Hai Yuan College, Kunming Medical University, Kunming, Yunnan, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
27
|
Yu L, Huo L, Shao X, Zhao J. lncRNA SNHG5 promotes cell proliferation, migration and invasion in oral squamous cell carcinoma by sponging miR-655-3p/FZD4 axis. Oncol Lett 2020; 20:310. [PMID: 33093919 PMCID: PMC7573890 DOI: 10.3892/ol.2020.12173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, previous studies have shown that long non-coding RNA (lncRNA) can act as a tumor promoter or inhibitor in the pathogenesis of oral squamous cell carcinoma (OSCC). However, the regulatory mechanism of lncRNA SNHG5 is unknown in OSCC. Therefore, the functional mechanism of lncRNA SNHG5 in OSCC was initially revealed in this study. Here, RT-qPCR and western blot analysis were used to assess mRNA and protein expression. The functional mechanism of SNHG5 was investigated by MTT, Transwell and luciferase reporter assays. The results showed that SNHG5 expression was upregulated in OSCC and promoted the viability, migration and invasion of OSCC cells. In addition, SNHG5 is the sponge of miR-655-3p in OSCC. And miR-655-3p was found to play an inhibitory effect in OSCC by interacting with SNHG5. Moreover, miR-655-3p directly targets FZD4 and negatively regulates its expression in OSCC. Functionally, FZD4 promoted the progression of OSCC by interacting with the SNHG5/miR-655-3p axis. In conclusion, lncRNA SNHG5 promotes cell proliferation, migration and invasion in OSCC by regulating miR-655-3p/FZD4 axis.
Collapse
Affiliation(s)
- Lijiang Yu
- Department of Oral and Maxillofacial Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Lingli Huo
- Department of Stomatology, Traditional Chinese Medicine Hospital of Shijingshan District, Beijing 100043, P.R. China
| | - Xiaolin Shao
- Department of Stomatology, Beijing Ditan Hospital, Capital Medical University, Beijing 100013, P.R. China
| | - Jizhi Zhao
- Department of Oral and Maxillofacial Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| |
Collapse
|
28
|
Luo H, Cong S, Dong J, Jin L, Jiang D, Wang X, Chen Q, Li F. Paired‑related homeobox 1 overexpression promotes multidrug resistance via PTEN/PI3K/AKT signaling in MCF‑7 breast cancer cells. Mol Med Rep 2020; 22:3183-3190. [PMID: 32945446 PMCID: PMC7453582 DOI: 10.3892/mmr.2020.11414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
Multidrug resistance (MDR) is a major cause of disease relapse and mortality in breast cancer. Paired‑related homeobox 1 (PRRX1) is associated with the epithelial‑mesenchymal transition (EMT), which is involved in tumor development, including cell invasion and MDR. However, the effect of PRRX1 on MDR had not clearly established. The present study investigated the influence of PRRX1 on MDR and the underlying molecular mechanisms in MCF‑7 breast cancer cells. MCF‑7 cells were divided into PRRX1+ group (cells transfected with a recombinant plasmid carrying the PRRX1 gene), negative control group (cells transfected with a blank vector) and blank group (untreated cells). It was found that the relative protein and mRNA expression levels of PRRX1, N‑cadherin, vimentin and P‑glycoprotein were significantly higher in PRRX1‑overexpressing MCF‑7 cells compared with those in control cells. The half‑maximal inhibitory concentration of three groups after treatment with docetaxel and cis‑platinum complexes were significantly higher in PRRX1‑overexpressing MCF‑7 cells compared with those in control cells. Furthermore, relative PTEN expression decreased significantly and levels of phosphorylated PI3K and AKT increased substantially in PRRX1‑overexpressing MCF‑7 cells. These results indicated that PRRX1 overexpression may induce MDR via PTEN/PI3K/AKT signaling in breast cancer. It is highly recommended that PRRX1 gene expression detection should be performed in patients with breast cancer to aid the selection of more appropriate treatments, which will lead to an improved prognosis in clinical practice.
Collapse
Affiliation(s)
- Haoyue Luo
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shaobo Cong
- Department of Biochemistry and Molecular Biology, Medical College of Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Jiaojiao Dong
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Litao Jin
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Dandan Jiang
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xingang Wang
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qingfeng Chen
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Funian Li
- Department of Breast Disease Diagnosis, Treatment Centre, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
29
|
Zhang WL, Wang SS, Jiang YP, Liu Y, Yu XH, Wu JB, Wang K, Pang X, Liao P, Liang XH, Tang YL. Fatty acid synthase contributes to epithelial-mesenchymal transition and invasion of salivary adenoid cystic carcinoma through PRRX1/Wnt/β-catenin pathway. J Cell Mol Med 2020; 24:11465-11476. [PMID: 32820613 PMCID: PMC7576276 DOI: 10.1111/jcmm.15760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/19/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023] Open
Abstract
Fatty acid synthase (FASN) has been shown to be selectively up‐regulated in cancer cells to drive the development of cancer. However, the role and associated mechanism of FASN in regulating the malignant progression of salivary adenoid cystic carcinoma (SACC) still remains unclear. In this study, we demonstrated that FASN inhibition attenuated invasion, metastasis and EMT of SACC cells as well as the expression ofPRRX1, ZEB1, Twist, Slug and Snail, among which the level of PRRX1 changed the most obviously. Overexpression of PRRX1 restored migration and invasion in FASN knockdown cells, indicating that PRRX1 is an important downstream target of FASN signalling. Levels of cyclin D1 and c‐Myc, targets of Wnt/β‐catenin pathway, were significantly decreased by FASN silencing and restored by PRRX1 overexpression. In addition, FASN expression was positively associated with metastasis and poor prognosis of SACC patients as well as with the expression of PRRX1, cyclin D1 and c‐Myc in SACC tissues. Our findings revealed that FASN in SACC progression may induce EMT in a PRRX1/Wnt/β‐catenin dependent manner.
