1
|
Capetini VC, Quintanilha BJ, Garcia BREV, Rogero MM. Dietary modulation of microRNAs in insulin resistance and type 2 diabetes. J Nutr Biochem 2024; 133:109714. [PMID: 39097171 DOI: 10.1016/j.jnutbio.2024.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
The prevalence of type 2 diabetes is increasing worldwide. Various molecular mechanisms have been proposed to interfere with the insulin signaling pathway. Recent advances in proteomics and genomics indicate that one such mechanism involves the post-transcriptional regulation of insulin signaling by microRNA (miRNA). These noncoding RNAs typically induce messenger RNA (mRNA) degradation or translational repression by interacting with the 3' untranslated region (3'UTR) of target mRNA. Dietary components and patterns, which can either enhance or impair the insulin signaling pathway, have been found to regulate miRNA expression in both in vitro and in vivo studies. This review provides an overview of the current knowledge of how dietary components influence the expression of miRNAs related to the control of the insulin signaling pathway and discusses the potential application of these findings in precision nutrition.
Collapse
Affiliation(s)
- Vinícius Cooper Capetini
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil; Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, Institute of Pharmaceutical Science, Department of Pharmacology, King's College London, London, United Kingdom.
| | - Bruna Jardim Quintanilha
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| | - Bruna Ruschel Ewald Vega Garcia
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| |
Collapse
|
2
|
Ghofrani-Shahpar M, Pakravan K, Razmara E, Amooie F, Mahmoudian M, Heshmati M, Babashah S. Cancer-associated fibroblasts drive colorectal cancer cell progression through exosomal miR-20a-5p-mediated targeting of PTEN and stimulating interleukin-6 production. BMC Cancer 2024; 24:400. [PMID: 38561726 PMCID: PMC10983759 DOI: 10.1186/s12885-024-12190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND This study evaluated the clinical relevance of a set of five serum-derived circulating microRNAs (miRNAs) in colorectal cancer (CRC). Additionally, we investigated the role of miR-20a-5p released by exosomes derived from cancer-associated fibroblasts (CAFs) in the context of CRC. METHODS The expression levels of five circulating serum-derived miRNAs (miR-20a-5p, miR-122-5p, miR-139-3p, miR-143-5p, and miR-193a-5p) were quantified by real-time quantitative PCR (RT-qPCR), and their associations with clinicopathological characteristics in CRC patients were assessed. The diagnostic accuracy of these miRNAs was determined through Receiver Operating Characteristic (ROC) curve analysis. CAFs and normal fibroblasts (NFs) were isolated from tissue samples, and subsequently, exosomes derived from these cells were isolated and meticulously characterized using electron microscopy and Western blotting. The cellular internalization of fluorescent-labeled exosomes was visualized by confocal microscopy. Gain- and loss-of-function experiments were conducted to elucidate the oncogenic role of miR-20a-5p transferred by exosomes derived from CAFs in CRC progression. The underlying mechanisms were uncovered through luciferase reporter assay, Western blotting, enzyme-linked immunosorbent assays, as well as proliferation and migration assays. RESULTS The expression levels of serum-derived circulating miR-20a-5p and miR-122-5p were significantly higher in CRC and were positively correlated with advanced stages of tumorigenesis and lymph node metastasis (LNM). In contrast, circulating miR-139-3p, miR-143-5p, and miR-193a-5p were down-regulated in CRC and associated with early tumorigenesis. Except for miR-139-3p, they showed a negative correlation with LNM status. Among the candidate miRNAs, significantly elevated levels of miR-20a-5p were observed in both cellular and exosomal fractions of CAFs. Our findings indicated that miR-20a-5p induces the expression of EMT markers, partly by targeting PTEN. Exosomal miR-20a secreted by CAFs emerged as a key factor enhancing the proliferation and migration of CRC cells. The inhibition of miR-20a impaired the proliferative and migratory potential of CAF-derived exosomes in SW480 CRC cells, suggesting that the oncogenic effects of CAF-derived exosomes are mediated through the exosomal transfer of miR-20a. Furthermore, exosomes originating from CAFs induced increased nuclear translocation of the NF-kB p65 transcription factor in SW480 CRC cells, leading to increased interleukin-6 (IL-6) production. CONCLUSIONS We established a set of five circulating miRNAs as a non-invasive biomarker for CRC diagnosis. Additionally, our findings shed light on the intricate mechanisms underpinning the oncogenic impacts of CAF-derived exosomes and underscore the pivotal role of miR-20a-5p in CRC progression.
Collapse
Affiliation(s)
- Mahsa Ghofrani-Shahpar
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Faezeh Amooie
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Mojdeh Mahmoudian
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Heshmati
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Zhang J, Gao J, Li X, Lin D, Li Z, Wang J, Chen J, Gao Z, Lin B. Bone marrow mesenchymal stem cell-derived small extracellular vesicles promote liver regeneration via miR-20a-5p/PTEN. Front Pharmacol 2023; 14:1168545. [PMID: 37305542 PMCID: PMC10248071 DOI: 10.3389/fphar.2023.1168545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Balancing hepatocyte death and proliferation is key to non-transplantation treatments for acute liver failure (ALF), which has a high short-term mortality rate. Small extracellular vesicles (sEVs) may act as mediators in the repair of damaged liver tissue by mesenchymal stem cells (MSCs). We aimed to investigate the efficacy of human bone marrow MSC-derived sEVs (BMSC-sEVs) in treating mice with ALF and the molecular mechanisms involved in regulating hepatocyte proliferation and apoptosis. Small EVs and sEV-free BMSC concentrated medium were injected into mice with LPS/D-GalN-induced ALF to assess survival, changes in serology, liver pathology, and apoptosis and proliferation in different phases. The results were further verified in vitro in L-02 cells with hydrogen peroxide injury. BMSC-sEV-treated mice with ALF had higher 24 h survival rates and more significant reductions in liver injury than mice treated with sEV-free concentrated medium. BMSC-sEVs reduced hepatocyte apoptosis and promoted cell proliferation by upregulating miR-20a-5p, which targeted the PTEN/AKT signaling pathway. Additionally, BMSC-sEVs upregulated the mir-20a precursor in hepatocytes. The application of BMSC-sEVs showed a positive impact by preventing the development of ALF, and may serve as a promising strategy for promoting ALF liver regeneration. miR-20a-5p plays an important role in liver protection from ALF by BMSC-sEVs.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Juan Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xianlong Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dengna Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihui Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jialei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junfeng Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bingliang Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Khan AA, Gupta V, Mahapatra NR. Key regulatory miRNAs in lipid homeostasis: implications for cardiometabolic diseases and development of novel therapeutics. Drug Discov Today 2022; 27:2170-2180. [PMID: 35550438 DOI: 10.1016/j.drudis.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022]
Abstract
Dysregulation of lipid metabolism is associated with cardiovascular/metabolic diseases, including atherosclerosis, liver diseases and type 2 diabetes mellitus (T2DM). Several miRNAs have been reported as regulators of different stages of lipid homeostasis, including cholesterol/fatty acid biosynthesis, degradation, transport, storage, and low-density (LDL) and high-density lipoprotein (HDL) formation. Indeed, various miRNAs are emerging as attractive therapeutic candidates for metabolic/cardiovascular disease (CVD). Here, we summarize the roles of miR-19b, miR-20a, miR-21, miR-27, miR-29, miR-34a, miR-144, miR-148a, and miR-199a in post-transcriptional regulation of genes involved in lipid metabolism and their therapeutic potential. We also discuss experimental strategies for further development of these miRNAs as novel cardiometabolic therapeutics. Teaser: miRNAs have emerged as crucial regulators of lipid homeostasis. Here, we highlight key miRNAs that regulate lipid metabolism and their therapeutic potential in cardiometabolic disease states.
Collapse
Affiliation(s)
- Abrar A Khan
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Vinayak Gupta
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; Department of Biotechnology, Bennett University, Plot No. 8-11, Techzone II, Greater Noida 201310, Uttar Pradesh, India
| | - Nitish R Mahapatra
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
5
|
Liao W, Xu N, Zhang H, Liao W, Wang Y, Wang S, Zhang S, Jiang Y, Xie W, Zhang Y. Persistent high glucose induced EPB41L4A-AS1 inhibits glucose uptake via GCN5 mediating crotonylation and acetylation of histones and non-histones. Clin Transl Med 2022; 12:e699. [PMID: 35184403 PMCID: PMC8858623 DOI: 10.1002/ctm2.699] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Persistent hyperglycemia decreases the sensitivity of insulin-sensitive organs to insulin, owing to which cells fail to take up and utilize glucose, which exacerbates the progression of type 2 diabetes mellitus (T2DM). lncRNAs' abnormal expression is reported to be associated with the progression of diabetes and plays a significant role in glucose metabolism. Herein, we study the detailed mechanism underlying the functions of lncRNA EPB41L4A-AS1in T2DM. METHODS Data from GEO datasets were used to analyze the expression of EPB41L4A-AS1 between insulin resistance or type 2 diabetes patients and the healthy people. Gene expression was evaluated by qRT-PCR and western blotting. Glucose uptake was measured by Glucose Uptake Fluorometric Assay Kit. Glucose tolerance of mice was detected by Intraperitoneal glucose tolerance tests. Cell viability was assessed by CCK-8 assay. The interaction between EPB41L4A-AS1 and GCN5 was explored by RNA immunoprecipitation, RNA pull-down and RNA-FISH combined immunofluorescence. Oxygen consumption rate was tested by Seahorse XF Mito Stress Test. RESULTS EPB41L4A-AS1 was abnormally increased in the liver of patients with T2DM and upregulated in the muscle cells of patients with insulin resistance and in T2DM cell models. The upregulation was associated with increased TP53 expression and reduced glucose uptake. Mechanistically, through interaction with GCN5, EPB41L4A-AS1 regulated histone H3K27 crotonylation in the GLUT4 promoter region and nonhistone PGC1β acetylation, which inhibited GLUT4 transcription and suppressed glucose uptake by muscle cells. In contrast, EPB41L4A-AS1 binding to GCN5 enhanced H3K27 and H3K14 acetylation in the TXNIP promoter region, which activated transcription by promoting the recruitment of the transcriptional activator MLXIP. This enhanced GLUT4/2 endocytosis and further suppressed glucose uptake. CONCLUSION Our study first showed that the EPB41L4A-AS1/GCN5 complex repressed glucose uptake via targeting GLUT4/2 and TXNIP by regulating histone and nonhistone acetylation or crotonylation. Since a weaker glucose uptake ability is one of the major clinical features of T2DM, the inhibition of EPB41L4A-AS1 expression seems to be a potentially effective strategy for drug development in T2DM treatment.
