1
|
Xiao M, Xue J, Jin E. SPOCK: Master regulator of malignant tumors (Review). Mol Med Rep 2024; 30:231. [PMID: 39392048 PMCID: PMC11487499 DOI: 10.3892/mmr.2024.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
SPARC/osteonectin, CWCV and Kazal‑like domain proteoglycan (SPOCK) is a family of highly conserved multidomain proteins. In total, three such family members, SPOCK1, SPOCK2 and SPOCK3, constitute the majority of extracellular matrix glycoproteins. The SPOCK gene family has been demonstrated to serve key roles in tumor regulation by affecting MMPs, which accelerates the progression of cancer epithelial‑mesenchymal transition. In addition, they can regulate the cell cycle via overexpression, inhibit tumor cell proliferation by inactivating PI3K/AKT signaling and have been associated with numerous microRNAs that influence the expression of downstream genes. Therefore, the SPOCK gene family are potential cancer‑regulating genes. The present review summarizes the molecular structure, tissue distribution and biological function of the SPOCK family of proteins, in addition to its association with cancer. Furthermore, the present review documents the progress made in investigations into the role of SPOCK, whilst also discussing prospects for the future of SPOCK‑targeted therapy, to provide novel ideas for clinical application and treatment.
Collapse
Affiliation(s)
- Mingyuan Xiao
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110134, P.R. China
| | - Jiancheng Xue
- Department of Otolaryngology, Head and Neck Surgery, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Shenzhen Clinical Research Center for Otolaryngology Diseases, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Enli Jin
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110134, P.R. China
| |
Collapse
|
2
|
Jones HN, Davenport BN, Wilson RL. Maternal-fetal interfaces transcriptome changes associated with placental insufficiency and a novel gene therapy intervention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597595. [PMID: 38895421 PMCID: PMC11185673 DOI: 10.1101/2024.06.05.597595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The etiology of fetal growth restriction (FGR) is multifactorial, although many cases often involve placental insufficiency. Placental insufficiency is associated with inadequate trophoblast invasion resulting in high resistance to blood flow, decreased availability of nutrients, and increased hypoxia. We have developed a non-viral, polymer-based nanoparticle that facilitates delivery and transient gene expression of human insulin-like 1 growth factor ( hIGF1 ) in placental trophoblast for the treatment of placenta insufficiency and FGR. Using the established guinea pig maternal nutrient restriction (MNR) model of placental insufficiency and FGR, the aim of the study was to identify novel pathways in the sub-placenta/decidua that provide insight into the underlying mechanism driving placental insufficiency, and may be corrected with hIGF1 nanoparticle treatment. Pregnant guinea pigs underwent ultrasound-guided sham or hIGF1 nanoparticle treatment at mid-pregnancy, and sub-placenta/decidua tissue was collected 5 days later. Transcriptome analysis was performed using RNA Sequencing on the Illumina platform. The MNR sub-placenta/decidua demonstrated fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion and downregulation of genelists involved in the regulation of cell migration. hIGF1 nanoparticle treatment resulted in marked changes to transporter activity in the MNR + hIGF1 sub-placenta/decidua when compared to sham MNR. Under normal growth conditions however, hIGF1 nanoparticle treatment decreased genelists enriched for kinase signaling pathways and increased genelists enriched for proteolysis indicative of homeostasis. Overall, this study identified changes to the sub-placenta/decidua transcriptome that likely result in inadequate trophoblast invasion and increases our understanding of pathways that hIGF1 nanoparticle treatment acts on in order to restore or maintain appropriate placenta function.
Collapse
|
3
|
Naponelli V, Rocchetti MT, Mangieri D. Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading. Int J Mol Sci 2024; 25:5569. [PMID: 38791608 PMCID: PMC11122459 DOI: 10.3390/ijms25105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Due to its propensity to metastasize, cancer remains one of the leading causes of death worldwide. Thanks in part to their intrinsic low cytotoxicity, the effects of the flavonoid family in the prevention and treatment of various human cancers, both in vitro and in vivo, have received increasing attention in recent years. It is well documented that Apigenin (4',5,7-trihydroxyflavone), among other flavonoids, is able to modulate key signaling molecules involved in the initiation of cancer cell proliferation, invasion, and metastasis, including JAK/STAT, PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and Wnt/β-catenin pathways, as well as the oncogenic non-coding RNA network. Based on these premises, the aim of this review is to emphasize some of the key events through which Apigenin suppresses cancer proliferation, focusing specifically on its ability to target key molecular pathways involved in angiogenesis, epithelial-to-mesenchymal transition (EMT), maintenance of cancer stem cells (CSCs), cell cycle arrest, and cancer cell death.
Collapse
Affiliation(s)
- Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Plesso Biotecnologico Integrato, Via Volturno 39, 43126 Parma, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| |
Collapse
|
4
|
Yang D, Shi M, You Q, Zhang Y, Hu Z, Xu J, Cai Q, Zhu Z. Tumor- and metastasis-promoting roles of miR-488 inhibition via HULC enhancement and EZH2-mediated p53 repression in gastric cancer. Cell Biol Toxicol 2023; 39:1341-1358. [PMID: 36449143 DOI: 10.1007/s10565-022-09760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/26/2022] [Indexed: 12/02/2022]
Abstract
Dysregulation of microRNAs (miRNAs or miRs) is implicated in the development of gastric cancer (GC), which is possibly related to their roles in targeting tumor-suppressive or tumor-promoting genes. Herein, the current study was intended to ascertain the function of miR-488 and its modulatory mechanism in GC. Initially, human GC cells were assayed for their in vitro malignancy after miRNA gain- or loss-of-function and RNA interference or overexpression. Also, tumorigenesis and liver metastasis were evaluated in nude mouse models. Results demonstrated that miR-488 elevation suppressed GC (MKN-45 and OCUM-1) cell proliferation, migration, and invasiveness in vitro and reduced their tumorigenesis and liver metastasis in vivo. The luciferase assay identified that miR-488 bound to HULC and inhibited its expression. Furthermore, HULC could enhance EZH2-H3K27me3 enrichment at the p53 promoter region and epigenetically repress the p53 expression based on the data from RIP- and ChIP-qPCR assay. Additionally, HULC was validated to enhance GC growth and metastasis in vitro and in vivo. Overall, HULC re-expression elicited by miR-488 inhibition can enhance EZH2-H3K27me3 enrichment in the p53 promoter and repress the p53 expression, thus promoting the growth and metastasis of GC.
Collapse
Affiliation(s)
- Dejun Yang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Mengyao Shi
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Qing You
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Zunqi Hu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Jiapeng Xu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Qingping Cai
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China.
| | - Zhenxin Zhu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Huangpu District, No. 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
5
|
Jeong YJ, Knutsdottir H, Shojaeian F, Lerner MG, Wissler MF, Henriet E, Ng T, Datta S, Navarro-Serer B, Chianchiano P, Kinny-Köster B, Zimmerman JW, Stein-O’Brien G, Gaida MM, Eshleman JR, Lin MT, Fertig EJ, Ewald AJ, Bader JS, Wood LD. Morphology-guided transcriptomic analysis of human pancreatic cancer organoids reveals microenvironmental signals that enhance invasion. J Clin Invest 2023; 133:e162054. [PMID: 36881486 PMCID: PMC10104894 DOI: 10.1172/jci162054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) frequently presents with metastasis, but the molecular programs in human PDAC cells that drive invasion are not well understood. Using an experimental pipeline enabling PDAC organoid isolation and collection based on invasive phenotype, we assessed the transcriptomic programs associated with invasion in our organoid model. We identified differentially expressed genes in invasive organoids compared with matched noninvasive organoids from the same patients, and we confirmed that the encoded proteins were enhanced in organoid invasive protrusions. We identified 3 distinct transcriptomic groups in invasive organoids, 2 of which correlated directly with the morphological invasion patterns and were characterized by distinct upregulated pathways. Leveraging publicly available single-cell RNA-sequencing data, we mapped our transcriptomic groups onto human PDAC tissue samples, highlighting differences in the tumor microenvironment between transcriptomic groups and suggesting that non-neoplastic cells in the tumor microenvironment can modulate tumor cell invasion. To further address this possibility, we performed computational ligand-receptor analysis and validated the impact of multiple ligands (TGF-β1, IL-6, CXCL12, MMP9) on invasion and gene expression in an independent cohort of fresh human PDAC organoids. Our results identify molecular programs driving morphologically defined invasion patterns and highlight the tumor microenvironment as a potential modulator of these programs.
Collapse
Affiliation(s)
- Yea Ji Jeong
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hildur Knutsdottir
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Fatemeh Shojaeian
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael G. Lerner
- Department of Physics and Astronomy, Earlham College, Richmond, Indiana, USA
| | - Maria F. Wissler
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Tammy Ng
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shalini Datta
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bernat Navarro-Serer
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter Chianchiano
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Jacquelyn W. Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Genevieve Stein-O’Brien
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthias M. Gaida
- Department of Pathology, University of Mainz, Mainz, Germany
- TRON, Translational Oncology at the University Medical Center, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - James R. Eshleman
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
| | - Ming-Tseh Lin
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elana J. Fertig
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew J. Ewald
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
- Department of Cell Biology
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
| | - Joel S. Bader
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
| | - Laura D. Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
| |
Collapse
|
6
|
Tellez-Gabriel M, Tekpli X, Reine TM, Hegge B, Nielsen SR, Chen M, Moi L, Normann LS, Busund LTR, Calin GA, Mælandsmo GM, Perander M, Theocharis AD, Kolset SO, Knutsen E. Serglycin Is Involved in TGF-β Induced Epithelial-Mesenchymal Transition and Is Highly Expressed by Immune Cells in Breast Cancer Tissue. Front Oncol 2022; 12:868868. [PMID: 35494005 PMCID: PMC9047906 DOI: 10.3389/fonc.2022.868868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Serglycin is a proteoglycan highly expressed by immune cells, in which its functions are linked to storage, secretion, transport, and protection of chemokines, proteases, histamine, growth factors, and other bioactive molecules. In recent years, it has been demonstrated that serglycin is also expressed by several other cell types, such as endothelial cells, muscle cells, and multiple types of cancer cells. Here, we show that serglycin expression is upregulated in transforming growth factor beta (TGF-β) induced epithelial-mesenchymal transition (EMT). Functional studies provide evidence that serglycin plays an important role in the regulation of the transition between the epithelial and mesenchymal phenotypes, and it is a significant EMT marker gene. We further find that serglycin is more expressed by breast cancer cell lines with a mesenchymal phenotype as well as the basal-like subtype of breast cancers. By examining immune staining and single cell sequencing data of breast cancer tissue, we show that serglycin is highly expressed by infiltrating immune cells in breast tumor tissue.