Collapse
Affiliation(s)
- Wei-Long Zhang
- Department of Oral Pathology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Sha-Sha Wang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ya-Ping Jiang
- Department of Oral Pathology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China.,Department of Implant, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Liu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xiang-Hua Yu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Jing-Biao Wu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ke Wang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xin Pang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Peng Liao
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xin-Hua Liang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ya-Ling Tang
- Department of Oral Pathology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| |
Collapse
|
30
|
Yang M, Liu X, Meng F, Zhang Y, Wang M, Chen Y, Guo X, Chen W, Wang W. The rs7911488-T allele promotes the growth and metastasis of colorectal cancer through modulating miR-1307/PRRX1. Cell Death Dis 2020; 11:651. [PMID: 32811812 PMCID: PMC7434880 DOI: 10.1038/s41419-020-02834-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
Abstract
We previously discovered that rs7911488T>C in pre-miR-1307 was closely correlated to the risk of colorectal cancer (CRC). However, the roles of rs7911488 in CRC are still largely unknown. Here we explored the roles of rs7911488 in the growth and metastasis of CRC. We firstly generated cell lines SW480-T and SW480-C for stable expression of rs7911488 T-allelic and C-allelic pre-miR-1307, respectively. We subcutaneously grafted the cells into nude mice. We found that SW480-T tumors with high expression of miR-1307 obviously grew faster than the SW480-C tumors. Moreover, liver metastases (5/8) were observed in the mice bearing SW480-T tumors but not the SW480-C tumor-bearing mice. The results from colony formation assays, transwell assays, and wound healing assays demonstrated that the proliferative and metastatic abilities of SW480-T cells were evidently more potent than the SW480-C cells. Then we utilized gene array, real-time PCR, western blotting, and dual-luciferase reporter assays to figure out that miR-1307 directly inhibited PPRX1 expression by binding to its 3′-UTR. Thereafter, we confirmed that the proliferative and metastatic abilities of SW480 and HCT-116 cells were markedly enhanced by miR-1307, but were suppressed by PRRX1. Moreover, the regulatory roles of miR-1307 in the proliferation and metastasis of CRC cells were reversed by PRRX1. Notably, we also found that PRRX1 repressed CRC tumor growth in nude mice. In summary, our current study revealed that rs7911488-T allele led to over-expression of miR-1307, which inhibited PRRX1 and consequently promoted the proliferation and migration of CRC cells. This might offer a novel insight into the progression of CRC.
Collapse
Affiliation(s)
- Man Yang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xinchang Liu
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Fanyi Meng
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yawen Zhang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Mengmeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yinshuang Chen
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xuqin Guo
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Weichang Chen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215006, China. .,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China. .,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215006, China. .,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
31
|
Ma B, Ma J, Yang Y, He X, Pan X, Wang Z, Qian Y. Effects of miR-330-3p on Invasion, Migration and EMT of Gastric Cancer Cells by Targeting PRRX1-Mediated Wnt/β-Catenin Signaling Pathway. Onco Targets Ther 2020; 13:3411-3423. [PMID: 32368097 PMCID: PMC7183782 DOI: 10.2147/ott.s238665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/05/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND miRNA, as a biological marker, had more and more attention in recent years due to the important role it plays in cancer. Currently, there are extensive studies on miRNAs, among which miR-330-3p is reported to be implicated in the pathophysiological processes of various cancers. However, little progress has been made in the mechanism of miR-330-3p in gastric cancer. OBJECTIVE To explore the expression and relevant mechanism of miR-330-3p and PRRX1 in gastric cancer (GC). METHODS Forty-five GC patients (study group), from whom paired GC and paracancerous tissues were collected, and another 45 healthy subjects (control group) who underwent physical examination during the same period were enrolled. In addition, GC cells and human gastric mucosa cells were purchased, and miR-330-3p-mimics, miR-330-3p-inhibitor, miR-NC, si-PRRX1, and sh-PRRX1 were transfected into MKN45, SGC7901 cell. QRT-PCR was employed to assess the miR-330-3p and PRRX1 expressions in the samples, and the cell expressions of PRRX1, GSK-3β, p-GSK-3β, β-catenin, p-β-catenin, cyclin D1, N-cadherin, E-cadherin and vimentin were evaluated by Western blot (WB). MTT, Transwell and wound-healing experiments were adopted to detect cell proliferation, invasion and migration. RESULTS MiR-330-3p was under-expressed, while PRRX1 was highly expressed in the serum of patients, both of which had an area under the curve (AUC) of more than 0.9. MiR-330-3p and PRRX1 were associated with tumor diameter, TNM staging, lymph node metastasis and differentiation of GC patients. Overexpression of miR-330-3p and inhibition of PRRX1 expression could suppress epithelial-mesenchymal transition (EMT), proliferation, invasion and apoptosis of cells. What is more, WB assay showed that overexpressed miR-330-3p and inhibited PRRX1 could inhibit the expression levels of p-GSK-3β, β-catenin, cyclin D1, N-cadherin and vimentin proteins, while elevating GSK-3β, p-β-catenin and E-cadherin protein expressions. Dual-luciferase reporter assay confirmed that there was a targeting relation between miR-330-3p and PRRX1. Furthermore, rescue experiments revealed that the cell proliferation, invasion, migration did not differ significantly between co-transfected miR-330-3p-mimics+sh-PRRX1, miR-330-3p-inhibitor+si-PRRX1 groups of MKN45 and SGC7901 and the miR-NC group (without transfected sequences). CONCLUSION Overexpressed miR-330-3p can promote cell EMT, proliferation, invasion and apoptosis through inhibiting PRRX1-mediated Wnt/β-catenin signaling pathway, which is expected to be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Bingqiang Ma
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Jianxun Ma
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Yili Yang
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Xueyuan He
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Xinmin Pan
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Zhan Wang
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Yaowen Qian
- Department of General Surgery, Cancer Center, Key Laboratory for Diagnosis and Treatment of Gastrointestinal Cancer, Gansu Provincial Hospital, Lanzhou, Gansu Province, People’s Republic of China
| |
Collapse
|
32
|
Mei J, Hao L, Wang H, Xu R, Liu Y, Zhu Y, Liu C. Systematic characterization of non-coding RNAs in triple-negative breast cancer. Cell Prolif 2020; 53:e12801. [PMID: 32249490 PMCID: PMC7260065 DOI: 10.1111/cpr.12801] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/17/2022] Open
Abstract