Collapse
Affiliation(s)
- Weijie Liao
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- School of Life SciencesTsinghua UniversityBeijingP. R. China
| | - Naihan Xu
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Open FIESTA CenterTsinghua UniversityShenzhenP. R. China
| | - Haowei Zhang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- School of Life SciencesTsinghua UniversityBeijingP. R. China
| | - Weifang Liao
- College of life science and technologyWuhan Polytechnic UniversityWuhanP. R. China
| | - Yanzhi Wang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- School of Life SciencesTsinghua UniversityBeijingP. R. China
| | - Songmao Wang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- School of Life SciencesTsinghua UniversityBeijingP. R. China
| | - Shikuan Zhang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- School of Life SciencesTsinghua UniversityBeijingP. R. China
| | - Yuyang Jiang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
| | - Weidong Xie
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Open FIESTA CenterTsinghua UniversityShenzhenP. R. China
| | - Yaou Zhang
- State Key Laboratory of Chemical OncogenomicsTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Key Lab in Healthy Science and TechnologyDivision of Life ScienceTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenP. R. China
- Open FIESTA CenterTsinghua UniversityShenzhenP. R. China
| |
Collapse
|
6
|
Gao H, Zhang Y, Xue H, Zhang Q, Zhang Y, Shen Y, Bing X. Long Non-coding RNA Peg13 Alleviates Hypoxic-Ischemic Brain Damage in Neonatal Mice via miR-20a-5p/XIAP Axis. Neurochem Res 2022; 47:656-666. [PMID: 35043374 DOI: 10.1007/s11064-021-03474-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023]
Abstract
Long noncoding RNA (LncRNA) Peg13 has been demonstrated to protect against neurological diseases. However, its underlying mechanism in the progression of hypoxic-ischemic brain damage (HIBD) has not been well investigated. The expression of target genes was determined in neonatal mice with HIBD and in mouse hippocampal neurons during oxygen-glucose deprivation (OGD) using quantitative real-time PCR (qRT-PCR) and immunoblotting. Functional assays, including CCK-8 cell viability and apoptotic cell detection using TdT mediated dUTP nick ending labeling (TUNEL) assay were used to examine the neuroprotective role of Peg13 in mouse hippocampal neurons. Luciferase assays were performed to determine the regulatory mechanism of Peg13 in OGD-induced neuronal apoptosis. Peg13 was reduced in HIBD mice and OGD-treated mouse hippocampal neurons. Altered Peg13 expression relieved OGD-induced neuronal apoptosis. Mechanistically, Peg13 may serve as a sponge for miR-20a-5p to increase the expression of X chromosome-linked inhibitor of apoptosis (XIAP), a downstream target of miR-20a-5p. Our study showed that Peg13 fulfilled its anti-apoptotic function in neurons through suppressing XIAP expression by sponging miR-20a-5p. Together, Peg13 binds to miR-20a-5p to upregulate XIAP and alleviate HIBD in neonatal mice. The Peg13/miR-20a-5p/XIAP competing endogenous RNA (ceRNA) axis could be a potential therapeutic target for HIBD.
Collapse
Affiliation(s)
- Huan Gao
- Department of Children's Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yue Zhang
- Department of Ophthalmonogy, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Huijing Xue
- Department of Children's Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qifei Zhang
- Department of Children's Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yan Zhang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yusi Shen
- Second Department of Orthopedic Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiaosan Bing
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441000, Hubei, China.
| |
Collapse
|
7
|
Bourgeois BL, Lin HY, Yeh AY, Levitt DE, Primeaux SD, Ferguson TF, Molina PE, Simon L. Unique circulating microRNA associations with dysglycemia in people living with HIV and alcohol use. Physiol Genomics 2022; 54:36-44. [PMID: 34859690 PMCID: PMC8891241 DOI: 10.1152/physiolgenomics.00085.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
People living with HIV (PLWH) have increased prevalence of comorbid conditions including insulin resistance and at-risk alcohol use. Circulating microRNAs (miRs) may serve as minimally invasive indicators of pathophysiological states. We aimed to identify whether alcohol modulates circulating miR associations with measures of glucose/insulin dynamics in PLWH. PLWH (n = 96; 69.8% males) enrolled in the Alcohol & Metabolic Comorbidities in PLWH: Evidence-Driven Interventions (ALIVE-Ex) study were stratified into negative phosphatidylethanol (PEth < 8 ng/mL, n = 42) and positive PEth (PEth ≥ 8 ng/mL, n = 54) groups. An oral glucose tolerance test (OGTT) was administered, and total RNA was isolated from fasting plasma to determine absolute miR expression. Circulating miRs were selected based on their role in skeletal muscle (miR-133a and miR-206), pancreatic β-cell (miR-375), liver (miR-20a), and adipose tissue (miR-let-7b, miR-146a, and miR-221) function. Correlation and multiple regression analyses between miR expression and adiponectin, 2 h glucose, insulin, and C-peptide values were performed adjusting for body mass index (BMI) category, age, sex, and viral load. miR-133a was negatively associated with adiponectin (P = 0.002) in the negative PEth group, and miR-20a was positively associated with 2 h glucose (P = 0.013) in the positive PEth group. Regression analyses combining miRs demonstrated that miR-133a (P < 0.001) and miR-221 (P = 0.010) together predicted adiponectin in the negative PEth group. miR-20a (P < 0.001) and miR-375 (P = 0.002) together predicted 2 h glucose in the positive PEth group. Our results indicate that associations between miRs and measures of glucose/insulin dynamics differed between PEth groups, suggesting that the pathophysiological mechanisms contributing to altered glucose homeostasis in PLWH are potentially modulated by alcohol use.
Collapse
Affiliation(s)
- Brianna L. Bourgeois
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Hui-Yi Lin
- 2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana,3School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Alice Y. Yeh
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Danielle E. Levitt
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Stefany D. Primeaux
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,4Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Tekeda F. Ferguson
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana,5Department of Epidemiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E. Molina
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Liz Simon
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
8
|
Palihaderu PADS, Mendis BILM, Premarathne JMKJK, Dias WKRR, Yeap SK, Ho WY, Dissanayake AS, Rajapakse IH, Karunanayake P, Senarath U, Satharasinghe DA. Potential role of microRNAs in selective hepatic insulin resistance: From paradox to the paradigm. Front Endocrinol (Lausanne) 2022; 13:1028846. [PMID: 36479211 PMCID: PMC9720316 DOI: 10.3389/fendo.2022.1028846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The paradoxical action of insulin on hepatic glucose metabolism and lipid metabolism in the insulin-resistant state has been of much research interest in recent years. Generally, insulin resistance would promote hepatic gluconeogenesis and demote hepatic de novo lipogenesis. The underlying major drivers of these mechanisms were insulin-dependent, via FOXO-1-mediated gluconeogenesis and SREBP1c-mediated lipogenesis. However, insulin-resistant mouse models have shown high glucose levels as well as excess lipid accumulation. As suggested, the inert insulin resistance causes the activation of the FOXO-1 pathway promoting gluconeogenesis. However, it does not affect the SREBP1c pathway; therefore, cells continue de novo lipogenesis. Many hypotheses were suggested for this paradoxical action occurring in insulin-resistant rodent models. A "downstream branch point" in the insulin-mediated pathway was suggested to act differentially on the FOXO-1 and SREBP1c pathways. MicroRNAs have been widely studied for their action of pathway mediation via suppressing the intermediate protein expressions. Many in vitro studies have postulated the roles of hepato-specific expressions of miRNAs on insulin cascade. Thus, miRNA would play a pivotal role in selective hepatic insulin resistance. As observed, there were confirmations and contradictions between the outcomes of gene knockout studies conducted on selective hepatic insulin resistance and hepato-specific miRNA expression studies. Furthermore, these studies had evaluated only the effect of miRNAs on glucose metabolism and few on hepatic de novo lipogenesis, limiting the ability to conclude their role in selective hepatic insulin resistance. Future studies conducted on the role of miRNAs on selective hepatic insulin resistance warrant the understanding of this paradoxical action of insulin.
Collapse
Affiliation(s)
| | | | | | | | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- Faculty of Sciences and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | | | | | - Panduka Karunanayake
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Upul Senarath
- Department of Community Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Dilan Amila Satharasinghe
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
- *Correspondence: Dilan Amila Satharasinghe,
| |
Collapse
|
9
|
Li L, Zuo H, Huang X, Shen T, Tang W, Zhang X, An T, Dou L, Li J. Bone marrow macrophage-derived exosomal miR-143-5p contributes to insulin resistance in hepatocytes by repressing MKP5. Cell Prolif 2021; 54:e13140. [PMID: 34647385 PMCID: PMC8666281 DOI: 10.1111/cpr.13140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE In this study, we aim to explore the role of bone marrow macrophage-derived exosomes in hepatic insulin resistance, investigate the substance in exosomes that regulates hepatic insulin signalling pathways, reveal the specific molecular mechanisms involved in hepatic insulin resistance and further explore the role of exosomes in type 2 diabetes. MATERIALS AND METHODS High-fat diet (HFD)-fed mice were used as obesity-induced hepatic insulin resistance model, exosomes were isolated from BMMs which were extracted from HFD-fed mice by ultracentrifugation. Exosomes were analysed the spectral changes of microRNA expression using a microRNA array. The activation of the insulin signalling pathway and the level of glycogenesis were examined in hepatocytes after transfected with miR-143-5p mimics. Luciferase assay and western blot were used to assess the target of miR-143-5p. RESULTS BMMs from HFD-fed mice were polarized towards M1, and miR-143-5p was significantly upregulated in exosomes of BMMs from HFD-fed mice. Overexpression of miR-143-5p in Hep1-6 cells led to decreased phosphorylation of AKT and GSK and glycogen synthesis. Dual-luciferase reporter assay and western blot demonstrated that mitogen-activated protein kinase phosphatase-5 (Mkp5, also known as Dusp10) was the target gene of miR-143-5p. Moreover, the overexpression of MKP5 could rescue the insulin resistance induced by transfection miR-143-5p mimics in Hep1-6. CONCLUSION Bone marrow macrophage-derived exosomal miR-143-5p induces insulin resistance in hepatocytes through repressing MKP5.