Collapse
Affiliation(s)
- Marta Tellez-Gabriel
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trine M. Reine
- Department of Interphase Genetics, Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Beate Hegge
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Stephanie R. Nielsen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Meng Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Line Moi
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
- Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Lisa Svartdal Normann
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway
| | - Lill-Tove R. Busund
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
- Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gunhild M. Mælandsmo
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Maria Perander
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | | | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
- *Correspondence: Erik Knutsen,
| |
Collapse
|
7
|
Luo W, Nagaria TS, Sun H, Ma J, Lombardo JL, Bassett R, Cao AC, Tan D. Expression and Potential Prognostic Value of SOX9, MCL-1 and SPOCK1 in Gastric Adenocarcinoma. Pathol Oncol Res 2022; 28:1610293. [PMID: 35221802 PMCID: PMC8863590 DOI: 10.3389/pore.2022.1610293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/19/2022] [Indexed: 11/21/2022]
Abstract
Gastric cancer is a common malignancy and remains one of the leading causes of cancer-related deaths, though its incidence is in decline in most developed countries. One of the major challenges of treating gastric cancer is tumor heterogeneity, which portends a high degree of prognostic variance and the necessity for different treatment modalities. Tumor heterogeneity is at least in part due to divergent differentiation of tumor cells to clones harboring different molecular alterations. Here we studied the expression of emerging prognostic markers SOX9, MCL-1, and SPOCK1 (Testican-1) in a cohort of gastric cancer by immunohistochemistry and investigated how individual biomarkers and their combinations predict disease prognosis. We found frequent expression of SPOCK1 (in both nuclei and cytoplasm), MCL-1 and SOX9 in gastric cancer. In univariate analysis, nuclear SPOCK1 expression and pathologic TNM stage were negative prognostic markers in this cohort. In multivariate analysis, SOX9 expression stood out as a predictor of poor prognosis. Further subgroup analysis suggested prognostic value of SOX9 expression in poorly differentiated gastric adenocarcinoma. MCL-1 showed no prognostic role in this cohort.
Collapse
Affiliation(s)
- Wenyi Luo
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Teddy S Nagaria
- Department of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Pathology, McGill University, Montreal, QC, Canada
| | - Hongxia Sun
- Department of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Pathology and Laboratory Medicine, University of Texas McGovern Medical School at Houston, Houston, TX, United States
| | - Junsheng Ma
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jamie L Lombardo
- Department of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Pathology, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Roland Bassett
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Austin C Cao
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dongfeng Tan
- Department of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
8
|
Váncza L, Tátrai P, Reszegi A, Baghy K, Kovalszky I. SPOCK1 with unexpected function. The start of a new career. Am J Physiol Cell Physiol 2022; 322:C688-C693. [PMID: 35235422 DOI: 10.1152/ajpcell.00033.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SPOCK1, 2 and 3 are considered as matricellular proteoglycans without structural role. Their functions are only partly elucidated. SPOCK1 was detected in the brain as a member of the neural synapses, then in the neuromuscular junctions. It plays a role in the regulation of blood-brain barrier. Its best characterized activity was its oncogenic potential discovered in 2012. Its deleterious effect on tumor progression was detected on 36 different types of tumors by the end of 2020. However, its mode of actions is still not completely understood. Furthermore, even less was discovered about its physiological function. The fact that it was found to localize in the mitochondria and interfered with the lipid metabolism indicated, that the full discovery of SPOCK1 still waiting for us.
Collapse
Affiliation(s)
- Lóránd Váncza
- Semmelweis University 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | | | - Andrea Reszegi
- Semmelweis University 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | - Kornelia Baghy
- Semmelweis University 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | - Ilona Kovalszky
- Semmelweis University 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| |
Collapse
|
9
|
Váncza L, Karászi K, Péterfia B, Turiák L, Dezső K, Sebestyén A, Reszegi A, Petővári G, Kiss A, Schaff Z, Baghy K, Kovalszky I. SPOCK1 Promotes the Development of Hepatocellular Carcinoma. Front Oncol 2022; 12:819883. [PMID: 35186754 PMCID: PMC8853618 DOI: 10.3389/fonc.2022.819883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix proteoglycan SPOCK1 is increasingly recognized as a contributor to the development and progression of cancers. Here, we study how SPOCK1, which is present in non-tumorous hepatocytes at low concentrations, promotes the development and progression of malignant hepatocellular tumors. Although SPOCK1 is an extracellular matrix proteoglycan, its concentration increases in the cytoplasm of hepatocytes starting with very low expression in the normal cells and then appearing in much higher quantities in cells of cirrhotic human liver and hepatocellular carcinoma. This observation is similar to that observed after diethylnitrosamine induction of mouse hepatocarcinogenesis. Furthermore, syndecan-1, the major proteoglycan of the liver, and SPOCK1 are in inverse correlation in the course of these events. In hepatoma cell lines, the cytoplasmic SPOCK1 colocalized with mitochondrial markers, such as MitoTracker and TOMM20, a characteristic protein of the outer membrane of the mitochondrion and could be detected in the cell nucleus. SPOCK1 downregulation of hepatoma cell lines by siRNA inhibited cell proliferation, upregulated p21 and p27, and interfered with pAkt and CDK4 expression. A tyrosine kinase array revealed that inhibition of SPOCK1 in the liver cancer cells altered MAPK signaling and downregulated several members of the Sarc family, all related to the aggressivity of the hepatoma cell lines. These studies support the idea that SPOCK1 enhancement in the liver is an active contributor to human and rodent hepatocarcinogenesis and cancer progression. However, its mitochondrial localization raises the possibility that it has a currently unidentified physiological function in normal hepatocytes.
Collapse
Affiliation(s)
- Lóránd Váncza
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Karászi
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Péterfia
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Katalin Dezső
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Anna Sebestyén
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Andrea Reszegi
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Petővári
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Kiss
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Schaff
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Kornélia Baghy
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- *Correspondence: Ilona Kovalszky, ;
| |
Collapse
|
10
|
SPOCK1 promotes metastasis in pancreatic cancer via NF-κB-dependent epithelial-mesenchymal transition by interacting with IκB-α. Cell Oncol (Dordr) 2021; 45:69-84. [PMID: 34855159 DOI: 10.1007/s13402-021-00652-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Sparc/osteonectin, cwcv and kazal-like domain proteoglycan 1 (SPOCK1) has been reported to function as an oncogene in a variety of cancer types. Increasing evidence suggests that SPOCK1 contributes to the metastatic cascade, including invasion, epithelial-mesenchymal transition (EMT) and micro-metastasis formation. As yet, however, the underlying mechanism is not clearly understood. Here, we evaluated the expression and clinicopathological significance of SPOCK1 in primary pancreatic cancer (PC) specimens and explored the mechanisms underlying SPOCK1-mediated PC cell growth and metastasis. METHODS The clinical relevance of SPOCK1 was evaluated in 81 patients with PC. The effect of SPOCK1 on proliferation, cell cycle progression, EMT and metastasis was examined in vitro and in vivo. The molecular mechanisms involved in SPOCK1-mediated regulation of NF-κB-dependent EMT were assessed in PC cell lines. RESULTS We found that SPOCK1 expression was increased in PC tissues and was associated with lymph node metastasis. Silencing or exogenous overexpression of SPOCK1 markedly altered the proliferation of PC cells through cell cycle transition. Overexpression of SPOCK1 promoted PC cell migration and invasion by regulating EMT progression. Moreover, we found that SPOCK1 contributes to EMT and metastasis by activating the NF-κB signalling pathway via direct interaction with IκBα. After NF-κB pathway inhibition by BAY11-7082, we found that PC cell motility and EMT induced by SPOCK1 were reversed. CONCLUSION From our data we conclude that SPOCK1 promotes PC metastasis via NF-κB-dependent EMT by interacting with IκBα. This newly identified mechanism may provide novel clues for the (targeted) treatment of PC patients.