Triple‐negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer with negativity for oestrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor (HER2). Non‐coding RNAs (ncRNAs) make up most of the transcriptome and are widely present in eukaryotic cells. In recent years, emerging evidence suggests that ncRNAs, mainly microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs), play prominent roles in the tumorigenesis and development of TNBC, but the functions of most ncRNAs have not been fully described. In this review, we systematically elucidate the general characteristics and biogenesis of miRNAs, lncRNAs and circRNAs, discuss the emerging functions of these ncRNAs in TNBC and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Leiyu Hao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Huiyu Wang
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Rui Xu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Chaoying Liu
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
33
|
Yang Z, Qu Z, Yi M, Lv Z, Wang Y, Shan Y, Ran N, Liu X. MiR-204-5p Inhibits Transforming Growth Factor-β1-Induced Proliferation and Extracellular Matrix Production of Airway Smooth Muscle Cells by Regulating Six1 in Asthma. Int Arch Allergy Immunol 2020; 181:239-248. [PMID: 31955160 DOI: 10.1159/000505064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/27/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Transforming growth factor-β1 (TGF-β1)-in-duced proliferation of airway smooth muscle cells plays critical roles in the development of airway remodeling. Six1 (sine oculis homeobox homolog 1) has been demonstrated to be involved in airway inflammation and remodeling in asthmatic mice. OBJECTIVES The aim of this work was to investigate the potential role of miR-204-5p in the proliferation and extracellular matrix (ECM) production of airway smooth muscle cells in asthma. METHODS Real-time PCR was used to measure the expression of miR-204-5p in asthmatic airway smooth muscle cells. Cell viability and apoptosis were detected to evaluate the effect of miR-204-5p on airway smooth muscle cells. Dual-luciferase reporter experiments were applied to identify the target genes of miR-204-5p. RESULTS MiR-204-5p was downregulated notably in asthmatic airway smooth muscle cells as well as cells stimulated with TGF-β1. Overexpression of miR-204-5p markedly suppressed the TGF-β1-induced proliferation of airway smooth muscle cells and the deposition of ECM, whereas the inhibition of miR-204-5p significantly enhanced the proliferation of airway smooth muscle cells and upregulated the level of fibronectin and collagen III. Furthermore, subsequent analyses demonstrated that Six1 was a direct target of miR-204-5p, and Western blot further indicated that miR-204-5p negatively regulated the expression of Six1. Most importantly, the restoration of Six1 expression reversed the inhibitory effect of miR-204-5p on TGF-β1-induced proliferation and ECM production. CONCLUSIONS MiR-204-5p inhibits TGF-β1-in-duced proliferation and ECM production of airway smooth muscle cells by regulating Six1, identifying a potential therapeutic target for preventing airway remodeling in asthma.
Collapse
Affiliation(s)
- Zhaochuan Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.,Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhenghai Qu
- Center of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingji Yi
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhidong Lv
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanxia Wang
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanchun Shan
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ni Ran
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China,
| |
Collapse
|
34
|
Ding L, Gu H, Xiong X, Ao H, Cao J, Lin W, Yu M, Lin J, Cui Q. MicroRNAs Involved in Carcinogenesis, Prognosis, Therapeutic Resistance and Applications in Human Triple-Negative Breast Cancer. Cells 2019; 8:cells8121492. [PMID: 31766744 PMCID: PMC6953059 DOI: 10.3390/cells8121492] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive, prevalent, and distinct subtype of breast cancer characterized by high recurrence rates and poor clinical prognosis, devoid of both predictive markers and potential therapeutic targets. MicroRNAs (miRNA/miR) are a family of small, endogenous, non-coding, single-stranded regulatory RNAs that bind to the 3′-untranslated region (3′-UTR) complementary sequences and downregulate the translation of target mRNAs as post-transcriptional regulators. Dysregulation miRNAs are involved in broad spectrum cellular processes of TNBC, exerting their function as oncogenes or tumor suppressors depending on their cellular target involved in tumor initiation, promotion, malignant conversion, and metastasis. In this review, we emphasize on masses of miRNAs that act as oncogenes or tumor suppressors involved in epithelial–mesenchymal transition (EMT), maintenance of stemness, tumor invasion and metastasis, cell proliferation, and apoptosis. We also discuss miRNAs as the targets or as the regulators of dysregulation epigenetic modulation in the carcinogenesis process of TNBC. Furthermore, we show that miRNAs used as potential classification, prognostic, chemotherapy and radiotherapy resistance markers in TNBC. Finally, we present the perspective on miRNA therapeutics with mimics or antagonists, and focus on the challenges of miRNA therapy. This study offers an insight into the role of miRNA in pathology progression of TNBC.
Collapse
Affiliation(s)
- Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Huan Gu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Xianhui Xiong
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongshun Ao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jiaqi Cao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Wen Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (H.G.); (X.X.); (H.A.); (J.C.); (W.L.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
- Correspondence:
| |
Collapse
|
35
|
Yan C, Hu J, Yang Y, Hu H, Zhou D, Ma M, Xu N. Plasma extracellular vesicle‑packaged microRNAs as candidate diagnostic biomarkers for early‑stage breast cancer. Mol Med Rep 2019; 20:3991-4002. [PMID: 31545424 PMCID: PMC6797958 DOI: 10.3892/mmr.2019.10669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/12/2019] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicle-packaged microRNAs (miRNAs) are a class of circulating miRNAs located in the plasma that are packaged into extracellular vesicles. The present study examined the expression profiles of extracellular vesicles and tissue miRNAs with the aim of investigating the miRNA signatures in early-stage breast cancer. The present study identified and compared the extracellular vesicle-packaged miRNA expression signature and tissue miRNA expression signature from healthy individuals (n=10) and patients with early-stage breast cancer (n=12). A total of five miRNAs, including miRNA-375, miRNA-24-2-5p, miRNA-548b-5p, miRNA-655-3P and miRNA-376b-5p, were synchronized in extracellular vesicles and tissues of the breast cancer group when compared with the healthy group. The highest area under the curve (AUC) for a single miRNA was achieved with miRNA-548b-5p [AUC=0.785; 95% confidence interval (CI)=0.585–0.984; P=0.022]. The highest overall AUC was achieved by the combination of miRNA-375, miRNA-655-3p, miRNA-548b-5p and miRNA-24-2-5p (AUC=0.808; 95% CI=0.629–0.986; P=0.013). The Kaplan-Meier curves and log test analysis results of these five miRNAs, especially those for miRNA-548b-5p, were partly consistent with the hypothesis. Two miRNAs (miRNA-548b-5p and miRNA-376b-5p) were positively associated with patient survival, while two miRNAs (miRNA-375 and miRNA-24-2-5p) were negatively associated with patient survival. The present study provided a set of plasma extracellular vesicle-packaged miRNA-based biomarkers for the diagnosis of early-stage breast cancer.