Collapse
Affiliation(s)
- Linfang Li
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsBeijing Hospital, National Center of GerontologyNational Health Commission; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
- Graduate School of Peking Union Medical CollegeBeijingChina
| | - Huiyan Zuo
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsBeijing Hospital, National Center of GerontologyNational Health Commission; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Xiuqing Huang
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsBeijing Hospital, National Center of GerontologyNational Health Commission; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Tao Shen
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsBeijing Hospital, National Center of GerontologyNational Health Commission; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Weiqing Tang
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsBeijing Hospital, National Center of GerontologyNational Health Commission; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Xiaoyi Zhang
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsBeijing Hospital, National Center of GerontologyNational Health Commission; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Tong An
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsBeijing Hospital, National Center of GerontologyNational Health Commission; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Lin Dou
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsBeijing Hospital, National Center of GerontologyNational Health Commission; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Jian Li
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsBeijing Hospital, National Center of GerontologyNational Health Commission; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
- Graduate School of Peking Union Medical CollegeBeijingChina
| |
Collapse
|
10
|
Gao J, Xia S. Reduced miR-519d-3p levels in the synovium and synovial fluid facilitate the progression of post-traumatic osteoarthritis by targeting VEGF. Exp Ther Med 2021; 22:1478. [PMID: 34765019 DOI: 10.3892/etm.2021.10913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to investigate the expression and clinical significance of miR-519d-3p in patients with post-traumatic osteoarthritis (PTOA). The levels of miR-519d-3p in the synovium and synovial fluid (SF) of all subjects were detected by reverse transcription-quantitative polymerase chain reaction. The results of the present study demonstrated that the levels of miR-519d-3p in the synovium and SF of patients with PTOA were significantly lower, but that the VEGF content was significantly higher, compared with that of control group. Dual-luciferase reporter and Western blot assays demonstrated that VEGF was a target gene of miR-519d-3p. Furthermore, miR-519d-3p inhibitor-induced cell apoptosis, and cell cycle arrest could be partially reversed by silencing VEGF. Additionally, the level of miR-519d-3p in the synovium and SF of patients with PTOA was negatively correlated with the level of VEGF. ROC analysis demonstrated that miR-519d-3p levels in the synovium and SF could effectively differentiate patients with PTOA from healthy controls, with areas under the ROC curve of 0.928 and 0.896, respectively. In conclusion, reduction of miR-519d-3p in the synovium and SF resulted in the upregulation of VEGF in patients with PTOA, and miR-519d-3p may be a potential therapeutic target of PTOA.
Collapse
Affiliation(s)
- Jianlong Gao
- Department of Orthopedics, The Affiliated Jianhu Hospital of Nantong University, Yancheng, Jiangsu 224700, P.R. China
| | - Silong Xia
- Department of Orthopedics, The Affiliated Jianhu Hospital of Nantong University, Yancheng, Jiangsu 224700, P.R. China
| |
Collapse
|
11
|
He T, Zhang X, Hao J, Ding S. Phosphatase and Tensin Homolog in Non-neoplastic Digestive Disease: More Than Just Tumor Suppressor. Front Physiol 2021; 12:684529. [PMID: 34140896 PMCID: PMC8204087 DOI: 10.3389/fphys.2021.684529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
The Phosphatase and tensin homolog (PTEN) gene is one of the most important tumor suppressor genes, which acts through its unique protein phosphatase and lipid phosphatase activity. PTEN protein is widely distributed and exhibits complex biological functions and regulatory modes. It is involved in the regulation of cell morphology, proliferation, differentiation, adhesion, and migration through a variety of signaling pathways. The role of PTEN in malignant tumors of the digestive system is well documented. Recent studies have indicated that PTEN may be closely related to many other benign processes in digestive organs. Emerging evidence suggests that PTEN is a potential therapeutic target in the context of several non-neoplastic diseases of the digestive tract. The recent discovery of PTEN isoforms is expected to help unravel more biological effects of PTEN in non-neoplastic digestive diseases.
Collapse
Affiliation(s)
- Tianyu He
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Xiaoyun Zhang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
12
|
Zhao T, Wang J, He A, Wang S, Chen Y, Lu J, Lv J, Li S, Wang J, Qian M, Li H, Shen X. Mebhydrolin ameliorates glucose homeostasis in type 2 diabetic mice by functioning as a selective FXR antagonist. Metabolism 2021; 119:154771. [PMID: 33831422 DOI: 10.1016/j.metabol.2021.154771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/01/2021] [Accepted: 03/28/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is a chronic disease with hallmarks of hyperglycemia and hyperlipidemia. Long-term hyperglycemia damages the functions of multiple tissues and organs leading to a series of complications and disability or even death. Nuclear receptor farnesoid X receptor (FXR) antagonism has been recently discovered to exhibit beneficial effect on glucose metabolism in T2DM mice, although the underlying mechanisms remain unclear. Here, we performed the study on the discovery of new FXR antagonist and investigated the mechanism underlying the amelioration of FXR antagonism on glucose homeostasis in T2DM mice by using the determined FXR antagonist as a probe. METHODS FXR antagonist Mebhydrolin was discovered by screening against the lab in-house FDA approved drug library through surface plasmon resonance (SPR), microscale thermophoresis (MST), AlphaScreen, mammalian one-hybrid and transactivation assays. Activity of Mebhydrolin in improving glucose homeostasis was evaluated in db/db and HFD/STZ-induced T2DM mice, and the mechanisms governing the regulation of Mebhydrolin were investigated by assays of immunostaining, Western blot, ELISA, RT-PCR against liver tissues of both T2DM mice and the T2DM mice with liver-specific FXR knockdown injected via adeno-associated-virus AAV-FXR-RNAi and mouse primary hepatocytes. Finally, molecular docking and molecular dynamics (MD) technology-based study was performed to investigate the structural basis for the antagonistic regulation of Mebhydrolin against FXR at an atomic level. FINDINGS Mebhydrolin ameliorated blood glucose homeostasis in T2DM mice by both suppressing hepatic gluconeogenesis via FXR/miR-22-3p/PI3K/AKT/FoxO1 pathway and promoting glycogen synthesis through FXR/miR-22-3p/PI3K/AKT/GSK3β pathway. Structurally, residues L291, M332 and Y373 of FXR were required for Mebhydrolin binding to FXR-LBD, and Mebhydrolin induced H2 and H6 shifting of FXR potently affecting the regulation of the downstream target genes. CONCLUSIONS Our work has revealed a novel mode for the regulation of FXR against glucose metabolism in T2DM mice and highlighted the potential of Mebhydrolin in the treatment of T2DM.
Collapse
MESH Headings
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Carbolines/chemistry
- Carbolines/pharmacokinetics
- Carbolines/therapeutic use
- Cells, Cultured
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Gluconeogenesis/drug effects
- Gluconeogenesis/genetics
- Glucose/metabolism
- HEK293 Cells
- Homeostasis/drug effects
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Docking Simulation
- Protein Interaction Domains and Motifs
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Streptozocin
Collapse
Affiliation(s)
- Tong Zhao
- School of Medicine& Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jie Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Anxu He
- School of Medicine& Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shan Wang
- School of Medicine& Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yidi Chen
- School of Medicine& Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Lu
- School of Medicine& Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianlu Lv
- School of Medicine& Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiaying Wang
- School of Medicine& Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Minyi Qian
- School of Medicine& Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Xu Shen
- School of Medicine& Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
13
|
Gong F, Gao L, Ma L, Li G, Yang J. Uncarboxylated osteocalcin alleviates the inhibitory effect of high glucose on osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells by regulating TP63. BMC Mol Cell Biol 2021; 22:24. [PMID: 33906607 PMCID: PMC8080387 DOI: 10.1186/s12860-021-00365-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Progressive population aging has contributed to the increased global prevalence of diabetes and osteoporosis. Inhibition of osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by hyperglycemia is a potential pathogenetic mechanism of osteoporosis in diabetic patients. Uncarboxylated osteocalcin (GluOC), a protein secreted by mature osteoblasts, regulates bone development as well as glucose and lipid metabolism. In our previous studies, GluOC was shown to promote osteoblastic differentiation of BMSCs; however, the underlying mechanisms are not well characterized. Tumor protein 63 (TP63), as a transcription factor, is closely related to bone development and glucose metabolism. RESULTS In this study, we verified that high glucose suppressed osteogenesis and upregulated adipogenesis in BMSCs, while GluOC alleviated this phenomenon. In addition, high glucose enhanced TP63 expression while GluOC diminished it. Knock-down of TP63 by siRNA transfection restored the inhibitory effect of high glucose on osteogenic differentiation. Furthermore, we detected the downstream signaling pathway PTEN/Akt/GSK3β. We found that diminishing TP63 decreased PTEN expression and promoted the phosphorylation of Akt and GSK3β. We then applied the activator and inhibitor of Akt, and concluded that PTEN/Akt/GSK3β participated in regulating the differentiation of BMSCs. CONCLUSIONS Our results indicate that GluOC reduces the inhibitory effect of high glucose on osteoblast differentiation by regulating the TP63/PTEN/Akt/GSK3β pathway. TP63 is a potential novel target for the prevention and treatment of diabetic osteoporosis.