Collapse
|
11
|
Zheng H, Liu H, Li H, Dou W, Wang X. Weighted Gene Co-expression Network Analysis Identifies a Cancer-Associated Fibroblast Signature for Predicting Prognosis and Therapeutic Responses in Gastric Cancer. Front Mol Biosci 2021; 8:744677. [PMID: 34692770 PMCID: PMC8531434 DOI: 10.3389/fmolb.2021.744677] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Cancer-associated fibroblasts (CAFs) are the most prominent cellular components in gastric cancer (GC) stroma that contribute to GC progression, treatment resistance, and immunosuppression. This study aimed at exploring stromal CAF-related factors and developing a CAF-related classifier for predicting prognosis and therapeutic effects in GC. Methods: We downloaded mRNA expression and clinical information of 431 GC samples from Gene Expression Omnibus (GEO) and 330 GC samples from The Cancer Genome Atlas (TCGA) databases. CAF infiltrations were quantified by the estimate the proportion of immune and cancer cells (EPIC) method, and stromal scores were calculated via the Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) algorithm. Stromal CAF-related genes were identified by weighted gene co-expression network analysis (WGCNA). A CAF risk signature was then developed using the univariate and least absolute shrinkage and selection operator method (LASSO) Cox regression model. We applied the Spearman test to determine the correlation among CAF risk score, CAF markers, and CAF infiltrations (estimated via EPIC, xCell, microenvironment cell populations-counter (MCP-counter), and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms). The TIDE algorithm was further used to assess immunotherapy response. Gene set enrichment analysis (GSEA) was applied to clarify the molecular mechanisms. Results: The 4-gene (COL8A1, SPOCK1, AEBP1, and TIMP2) prognostic CAF model was constructed. GC patients were classified into high– and low–CAF-risk groups in accordance with their median CAF risk score, and patients in the high–CAF-risk group had significant worse prognosis. Spearman correlation analyses revealed the CAF risk score was strongly and positively correlated with stromal and CAF infiltrations, and the four model genes also exhibited positive correlations with CAF markers. Furthermore, TIDE analysis revealed high–CAF-risk patients were less likely to respond to immunotherapy. GSEA revealed that epithelial–mesenchymal transition (EMT), TGF-β signaling, hypoxia, and angiogenesis gene sets were significantly enriched in high–CAF-risk group patients. Conclusion: The present four-gene prognostic CAF signature was not only reliable for predicting prognosis but also competent to estimate clinical immunotherapy response for GC patients, which might provide significant clinical implications for guiding tailored anti-CAF therapy in combination with immunotherapy for GC patients.
Collapse
Affiliation(s)
- Hang Zheng
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Heshu Liu
- Department of Oncology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Huayu Li
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Weidong Dou
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Xin Wang
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
12
|
Han J, Rong Y, Gao X. Multiomic analysis of the function of SPOCK1 across cancers: an integrated bioinformatics approach. J Int Med Res 2021; 49:300060520962659. [PMID: 34156309 PMCID: PMC8236807 DOI: 10.1177/0300060520962659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate SPARC (osteonectin), cwcv and kazal like domains proteoglycan 1 (SPOCK1) gene expression across The Cancer Genome Atlas (TCGA) cancers, both in cancer versus normal tissues and in different stages across the cancer types. Methods This integrated bioinformatics study used data from several bioinformatics databases (Cancer Cell Line Encyclopedia, Genotype-Tissue Expression, TCGA, Tumor Immune Estimation Resource [TIMER]) to define the expression pattern of the SPOCK1 gene. A survival analysis was undertaken across the cancers. The search tool for retrieval of interacting genes (STRING) database was used to identify proteins that interacted with SPOCK1. Gene Set Enrichment Analysis was conducted to determine pathway enrichment. The TIMER database was used to explore the correlation between SPOCK1 and immune cell infiltration. Results This multiomic analysis showed that the SPOCK1 gene was expressed differently between normal tissues and tumours in several cancers and that it was involved in cancer progression. The overexpression of the SPOCK1 gene was associated with poor clinical outcomes. Analysis of gene expression and tumour-infiltrating immune cells showed that SPOCK1 correlated with several immune cells across cancers. Conclusions This research showed that SPOCK1 might serve as a new target for several cancer therapies in the future.
Collapse
Affiliation(s)
- Jie Han
- Department of Hepatology, Qilu Hospital, Shandong University, Shandong, China
| | - Yihui Rong
- Infection Disease Center of Peking University International Hospital, Beijing, China
| | - Xudong Gao
- Infection Disease Center of Peking University International Hospital, Beijing, China
| |
Collapse
|
13
|
Liu N, Wu Y, Cheng W, Wu Y, Wang L, Zhuang L. Identification of novel prognostic biomarkers by integrating multi-omics data in gastric cancer. BMC Cancer 2021; 21:460. [PMID: 33902514 PMCID: PMC8073914 DOI: 10.1186/s12885-021-08210-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/13/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Gastric cancer is a fatal gastrointestinal cancer with high morbidity and poor prognosis. The dismal 5-year survival rate warrants reliable biomarkers to assess and improve the prognosis of gastric cancer. Distinguishing driver mutations that are required for the cancer phenotype from passenger mutations poses a formidable challenge for cancer genomics. METHODS We integrated the multi-omics data of 293 primary gastric cancer patients from The Cancer Genome Atlas (TCGA) to identify key driver genes by establishing a prognostic model of the patients. Analyzing both copy number alteration and somatic mutation data helped us to comprehensively reveal molecular markers of genomic variation. Integrating the transcription level of genes provided a unique perspective for us to discover dysregulated factors in transcriptional regulation. RESULTS We comprehensively identified 31 molecular markers of genomic variation. For instance, the copy number alteration of WASHC5 (also known as KIAA0196) frequently occurred in gastric cancer patients, which cannot be discovered using traditional methods based on significant mutations. Furthermore, we revealed that several dysregulation factors played a hub regulatory role in the process of biological metabolism based on dysregulation networks. Cancer hallmark and functional enrichment analysis showed that these key driver (KD) genes played a vital role in regulating programmed cell death. The drug response patterns and transcriptional signatures of KD genes reflected their clinical application value. CONCLUSIONS These findings indicated that KD genes could serve as novel prognostic biomarkers for further research on the pathogenesis of gastric cancers. Our study elucidated a multidimensional and comprehensive genomic landscape and highlighted the molecular complexity of GC.
Collapse
Affiliation(s)
- Nannan Liu
- The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yun Wu
- The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Weipeng Cheng
- The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yuxuan Wu
- The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Liguo Wang
- The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Liwei Zhuang
- The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
14
|
Li J, Dong W, Jiang Q, Zhang F, Dong H. LINC00668 cooperated with HuR dependent upregulation of PKN2 to facilitate gastric cancer metastasis. Cancer Biol Ther 2021; 22:311-323. [PMID: 33879018 DOI: 10.1080/15384047.2021.1905138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In China, gastric cancer (GC) ranks first in the incidence of all malignant tumors. With high recurrence and distant metastasis, GC has caused considerable mortalities. LncRNA long intergenic non-protein-coding RNA 668 (LINC00668) has been reported to be upregulated in GC cells and predict poor prognosis of GC patients. However, the mechanism of LINC00668 has not been fully investigated in GC. This study aimed to investigate the role of LINC00668 in GC. We found that LINC00668 level was upregulated in GC tissue and cells and predicted poor prognosis. Functionally, LINC00668 knockdown suppressed GC cell migration and invasion. Additionally, LINC00668 knockdown inhibited epithelial to mesenchymal transition (EMT) process. PKN2 exerts similar effects with LINC00668 in GC cells. LINC00668 knockdown suppressed tumor growth and metastasis in vivo. Mechanistically, HuR was predicted to bind with LINC00668 and protein kinase N2 (PKN2). RNA pull-down assays validated the binding between HuR and LINC00668 (or PKN2). Moreover, either silencing of LINC00668 or HuR could decrease PKN2 mRNA stability or reduce PKN2 mRNA and protein levels. Furthermore, PKN2 expression was positively correlated with LINC00668 expression and HuR expression in GC tissues, and HuR expression was positively associated with LINC00668 expression in GC tissues. Finally, rescue assays confirmed that the suppressive effect of LINC00668 silencing on cell migration, invasion, and EMT process was reversed by PKN2 overexpression or HuR upregulation. In conclusion, LINC00668 cooperated with HuR-dependent upregulation of PKN2 to facilitate gastric cancer metastasis, which may provide a potential novel insight for GC treatment.
Collapse
Affiliation(s)
- Jutang Li
- Hongqiao International Research Institution, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Second Military Medical University, Shanghai, China
| | - Wei Dong
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Second Military Medical University, Shanghai, China.,Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Qixia Jiang
- Department of Cardiology, Tong Ren Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Fenglian Zhang
- Department of Hematology, Tong Ren Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Hui Dong
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Second Military Medical University, Shanghai, China.,Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
15
|
Xiong X, Lai X, Li A, Liu Z, Ma N. Diversity roles of CHD1L in normal cell function and tumorigenesis. Biomark Res 2021; 9:16. [PMID: 33663617 PMCID: PMC7934534 DOI: 10.1186/s40364-021-00269-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) is a multifunctional protein participated in diverse cellular processes, including chromosome remodeling, cell differentiation and development. CHD1L is a regulator of chromosomal integrity maintenance, DNA repair and transcriptional regulation through its bindings to DNA. By regulating kinds of complex networks, CHD1L has been identified as a potent anti-apoptotic and pro-proliferative factor. CHD1L is also an oncoprotein since its overexpression leads to dysregulation of related downstream targets in various cancers. The latest advances in the functional molecular basis of CHD1L in normal cells will be described in this review. As the same time, we will describe the current understanding of CHD1L in terms of structure, characteristics, function and the molecular mechanisms underlying CHD1L in tumorigenesis. We inference that the role of CHD1L which involve in multiple cellular processes and oncogenesis is well worth further studying in basic biology and clinical relevance.
Collapse
Affiliation(s)
- Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Xudong Lai
- Departement of infectious disease, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China.