Collapse
Affiliation(s)
- Chen Yan
- Department of Breast Surgery, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Jintao Hu
- Department of Pathology, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Yipeng Yang
- Department of Breast Surgery, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Hong Hu
- Department of Breast Surgery, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Dongxian Zhou
- Department of Breast Surgery, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Min Ma
- College of Traditional Chinese Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Nan Xu
- Department of Breast Surgery, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
36
|
Wang X, Yang R, Wang Q, Wang Y, Ci H, Wu S. Aberrant expression of vasculogenic mimicry, PRRX1, and CIP2A in clear cell renal cell carcinoma and its clinicopathological significance. Medicine (Baltimore) 2019; 98:e17028. [PMID: 31490389 PMCID: PMC6738984 DOI: 10.1097/md.0000000000017028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Vasculogenic mimicry (VM) involves a tubular structure with a basement membrane that is similar to and communicates with vessels but functions independent of blood vessels to nourish tumor cells, promote tumor progression, invasion, and metastasis, with reduced 5-year survival rates. Tumor cell proliferation, invasion, and metastasis are promoted by the epithelial-mesenchymal transition (EMT). Paired-related homeobox 1 (PRRX1), a newly discovered EMT inducer, has been shown to correlate with metastasis and prognosis in diverse cancer types. Cancerous inhibitor of protein phosphatase 2A (CIP2A) was initially recognized as an oncoprotein. In this study, we aimed to investigate the expression and clinical significance of the EMT markers PRRX1, CIP2A and VM in clear cell renal cell carcinoma (CCRCC) and their respective associations with clinicopathological parameters and survival.Expression of PRRX1, CIP2A and VM in whole CCRCC tissues from 110 patients was analyzed by immunohistochemical and histochemical staining. Fisher's exact test or the chi square test was used to assess associations with positive or negative staining of these markers and clinicopathological characteristics.Positive expression of CIP2A and VM presence was significantly higher and that of PRRX1 was significantly lower in CCRCC tissues than in corresponding normal tissues. Furthermore, positive expression of CIP2A and VM was significantly associated with tumor grade, size, lymph node metastasis (LNM) stage, and tumor node metastasis (TNM) stage and inversely associated with overall survival time (OST). Moreover, levels of PRRX1 were negatively associated with tumor grade, size, LNM stage, and TNM stage. The PRRX1 subgroup had a significantly longer OST time than did the PRRX1 subgroup. In multivariate analysis, high VM and CIP2A, tumor grade, LNM stage, TNM stage, and low PRRX1 levels were identified as potential independent prognostic factors for OST in CCRCC patients.VM and expression of CIP2A and PRRX1 represent promising biomarkers for metastasis and prognosis and potential therapeutic targets in CCRCC.
Collapse
Affiliation(s)
- Xiaolin Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Ruixue Yang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Qi Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Yichao Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Hongfei Ci
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| |
Collapse
|
37
|
Zhou J, Hui X, Mao Y, Fan L. Identification of novel genes associated with a poor prognosis in pancreatic ductal adenocarcinoma via a bioinformatics analysis. Biosci Rep 2019; 39:BSR20190625. [PMID: 31311829 PMCID: PMC6680377 DOI: 10.1042/bsr20190625] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a class of the commonest malignant carcinomas. The present study aimed to elucidate the potential biomarker and prognostic targets in PDAC. The array data of GSE41368, GSE43795, GSE55643, and GSE41369 were downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) and differentially expressed microRNAs (DEmiRNAs) in PDAC were obtained by using GEO2R, and overlapped DEGs were acquired with Venn Diagrams. Functional enrichment analysis of overlapped DEGs and DEmiRNAs was conducted with Metascape and FunRich, respectively. The protein-protein interaction (PPI) network of overlapped DEGs was constructed by STRING and visualized with Cytoscape. Overall survival (OS) of DEmiRNAs and hub genes were investigated by Kaplan-Meier (KM) plotter (KM plotter). Transcriptional data and correlation analyses among hub genes were verified through GEPIA and Human Protein Atlas (HPA). Additionally, miRNA targets were searched using miRTarBase, then miRNA-DEG regulatory network was visualized with Cytoscape. A total of 32 DEmiRNAs and 150 overlapped DEGs were identified, and Metascape showed that DEGs were significantly enriched in cellular chemical homeostasis and pathways in cancer, while DEmiRNAs were mainly enriched in signal transduction and Glypican pathway. Moreover, seven hub genes with a high degree, namely, V-myc avian myelocytomatosis viral oncogene homolog (MYC), solute carrier family 2 member 1 (SLC2A1), PKM, plasminogen activator, urokinase (PLAU), peroxisome proliferator activated receptor γ (PPARG), MET proto-oncogene, receptor tyrosine kinase (MET), and integrin subunit α 3 (ITGA3), were identified and found to be up-regulated between PDAC and normal tissues. miR-135b, miR-221, miR-21, miR-27a, miR-199b-5p, miR-143, miR-196a, miR-655, miR-455-3p, miR-744 and hub genes predicted poor OS of PDAC. An integrative bioinformatics analysis identified several hub genes that may serve as potential biomarkers or targets for early diagnosis and precision target treatment of PDAC.