Collapse
Affiliation(s)
- Fangzi Gong
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Le Gao
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Luyao Ma
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Guangxin Li
- College of sports medicine and physical therapy, Beijing Sport University, Beijing, China
| | - Jianhong Yang
- Medical School, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Zhang J, Gao J, Lin D, Xiong J, Wang J, Chen J, Lin B, Gao Z. Potential Networks Regulated by MSCs in Acute-On-Chronic Liver Failure: Exosomal miRNAs and Intracellular Target Genes. Front Genet 2021; 12:650536. [PMID: 33968135 PMCID: PMC8102832 DOI: 10.3389/fgene.2021.650536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a severe syndrome associated with high mortality. Alterations in the liver microenvironment are one of the vital causes of immune damage and liver dysfunction. Human bone marrow mesenchymal stem cells (hBMSCs) have been reported to alleviate liver injury via exosome-mediated signaling; of note, miRNAs are one of the most important cargoes in exosomes. Importantly, the miRNAs within exosomes in the hepatic microenvironment may mediate the mesenchymal stem cell (MSC)-derived regulation of liver function. This study investigated the hepatocyte exosomal miRNAs which are regulated by MSCs and the target genes which have potential in the treatment of liver failure. Briefly, ACLF was induced in mice using carbon tetrachloride and primary hepatocytes were isolated and co-cultured (or not) with MSCs under serum-free conditions. Exosomes were then collected, and the expression of exosomal miRNAs was assessed using next-generation sequencing; a comparison was performed between liver cells from healthy versus ACLF animals. Additionally, to identify the intracellular targets of exosomal miRNAs in humans, we focused on previously published data, i.e., microarray data and mass spectrometry data in liver samples from ACLF patients. The biological functions and signaling pathways associated with differentially expressed genes were predicted using gene ontology and Kyoto Encyclopedia of Genes and Genomics enrichment analyses; hub genes were also screened based on pathway analysis and the prediction of protein-protein interaction networks. Finally, we constructed the hub gene-miRNA network and performed correlation analysis and qPCR validation. Importantly, our data revealed that MSCs could regulate the miRNA content within exosomes in the hepatic microenvironment. MiR-20a-5p was down-regulated in ACLF hepatocytes and their exosomes, while the levels of chemokine C-X-C Motif Chemokine Ligand 8 (CXCL8; interleukin 8) were increased in hepatocytes. Importantly, co-culture with hBMSCs resulted in up-regulated expression of miR-20a-5p in exosomes and hepatocytes, and down-regulated expression of CXCL8 in hepatocytes. Altogether, our data suggest that the exosomal miR-20a-5p/intracellular CXCL8 axis may play an important role in the reduction of liver inflammation in ACLF in the context of MSC-based therapies and highlights CXCL8 as a potential target for alleviating liver injury.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan Gao
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dengna Lin
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Xiong
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jialei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junfeng Chen
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingliang Lin
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Wang X, Ma Y, Yang LY, Zhao D. MicroRNA-20a-5p Ameliorates Non-alcoholic Fatty Liver Disease via Inhibiting the Expression of CD36. Front Cell Dev Biol 2020; 8:596329. [PMID: 33344451 PMCID: PMC7744458 DOI: 10.3389/fcell.2020.596329] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Fatty acid translocase CD36 (CD36) plays an important role in the initiation and pathogenesis of chronic liver disease and non-alcoholic fatty liver disease (NAFLD). The purpose of this study is to investigate the regulation of microRNA-20a-5p (miR-20a-5p) on CD36 in the pathogenesis of NAFLD. Human plasma samples were obtained from NAFLD patients and healthy controls. Mice were fed with high-fat diet to induce an in vivo NAFLD model. Histology staining was performed to examine the morphology and lipid deposition of mouse liver tissue. Real-time PCR, dual-luciferase assay, and western blotting were employed to detect the relationship between miR-20a-5p and CD36. The expression level of miR-20a-5p was decreased in NAFLD patients, HFD mice, and free fatty acid (FFA)-treated HepG2 cells or primary mouse hepatocytes, accompanied by increased lipid production in hepatocytes. MiR-20a-5p suppressed the expression of CD36 to reduce lipid accumulation via binding to its 3'-untranslated region (UTR). However, under the condition of interference with CD36, further inhibition of miR-20a-5p would not cause lipid over-accumulation. In this study, we found that miR-20a-5p played a protective role in lipid metabolic disorders of NAFLD by targeting CD36, which indicated the prospect of miR-20a-5p as a biomarker and treatment target for NAFLD.
Collapse
Affiliation(s)
- Xin Wang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Yan Ma
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Long-Yan Yang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| |
Collapse
|
16
|
Wang X, Ma Y, Yang LY, Zhao D. MicroRNA-20a-5p Ameliorates Non-alcoholic Fatty Liver Disease via Inhibiting the Expression of CD36. Front Cell Dev Biol 2020; 8:596329. [PMID: 33344451 PMCID: PMC7744458 DOI: 10.3389/fcell.2020.596329; ecollection 2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/03/2020] [Indexed: 08/31/2023] Open
Abstract
Fatty acid translocase CD36 (CD36) plays an important role in the initiation and pathogenesis of chronic liver disease and non-alcoholic fatty liver disease (NAFLD). The purpose of this study is to investigate the regulation of microRNA-20a-5p (miR-20a-5p) on CD36 in the pathogenesis of NAFLD. Human plasma samples were obtained from NAFLD patients and healthy controls. Mice were fed with high-fat diet to induce an in vivo NAFLD model. Histology staining was performed to examine the morphology and lipid deposition of mouse liver tissue. Real-time PCR, dual-luciferase assay, and western blotting were employed to detect the relationship between miR-20a-5p and CD36. The expression level of miR-20a-5p was decreased in NAFLD patients, HFD mice, and free fatty acid (FFA)-treated HepG2 cells or primary mouse hepatocytes, accompanied by increased lipid production in hepatocytes. MiR-20a-5p suppressed the expression of CD36 to reduce lipid accumulation via binding to its 3'-untranslated region (UTR). However, under the condition of interference with CD36, further inhibition of miR-20a-5p would not cause lipid over-accumulation. In this study, we found that miR-20a-5p played a protective role in lipid metabolic disorders of NAFLD by targeting CD36, which indicated the prospect of miR-20a-5p as a biomarker and treatment target for NAFLD.
Collapse
Affiliation(s)
- Xin Wang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Yan Ma
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Long-Yan Yang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| |
Collapse
|
17
|
Li YZ, Di Cristofano A, Woo M. Metabolic Role of PTEN in Insulin Signaling and Resistance. Cold Spring Harb Perspect Med 2020; 10:a036137. [PMID: 31964643 PMCID: PMC7397839 DOI: 10.1101/cshperspect.a036137] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is most prominently known for its function in tumorigenesis. However, a metabolic role of PTEN is emerging as a result of its altered expression in type 2 diabetes (T2D), which results in impaired insulin signaling and promotion of insulin resistance during the pathogenesis of T2D. PTEN functions in regulating insulin signaling across different organs have been identified. Through the use of a variety of models, such as tissue-specific knockout (KO) mice and in vitro cell cultures, PTEN's role in regulating insulin action has been elucidated across many cell types. Herein, we will review the recent advancements in the understanding of PTEN's metabolic functions in each of the tissues and cell types that contribute to regulating systemic insulin sensitivity and discuss how PTEN may represent a promising therapeutic strategy for treatment or prevention of T2D.
Collapse
Affiliation(s)
- Yu Zhe Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology and Medicine (Oncology), Albert Einstein College of Medicine and Albert Einstein Cancer Center, Bronx, New York 10461, USA
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5G 2M9, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5G 2M9, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University Health Network/Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
18
|
Tian D, Xiang Y, Tang Y, Ge Z, Li Q, Zhang Y. Circ-ADAM9 targeting PTEN and ATG7 promotes autophagy and apoptosis of diabetic endothelial progenitor cells by sponging mir-20a-5p. Cell Death Dis 2020; 11:526. [PMID: 32661238 PMCID: PMC7359341 DOI: 10.1038/s41419-020-02745-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Dysfunction of endothelial progenitor cells (EPCs) is a key factor in vascular complications of diabetes mellitus. Although the roles of microRNAs and circular RNAs in regulating cell functions have been thoroughly studied, their role in regulating autophagy and apoptosis of EPCs remains to be elucidated. This study investigated the roles of mir-20a-5p and its predicted target circ-ADAM9 in EPCs treated with high glucose (30 mM) and in a diabetic mouse hind limb ischemia model. It is found that Mir-20a-5p inhibited autophagy and apoptosis of EPCs induced by high-concentration glucose. Further, mir-20a-5p could inhibit the expression of PTEN and ATG7 in EPCs, and promote the phosphorylation of AKT and mTOR proteins under high-glucose condition. Investigation of the underlying mechanism revealed that circ-ADAM9, as a miRNA sponges of mir-20a-5p, promoted autophagy and apoptosis of EPCs induced by high-concentration glucose. Circ-ADAM9 upregulated PTEN and ATG7 in interaction with mir-20a-5p, and inhibited the phosphorylation of AKT and mTOR to aggravate autophagy and apoptosis of EPCs under high glucose. In addition, silencing of circ-ADAM9 increased microvessel formation in the hind limbs of diabetic mice. Our findings disclose a novel autophagy/apoptosis-regulatory pathway that is composed of mir-20a-5p, circ-ADAM9, PTEN, and ATG7. Circ-ADAM9 is a potential novel target for regulating the function of diabetic EPCs and angiogenesis.