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China.
| | - Ningfang Ma
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Department of Histology and Embryology, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China.
| |
Collapse
|
16
|
Zhu X, Jiang S, Wu Z, Liu T, Zhang W, Wu L, Xu L, Shao M. Long non-coding RNA TTN antisense RNA 1 facilitates hepatocellular carcinoma progression via regulating miR-139-5p/SPOCK1 axis. Bioengineered 2021; 12:578-588. [PMID: 33517826 PMCID: PMC8291788 DOI: 10.1080/21655979.2021.1882133] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Reportedly, long non-coding RNAs (lncRNAs) are implicated in hepatocellular carcinoma (HCC) progression, yet little is known concerning the biological functions of TTN antisense RNA 1 (TTN-AS1) in HCC. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was performed for detecting TTN-AS1, SPOCK1 mRNA, and miR-139-5p expressions in HCC cells and tissues. After TTN-AS1 was overexpressed or knocked down in HCC cells, CCK-8 and 5-Ethynyl-2ʹ-deoxyuridine (EdU) assays were carried out for examining cell multiplication. Transwell assays were conducted for evaluating HCC cell migration and invasion. Dual-luciferase reporter assay was employed for verifying the binding relationships between miR-139-5p and TTN-AS1, and between SPOCK1 3ʹUTR and miR-139-5p. Western blot was employed to measure SPOCK1, E-cadherin, N-cadherin, and Vimentin protein expressions. We demonstrated that, TTN-AS1 and SPOCK1 expression levels were remarkably enhanced in HCC cells and tissues, whereas miR-139-5p expression was observably reduced. Functional experiments suggested that TTN-AS1 knockdown markedly repressed HCC cell multiplication, migration, epithelial-mesenchymal transition (EMT), and invasion. In addition, TTN-AS1 interacted with miR-139-5p and decreased its expression. Moreover, SPOCK1 was a miR-139-5p target, and miR-139-5p inhibitors were able to reverse TTN-AS1 knockdown-induced inhibitory effect on SPOCK1 expression. SPOCK1 overexpression plasmid could counteract TTN-AS1 knockdown-induced inhibiting impact on HCC cell multiplication, migration, invasion, and EMT. In conclusion, TTN-AS1 expression level is remarkably enhanced in HCC, and TTN-AS1 can promote the multiplication, migration, invasion, and EMT of HCC cells via regulating miR-139-5p/SPOCK1 axis.
Collapse
Affiliation(s)
- Xinghao Zhu
- Department of Internal Medicine of Chinese Medicine, Henan University of Chinese Medicine , Zhengzhou, Henan, China
| | - Shiqing Jiang
- The First Affiliated Hospital of Henan University of Chinese Medicine , Zhengzhou, Henan, China
| | - Zongyao Wu
- Institute of Tibetan Medicine, Tibet University of Tibetan Medicine , Lhasa, Xizang, China
| | - Tonghua Liu
- Beijing University of Chinese Medicine , Beijing, China
| | - Wei Zhang
- Institute of Liver Diseases, Shijiazhuang Fifth Hospital , Shijiazhuang, Hebei, China
| | - Lili Wu
- Beijing University of Chinese Medicine , Beijing, China
| | - Lijun Xu
- Institute of Tibetan Medicine, Tibet University of Tibetan Medicine , Lhasa, Xizang, China
| | - Mingliang Shao
- Department of Oncology, Shijiazhuang Fifth Hospital , Shijiazhuang, Hebei, China
| |
Collapse
|
17
|
Xu M, Zhang X, Zhang S, Piao J, Yang Y, Wang X, Lin Z. SPOCK1/SIX1axis promotes breast cancer progression by activating AKT/mTOR signaling. Aging (Albany NY) 2020; 13:1032-1050. [PMID: 33293473 PMCID: PMC7835061 DOI: 10.18632/aging.202231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
SPOCK1 is highly expressed in many types of cancer and has been recognized as a promoter of cancer progression. Its regulatory mechanism in breast cancer (BC) remains unclear. This study aimed to explore the precise function of SPOCK1 in BC progression and to identify the mechanism by which SPOCK1 is involved in cell proliferation and epithelial-mesenchymal transition (EMT). Immunohistochemistry (IHC) experiments and database analysis showed that high expression of SPOCK1 was positively associated with histological grade, lymph node metastasis (LN) and poor clinical prognosis in BC. A series of in vitro and in vivo assays elucidated that altering the SPOCK1 level led to distinct changes in BC cell proliferation and metastasis. Investigations of potential mechanisms revealed that SPOCK1 interacted with SIX1 to enhance cell proliferation, cell cycle progression and EMT by activating the AKT/mTOR pathway, whereas inhibition of the AKT/mTOR pathway or depletion of SIX1 reversed the effects of SPOCK1 overexpression. Furthermore, SPOCK1 and SIX1 were highly expressed in BC and might indicate poor prognoses. Altogether, the SPOCK1/SIX1 axis promoted BC progression by activating the AKT/mTOR pathway to accelerate cell proliferation and promote metastasis in BC, so the SPOCK1/SIX1 axis might be a promising clinical therapeutic target for preventing BC progression.
Collapse
Affiliation(s)
- Ming Xu
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Xianglan Zhang
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea
| | - Songnan Zhang
- Department of Oncology, Yanbian University Affiliated Hospital, Yanji, China
| | - Junjie Piao
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Yang Yang
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Xinyue Wang
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China
| | - Zhenhua Lin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China
| |
Collapse
|
18
|
ERN1 dependent regulation of TMED10, MYL9, SPOCK1, CUL4A and CUL4B genes expression at glucose and glutamine deprivations in U87 glioma cells. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.05.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
19
|
Lu J, Huang XY, Wang YH, Xie JW, Wang JB, Lin JX, Chen QY, Cao LL, Li P, Huang CM, Zheng CH. POC1A acts as a promising prognostic biomarker associated with high tumor immune cell infiltration in gastric cancer. Aging (Albany NY) 2020; 12:18982-19011. [PMID: 33052878 PMCID: PMC7732308 DOI: 10.18632/aging.103624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/04/2020] [Indexed: 01/24/2023]
Abstract
The effect of POC1 centriolar protein A (POC1A) on gastric cancer (GC) has not been clearly defined. In this study, POC1A expression and clinical information in patients with GC were analyzed. Multiple databases were used to investigate the genes that were co-expressed with POC1A and genes whose changes co-occurred with genetic alternations of POC1A. Moreover, the TISIDB and TIMER databases were used to analyze immune infiltration. The GSE54129 GC dataset and LASSO regression model (tumor vs. normal) were employed, and 6 significant differentially expressed genes (LAMP5, CEBPB, ARMC9, PAOX, VMP1, POC1A) were identified. POC1A was selected for its high expression in adjacent tissues, which was confirmed with IHC. High POC1A expression was related to better overall and recurrence-free survival. GO and KEGG analyses demonstrated that POC1A may regulate the cell cycle, DNA replication and cell growth. Furthermore, POC1A was found to be correlated with immune infiltration levels in GC according to the TISIDB and TIMER databases. These findings indicate that POC1A acts as a tumor suppressor in GC by regulating the cell cycle and cell growth. In addition, POC1A preferentially regulates the immune infiltration of GC via several immune genes. However, the specific mechanism requires further study.
Collapse
Affiliation(s)
- Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Xiao-Yan Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yao-Hui Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China,Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
Ye Z, Chen J, Hu X, Yang S, Xuan Z, Lu X, Zhao Q. SPOCK1: a multi-domain proteoglycan at the crossroads of extracellular matrix remodeling and cancer development. Am J Cancer Res 2020; 10:3127-3137. [PMID: 33163261 PMCID: PMC7642659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023] Open
Abstract
The SPARC/osteonectin, CWCV and Kazal-like domains proteoglycan 1 (SPOCK1) is a highly conserved, multi-domain proteoglycan that regulates the dynamic equilibrium of extracellular matrix (ECM). Besides, SPOCK1 is one of the key regulatory genes in the tumor ECM dynamic homeostasis process, which activates many molecular signaling pathways (such as EMT process, Wnt/β-catenin, PI3K/Akt, and mTOR/S6K signaling pathways). This activation leads to ECM remodeling and promotes cell proliferation and invasion, but inhibits cell apoptosis. Whereas there is immense information about SPOCK1's roles in different biological settings, there is need for further studies that interrogate this protein as a potential therapeutic target in cancer.
Collapse
Affiliation(s)
- Ziqi Ye
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
| | - Jie Chen
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310009, China
| | - Xi Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
| | - Si Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
| | - Zixue Xuan
- Department of Pharmacy, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical CollegeHangzhou, China
| | - Xiaoyang Lu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, China
| |
Collapse
|
21
|
SPOCK1 is a novel inducer of epithelial to mesenchymal transition in drug-induced gingival overgrowth. Sci Rep 2020; 10:9785. [PMID: 32555336 PMCID: PMC7300011 DOI: 10.1038/s41598-020-66660-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/22/2020] [Indexed: 11/28/2022] Open
Abstract
Few studies have investigated the role of extracellular-matrix proteoglycans in the pathogenesis of drug-induced gingival overgrowth (DIGO). SPOCK1 is an extracellular proteoglycan that induces epithelial to mesenchymal transition (EMT) in several cancer cell lines and exhibits protease-inhibitory activity. However, the role of SPOCK1 in non-cancerous diseases such as DIGO has not been well-addressed. We demonstrated that the expression of SPOCK1, TGF-β1, and MMP-9 in calcium channel blocker-induced gingival overgrowth is higher than that in non-overgrowth tissues. Transgenic mice overexpressing Spock1 developed obvious gingival-overgrowth and fibrosis phenotypes, and positively correlated with EMT-like changes. Furthermore, in vitro data indicated a tri-directional interaction between SPOCK1, TGF-β1, and MMP-9 that led to gingival overgrowth. Our study shows that SPOCK1 up-regulation in a noncancerous disease and SPOCK1-induced EMT in gingival overgrowth occurs via cooperation and crosstalk between several potential signaling pathways. Therefore, SPOCK1 is a novel therapeutic target for gingival overgrowth and its expression is a potential risk of EMT induction in cancerous lesions.