Collapse
Affiliation(s)
- Jun Zhou
- Department of General Ward 1, Zhejiang Hospital of Lingyin District, Zhejiang, China
| | - Xiaoliang Hui
- Department of General Ward 1, Zhejiang Hospital of Lingyin District, Zhejiang, China
| | - Ying Mao
- Department of General Ward 1, Zhejiang Hospital of Lingyin District, Zhejiang, China
| | - Liya Fan
- Department of Gastroenterology, Zhejiang Hospital of Sandun District, Zhejiang, China
| |
Collapse
|
38
|
Feng YL, Chen DQ, Vaziri ND, Guo Y, Zhao YY. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med Res Rev 2019; 40:54-78. [PMID: 31131921 DOI: 10.1002/med.21596] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
Tissue fibrosis and cancer both lead to high morbidity and mortality worldwide; thus, effective therapeutic strategies are urgently needed. Because drug resistance has been widely reported in fibrotic tissue and cancer, developing a strategy to discover novel targets for targeted drug intervention is necessary for the effective treatment of fibrosis and cancer. Although many factors lead to fibrosis and cancer, pathophysiological analysis has demonstrated that tissue fibrosis and cancer share a common process of epithelial-mesenchymal transition (EMT). EMT is associated with many mediators, including transcription factors (Snail, zinc-finger E-box-binding protein and signal transducer and activator of transcription 3), signaling pathways (transforming growth factor-β1, RAC-α serine/threonine-protein kinase, Wnt, nuclear factor-kappa B, peroxisome proliferator-activated receptor, Notch, and RAS), RNA-binding proteins (ESRP1 and ESRP2) and microRNAs. Therefore, drugs targeting EMT may be a promising therapy against both fibrosis and tumors. A large number of compounds that are synthesized or derived from natural products and their derivatives suppress the EMT by targeting these mediators in fibrosis and cancer. By targeting EMT, these compounds exhibited anticancer effects in multiple cancer types, and some of them also showed antifibrotic effects. Therefore, drugs targeting EMT not only have both antifibrotic and anticancer effects but also exert effective therapeutic effects on multiorgan fibrosis and cancer, which provides effective therapy against fibrosis and cancer. Taken together, the results highlighted in this review provide new concepts for discovering new antifibrotic and antitumor drugs.
Collapse
Affiliation(s)
- Ya-Long Feng
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Dan-Qian Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Nosratola D Vaziri
- Department of Medicine, University of California Irvine, Irvine, California
| | - Yan Guo
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China.,Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
39
|
Wang W, Cao R, Su W, Li Y, Yan H. miR-655-3p inhibits cell migration and invasion by targeting pituitary tumor-transforming 1 in non-small cell lung cancer. Biosci Biotechnol Biochem 2019; 83:1703-1708. [PMID: 31094297 DOI: 10.1080/09168451.2019.1617109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
miR-655-3p functions as a tumor suppressor in tumor metastases; however, its role and mechanism in regulating cell migration and invasion of non-small cell lung cancer (NSCLC) remain unclear. Here, we found that miR-655-3p expression was markedly decreased in the NSCLC cell lines A549, NCI-H1650, PC14/b, NCI-H1299, and HPAEpiC compared to levels observed in normal human lung fibroblasts. miR-655-3p overexpression significantly inhibited migration and invasion of A549 and PC14/b cells, and pituitary tumor-transforming 1 (PTTG1) expression was up-regulated in the NSCLC cells. Luciferase reporter assays indicated that PTTG1 was a direct target of miR-655-3p. Additionally, PTTG1 overexpression alleviated the inhibitory effect of miR-655-3p on migration and invasion abilities in A549 and PC14/b cells. In conclusion, miR-655-3p inhibits NSCLC migration and invasion by targeting PTTG1, suggesting that miR-655-3p may serve as a therapeutic target to provide a new approach for the clinical treatment of NSCLC.
Collapse
Affiliation(s)
- Wei Wang
- a Department of Medical Oncology, Affiliated Hospital of Inner Mongolia Medical University , Hohhot , China
| | - Ranhua Cao
- a Department of Medical Oncology, Affiliated Hospital of Inner Mongolia Medical University , Hohhot , China
| | - Wuyun Su
- a Department of Medical Oncology, Affiliated Hospital of Inner Mongolia Medical University , Hohhot , China
| | - Yulian Li
- b Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University , Hohhot , China
| | - Haicheng Yan
- c Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Medical University , Hohhot , China
| |
Collapse
|
40
|
Cominetti MR, Altei WF, Selistre-de-Araujo HS. Metastasis inhibition in breast cancer by targeting cancer cell extravasation. BREAST CANCER (DOVE MEDICAL PRESS) 2019; 11:165-178. [PMID: 31114313 PMCID: PMC6497883 DOI: 10.2147/bctt.s166725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
The spread of cells from primary tumors toward distant tissues and organs, also known as metastasis, is responsible for most cancer-associated deaths. The metastasis cascade comprises a series of events, characterized by the displacement of tumor cells (TCs) from the primary tumor to distant organs by traveling through the bloodstream, and their subsequent colonization. The first step in metastasis involves loss of cell-cell and cell-matrix adhesions, increased invasiveness and migratory abilities, leading to intravasation of TCs into the blood or lymphatic vessels. Stationary TCs must undergo the process of epithelial-mesenchymal transition in order to achieve this migratory and invasive phenotype. Circulating tumor cells that have survived in the circulation and left the blood or lymphatic vessels will reach distant sites where they may stay dormant for many years or grow to form secondary tumors. To do this, cells need to go through the mesenchymal-epithelial transition to revert the phenotype in order to regain epithelial cell-to-cell junctions, grow and become a clinically relevant and detectable tumor mass. This work will review the main steps of the metastatic cascade and describe some strategies to inhibit metastasis by reducing cancer cell extravasation presenting recent studies in the context of breast cancer.
Collapse
Affiliation(s)
- Márcia R Cominetti
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Wanessa F Altei
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | | |
Collapse
|
41
|
Khaled N, Bidet Y. New Insights into the Implication of Epigenetic Alterations in the EMT of Triple Negative Breast Cancer. Cancers (Basel) 2019; 11:cancers11040559. [PMID: 31003528 PMCID: PMC6521131 DOI: 10.3390/cancers11040559] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/22/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common cancer and leading cause of cancer death among women worldwide, encompassing a wide heterogeneity of subtypes with different clinical features. During the last two decades, the use of targeted therapies has emerged in clinical research in order to increase treatment efficiency, improve prognosis and reduce recurrence. However, the triple negative breast cancer (TNBC) subtype remains a clinical challenge, with poor prognosis since no therapeutic targets have been identified. This aggressive breast cancer entity lacks expression of oestrogen receptor (ER) and progesterone receptor (PR), and it does not overexpress human epidermal growth factor receptor 2 (HER2). The major reason for TNBC poor prognosis is early therapeutic escape from conventional treatments, leading to aggressive metastatic relapse. Metastases occur after an epithelial-mesenchymal transition EMT of epithelial cells, allowing them to break free from the primary tumour site and to colonize distant organs. Cancer-associated EMT consists not only of acquired migration and invasion ability, but involves complex and comprehensive reprogramming, including changes in metabolism, expression levels and epigenetic. Recently, many studies have considered epigenetic alterations as the primary initiator of cancer development and metastasis. This review builds a picture of the epigenetic modifications implicated in the EMT of breast cancer. It focuses on TNBC and allows comparisons with other subtypes. It emphasizes the role of the main epigenetic modifications lncRNAs, miRNAs, histone and DNA- modifications in tumour invasion and appearance of metastases. These epigenetic alterations can be considered biomarkers representing potential diagnostic and prognostic factors in order to define a global metastatic signature for TNBC.