Collapse
Affiliation(s)
- Ding Tian
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yin Xiang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Tang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuowang Ge
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qianhui Li
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yachen Zhang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Li W, Luo C, Xie X, Xiao Y, Zhao F, Cai J, Zhou X, Zeng T, Fu B, Wu Y, Xiao X, Liu S. Identification of key genes and pathways in syphilis combined with diabetes: a bioinformatics study. AMB Express 2020; 10:83. [PMID: 32342229 PMCID: PMC7186291 DOI: 10.1186/s13568-020-01009-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
We noticed that syphilis patients seem to be more susceptible to diabetes and the lesions often involve the kidneys, but the pathogenesis is not yet completely understood. In this study, microarray analysis was performed to investigate the dysregulated expressed genes (DEGs) in rabbit model of syphilis combined with diabetes. A total of 1045 genes were identified to be significantly differentially expressed, among which 571 were up-regulated and 474 were down-regulated (≥ 2.0fold, p < 0.05). Using the database visualization and integration discovery for the Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis. The downregulated DEGs were significantly enriched for biosynthesis of antibiotics, carbon metabolism and protein digestion, while the upregulated DEGs were mainly enriched for cancer and PI3K-Akt signaling pathway. Molecular Complex Detection (MCODE) plugins were used to visualize protein–protein interaction (PPI) network of DEGs and Screening for hub genes and gene modules. ALB, FN1, CASP3, MMP9, IL8, CTGF, STAT3, IGF1, VCAM-1 and HGF were filtrated as the hub genes according to the degree of connectivity from the PPI network. To the best of our knowledge, this study is the first to comprehensively identify the expression patterns of dysregulated genes in syphilis combined with diabetes, providing a basis for revealing the underlying pathogenesis of syphilis combined with diabetes and exploring the goals of therapeutic intervention.
Collapse
|
20
|
MiR-519d targets HER3 and can be used as a potential serum biomarker for non-small cell lung cancer. Aging (Albany NY) 2020; 12:4866-4878. [PMID: 32170048 PMCID: PMC7138586 DOI: 10.18632/aging.102908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/05/2020] [Indexed: 12/27/2022]
Abstract
Development of specific serum biomarkers is essential to improve diagnosis and prognosis of non-small cell lung cancer (NSCLC). Here, we show that serum and tissue levels of miR-519d are significantly decreased in NSCLC patients. The low expression of miR-519d is associated with lymph node metastases, clinical stage, and a poor prognosis in NSCLC patients. In addition, ROC analysis demonstrated that the serum miR-519d levels can distinguish NSCLC patients from healthy controls. MiR-519d inhibits proliferation, migration, and invasion by lung cancer cells, indicating that it may function as a tumor suppressor in lung cancer. Furthermore, our data demonstrate that HER3 is a target gene of miR-519d in lung cancer cells, and show that by targeting HER3, miR-519d inhibits the PI3K/Akt pathway. These findings demonstrate that the miR-519d levels are decreased in serum and tumor tissues of NSCLC patients, and indicate that miR-519d regulates NSCLC progression by targeting HER3. MiR-519d could potentially serve as a novel serum biomarker for NSCLC.
Collapse
|
21
|
Ando Y, Yamazaki M, Yamada H, Munetsuna E, Fujii R, Mizuno G, Ichino N, Osakabe K, Sugimoto K, Ishikawa H, Ohashi K, Teradaira R, Ohta Y, Hamajima N, Hashimoto S, Suzuki K. Association of circulating miR-20a, miR-27a, and miR-126 with non-alcoholic fatty liver disease in general population. Sci Rep 2019; 9:18856. [PMID: 31827150 PMCID: PMC6906495 DOI: 10.1038/s41598-019-55076-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely associated with obesity, metabolic syndrome, and type II diabetes mellitus. Recently, circulating microRNAs (miRNAs) have been proposed as useful disease biomarkers. We examined whether circulating miRNAs, such as miR-20a, miR-27a, and miR-126, were useful biomarkers for NAFLD. We conducted a cross-sectional analysis of 527 subjects aged 39 years or older who had undergone a health examination in the Yakumo Study. Of the residents, 92 were diagnosed with NAFLD using a registered medical sonographer. Serum miR-20a, miR-27a and miR-126 levels were measured by quantitative real-time PCR. We then calculated the odds ratios for serum miRNA level changes according to the severity of NAFLD using normal liver status as the reference group. Serum levels of miR-20a and 27a, but not miR-126, were significantly lower in NAFLD subjects than normal subjects. Serum miR-20a and miR-27a levels were significantly lower in both male and female severe NAFLD subjects. Logistic regression analysis showed a significant relationship between low circulating miR-20a and 27a levels and severe NAFLD. Down-regulated circulating miR-20a and 27a levels were significantly associated with severe NAFLD in the general population. Circulating miR-20a and miR-27a may be useful biomarkers for severe NAFLD.
Collapse
Affiliation(s)
- Yoshitaka Ando
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Murechohara, Takamatsu, Kagawa, 761-0123, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Genki Mizuno
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Naohiro Ichino
- Department of Clinical Physiology and Functional Imaging, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Keisuke Osakabe
- Department of Clinical Physiology and Functional Imaging, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Keiko Sugimoto
- Department of Clinical Physiology and Functional Imaging, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hiroaki Ishikawa
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Koji Ohashi
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Ryoji Teradaira
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yoshiji Ohta
- Department of Chemistry, Fujita Health University School of Medicine, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
22
|
Gjorgjieva M, Sobolewski C, Dolicka D, Correia de Sousa M, Foti M. miRNAs and NAFLD: from pathophysiology to therapy. Gut 2019; 68:2065-2079. [PMID: 31300518 DOI: 10.1136/gutjnl-2018-318146] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with a thorough reprogramming of hepatic metabolism. Epigenetic mechanisms, in particular those associated with deregulation of the expressions and activities of microRNAs (miRNAs), play a major role in metabolic disorders associated with NAFLD and their progression towards more severe stages of the disease. In this review, we discuss the recent progress addressing the role of the many facets of complex miRNA regulatory networks in the development and progression of NAFLD. The basic concepts and mechanisms of miRNA-mediated gene regulation as well as the various setbacks encountered in basic and translational research in this field are debated. miRNAs identified so far, whose expressions/activities are deregulated in NAFLD, and which contribute to the outcomes of this pathology are further reviewed. Finally, the potential therapeutic usages in a short to medium term of miRNA-based strategies in NAFLD, in particular to identify non-invasive biomarkers, or to design pharmacological analogues/inhibitors having a broad range of actions on hepatic metabolism, are highlighted.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Gong Y, Xu W, Chen Y, Liu Y, Yang Y, Wang B, Lu Z, Lin HC, Zhou X, Zhou X. miR-20a-5p regulates pulmonary surfactant gene expression in alveolar type II cells. J Cell Mol Med 2019; 23:7664-7672. [PMID: 31490024 PMCID: PMC6815916 DOI: 10.1111/jcmm.14639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/28/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miRNA) critically controls gene expression in many biological processes, including lung growth and pulmonary surfactant biosynthesis. The present study was conducted to investigate whether miR‐20a‐5p had such regulatory functions on alveolar type II (AT‐II) cells. To accomplish this, miR‐20a‐5p–overexpressed and miR‐20a‐5p–inhibited adenoviral vectors were constructed and transfected into cultured AT‐II cells that were isolated from rat foetal lungs of 19 days' gestation. Transfection efficiency was confirmed by observing the fluorescence of green fluorescent protein (GFP) carried by the viral vector, whereas miR‐20a‐5p levels were verified by real‐time PCR. The CCK‐8 assay was used to compare the proliferation ability of AT‐II cells that had over‐ or underexpressed miR‐20a‐5p. The expression of surfactant‐associated proteins (SPs) and phosphatase and tensin homolog (PTEN) was measured by real‐time PCR and Western blotting. In AT‐II cells, transfection resulted in over‐ or under‐regulation of miR‐20a‐5p. While overexpression of miR‐20a‐5p promoted pulmonary surfactant gene expression, its underexpression inhibited it. Consistent with its role in negatively regulating the pulmonary surfactant gene, an opposite pattern was observed for miR‐20a‐5p regulation of PTEN. As a result, when miR‐20a‐5p was rendered overexpressed, PTEN was down‐regulated. By contrast, when miR‐20a‐5p was underexpressed, PTEN was up‐regulated. Neither overexpression nor underexpression of miR‐20a‐5p altered the cell proliferation. miR‐20a‐5p plays no role in proliferation of foetal AT‐II cells but is a critical regulator of surfactant gene expression. The latter appears to be achieved through a regulatory process that implicates expression of PTEN.
Collapse
Affiliation(s)
- Yongjian Gong
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weidong Xu
- Department of Pediatrics, The First People's Hospital of Zhangjiagang City, Zhangjiagang City, China
| | - Yang Chen
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Liu
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Yang
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Beibei Wang
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhitao Lu
- Department of Pediatrics, The First People's Hospital of Zhangjiagang City, Zhangjiagang City, China
| | - Hung-Chih Lin
- Department of Pediatrics, Children's Hospital, China Medical University, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Xiaoyu Zhou
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoguang Zhou
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Shen J, Sun Y, Shen S, Luo X, Chen J, Zhu L. Pressure suppresses hepatocellular glycogen synthesis through activating the p53/Pten pathway. Mol Med Rep 2019; 19:5105-5114. [PMID: 31059076 PMCID: PMC6522908 DOI: 10.3892/mmr.2019.10177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 03/25/2019] [Indexed: 01/25/2023] Open
Abstract
Portal hypertension is the primary cause of complications in patients with chronic liver diseases, and markedly impacts metabolism within the nervous system. Until recently, the role of portal hypertension in hepatocellular metabolism was unclear. The present study demonstrated that an increase in extracellular pressure significantly decreased hepatocellular glycogen concentrations in HepG2 and HL-7702 cells. In addition, it reduced glycogen synthase activity, by inhibiting the phosphorylation of glycogen synthase 1. RNA-seq analysis revealed that mechanical pressure suppressed glycogen synthesis by activating the p53/phosphatase and tensin homolog pathway, further suppressing glycogen synthase activity. The present study revealed an association between mechanical pressure and hepatocellular glycogen metabolism, and identified the regulatory mechanism of glycogen synthesis under pressure.