Collapse
|
22
|
Sun LR, Li SY, Guo QS, Zhou W, Zhang HM. SPOCK1 Involvement in Epithelial-to-Mesenchymal Transition: A New Target in Cancer Therapy? Cancer Manag Res 2020; 12:3561-3569. [PMID: 32547193 PMCID: PMC7244346 DOI: 10.2147/cmar.s249754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cancer metastasis is the main obstacle to increasing the lifespan of cancer patients. Epithelial-to-mesenchymal transition (EMT) plays a significant role in oncogenic processes, including tumor invasion, intravasation, and micrometastasis formation, and is especially critical for cancer invasion and metastasis. The extracellular matrix (ECM) plays a crucial role in the occurrence of EMT corresponding to the change in adhesion between cells and matrices. Conclusion SPOCK1 is a critical regulator of the ECM and mediates EMT in cancer cells. This suggests an important role for SPOCK1 in tumorigenesis, migration and invasion. SPOCK1 is a critical regulator of some processes involved in cancer progression, including cancer cell proliferation, apoptosis and migration. Herein, the functions of SPOCK1 in cancer progression are expounded, revealing the association between SPOCK1 and EMT in cancer metastasis. SPOCK1 is a positive downstream regulator of transforming growth factor-β, and SPOCK1-mediated EMT regulates invasion and metastasis through the Wnt/β-catenin pathway and PI3K/Akt signaling pathway. It is of significance that SPOCK1 may be an attractive prognostic biomarker and therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Li-Rui Sun
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Si-Yu Li
- Department of Pathology, Hangzhou Third Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Qiu-Shi Guo
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Wei Zhou
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Hong-Mei Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
23
|
Kim B, Jang J, Heo YJ, Kang SY, Yoo H, Sohn I, Min BH, Kim KM. Dysregulated miRNA in a cancer-prone environment: A study of gastric non-neoplastic mucosa. Sci Rep 2020; 10:6600. [PMID: 32313120 PMCID: PMC7171080 DOI: 10.1038/s41598-020-63230-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/16/2020] [Indexed: 11/09/2022] Open
Abstract
Understanding cancer-prone environments is important to efficiently detect and prevent cancers. The associations between miRNA and cancer-prone environments are still largely unknown in gastric cancer (GC). Six miRNAs that are differentially expressed during gastric carcinogenesis were selected, and quantitative real-time PCR was performed in an independent training set (fresh non-tumor and tumor samples from 18 GC patients) and validation sets (set 1 with formalin-fixed paraffin-embedded non-tumor and tumor samples from 19 solitary GC and set 2 with 37 multiple GC patients). The results were compared with those of 37 gastric mucosa from 20 healthy volunteers. The expression levels of miR-26a, miR-375, and miR-1260 in gastric mucosa from healthy volunteers were statistically higher than that of non-tumorous gastric mucosa located 3 cm apart from the GC in the training set (miR-26a, P < 0.0001; miR-375, P = 0.0049; miR-1260, P = 0.0172), validation set 1 (miR-26a and miR-375, P < 0.0001; miR-1260, P = 0.0008), and validation set 2 (miR-26a, miR-375, and miR-1260, P < 0.0001). And a combination of miR-26a and miR-1260 showed the highest area under the curve value of 0.89. miRNAs are differentially expressed in non-neoplastic gastric mucosa and can be used as a biomarker to predict cancer-prone environments.
Collapse
Affiliation(s)
- Binnari Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| | - Jiryeon Jang
- The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - You Jeong Heo
- The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Heejin Yoo
- Statistics and Data Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Insuk Sohn
- Statistics and Data Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byung-Hoon Min
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. .,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Dai L, Zhao J, Yin J, Fu W, Chen G. Cell adhesion molecule 2 (CADM2) promotes brain metastasis by inducing epithelial-mesenchymal transition (EMT) in human non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:465. [PMID: 32395509 PMCID: PMC7210202 DOI: 10.21037/atm.2020.03.85] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background To investigate the effect of CADM2 on brain metastasis in non-small cell lung cancer (NSCLC). Methods Human transcriptome-wide microarray analysis was used to identify gene expression in lung tissue of NSCLC patients with or without brain metastasis, which indicated that CADM2 was significantly up-regulated. Quantitative real-time PCR (qRT-PCR) was used to confirm the CADM2 up-regulation further. SiRNA was used to knock down the expression of CADM2 in NSCLC cell lines and a Transwell assay was performed to determine the effects of CADM2 knockdown on cell migration and invasion. The expressions of Vimentin and E-cadherin were detected by western blot assay. Results The result of microarray analysis and qRT-PCR showed that CADM2 was significantly up-regulated in NSCLC patients with brain metastasis than in those without brain metastasis. The result of the Transwell assay showed that the migration and invasion abilities of NSCLC cells were inhibited after CADM2 knockdown. Also, the expression of Vimentin was reduced while E-cadherin was increased, followed by CADM2 knockdown. Conclusions The results showed that CADM2 might promote brain metastasis by inducing epithelial-mesenchymal transition (EMT) in human NSCLC. We propose that CADM2 can be used as a novel molecular target for the prevention and treatment in NSCLC with brain metastasis patients.
Collapse
Affiliation(s)
- Lu Dai
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China.,Department of Thoracic Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Jian Zhao
- Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Jun Yin
- Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Wenfan Fu
- Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Gang Chen
- The Second Clinical Medical College, Southern Medical University, Guangzhou 510515, China.,Department of Thoracic Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
25
|
Peritoneal metastatic gastric carcinoma cells exhibit more malignant behavior when co-cultured with HMrSV5 cells. Aging (Albany NY) 2020; 12:3238-3248. [PMID: 32139657 PMCID: PMC7066899 DOI: 10.18632/aging.102803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/19/2020] [Indexed: 01/20/2023]
Abstract
Metastasis and recurrence are major causes of death in gastric cancer patients. Because there are no obvious clinical symptoms during the early stages of metastasis, we sought to isolate highly invasive metastatic gastric cancer cells for future drug screening. We first established a mouse model to observe gastric cancer metastasis in vivo. The incidence of peritoneal metastasis of gastric cancer was much higher than liver or lymph metastasis. Peritoneal metastatic and non-metastatic NUGC-4 cells were isolated from the mouse model. Cell proliferation was measured using CCK-8 assays, while migration and invasion were investigated in Transwell assays. Proteins involved in epithelial-mesenchymal transition were detected by Western blotting. Metastatic gastric carcinoma cells were more proliferative and invasive than primary NUGC-4 cells. The supernatants of metastatic gastric carcinoma cells notably altered the morphology of HMrSV5 peritoneal mesothelial cells and promoted their epithelial-mesenchymal transition. Moreover, primary or metastatic gastric cancer cells co-cultured with HMrSV5 cells markedly increased cancer cell proliferation and invasiveness. Moreover, peritoneal metastatic gastric carcinoma cells in the presence of HMrSV5 cells exhibited most malignant behaviors. Thus, peritoneal metastatic gastric carcinoma cells exhibited high capacities for proliferation and invasion, and could be used as a new drug screening tool for the treatment of advanced gastric cancer and peritoneal metastatic gastric cancer.
Collapse
|
26
|
Chen D, Liu Q, Cao G, Zhang W. TYRO3 facilitates cell growth and metastasis via activation of the Wnt/β-catenin signaling pathway in human gastric cancer cells. Aging (Albany NY) 2020; 12:2261-2274. [PMID: 32018224 PMCID: PMC7041786 DOI: 10.18632/aging.102744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
It has become increasingly important to identify valuable therapeutic targets to improve the prognosis of cancer patients. Although emerging evidence has suggested TYRO3 as a potential therapeutic target in various types of cancers, less is known about its role in gastric cancer (GC) development. Herein, we investigated the functional and molecular mechanisms by which TYRO3 influenced GC. TYRO3 mRNA and protein were evaluated by quantitative real-time PCR (qRT-PCR), western blotting, and immunohistochemistry. Other methods including stable transfection of TYRO3 into GC cells, wound healing, Transwell assays, CCK-8 assays, colony formation assays, immunocytochemistry in vitro, and tumorigenesis in vivo were also conducted. Our results indicated that high levels of TYRO3 significantly correlated with clinical metastasis and poor prognoses in patients with GC. In addition, TYRO3 silencing distinctively suppressed GC cell growth, invasion, and metastasis both in vitro and in vivo. Conversely, TYRO3 overexpression led to the opposite effects. Mechanistic analyses revealed that the Wnt/β-catenin signaling pathway might be involved in TYRO3-facilitated GC cell behavior. Collectively, we demonstrated that elevated TYRO3 expression contributed to GC cell growth and metastasis via the Wnt/β-catenin pathway, suggesting a novel therapeutic target for GC.
Collapse
Affiliation(s)
- Dehu Chen
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, China
| | - Qinghong Liu
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, China
| | - Gan Cao
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, China
| | - Wei Zhang
- Department of Infectious Diseases, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, China
| |
Collapse
|
27
|
Li ZT, Zhang X, Wang DW, Xu J, Kou KJ, Wang ZW, Yong G, Liang DS, Sun XY. Overexpressed lncRNA GATA6-AS1 Inhibits LNM and EMT via FZD4 through the Wnt/β-Catenin Signaling Pathway in GC. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:827-840. [PMID: 31981860 PMCID: PMC6976905 DOI: 10.1016/j.omtn.2019.09.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. Accumulating evidence reveals the significance of long non-coding RNAs (lncRNAs) in various cancers. The current study aimed to evaluate the role of GATA6 antisense RNA 1 (GATA6-AS1) in the epithelial-mesenchymal transition (EMT) and lymph node metastasis (LNM) in GC. GC-related microarray datasets were initially retrieved from the GEO with differentially expressed lncRNAs screened, followed by evaluation of the regulatory relationship between Frizzled 4 (FZD4) and GATA6-AS1. The detailed regulatory mechanism by which GATA6-AS1 influences the Wnt/β-catenin signaling pathway and GC cell biological behaviors was investigated by treating SGC7901 cells with overexpressed GATA6-AS1, specific antisense oligonucleotide against GATA6-AS1, and lithium chloride (LiCl; activator of the Wnt/β-catenin signaling pathway). Finally, xenograft nude mice were used to assay tumor growth and LNM in vivo. GATA6-AS1 was poorly expressed, but FZD4 was highly expressed in GC tissues and cells. Elevated GATA6-AS1 reduced FZD4 expression by recruiting enhancer of zeste homolog 2 (EZH2) and trimethylation at lysine 27 of histone H3 (H3K27me3) to the FZD4 promoter region via the inactivated Wnt/β-catenin signaling pathway, whereby cell invasion, migration, and proliferation, tumor growth, and LNM in nude mice were reduced. Taken together, overexpressed GATA6-AS1 downregulated the expression of FZD4 to inactivate the Wnt/β-catenin signaling pathway, which ultimately inhibited GC progression.