Collapse
Affiliation(s)
| | - Yannick Bidet
- Laboratoire d'Oncologie Moléculaire, Centre Jean PERRIN et IMoST, UMR 1240, Inserm/Université Clermont Auvergne 58 rue Montalembert, 63000 Clermont-Ferrand, France.
| |
Collapse
|
42
|
Mohammadi-Yeganeh S, Hosseini V, Paryan M. Wnt pathway targeting reduces triple-negative breast cancer aggressiveness through miRNA regulation in vitro and in vivo. J Cell Physiol 2019; 234:18317-18328. [PMID: 30945294 DOI: 10.1002/jcp.28465] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/10/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022]
Abstract
Triple-negative breast cancer, devoid of estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER-2) expression, is deprived of commonly used targeted therapies. MicroRNAs (miRNAs) are undergoing a revolution in terms of potentially diagnostic or therapeutic elements. Combining computational approaches, we enriched miRNA binding motifs of Wnt pathway-associated upregulated genes. Our in-depth bioinformatics, in vitro and in vivo analyses indicated that miR-381 targets main genes of the Wnt signaling pathway including CTNNB1, RhoA, ROCK1, and c-MYC genes. The expression level of miR-381 and target genes was assessed by quantitative real-time polymerase chain reaction (RT-qPCR) in MCF-7, MDA-MB-231, and MCF-10A as well as 20 breast cancer samples and normal tissues. Luciferase reporter assay was performed. Lentiviral particles containing miR-381 were used to evaluate the effect of miR-381 restoration on cell proliferation, migration, and invasion of the invasive triple-negative MDA-MB-231 cell line and also in a mouse model of breast cancer. The expression of miR-381 was lower than that of normal cells, especially in TNBC cell line and breast tissues. Luciferase assay results confirmed that miR-381 targets all the predicted 3'-untranslated regions (3'-UTRs). Upon miR-381 overexpression, the expression of target genes declined, and the migration and invasion potential of miR-381-receiving MDA-MB-231 cells decreased. In a mouse model of triple-negative breast cancer, miR-381 re-expression inhibited the invasion of cancer cells to lung and liver and prolonged the survival time of cancer cell-bearing mice. Therefore, miR-381 is a regulator of Wnt signaling and its re-expression provides a potentially effective strategy for inhibition of TNBC.
Collapse
Affiliation(s)
- Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahedeh Hosseini
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
43
|
Sun L, Lu S, Bai M, Xiang L, Li J, Jia C, Jiang H. Integrative microRNA-mRNA Analysis of Muscle Tissues in Qianhua Mutton Merino and Small Tail Han Sheep Reveals Key Roles for oar-miR-655-3p and oar-miR-381-5p. DNA Cell Biol 2019; 38:423-435. [PMID: 30864845 DOI: 10.1089/dna.2018.4408] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Qianhua Mutton Merino (QHMM) is a new variety of sheep (Ovis aries) with improved meat performance compared with the traditional Small Tail Han (STH) sheep variety. We recently reported the transcriptome profiling of longissimus muscle tissues between QHMM and STH sheep. In the present study, we aimed to evaluate key micro (mi)RNA-mRNA networks associated with sheep muscle growth and development. We used miRNA sequencing to obtain longissimus muscle miRNA profiles from QHMM and STH sheep. We identified a total of 153 known sheep miRNAs, of which 4 were differentially expressed (DE) between the 2 sheep varieties. We combined these results with mRNA library data to build an miRNA-mRNA network, including 26 target genes of the 4 DE miRNAs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that 26 target genes were significantly enriched in 86 biological processes, including muscle organogenesis, myoblast migration, cell proliferation, and adipose tissue development, and in 9 metabolic pathways, including carbohydrate, nucleotide, and amino acid metabolic pathways. oar-miR-655-3p and its target gene ACSM3 and oar-miR-381-5p and its target gene ABAT were selected for subsequent analysis based on GO and KEGG analyses. The binding sites of oar-miR-655-3p with ACSM3 and oar-miR-381-5p with ABAT were validated by a dual-luciferase reporter gene detection system. This represents the first integrative analysis of miRNA-mRNA networks in QHMM and STH muscles and suggests that DE miRNAs, especially oar-miR-655-3p and oar-miR-381-5p, play crucial roles in muscle growth and development.
Collapse
Affiliation(s)
- Limin Sun
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Songyan Lu
- 2 Jilin Animal Disease Control Center, Changchun, China
| | - Man Bai
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Lujie Xiang
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jiarong Li
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chao Jia
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Huaizhi Jiang
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
44
|
Wang D, Bao F, Teng Y, Li Q, Li J. MicroRNA-506-3p initiates mesenchymal-to-epithelial transition and suppresses autophagy in osteosarcoma cells by directly targeting SPHK1. Biosci Biotechnol Biochem 2019; 83:836-844. [PMID: 30669957 DOI: 10.1080/09168451.2019.1569496] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor. In cancer cells, autophagy is related to epithelial-to-mesenchymal transition (EMT). Although microRNA (miR)-506-3p has been demonstrated to act as a tumor suppressor in OS, its role in regulating the EMT process and autophagy remains unknown. The results showed that miR-506-3p directly inhibited the expression of sphingosine kinase 1 (SPHK1) in 143B and SaOS-2 cells. The invasive capability of OS cells was reduced following miR-506-3p mimics transfection, and restored when SPHK1 was overexpressed simultaneously. Further, miR-506-3p mimics initiated mesenchymal-to-epithelial transition (MET) - E-cadherin expression was upregulated, whilst vimentin and fibronectin were downregulated. The basal autophagy flux (LC3II/I) was suppressed by miR-506-3p mimics. The alterations induced by miR-506-3p mimics were partly reversed by SPHK1 overexpression or treatment of rapamycin. Meanwhile, treatment of SPHK1-transfected cells with 3-methyladenine inhibited EMT. The data suggest that miR-506-3p initiates MET and suppresses autophagy in OS cells by targeting SPHK1.