Collapse
Affiliation(s)
- Junwei Shen
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yunchen Sun
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Si Shen
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xu Luo
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jie Chen
- Department of Hematology, Changhai Hospital, Second Military Medical University, Shanghai 200168, P.R. China
| | - Liang Zhu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
25
|
MicroRNAs as Regulators of Insulin Signaling: Research Updates and Potential Therapeutic Perspectives in Type 2 Diabetes. Int J Mol Sci 2018; 19:ijms19123705. [PMID: 30469501 PMCID: PMC6321520 DOI: 10.3390/ijms19123705] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/17/2018] [Indexed: 12/21/2022] Open
Abstract
The insulin signaling pathway is composed of a large number of molecules that positively or negatively modulate insulin specific signal transduction following its binding to the cognate receptor. Given the importance of the final effects of insulin signal transduction, it is conceivable that many regulators are needed in order to tightly control the metabolic or proliferative functional outputs. MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively modulate gene expression through their specific binding within the 3′UTR sequence of messenger RNA (mRNA), thus causing mRNA decoy or translational inhibition. In the last decade, miRNAs have been addressed as pivotal cellular rheostats which control many fundamental signaling pathways, including insulin signal transduction. Several studies demonstrated that multiple alterations of miRNAs expression or function are relevant for the development of insulin resistance in type 2 diabetes (T2D); such alterations have been highlighted in multiple insulin target organs including liver, muscles, and adipose tissue. Indirectly, miRNAs have been identified as modulators of inflammation-derived insulin resistance, by controlling/tuning the activity of innate immune cells in insulin target tissues. Here, we review main findings on miRNA functions as modulators of insulin signaling in physiologic- or in T2D insulin resistance- status. Additionally, we report the latest hypotheses of prospective therapies involving miRNAs as potential targets for future drugs in T2D.
Collapse
|
26
|
Wang S, Li L, Chen X, Huang X, Liu J, Sun X, Zhang Y, Shen T, Guo J, Man Y, Tang W, Dou L, Li J. miR‑338‑3p mediates gluconeogenesis via targeting of PP4R1 in hepatocytes. Mol Med Rep 2018; 18:4129-4137. [PMID: 30132533 DOI: 10.3892/mmr.2018.9400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/13/2018] [Indexed: 11/06/2022] Open
Abstract
Hyperglycaemia is a characteristic of type 2 diabetes. In hepatocytes, impaired insulin sensitivity leads to increased gluconeogenesis and decreased glycogenesis. MicroRNA (miR)‑338‑3p is associated with tumour necrosis factor (TNF)‑α‑induced suppression of hepatic glycogenesis via regulation of protein phosphatase 4 regulatory subunit 1 (PP4R1). However, the effect of miR‑338‑3p on gluconeogenesis in hepatocytes remains unknown. In a previous study, it was demonstrated that miR‑338‑3p is downregulated in the livers of mice and in mouse HEPA1‑6 hepatocytes following treatment with TNF‑α. In the present study, the effect of miR‑338‑3p on TNF‑α‑induced gluconeogenesis in hepatocytes was investigated. The levels of phosphorylated‑FOXO1/FOXO1, phosphoenolpyruvate carboxykinase (PEPCK), peroxisome proliferator‑activated receptor γ coactivator (PGC‑1α) and glucose‑6‑phosphatase (G6Pase) were measured by western blotting. The mRNA levels of PEPCK, PGC‑1α and G6Pase were determined by quantitative polymerase chain reaction. Pyruvate tolerance testing was used to determine the gluconeogenesis of mouse livers. The results demonstrated that treatment with TNF‑α resulted in increased levels of gluconeogenesis in the livers of mice and decreased miR‑338‑3p expression levels in HEPA1‑6 cells. Overexpression of miR‑338‑3p reversed TNF‑α‑induced glucose production via enhancement of phosphorylated forkhead box O1 levels and downregulation of the expression levels of genes associated with gluconeogenesis, including peroxisome proliferator‑activated receptor γ coactivator‑1α, phosphoenolpyruvate carboxykinase and glucose‑6‑phosphatase. However, inhibition of miR‑338‑3p expression was revealed to enhance gluconeogenesis in the livers of mice and in HEPA1‑6 cells. Furthermore, downregulation of PP4R1 was revealed to attenuate the effect on glucose production following treatment with miR‑338‑3p inhibitors. In conclusion, the results of the present study revealed that miR‑338‑3p may be involved in TNF‑α‑mediated gluconeogenesis via targeting of PP4R1 in hepatocytes.
Collapse
Affiliation(s)
- Shuyue Wang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Linfang Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Xiehui Chen
- Department of Geriatrics Cardiovascular Medicine, Shenzhen Sun Yat‑Sen Cardiovascular Hospital, Shenzhen, Guangdong 518112, P.R. China
| | - Xiuqing Huang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Jin Liu
- College of Life Sciences, Beijing Normal University, Beijing 100875, P.R. China
| | - Xuelin Sun
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Yang Zhang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Tao Shen
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Jun Guo
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Yong Man
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Weiqing Tang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Lin Dou
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Jian Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| |
Collapse
|
27
|
Guo J, Fang W, Chen X, Lin Y, Hu G, Wei J, Zhang X, Yang C, Li J. Upstream stimulating factor 1 suppresses autophagy and hepatic lipid droplet catabolism by activating mTOR. FEBS Lett 2018; 592:2725-2738. [PMID: 30054905 PMCID: PMC6175420 DOI: 10.1002/1873-3468.13203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022]
Abstract
Previous studies indicate that the transcription factor upstream stimulating factor 1 (USF1) is involved in the regulation of lipid and glucose metabolism. However, the role of USF1 in lipid-induced autophagy remains unknown. Interestingly, we found that USF1 overexpression suppresses autophagy-related gene expression in HepG2 cells. Further assays confirmed that USF1 could transcriptionally activate mTOR expression, thereby suppressing rapamycin-induced autophagy in HepG2 cells. Moreover, pharmacological activation of autophagy with rapamycin decreases the numbers and sizes of lipid droplets (LDs) in HepG2 cells exposed to an oleate/palmitate mixture. Of note, USF1 upregulation decreases colocalization of LDs and autophagosomes. In conclusion, our data provide evidence that USF1 contributes to abnormal lipid accumulation in the liver by suppressing autophagy via regulation of mTOR transcription.
Collapse
Affiliation(s)
- Jun Guo
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Weiwei Fang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China.,Department of Blood Transfusion, Cancer Institute/Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiehui Chen
- Department of Geriatrics Cardiovascular Medicine, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, China
| | - Yajun Lin
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Gang Hu
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jie Wei
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Xiaoyi Zhang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Chunxiao Yang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jian Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
28
|
Ye D, Zhang T, Lou G, Xu W, Dong F, Chen G, Liu Y. Plasma miR-17, miR-20a, miR-20b and miR-122 as potential biomarkers for diagnosis of NAFLD in type 2 diabetes mellitus patients. Life Sci 2018; 208:201-207. [PMID: 30030064 DOI: 10.1016/j.lfs.2018.07.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
Abstract
AIMS Type 2 diabetes mellitus (T2DM), with non-alcoholic fatty liver disease (NAFLD) complication, may aggravate the disturbance of metabolism, increase the risk of non-alcoholic steatohepatitis, and promote the progress of liver fibrosis. Therefore, early detection of NAFLD in T2DM patients is critical in avoiding the adverse effects of the complication. This study aimed to identify circulating miRNAs for early diagnosis of the complication. MATERIALS AND METHODS Plasma miRNA expression profiles of T2DM patients complicated with or without NAFLD were examined by miRNA array analysis and then were validated by qRT-PCR. A new index for prediction the presence of NAFLD was developed based on the result of multivariate logistic regression analysis. STZ and high fat diet were used for construction a rat model of T2DM complicated with NAFLD. KEY FINDINGS Plasma miR-17, miR-20a, miR-20b, and miR-122 were up-regulated in T2DM patients with NAFLD complicated compared in those without NAFLD (P < 0.05). Moreover, the data from the rat model further showed that the above miRNAs were more sensitive than traditional serological markers for predicting the complication. Meanwhile, in order to improve the diagnostic accuracy, we try to construct an AUC by using the new index, 24.852 × WHR-1.121 × miR122 + 1.988 × LDL-21.838, which was significantly higher than a chance assignment (asymptotic significance P < 0.001) for predicting the presence of NAFLD. SIGNIFICANCE Plasma miRNAs and the new index involving WHR, LDL, and miR-122 are potential novel tools for the early diagnosis and risk estimation of NAFLD in T2DM patients.
Collapse
Affiliation(s)
- Dan Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianbao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiwei Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Fengqin Dong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoping Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
29
|
Sakaram S, Craig MP, Hill NT, Aljagthmi A, Garrido C, Paliy O, Bottomley M, Raymer M, Kadakia MP. Identification of novel ΔNp63α-regulated miRNAs using an optimized small RNA-Seq analysis pipeline. Sci Rep 2018; 8:10069. [PMID: 29968742 PMCID: PMC6030203 DOI: 10.1038/s41598-018-28168-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Advances in high-throughput sequencing have enabled profiling of microRNAs (miRNAs), however, a consensus pipeline for sequencing of small RNAs has not been established. We built and optimized an analysis pipeline using Partek Flow, circumventing the need for analyzing data via scripting languages. Our analysis assessed the effect of alignment reference, normalization method, and statistical model choice on biological data. The pipeline was evaluated using sequencing data from HaCaT cells transfected with either a non-silencing control or siRNA against ΔNp63α, a p53 family member protein which is highly expressed in non-melanoma skin cancer and shown to regulate a number of miRNAs. We posit that 1) alignment and quantification to the miRBase reference provides the most robust quantitation of miRNAs, 2) normalizing sample reads via Trimmed Mean of M-values is the most robust method for accurate downstream analyses, and 3) use of the lognormal with shrinkage statistical model effectively identifies differentially expressed miRNAs. Using our pipeline, we identified previously unrecognized regulation of miRs-149-5p, 18a-5p, 19b-1-5p, 20a-5p, 590-5p, 744-5p and 93-5p by ΔNp63α. Regulation of these miRNAs was validated by RT-qPCR, substantiating our small RNA-Seq pipeline. Further analysis of these miRNAs may provide insight into ΔNp63α's role in cancer progression. By defining the optimal alignment reference, normalization method, and statistical model for analysis of miRNA sequencing data, we have established an analysis pipeline that may be carried out in Partek Flow or at the command line. In this manner, our pipeline circumvents some of the major hurdles encountered during small RNA-Seq analysis.