Collapse
Affiliation(s)
- Zheng-Tian Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Xu Zhang
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China; Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Da-Wei Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Jun Xu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Ke-Jian Kou
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Zhi-Wei Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Gong Yong
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - De-Sen Liang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China.
| | - Xue-Ying Sun
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China; Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
28
|
You X, Liu Q, Wu J, Wang Y, Dai J, Chen D, Zhou Y, Lian Y. Galectin-1 Promotes Vasculogenic Mimicry in Gastric Cancer by Upregulating EMT Signaling. J Cancer 2019; 10:6286-6297. [PMID: 31772662 PMCID: PMC6856752 DOI: 10.7150/jca.33765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Galectin-1 (Gal-1) expression was positively associated with vasculogenic mimicry (VM) in primary gastric cancer (GC) tissue, and that both Gal-1 expression and VM in GC tissue are indicators of poor prognosis. However, whether Gal-1 promotes VM, and by what mechanismsremains unknown. Methods: To investigate the underlying mechanisms,wound healing assay, proliferation assay, invasion assay, and three-dimensional culture were used to evaluate the invasion, metastasis and promoted VM formation effects of the Gal-1. We monitored the expression level of sociated proteins in GC tissues, cell lines in vitro and nude mice tumorigenicity in vivo by immunohistochemistry and western blot. Results: Gal-1 overexpression significantly promoted the proliferation, invasion, migration, and VM formation of MGC-803 cells. Gal-1 was associated with E-cadherin and vimentin in vitro and in clinical samples. The epithelial-to-mesenchymal transition (EMT) induced in MGC-803 cells by TGF-β1 was accompanied by Gal-1 activation and promotion of VM formation, while knockdown of Gal-1 reduced the response to TGF-β1, suggesting that Gal-1 promotes VM formation by activating EMT signaling. Overexpression of Gal-1 accelerated subcutaneous xenograft growth and facilitated pulmonary metastasis in athymic mice, enhanced the expression of EMT markers, and promoted VM formation in vivo. Conclusion: Our results indicated that Gal-1 promotes VM in GC by upregulating EMT signaling; thus, Gal-1 and this pathway are potential novel targets to treat VM in GC.
Collapse
Affiliation(s)
- Xiaolan You
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu province, China
| | - Qinghong Liu
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu province, China
| | - Jian Wu
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu province, China
| | - Yuanjie Wang
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu province, China
| | - Jiawen Dai
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu province, China
| | - Dehu Chen
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu province, China
| | - Yan Zhou
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu province, China
| | - Yanjun Lian
- Department of Gastrointestinal Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, Jiangsu province, China
| |
Collapse
|
29
|
Yu XF, Wang J, OUYang N, Guo S, Sun H, Tong J, Chen T, Li J. The role of miR-130a-3p and SPOCK1 in tobacco exposed bronchial epithelial BEAS-2B transformed cells: Comparison to A549 and H1299 lung cancer cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:862-869. [PMID: 31526129 DOI: 10.1080/15287394.2019.1664479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the pathogenesis of human lung cancer induced by tobacco smoke decreased expression levels of microRNAs (miRNAs) are known to occur. At present, the specific miRNAs expression levels reduced by tobacco smoke and subsequent lung cellular transformation remain to be determined. The aim of this study was thus to identify the miRNAs affected following cigarette-smoke exposure in bronchial epithelial BEAS-2B cells that were malignantly transformed into S30 cells. In addition, the miRNAs in S30 transformed cells were compared to human lung cancer cell lines A549 and H1299. Our results identified miR-130a-3p which was down-regulated in S30 cells as well as A549 and H1299 lung cancer cell lines. Using miRNA mimic, a correlation between elevated miR-130a-3p expression levels and reduced migration in A549 and H1299 cell lines and S30 cells was noted as evidenced by transwell and wound healing assays accompanied by enhanced apoptosis. Further, two online target genes prediction programs TargetScan and miRDB were employed to identify the miRNA target gene SPOCK1 in all three cell types. SPOCK1 expression was higher in unexposed bronchial epithelial BEAS-2B cells. It is of interest that however silencing SPOCK1 in transformed S30 cells exposed to cigarette-smoke a marked depression in cell migration was noted. Our findings demonstrate that upregulated miR-130a-3p was associated with reduced SPOCK1 expression in transformed S30 as well as lung cancer A549 and H1299 cell lines indicating that cigarette transformed cells behave similar to lung cancer cells and this process involves diminished lung cancer cells migration.
Collapse
Affiliation(s)
- Xiao-Fan Yu
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Jin Wang
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Nan OUYang
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Shuang Guo
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
| | - Huiying Sun
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
| | - Jian Tong
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Tao Chen
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Jianxiang Li
- Department of Toxicology, School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| |
Collapse
|
30
|
Jing Y, Jin Y, Wang Y, Chen S, Zhang X, Song Y, Wang Z, Pu Y, Ni Y, Hu Q. SPARC promotes the proliferation and metastasis of oral squamous cell carcinoma by PI3K/AKT/PDGFB/PDGFRβ axis. J Cell Physiol 2019; 234:15581-15593. [PMID: 30706473 DOI: 10.1002/jcp.28205] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a highly lethal cancer in the world, and the prognosis of OSCC is poor with a 60% 5-year survival rate in recent decades. Here, we introduced a novel secretory and acid glycoprotein with cysteine rich (secreted protein acidic and rich in cysteine, SPARC), which is correlated with the worst pattern of invasion (WPOI) and prognosis of OSCC. SPARC expression levels were measured in OSCC tissues and normal tissues using quantitative polymerase chain reaction and immunohistochemistry. The influence of SPARC on cell proliferation was examined by cell counting kit-8, colony formation, and Edu tests. Then, the effect of SPARC on the metastasis of OSCC cells was detected by wound healing and transwell migration assays. Next, the biologic characteristics of SPARC shared by STRING were analyzed. Furthermore, the underlying mechanisms were confirmed by western blot analysis. SPARC revealed higher expression in OSCC tissues than nontumor tissues. Higher SPARC expression was correlated with poorer tumor differentiation, poorer WPOI pattern, and significantly and shorter overall survival. Knockdown SPARC significantly restrained OSCC cell growth, migration, and invasion. In addition, bioinformatics analysis found SPARC had a coexpression network with the platelet-derived growth factor-B (PDGFB) and PI3K/AKT signaling pathways with minimal false discovery rate. Furthermore, SPARC promotes OSCC cells metastasis by regulating the expressions of PDGFB, PDGFRβ, p-PDGFRβ , and the PI3K/AKT pathway. Higher SPARC expression was positively correlated with poor WPOI and differentiation in OSCC. SPARC activates the PI3K/AKT/PDGFB/PDGFRβ axis to promote proliferation and metastasis by OSCC cell lines. Therefore, SPARC may be a potential therapeutic target for patients with OSCC.
Collapse
Affiliation(s)
- Yue Jing
- Central Laboratory of Oral Disease, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yue Jin
- Department of Oral and Maxillofacial Surgery, Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yujia Wang
- Department of Oral and Maxillofacial Surgery, Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Sheng Chen
- Department of Oral and Maxillofacial Surgery, Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoxin Zhang
- Central Laboratory of Oral Disease, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory of Oral Disease, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhiyong Wang
- Department of Oral and Maxillofacial Surgery, Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yumei Pu
- Department of Oral and Maxillofacial Surgery, Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanhong Ni
- Central Laboratory of Oral Disease, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
31
|
Liu G, Ren F, Song Y. Upregulation of SPOCK2 inhibits the invasion and migration of prostate cancer cells by regulating the MT1-MMP/MMP2 pathway. PeerJ 2019; 7:e7163. [PMID: 31338255 PMCID: PMC6628882 DOI: 10.7717/peerj.7163] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
Background It is known that secreted protein acidic and cysteine rich (osteonectin), cwcv and kazal-like domains proteoglycan 2 (SPOCK2) plays a significant role in the development and progression of several human cancers; however, the role of SPOCK2 in prostate cancer (PCa) remains unclear. This study aimed to find the role and mechanism of SPOCK2 in the development and progression of PCa. Methods The messenger ribonucleic acid (mRNA) expression of SPOCK2 in PCa tissue was detected by real-time polymerase chain reaction (PCR). Upregulation of the SPOCK2 gene was achieved using the DU145 and LNCaP cells by transfecting the cells with SPOCK2 recombinant fragment. Cell invasion and migration ability were detected by transwell chamber and wound healing assay. The expression of membrane-type 1 matrix metalloproteinase (MT1-MMP) and matrix metalloproteinase 2 (MMP2) in the cells was detected by Western Blot and zymography gel assay. Results The mRNA level of SPOCK2 was significantly lower in the PCa tissue compared to benign prostate hyperplasia. Upregulation of SPOCK2 inhibited cell invasion and migration in DU145 and LNCaP cells, inhibited the expression of MT1-MMP and MMP2 and, inhibited activation of MMP2 in DU145 and LNCaP cells. Conclusion SPOCK2 is associated with the progression of PCa. Upregulation of SPOCK2 can inhibit PCa cell invasion and metastasis by decreasing MT1-MMP and MMP2 gene expression and decreasing MMP2 protein activation.