Collapse
Affiliation(s)
- Dapeng Wang
- a Department of Orthopaedic Surgery , Shengjing Hospital of China Medical University , Shenyang , Liaoning , People's Republic of China
| | - Fuqin Bao
- a Department of Orthopaedic Surgery , Shengjing Hospital of China Medical University , Shenyang , Liaoning , People's Republic of China
| | - Yugang Teng
- b Department of Orthopaedic Surgery , Fuxin Central Hospital , Fuxin , Liaoning , People's Republic of China
| | - Qiang Li
- b Department of Orthopaedic Surgery , Fuxin Central Hospital , Fuxin , Liaoning , People's Republic of China
| | - Jianjun Li
- a Department of Orthopaedic Surgery , Shengjing Hospital of China Medical University , Shenyang , Liaoning , People's Republic of China
| |
Collapse
|
45
|
Lv ZD, Xin HN, Yang ZC, Wang WJ, Dong JJ, Jin LY, Li FN. miR-135b promotes proliferation and metastasis by targeting APC in triple-negative breast cancer. J Cell Physiol 2019; 234:10819-10826. [PMID: 30624764 DOI: 10.1002/jcp.27906] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. The aim of our study was to investigate the functional role of microRNA-135b (miR-135b) in TNBC. A real-time polymerase chain reaction assay was used to quantify miR-135b expression levels in 90 paired TNBC tissue and adjacent normal tissue samples. Wound-healing and transwell assays were performed to evaluate the effects of miR-135b expression on the migration and invasion of TNBC cells. Luciferase reporter and western blot analyses were used to verify whether the mRNA encoding APC is a major target of miR-135b. In the current study, we found that miR-135b was highly expressed in TNBC tissue and cells, and the expression levels were correlated with lymph node status and TNM stage. In TNBC cells, the ectopic expression of miR-135b promoted cell proliferation and invasion in vitro. In addition, our study proved that the overexpression of miR-135b significantly suppressed APC expression by targeting the 3'-untranslated region of APC, whereas enhanced APC expression could partially abrogate the miR-135b-mediated promotion of carcinogenic traits in TNBC cells. Taken together, our study demonstrated that miR-135b expression promoted the proliferation and invasion of TNBC by downregulating APC expression, indicating that miR-135b may serve as a promising target for the treatment of TNBC patients.
Collapse
Affiliation(s)
- Zhi-Dong Lv
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Hai-Na Xin
- Department of General Surgery, Maternity and Child Care Hospital of Weifang, Weifang, People's Republic of China
| | - Zhao-Chuan Yang
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Wen-Juan Wang
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jiao-Jiao Dong
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Li-Ying Jin
- Cerebrovascular Disease Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Fu-Nian Li
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
46
|
Kiuchi J, Komatsu S, Imamura T, Nishibeppu K, Shoda K, Arita T, Kosuga T, Konishi H, Shiozaki A, Okamoto K, Fujiwara H, Ichikawa D, Otsuji E. Low levels of tumour suppressor miR-655 in plasma contribute to lymphatic progression and poor outcomes in oesophageal squamous cell carcinoma. Mol Cancer 2019; 18:2. [PMID: 30609933 PMCID: PMC6320607 DOI: 10.1186/s12943-018-0929-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/26/2018] [Indexed: 01/07/2023] Open
Abstract
Recent studies identified that low levels of tumour suppressor microRNAs (miRNAs) in plasma/serum relate to tumour progression and poor outcomes in cancers. We selected six candidates (miR-126, 133b, 143, 203, 338-3p, 655) of tumour suppressor miRNAs in oesophageal squamous cell carcinoma (ESCC) by a systematic review of NCBI database. Of these, miR-655 levels were significantly down-regulated in plasma of ESCC patients compared to healthy volunteers by test- and validation-scale analyses. Low levels of plasma miR-655 were significantly associated with lymphatic invasion, lymph node metastasis and advanced stage. Univariate and multivariate analysis revealed that the low level of plasma miR-655 was an independent risk factor of lymphatic progression and a poor prognostic factor. Overexpression of miR-655 in ESCC cells inhibited cell proliferation, migration, invasion and epithelial-mesenchymal transition. Increased plasma miR-655 levels by the subcutaneous injection significantly inhibited lymph node metastasis in mice. Low levels of miR-655 in plasma relate to lymphatic progression and poor outcomes, and the restoration of the plasma miR-655 levels might inhibit tumour and lymphatic progression in ESCC.
Collapse
Affiliation(s)
- Jun Kiuchi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Taisuke Imamura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Keiji Nishibeppu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Daisuke Ichikawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
47
|
Oncogenic Metabolism Acts as a Prerequisite Step for Induction of Cancer Metastasis and Cancer Stem Cell Phenotype. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1027453. [PMID: 30671168 PMCID: PMC6323533 DOI: 10.1155/2018/1027453] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
Abstract
Metastasis is a major obstacle to the efficient and successful treatment of cancer. Initiation of metastasis requires epithelial-mesenchymal transition (EMT) that is regulated by several transcription factors, including Snail and ZEB1/2. EMT is closely linked to the acquisition of cancer stem cell (CSC) properties and chemoresistance, which contribute to tumor malignancy. Tumor suppressor p53 inhibits EMT and metastasis by negatively regulating several EMT-inducing transcription factors and regulatory molecules; thus, its inhibition is crucial in EMT, invasion, metastasis, and stemness. Metabolic alterations are another hallmark of cancer. Most cancer cells are more dependent on glycolysis than on mitochondrial oxidative phosphorylation for their energy production, even in the presence of oxygen. Cancer cells enhance other oncogenic metabolic pathways, such as glutamine metabolism, pentose phosphate pathway, and the synthesis of fatty acids and cholesterol. Metabolic reprogramming in cancer is regulated by the activation of oncogenes or loss of tumor suppressors that contribute to tumor progression. Oncogenic metabolism has been recently linked closely with the induction of EMT or CSC phenotypes by the induction of several metabolic enzyme genes. In addition, several transcription factors and molecules involved in EMT or CSCs, including Snail, Dlx-2, HIF-1α, STAT3, TGF-β, Wnt, and Akt, regulate oncogenic metabolism. Moreover, p53 induces metabolic change by directly regulating several metabolic enzymes. The collective data indicate the importance of oncogenic metabolism in the regulation of EMT, cell invasion and metastasis, and adoption of the CSC phenotype, which all contribute to malignant transformation and tumor development. In this review, we highlight the oncogenic metabolism as a key regulator of EMT and CSC, which is related with tumor progression involving metastasis and chemoresistance. Targeting oncometabolism might be a promising strategy for the development of effective anticancer therapy.