Collapse
Affiliation(s)
- Suraj Sakaram
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Michael P Craig
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Natasha T Hill
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Amjad Aljagthmi
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Christian Garrido
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Oleg Paliy
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA
| | - Michael Bottomley
- Math and Microbiology, Wright State University, Dayton, OH, 45435, USA
| | - Michael Raymer
- Computer Science and Engineering, Wright State University, Dayton, OH, 45435, USA
| | - Madhavi P Kadakia
- Biochemistry and Molecular Biology, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
30
|
Krstic J, Galhuber M, Schulz TJ, Schupp M, Prokesch A. p53 as a Dichotomous Regulator of Liver Disease: The Dose Makes the Medicine. Int J Mol Sci 2018; 19:E921. [PMID: 29558460 PMCID: PMC5877782 DOI: 10.3390/ijms19030921] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023] Open
Abstract
Lifestyle-related disorders, such as the metabolic syndrome, have become a primary risk factor for the development of liver pathologies that can progress from hepatic steatosis, hepatic insulin resistance, steatohepatitis, fibrosis and cirrhosis, to the most severe condition of hepatocellular carcinoma (HCC). While the prevalence of liver pathologies is steadily increasing in modern societies, there are currently no approved drugs other than chemotherapeutic intervention in late stage HCC. Hence, there is a pressing need to identify and investigate causative molecular pathways that can yield new therapeutic avenues. The transcription factor p53 is well established as a tumor suppressor and has recently been described as a central metabolic player both in physiological and pathological settings. Given that liver is a dynamic tissue with direct exposition to ingested nutrients, hepatic p53, by integrating cellular stress response, metabolism and cell cycle regulation, has emerged as an important regulator of liver homeostasis and dysfunction. The underlying evidence is reviewed herein, with a focus on clinical data and animal studies that highlight a direct influence of p53 activity on different stages of liver diseases. Based on current literature showing that activation of p53 signaling can either attenuate or fuel liver disease, we herein discuss the hypothesis that, while hyper-activation or loss of function can cause disease, moderate induction of hepatic p53 within physiological margins could be beneficial in the prevention and treatment of liver pathologies. Hence, stimuli that lead to a moderate and temporary p53 activation could present new therapeutic approaches through several entry points in the cascade from hepatic steatosis to HCC.
Collapse
Affiliation(s)
- Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehhbrücke, 14558 Nuthetal, Germany.
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany.
| | - Michael Schupp
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10117 Berlin, Germany.
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
- BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
31
|
Ultraconserved element uc.372 drives hepatic lipid accumulation by suppressing miR-195/miR4668 maturation. Nat Commun 2018; 9:612. [PMID: 29426937 PMCID: PMC5807361 DOI: 10.1038/s41467-018-03072-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
Ultraconserved (uc) RNAs, a class of long non-coding RNAs (lncRNAs), are conserved across humans, mice, and rats, but the physiological significance and pathological role of ucRNAs is largely unknown. Here we show that uc.372 is upregulated in the livers of db/db mice, HFD-fed mice, and NAFLD patients. Gain-of-function and loss-of-function studies indicate that uc.372 drives hepatic lipid accumulation in mice by promoting lipogenesis. We further demonstrate that uc.372 binds to pri-miR-195/pri-miR-4668 and suppresses maturation of miR-195/miR-4668 to regulate expression of genes related to lipid synthesis and uptake, including ACC, FAS, SCD1, and CD36. Finally, we identify that uc.372 is located downstream of the insulinoma-associated 2 (INSM2) gene that is transcriptionally activated by upstream transcription factor 1 (USF1). Our findings reveal a novel mechanism by which uc.372 drives hepatic steatosis through inhibition of miR-195/miR-4668 maturation to relieve miR-195/miR-4668-mediated suppression of functional target gene expression. Ultraconserved RNAs are a class of long non-coding RNAs whose functions are yet to be identified. Here Guo and colleagues show that an ultraconserved RNA uc.372 promotes lipogenesis and lipid accumulation within the hepatocytes by suppressing the maturation of miR-195/miR-4668 that inhibits lipogenic gene expression.
Collapse
|
32
|
Dou L, Wang S, Huang X, Sun X, Zhang Y, Shen T, Guo J, Man Y, Tang W, Li J. MiR-19a mediates gluconeogenesis by targeting PTEN in hepatocytes. Mol Med Rep 2017; 17:3967-3971. [PMID: 29257352 DOI: 10.3892/mmr.2017.8312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/14/2017] [Indexed: 11/06/2022] Open
Abstract
As a member of miR-17-92 miRNA clusters, miR‑19a has been considered to regulate hepatic glycogenesis by mediating the PI3K/AKT signaling pathway. However, whether miR‑19a serves an important role in gluconeogenesis in hepatocytes remains unknown. In the present study, the impact of miR‑19a on gluconeogenesis in HEP1‑6 cells and its mechanisms of action were investigated. It was observed that overexpression of miR‑19a led to decreased glucose production, accompanied by increased activation of the AKT/FOXO1 signaling pathway and downregulated expression of gluconeogenesis‑associated genes, including peroxisome proliferator‑activated receptor γ coactivator 1α, phosphoenolpyruvate carboxykinase and glucose 6‑phosphatase in the HEP1‑6 cells transfected with the miR‑19a mimic. In contrast, suppression of miR‑19a impaired the activation of the AKT/FOXO1 signaling pathway and increased the expression of gluconeogenesis‑associated genes, accompanied by an elevated glucose production. Additionally, phosphatase and tensin homolog (PTEN) was identified as a target of miR‑19a and participated in the miR‑19a‑mediated gluconeogenesis in hepatocytes. These findings provide mechanistic insight into the effects of miR‑19a on the regulation of the AKT/FOXO1 signaling pathway and the expression of gluconeogenesis‑associated genes. MiR‑19a may mediate gluconeogenesis in hepatocytes by downregulating PTEN expression.
Collapse
Affiliation(s)
- Lin Dou
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Shuyue Wang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Xiuqing Huang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Xuelin Sun
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Yang Zhang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Tao Shen
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Jun Guo
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Yong Man
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Weiqing Tang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Jian Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| |
Collapse
|
33
|
Murabito JM, Rong J, Lunetta KL, Huan T, Lin H, Zhao Q, Freedman JE, Tanriverdi K, Levy D, Larson MG. Cross-sectional relations of whole-blood miRNA expression levels and hand grip strength in a community sample. Aging Cell 2017; 16:888-894. [PMID: 28597569 PMCID: PMC5506437 DOI: 10.1111/acel.12622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression with emerging data suggesting miRNAs play a role in skeletal muscle biology. We sought to examine the association of miRNAs with grip strength in a community-based sample. Framingham Heart Study Offspring and Generation 3 participants (n = 5668 54% women, mean age 55 years, range 24, 90 years) underwent grip strength measurement and miRNA profiling using whole blood from fasting morning samples. Linear mixed-effects regression modeling of grip strength (kg) versus continuous miRNA 'Cq' values and versus binary miRNA expression was performed. We conducted an integrative miRNA-mRNA coexpression analysis and examined the enrichment of biologic pathways for the top miRNAs associated with grip strength. Grip strength was lower in women than in men and declined with age with a mean 44.7 (10.0) kg in men and 26.5 (6.3) kg in women. Among 299 miRNAs interrogated for association with grip strength, 93 (31%) had FDR q value < 0.05, 54 (18%) had an FDR q value < 0.01, and 15 (5%) had FDR q value < 0.001. For almost all miRNA-grip strength associations, increasing miRNA concentration is associated with increasing grip strength. miR-20a-5p (FDR q 1.8 × 10-6 ) had the most significant association and several among the top 15 miRNAs had links to skeletal muscle including miR-126-3p, miR-30a-5p, and miR-30d-5p. The top associated biologic pathways included metabolism, chemokine signaling, and ubiquitin-mediated proteolysis. Our comprehensive assessment in a community-based sample of miRNAs in blood associated with grip strength provides a framework to further our understanding of the biology of muscle strength.
Collapse
Affiliation(s)
- Joanne M. Murabito
- The Framingham Heart StudyFraminghamMAUSA
- Department of Medicine, Section of General Internal MedicineBoston University School of MedicineBostonMAUSA
| | - Jian Rong
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
| | - Kathryn L. Lunetta
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
| | - Tianxiao Huan
- The Framingham Heart StudyFraminghamMAUSA
- The Population Sciences BranchDivision of Intramural Research, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Honghuang Lin
- Section of Computational BiomedicineDepartment of MedicineBoston University School of MedicineBostonMAUSA
| | - Qiang Zhao
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
| | - Jane E. Freedman
- Cardiology DivisionDepartment of MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Kahraman Tanriverdi
- Cardiology DivisionDepartment of MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Daniel Levy
- The Framingham Heart StudyFraminghamMAUSA
- The Population Sciences BranchDivision of Intramural Research, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Martin G. Larson
- The Framingham Heart StudyFraminghamMAUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
| |
Collapse
|
34
|
Du Y, Liu Z, You L, Hou P, Ren X, Jiao T, Zhao W, Li Z, Shu H, Liu C, Zhao Y. Pancreatic Cancer Progression Relies upon Mutant p53-Induced Oncogenic Signaling Mediated by NOP14. Cancer Res 2017; 77:2661-2673. [PMID: 28280038 DOI: 10.1158/0008-5472.can-16-2339] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/31/2016] [Accepted: 03/03/2017] [Indexed: 11/16/2022]
Abstract
Mutant p53 (mutp53) proteins promote tumor invasion and metastasis in pancreatic ductal adenocarcinoma (PDAC). However, the mechanism underlying sustained activation of mutp53 oncogenic signaling is currently unclear. In this study, we report that NOP14 nucleolar protein (NOP14) expression is upregulated in PDAC tumors and metastatic tissue specimens. NOP14 overexpression promoted cell motility, whereas NOP14 inhibition decreased invasive capacity of PDAC cells. In vivo invasion assays conducted on established subcutaneously, orthotopically, and intravenously injected tumor mouse models also indicated NOP14 as a promoter of PDAC metastasis. Mechanistically, mutp53 was validated as a functional target of NOP14; NOP14 primed tumor invasion and metastasis by increasing the stability of mutp53 mRNA. The NOP14/mutp53 axis suppressed p21 expression at both the transcriptional and posttranscriptional levels via induction of miR-17-5p in PDAC cells. In vivo, high NOP14 expression in PDAC patient tumors correlated with local metastasis and lymph invasion. Overall, our findings define a novel mechanism for understanding the function of NOP14 in the metastatic cascade of PDAC. Targeting NOP14 allows for effective suppression of tumor invasion in a mutp53-dependent manner, implicating NOP14 inhibition as a potential approach for attenuating metastasis in p53-mutant tumors. Cancer Res; 77(10); 2661-73. ©2017 AACR.