Collapse
Affiliation(s)
- Gang Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fang Ren
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yongsheng Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
32
|
Comprehensive Profiling of Primary and Metastatic ccRCC Reveals a High Homology of the Metastases to a Subregion of the Primary Tumour. Cancers (Basel) 2019; 11:cancers11060812. [PMID: 31212796 PMCID: PMC6628027 DOI: 10.3390/cancers11060812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
While intratumour genetic heterogeneity of primary clear cell renal cell carcinoma (ccRCC) is well characterized, the genomic profiles of metastatic ccRCCs are seldom studied. We profiled the genomes and transcriptomes of a primary tumour and matched metastases to better understand the evolutionary processes that lead to metastasis. In one ccRCC patient, four regions of the primary tumour, one region of the thrombus in the inferior vena cava, and four lung metastases (including one taken after pegylated (PEG)-interferon therapy) were analysed separately. Each sample was analysed for copy number alterations and somatic mutations by whole exome sequencing. We also evaluated gene expression profiles for this patient and 15 primary tumour and 15 metastasis samples from four additional patients. Copy number profiles of the index patient showed two distinct subgroups: one consisted of three primary tumours with relatively minor copy number changes, the other of a primary tumour, the thrombus, and the lung metastases, all with a similar copy number pattern and tetraploid-like characteristics. Somatic mutation profiles indicated parallel clonal evolution with similar numbers of private mutations in each primary tumour and metastatic sample. Expression profiling of the five patients revealed significantly changed expression levels of 57 genes between primary tumours and metastases, with enrichment in the extracellular matrix cluster. The copy number profiles suggest a punctuated evolution from a subregion of the primary tumour. This process, which differentiated the metastases from the primary tumours, most likely occurred rapidly, possibly even before metastasis formation. The evolutionary patterns we deduced from the genomic alterations were also reflected in the gene expression profiles.
Collapse
|
33
|
Chien MH, Lin YW, Wen YC, Yang YC, Hsiao M, Chang JL, Huang HC, Lee WJ. Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:246. [PMID: 31182131 PMCID: PMC6558790 DOI: 10.1186/s13046-019-1247-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023]
Abstract
Background Prostate cancer (PCa) is considered one of the most prevalent malignancy globally, and metastasis is a major cause of death. Apigenin (API) is a dietary flavonoid which exerts an antimetastatic effect in various cancer types. Sparc/osteonectin, cwcv, and kazal-like domains proteoglycan 1 (SPOCK1) is a crucial modulator of tumor growth and metastasis in cancers. However, the role and underlying regulatory mechanisms of SPOCK1 in the API-mediated antimetastatic effects of PCa remain unclear. Methods MTS, colony formation, wound-healing, and transwell assays were conducted to evaluate the effects of API on PCa cell proliferative, migratory, and invasive potentials. In vivo orthotopic bioluminescent xenograft model were employed to determine antitumor activity of API. PCa cells were transfected with either Snail-, Slug-, SPOCK1-overexpressing vector, or small hairpin (sh)SPOCK1 to determine the invasive abilities and expression levels of SPOCK1 and epithelial-to-mesenchymal transition (EMT) biomarkers in response to API treatment. Immunohistochemical (IHC) assays were carried out to evaluate the expression level of SPOCK1 in PCa xenografts and a PCa tissue array. Associations of SPOCK1 expression with clinicopathological features and prognoses of patients with PCa were analyzed by GEO or TCGA RNA-sequencing data. Results API significantly suppressed in vitro PCa cell proliferation, migration, and invasion and inhibited in vivo PCa tumor growth and metastasis. Moreover, survival times of animals were also prolonged after API treatment. Mechanistic studies revealed that API treatment resulted in downregulation of SPOCK1, which was accompanied by reduced expressions of mesenchymal markers and subsequent attenuation of invasive abilities of PCa cells. Overexpression of SPOCK1 in PCa xenografts resulted in significant promotion of tumor progression and relieved the anticancer activities induced by API, whereas knockdown of SPOCK1 had opposite effects. In clinical, SPOCK1 levels were higher in tumor tissues compared to non-tumor tissues, which was also significantly correlated with shorter disease-free survival in PCa patients. Conclusions Levels of SPOCK1 increase with the progression of human PCa which suggests that SPOCK1 may act as a prognostic marker or therapeutic target for patients with PCa. Suppression of SPOCK1-mediated EMT signaling contributes to the antiproliferative and antimetastatic activities of API in vitro and in vivo. Electronic supplementary material The online version of this article (10.1186/s13046-019-1247-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Pulmonary Research Center, Wan Fang Hospital,
- Taipei Medical University, Taipei, Taiwan
| | - Yung-Wei Lin
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.,Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Wen
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.,Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Michael Hsiao
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Junn-Liang Chang
- Department of Pathology and Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan.,Biomedical Engineering Department, Ming Chuan University, Taoyuan, Taiwan
| | - Hsiang-Ching Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
34
|
Chen D, Cao G, Liu Q. A-kinase-interacting protein 1 facilitates growth and metastasis of gastric cancer cells via Slug-induced epithelial-mesenchymal transition. J Cell Mol Med 2019; 23:4434-4442. [PMID: 31020809 PMCID: PMC6533465 DOI: 10.1111/jcmm.14339] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/07/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
A‐kinase‐interacting protein 1 (AKIP1) has previously been reported to act as a potential oncogenic protein in various cancers. The clinical significance and biological role of AKIP1 in gastric cancer (GC) is, however, still elusive. Herein, this study aimed to investigate the functional and molecular mechanism by which AKIP1 influences GC. AKIP1 mRNA and protein expressions in GC tissues were examined by quantitative real‐time PCR (qRT‐PCR), Western blot and immunohistochemistry. Other methods including stably transfected against AKIP1 into gastric cancer cells, wound healing, transwell assays, CCK‐8, colony formation, qRT‐PCR and Western blot in vitro and tumorigenesis in vivo were also performed. The up‐regulated expression of AKIP1 in GC specimens significantly correlated with clinical metastasis and poor prognosis in patients with GC. AKIP1 knockdown markedly suppressed GC cells proliferation, invasion and metastasis both in vitro and in vivo. In contrast, AKIP1 overexpression resulted in the opposite effects. Moreover, mechanistic analyses indicated that Slug‐induced epithelial‐mesenchymal transition (EMT) might be responsible for AKIP1‐influenced GC cells behaviour. Our findings demonstrated that high AKIP1 expression significantly correlated with clinical metastasis and unfavourable prognosis in patients with GC. Additionally, AKIP1 promoted GC cells proliferation, migration and invasion by activating Slug‐induced EMT.
Collapse
Affiliation(s)
- Dehu Chen
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, China
| | - Gan Cao
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, China
| | - Qinghong Liu
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, China
| |
Collapse
|
35
|
TRPM2 ion channel promotes gastric cancer migration, invasion and tumor growth through the AKT signaling pathway. Sci Rep 2019; 9:4182. [PMID: 30862883 PMCID: PMC6414629 DOI: 10.1038/s41598-019-40330-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/28/2019] [Indexed: 12/27/2022] Open
Abstract
Transient Receptor Potential Melastatin-2 (TRPM2) ion channel is emerging as a great therapeutic target in many types of cancer, including gastric cancer - a major health threat of cancer related-death worldwide. Our previous study demonstrated the critical role of TRPM2 in gastric cancer cells bioenergetics and survival; however, its role in gastric cancer metastasis, the major cause of patient death, remains unknown. Here, using molecular and functional assays, we demonstrate that TRPM2 downregulation significantly inhibits the migration and invasion abilities of gastric cancer cells, with a significant reversion in the expression level of metastatic markers. These effects were concomitant with decreased Akt and increased PTEN activities. Finally, TRPM2 silencing resulted in deregulation of metastatic markers and abolished the tumor growth ability of AGS gastric cancer cells in NOD/SCID mice. Taken together, our results provide compelling evidence on the important function of TRPM2 in the modulation of gastric cancer cell invasion likely through controlling the PTEN/Akt pathway.
Collapse
|
36
|
Song H, Liu L, Song Z, Ren Y, Li C, Huo J. P4HA3 is Epigenetically Activated by Slug in Gastric Cancer and its Deregulation is Associated With Enhanced Metastasis and Poor Survival. Technol Cancer Res Treat 2019; 17:1533033818796485. [PMID: 30198421 PMCID: PMC6131293 DOI: 10.1177/1533033818796485] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prolyl 4-hydroxylase alpha subunit is the enzymic active site of prolyl 4-hydroxylase, which is a critical enzyme to maintain the stability of newly synthesized collagens. The expression profile and functional role of P4HA3 in gastric cancer have not been explored. In the Cancer Genome Atlas-Stomach Cancer, P4HA3 RNA is significantly upregulated in gastric cancer than in normal stomach tissues. In the Human Protein Atlas, Prolyl 4-hydroxylase alpha subunit is not detectable by immunohistochemistry staining in normal stomach tissues, but it has weak staining in 7 of 12 gastric cancer tissues. Further study showed that SNAI2 (encoding Slug) is highly coexpressed with P4HA3 (Pearson r = 0.70) in Cancer Genome Atlas-Stomach Cancer. In vitro cell assay showed that Slug could efficiently bind to the P4HA3 promoter and increase its transcription. P4HA3 exon array data in Cancer Genome Atlas-Stomach Cancer revealed that 2 exons are significantly upregulated in M1 (N = 27) cases than in M0 (N = 367) cases. In MKN-45 and AGS cells, P4HA3 upregulation could enhance cell motility and invasiveness. In Cancer Genome Atlas-Stomach Cancer, high P4HA3 exon expression is associated with significantly worse 5-year and 10-year overall survival (P = .007 and .009, respectively). Data mining in Kaplan-Meier plotter also showed that high P4HA3 expression is related to unfavorable overall survival (hazard ratio: 1.54, 95% confidence interval: 1.23-1.93, P < .001) and first progression-free survival (hazard ratio: 1.64, 95% confidence interval: 1.29-2.1, P < .001). Based on findings above, we infer that P4HA3 is epigenetically activated by Slug, and its deregulation is associated with enhanced metastasis and poor survival of gastric cancer.