Collapse
|
48
|
Khordadmehr M, Shahbazi R, Ezzati H, Jigari-Asl F, Sadreddini S, Baradaran B. Key microRNAs in the biology of breast cancer; emerging evidence in the last decade. J Cell Physiol 2018; 234:8316-8326. [PMID: 30422324 DOI: 10.1002/jcp.27716] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
microRNAs (miRNAs) are a family of small noncoding RNAs that play a pivotal role in the regulation of main biological and physiological processes, including cell cycle regulation, proliferation, differentiation, apoptosis, stem cell maintenance, and organ development. Dysregulation of these tiny molecules has been related to different human diseases, such as cancer. It has been estimated that more than 50% of these noncoding RNA sequences are placed on fragile sites or cancer-associated genomic regions. After the discovery of the first specific miRNA signatures in breast cancer, many studies focused on the involvement of these small RNAs in the pathophysiology of breast tumors and their possible clinical implications as reliable prognostic biomarkers or as a new therapeutic approach. Therefore, the present review will focus on the recent findings on the involvement of miRNAs in the biology of breast cancer associated with their clinical implications.
Collapse
Affiliation(s)
- Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary, Medicine, University of Tabriz, Tabriz, East Azerbaijan, Iran
| | - Roya Shahbazi
- Department of Pathology, Faculty of Veterinary, Medicine, University of Tabriz, Tabriz, East Azerbaijan, Iran
| | - Hamed Ezzati
- Department of Pathology, Faculty of Veterinary, Medicine, University of Tabriz, Tabriz, East Azerbaijan, Iran
| | - Farinaz Jigari-Asl
- Department of Pathology, Faculty of Veterinary, Medicine, University of Tabriz, Tabriz, East Azerbaijan, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Abstract
Intestinal-type gastric carcinoma exhibits a multistep carcinogenic sequence from adenoma to carcinoma with a gradual increase in genomic alterations. But the roles of microRNAs (miRNA) in this multistage cascade are not fully explored. To identify differentially expressed miRNA (DEM) during early gastric carcinogenesis, we performed miRNA microarray profiling with 24 gastric cancers and precursor lesions (7 early gastric cancer [EGC], 3 adenomas with high-grade dysplasia, 4 adenomas with low-grade dysplasia, and 10 adjacent normal tissues). Alterations in the expression of 132 miRNA were detected; these were categorized into three groups based on their expression patterns. Of these, 42 miRNAs were aberrantly expressed in EGC. Five miRNA (miR-26a, miR-375, miR-574-3p, miR-145, and miR-15b) showed decreased expression since adenoma. Expression of two miRNA, miR-200C and miR-29a, was down-regulated in EGCs compared to normal mucosa or adenomas. Six miRNA (miR-601, miR-107, miR-18a, miR-370, miR-300, and miR-96) showed increased expression in gastric cancer compared to normal or adenoma samples. Five representative miRNAs were further validated with RT-qPCR in independent 77 samples. Taken together, these results suggest that the dysregulated miRNA show alterations at the early stages of gastric tumorigenesis and may be used as a candidate biomarker.
Collapse
|
50
|
Li J, Gong X, Jiang R, Lin D, Zhou T, Zhang A, Li H, Zhang X, Wan J, Kuang G, Li H. Fisetin Inhibited Growth and Metastasis of Triple-Negative Breast Cancer by Reversing Epithelial-to-Mesenchymal Transition via PTEN/Akt/GSK3β Signal Pathway. Front Pharmacol 2018; 9:772. [PMID: 30108501 PMCID: PMC6080104 DOI: 10.3389/fphar.2018.00772] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
Triple negative breast cancer (TNBC), characterized by its highly aggressive and metastatic features, is associated with poor prognosis and high mortality partly due to lack of effective treatment. Fisetin, a natural flavonoid compound, has been demonstrated to possess anti-cancer effects in various cancers. However, the effects and mechanisms of fisetin on metastasis of TNBC remain uncovered. In this study, we found that fisetin dose-dependently inhibited cell proliferation, migration and invasion in TNBC cell lines MDA-MB-231 and BT549 cells. In addition, fisetin reversed epithelial to mesenchymal transition (EMT) as evaluated by cell morphology and EMT markers in MDA-MB-231 and BT549 cells. Furthermore, fisetin suppressed phosphoinositol 3-kinase (PI3K)-Akt-GSK-3β signaling pathway but upregulated the expression of PTEN mRNA and protein in a concentration-dependent manner. Further, silence of PTEN by siRNA abolished these benefits of fisetin on proliferation and metastasis of TNBCs. In vivo, using the metastatic breast cancer xenograft model bearing MDA-MB-231 cells, we found that fisetin dramatically inhibited growth of primary breast tumor and reduced lung metastasis, meanwhile, the expression of EMT molecules and PTEN/Akt/GSK-3β in primary and metastatic tissues changed in the same way as those in vitro experiments. In conclusion, all these results indicated that fisetin could effectively suppress proliferation and metastasis of TNBC and reverse EMT process, which might be mediated by PTEN/Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Dan Lin
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Tao Zhou
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Aijie Zhang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Zhang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Ge Kuang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Hongyuan Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|