Collapse
Affiliation(s)
- Yongxing Du
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| | - Pengjiao Hou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, P.R. China
| | - Xiaoxia Ren
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| | - Tao Jiao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, P.R. China
| | - Wenjing Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| | - Zongze Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| | - Hong Shu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| | - Changzheng Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, P.R. China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China.
| |
Collapse
|
35
|
Role of microRNAs on adipogenesis, chronic low-grade inflammation, and insulin resistance in obesity. Nutrition 2017; 35:28-35. [DOI: 10.1016/j.nut.2016.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/24/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
|
36
|
Strycharz J, Drzewoski J, Szemraj J, Sliwinska A. Is p53 Involved in Tissue-Specific Insulin Resistance Formation? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9270549. [PMID: 28194257 PMCID: PMC5282448 DOI: 10.1155/2017/9270549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
p53 constitutes an extremely versatile molecule, primarily involved in sensing the variety of cellular stresses. Functional p53 utilizes a plethora of mechanisms to protect cell from deleterious repercussions of genotoxic insults, where senescence deserves special attention. While the impressive amount of p53 roles has been perceived solely by the prism of antioncogenic effect, its presence seems to be vastly connected with metabolic abnormalities underlain by cellular aging, obesity, and inflammation. p53 has been found to regulate multiple biochemical processes such as glycolysis, oxidative phosphorylation, lipolysis, lipogenesis, β-oxidation, gluconeogenesis, and glycogen synthesis. Notably, p53-mediated metabolic effects are totally up to results of insulin action. Accumulating amount of data identifies p53 to be a factor activated upon hyperglycemia or excessive calorie intake, thus contributing to low-grade chronic inflammation and systemic insulin resistance. Prominent signs of its actions have been observed in muscles, liver, pancreas, and adipose tissue being associated with attenuation of insulin signalling. p53 is of crucial importance for the regulation of white and brown adipogenesis simultaneously being a repressor for preadipocyte differentiation. This review provides a profound insight into p53-dependent metabolic actions directed towards promotion of insulin resistance as well as presenting experimental data regarding obesity-induced p53-mediated metabolic abnormalities.
Collapse
Affiliation(s)
- Justyna Strycharz
- Diabetes Student Scientific Society at the Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Jozef Drzewoski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Sliwinska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
37
|
Stacy AJ, Craig MP, Sakaram S, Kadakia M. ΔNp63α and microRNAs: leveraging the epithelial-mesenchymal transition. Oncotarget 2017; 8:2114-2129. [PMID: 27924063 PMCID: PMC5356785 DOI: 10.18632/oncotarget.13797] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a cellular reprogramming mechanism that is an underlying cause of cancer metastasis. Recent investigations have uncovered an intricate network of regulation involving the TGFβ, Wnt, and Notch signaling pathways and small regulatory RNA species called microRNAs (miRNAs). The activity of a transcription factor vital to the maintenance of epithelial stemness, ΔNp63α, has been shown to modulate the activity of these EMT pathways to either repress or promote EMT. Furthermore, ΔNp63α is a known regulator of miRNA, including those directly involved in EMT. This review discusses the evidence of ΔNp63α as a master regulator of EMT components and miRNA, highlighting the need for a deeper understanding of its role in EMT. This expanded knowledge may provide a basis for new developments in the diagnosis and treatment of metastatic cancer.
Collapse
Affiliation(s)
- Andrew J. Stacy
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Michael P. Craig
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Suraj Sakaram
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Madhavi Kadakia
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
38
|
Guo J, Dou L, Meng X, Chen Z, Yang W, Fang W, Yang C, Huang X, Tang W, Yang J, Li J. Hepatic MiR-291b-3p Mediated Glucose Metabolism by Directly Targeting p65 to Upregulate PTEN Expression. Sci Rep 2017; 7:39899. [PMID: 28054586 PMCID: PMC5214750 DOI: 10.1038/srep39899] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
Several studies have suggested an important role of miR-291b-3p in the development of embryonic stem cells. In previous study, we found that the expression of miR-291b-3p was significantly upregulated in the liver of db/db mice. However, the role of miR-291b-3p in glucose metabolism and its underlying mechanisms remain unknown. In the present study, we demonstrated that miR-291b-3p was abundantly expressed in the liver. Of note, hepatic miR-291b-3p expression was upregulated in HFD-fed mice and induced by fasting in C57BL/6 J normal mice. Importantly, hepatic inhibition miR-291b-3p expression ameliorated hyperglycemia and insulin resistance in HFD-fed mice, whereas hepatic overexpression of miR-291b-3p led to hyperglycemia and insulin resistance in C57BL/6 J normal mice. Further study revealed that miR-291b-3p suppressed insulin-stimulated AKT/GSK signaling and increased the expression of gluconeogenic genes in hepatocytes. Moreover, we identified that p65, a subunit of nuclear factor-κB (NF-κB), is a target of miR-291b-3p by bioinformatics analysis and luciferase reporter assay. Silencing of p65 significantly augmented the expression of PTEN and impaired AKT activation. In conclusion, we found novel evidence suggesting that hepatic miR-291b-3p mediated glycogen synthesis and gluconeogenesis through targeting p65 to regulate PTEN expression. Our findings indicate the therapeutic potential of miR-291b-3p inhibitor in hyperglycemia and insulin resistance.
Collapse
Affiliation(s)
- Jun Guo
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, P. R. China
| | - Lin Dou
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, P. R. China
| | - Xiangyu Meng
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, P. R. China
| | - Zhenzhen Chen
- Department of physiology and pathophysiology, key laboratory of molecular cardiovascular science of the ministry of education, Peking University Health Science Center, Beijing 100191, China
| | - Weili Yang
- Department of physiology and pathophysiology, key laboratory of molecular cardiovascular science of the ministry of education, Peking University Health Science Center, Beijing 100191, China
| | - Weiwei Fang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, P. R. China
| | - Chunxiao Yang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, P. R. China
| | - Xiuqing Huang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, P. R. China
| | - Weiqing Tang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, P. R. China
| | - Jichun Yang
- Department of physiology and pathophysiology, key laboratory of molecular cardiovascular science of the ministry of education, Peking University Health Science Center, Beijing 100191, China
| | - Jian Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, P. R. China
| |
Collapse
|
39
|
Luan Y, Chen M, Zhou L. MiR-17 targets PTEN and facilitates glial scar formation after spinal cord injuries via the PI3K/Akt/mTOR pathway. Brain Res Bull 2016; 128:68-75. [PMID: 27693649 DOI: 10.1016/j.brainresbull.2016.09.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVES We attempted to discover the regulatory role of miR-17 and PTEN in glial scar formation accompanied with spinal cord injuries. METHODS We established a spinal cord injury (SCI) model in mice which were transfected with different groups of adenoviruses: miR-17 mimics, miR-17 inhibitors and PTEN cDNAs. The improvement of hind limb functions was assessed using the 21-point Basso-Beattie-Bresnahan (BBB) locomotion scale. Immunohistochemistry was used to detect the expression levels of glial fibrillary acidic protein (GFAP), Vimentin and neurofilaments. The expression of miR-17 was quantified using Real time-PCR (RT-PCR). Western blot was conducted to detect the expressions of PTEN, PI3K, Akt, mTOR and S6. Finally, dual luciferase reporter gene assay was conducted to confirm the target relationship between miR-17 and PTEN. RESULTS The model group exhibited significantly increased expression levels of GFAP, Vimentin, miR-17, PTEN, PI3K, Akt and mTOR. The above trend was enhanced by the transfection of miR-17 mimics (P<0.05). By contrast, the transfection of miR-17 inhibitors significantly down-regulated the expression of GFAP, Vimentin, PTEN, PI3K, Akt, mTOR and p-S6 whereas the expression of GFAP, Vimentin, PI3K, Akt, mTOR and p-S6 in the cells transfected with PTEN cDNAs significantly decreased (P<0.05). Also, the transfection of miR-17 inhibitors and PTEN cDNAs alleviated the astrogliosis in SCI lesions, contributed to the regeneration of nerve filament and improved the functional recovery of the hind limb of mice. Finally, the targeting relationship between miR-17 and PTEN was verified by the dual luciferase reporter gene assay. CONCLUSION MiR-17 is able to target PTEN and stimulate the PI3K/Akt/mTOR pathway. The formation of glial scar resulted from spinal cord injuries can be reduced either by inhibiting miR-17 or by overexpressing PTEN.
Collapse
Affiliation(s)
- Yongxin Luan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Mo Chen
- Jilin Province People's Hospital, Changchun, 130000 Jilin, China
| | - Lixiang Zhou
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021 Jilin, China.
| |
Collapse
|