Collapse
Affiliation(s)
- Hu Song
- 1 Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingling Liu
- 2 Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Zhaoquan Song
- 3 Clinical Laboratory, Linyi Luozhuang Central Hospital, Linyi, Shandong, China
| | - Yongqiang Ren
- 4 Clinical Laboratory, Linyi Central Hospital, Linyi, Shandong, China
| | - Chao Li
- 5 Department of NMR, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Jiege Huo
- 6 Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
37
|
Chen D, You X, Pan Y, Liu Q, Cao G. TRIM37 promotes cell invasion and metastasis by regulating SIP1-mediated epithelial-mesenchymal transition in gastric cancer. Onco Targets Ther 2018; 11:8803-8813. [PMID: 30573971 PMCID: PMC6292391 DOI: 10.2147/ott.s178446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Tripartite motif containing 37 (TRIM37) has been demonstrated to function importantly during the progression of various cancers. However, the role of TRIM37 in gastric cancer (GC) remains elusive. Materials and methods TRIM37 mRNA and protein expressions were determined by qRT-PCR, Western blot, and immunohistochemical staining in GC specimens. The effects of TRIM37 on GC cells behavior were evaluated by transwell assays in vitro and metastasis assay in vivo, respectively. Besides, qRT-PCR, Western blot, and immunofluorescence staining were employed to detect the expressions of TRIM37 and epithelial–mesenchymal transition (EMT)-related markers. Results The present study revealed that TRIM37 mRNA or protein expression was significantly increased in GC tissues compared with that in paracancerous control tissues, and its aberrant overexpression was closely associated with clinical metastasis and poor prognosis in patients with GC. TRIM37 knockdown significantly suppressed GC cells migration and invasion in vitro, as well as metastasis in vivo. Inversely, TRIM37 overexpression exerted the opposite effects. Mechanistic studies suggested that SIP1-mediated EMT might be responsible for TRIM37-facilitated GC cells migration and invasion. Conclusion Our findings revealed that high TRIM37 expression was associated with clinical metastasis and poor survival in patients with GC. TRIM37 promoted GC cells migration and invasion via EMT, mediated by the transcription factor SIP1, thus providing a candidate target for GC treatment.
Collapse
Affiliation(s)
- Dehu Chen
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu Province, People's Republic of China,
| | - Xiaolan You
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu Province, People's Republic of China,
| | - Yan Pan
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu Province, People's Republic of China,
| | - Qinghong Liu
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu Province, People's Republic of China,
| | - Gan Cao
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu Province, People's Republic of China,
| |
Collapse
|
38
|
Cao G, Chen D, Liu G, Pan Y, Liu Q. CPEB4 promotes growth and metastasis of gastric cancer cells via ZEB1-mediated epithelial- mesenchymal transition. Onco Targets Ther 2018; 11:6153-6165. [PMID: 30288051 PMCID: PMC6160272 DOI: 10.2147/ott.s175428] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Cytoplasmic polyadenylation element-binding protein 4 (CPEB4) has previously been reported to be associated with biological malignancy in various cancers. However, its function in tumor growth and metastasis in gastric cancer (GC) remains obscure. Here, we explored the functional and molecular mechanisms by which CPEB4 influences GC. Materials and methods The expression of CPEB4 was assessed using Western blot and immunohistochemistry in GC specimens. The roles of CPEB4 in GC cell proliferation, migration, and invasion were investigated by cell-counting kit-8 (CCK-8), colony formation, and EdU assay; wound-healing assay; and transwell assay, respectively. Quantitative real-time PCR (qRT-PCR), Western blot, and immunofluorescence staining were performed to detect the expressions of CPEB4 and epithelial–mesenchymal transition (EMT)-related markers. The function of CPEB4 on GC cell growth and metastasis was also determined in vivo through establishing subcutaneous xenograft tumor and lung metastatic mice model. Results The results revealed that the expression of CPEB4 was increased in GC tissues compared with matched normal tissues. High expression level of CPEB4 was significantly associated with clinical metastasis and unfavorable prognosis in patients with GC. Furthermore, CPEB4 silencing remarkably inhibited GC cells’ proliferation, invasion, and metastasis in vitro and in vivo. Conversely, CPEB4 overexpression achieved the opposite effects. Mechanically, we proved that ZEB1-mediated EMT might be involved in CPEB4-facilitated GC cells’ proliferation, invasion, and metastasis. Conclusion Our findings implied that CPEB4 expression predicted a worse prognosis in patients with GC. Besides, CPEB4 contributed to GC cells’ proliferation, migration, and invasion via ZEB1-mediated EMT.
Collapse
Affiliation(s)
- Gan Cao
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, People's Republic of China,
| | - Dehu Chen
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, People's Republic of China,
| | - Guiyuan Liu
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, People's Republic of China,
| | - Yan Pan
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, People's Republic of China,
| | - Qinghong Liu
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, People's Republic of China,
| |
Collapse
|
39
|
Chen Y, Tan W, Wang C. Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition. Onco Targets Ther 2018; 11:3817-3826. [PMID: 30013362 PMCID: PMC6038883 DOI: 10.2147/ott.s168317] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer stem cells are a small population of cells with the potential for self-renewal and multi-directional differentiation and are an important source of cancer initiation, treatment resistance, and recurrence. Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells lose their epithelial phenotype and convert to mesenchymal cells. Recent studies have shown that cancer cells undergoing EMT can become stem-like cells. Many kinds of tumors are associated with chronic inflammation, which plays a role in tumor progression. Among the various immune cells mediating chronic inflammation, macrophages account for ~30%-50% of the tumor mass. Macrophages are highly infiltrative in the tumor microenvironment and secrete a series of inflammatory factors and cytokines, such as transforming growth factor (TGF)-β, IL-6, IL-10, and tumor necrosis factor (TNF)-α, which promote EMT and enhance the stemness of cancer cells. This review summarizes and discusses recent research findings on some specific mechanisms of tumor-associated macrophage-derived cytokines in EMT and cancer stemness transition, which are emerging targets of cancer treatment.
Collapse
Affiliation(s)
- Yongxu Chen
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, Guangdong Province, People's Republic of China, .,School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, People's Republic of China,
| | - Wei Tan
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, Guangdong Province, People's Republic of China,
| | - Changjun Wang
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatric Institute, Guangzhou, Guangdong Province, People's Republic of China, .,School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, People's Republic of China,
| |
Collapse
|
40
|
Li W, Ng JMK, Wong CC, Ng EKW, Yu J. Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric cancer. Oncogene 2018; 37:4903-4920. [PMID: 29795331 PMCID: PMC6127089 DOI: 10.1038/s41388-018-0341-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The term metastasis is widely used to describe the endpoint of the process by which tumour cells spread from the primary location to an anatomically distant site. Achieving successful dissemination is dependent not only on the molecular alterations of the cancer cells themselves, but also on the microenvironment through which they encounter. Here, we reviewed the molecular alterations of metastatic gastric cancer (GC) as it reflects a large proportion of GC patients currently seen in clinic. We hope that further exploration and understanding of the multistep metastatic cascade will yield novel therapeutic targets that will lead to better patient outcomes.
Collapse
Affiliation(s)
- Weilin Li
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jennifer Mun-Kar Ng
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Enders Kwok Wai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
41
|
Chen D, Cao G, Qiao C, Liu G, Zhou H, Liu Q. Alpha B-crystallin promotes the invasion and metastasis of gastric cancer via NF-κB-induced epithelial-mesenchymal transition. J Cell Mol Med 2018; 22:3215-3222. [PMID: 29566309 PMCID: PMC5980171 DOI: 10.1111/jcmm.13602] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/07/2018] [Indexed: 12/29/2022] Open
Abstract
Alpha B‐crystallin (CRYAB) is overexpressed in a variety of cancers. However, little is known about its specific function and regulatory mechanism in gastric cancer. Here, we first explore the role of CRYAB in gastric cancer progression and metastasis. The expression of CRYAB was determined by western blot and immunohistochemistry in gastric cancer tissues. Besides, methods including stably transfected against CRYAB into gastric cancer cells, western blot, migration and invasion assays in vitro and metastasis assay in vivo were also conducted. The expression of CRYAB is up‐regulated in gastric cancer tissues compared with matched normal tissues. High expression level of CRYAB is closely correlated with cancer metastasis and shorter survival time in patients with gastric cancer. Additionally, CRYAB silencing significantly suppresses epithelial‐mesenchymal transition (EMT), migration and invasion of gastric cancer cells in vitro and in vivo, whereas CRYAB overexpression dramatically reverses these events. Mechanically, CRYAB facilitates gastric cancer cells invasion and metastasis via nuclear factor‐κ‐gene binding (NF‐κB)‐regulated EMT. These findings suggest that CRYAB expression predicts a poor prognosis in patients with gastric cancer. Besides, CRYAB contributes to gastric cancer cells migration and invasion via EMT, mediated by the NF‐κB signalling pathway, thus possibly providing a novel therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Dehu Chen
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu, China
| | - Gan Cao
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu, China
| | - Chunzhong Qiao
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu, China
| | - Guiyuan Liu
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu, China
| | - Haihua Zhou
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu, China
| | - Qinghong Liu
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu, China
| |
Collapse
|