1
|
Chen J, Hnath B, Sha CM, Beidler L, Schell TD, Dokholyan NV. Optogenetically engineered Septin-7 enhances immune cell infiltration of tumor spheroids. Proc Natl Acad Sci U S A 2024; 121:e2405717121. [PMID: 39441641 PMCID: PMC11536090 DOI: 10.1073/pnas.2405717121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024] Open
Abstract
Chimeric antigen receptor T cell therapies have achieved great success in eradicating some liquid tumors, whereas the preclinical results in treating solid tumors have proven less decisive. One of the principal challenges in solid tumor treatment is the physical barrier composed of a dense extracellular matrix, which prevents immune cells from penetrating the tissue to attack intratumoral cancer cells. Here, we improve immune cell infiltration into solid tumors by manipulating septin-7 functions in cells. Using protein allosteric design, we reprogram the three-dimensional structure of septin-7 and insert a blue light-responsive light-oxygen-voltage-sensing domain 2 (LOV2), creating a light-controllable septin-7-LOV2 hybrid protein. Blue light inhibits septin-7 function in live cells, inducing extended cell protrusions and cell polarization, enhancing cell transmigration efficiency through confining spaces. We genetically edited human natural killer cell line (NK92) and mouse primary CD8+ T-cells expressing the engineered protein, and we demonstrated improved penetration and cytotoxicity against various tumor spheroid models. Our proposed strategy to enhance immune cell infiltration is compatible with other methodologies and therefore, could be used in combination to further improve cell-based immunotherapies against solid tumors.
Collapse
Affiliation(s)
- Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA17033
| | - Brianna Hnath
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA17033
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802
| | - Congzhou M. Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA17033
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA16802
| | - Lynne Beidler
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA17033
| | - Todd D. Schell
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA17033
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA17033
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA16802
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA17033
- Department of Chemistry, Pennsylvania State University, University Park, PA16802
| |
Collapse
|
2
|
Fischer SN, Claussen ER, Kourtis S, Sdelci S, Orchard S, Hermjakob H, Kustatscher G, Drew K. hu.MAP3.0: Atlas of human protein complexes by integration of > 25,000 proteomic experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617930. [PMID: 39464102 PMCID: PMC11507723 DOI: 10.1101/2024.10.11.617930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Macromolecular protein complexes carry out most functions in the cell including essential functions required for cell survival. Unfortunately, we lack the subunit composition for all human protein complexes. To address this gap we integrated >25,000 mass spectrometry experiments using a machine learning approach to identify > 15,000 human protein complexes. We show our map of protein complexes is highly accurate and more comprehensive than previous maps, placing ~75% of human proteins into their physical contexts. We globally characterize our complexes using protein co-variation data (ProteomeHD.2) and identify co-varying complexes suggesting common functional associations. Our map also generates testable functional hypotheses for 472 uncharacterized proteins which we support using AlphaFold modeling. Additionally, we use AlphaFold modeling to identify 511 mutually exclusive protein pairs in hu.MAP3.0 complexes suggesting complexes serve different functional roles depending on their subunit composition. We identify expression as the primary way cells and organisms relieve the conflict of mutually exclusive subunits. Finally, we import our complexes to EMBL-EBI's Complex Portal (https://www.ebi.ac.uk/complexportal/home) as well as provide complexes through our hu.MAP3.0 web interface (https://humap3.proteincomplexes.org/). We expect our resource to be highly impactful to the broader research community.
Collapse
Affiliation(s)
- Samantha N. Fischer
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Erin R. Claussen
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Georg Kustatscher
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Kevin Drew
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
3
|
Choi ES, Hnath B, Sha CM, Dokholyan NV. Unveiling the double-edged sword: SOD1 trimers possess tissue-selective toxicity and bind septin-7 in motor neuron-like cells. Structure 2024; 32:1776-1792.e5. [PMID: 39208794 PMCID: PMC11455619 DOI: 10.1016/j.str.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Misfolded species of superoxide dismutase 1 (SOD1) are associated with increased death in amyotrophic lateral sclerosis (ALS) models compared to insoluble protein aggregates. The mechanism by which structurally independent SOD1 trimers cause cellular toxicity is unknown but may drive disease pathology. Here, we uncovered the SOD1 trimer interactome-a map of potential tissue-selective protein-binding partners in the brain, spinal cord, and skeletal muscle. We identified binding partners and key pathways associated with SOD1 trimers and found that trimers may affect normal cellular functions such as dendritic spine morphogenesis and synaptic function in the central nervous system and cellular metabolism in skeletal muscle. We discovered SOD1 trimer-selective enrichment of genes. We performed detailed computational and biochemical characterization of SOD1 trimer protein binding for septin-7. Our investigation highlights key proteins and pathways within distinct tissues, revealing a plausible intersection of genetic and pathophysiological mechanisms in ALS through interactions involving SOD1 trimers.
Collapse
Affiliation(s)
- Esther Sue Choi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Brianna Hnath
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA
| | - Congzhou Mike Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA; Department of Chemistry, Penn State University, University Park, PA, USA.
| |
Collapse
|
4
|
Das A, Kunwar A. Septins: Structural Insights, Functional Dynamics, and Implications in Health and Disease. J Cell Biochem 2024:e30660. [PMID: 39324363 DOI: 10.1002/jcb.30660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/03/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Septins are a class of proteins with diverse and vital roles in cell biology. Structurally, they form hetero-oligomeric complexes and assemble into filaments, contributing to the organization of cells. These filaments act as scaffolds, aiding in processes like membrane remodeling, cytokinesis, and cell motility. Functionally, septins are essential to cell division, playing essential roles in cytokinetic furrow formation and maintaining the structural integrity of the contractile ring. They also regulate membrane trafficking and help organize intracellular organelles. In terms of physiology, septins facilitate cell migration, phagocytosis, and immune responses by maintaining membrane integrity and influencing cytoskeletal dynamics. Septin dysfunction is associated with pathophysiological conditions. Mutations in septin genes have been linked to neurodegenerative diseases, such as hereditary spastic paraplegias, underscoring their significance in neuronal function. Septins also play a role in cancer and infectious diseases, making them potential targets for therapeutic interventions. Septins serve as pivotal components of intracellular signaling networks, engaging with diverse proteins like kinases and phosphatases. By modulating the activity of these molecules, septins regulate vital cellular pathways. This integral role in signaling makes septins central to orchestrating cellular responses to environmental stimuli. This review mainly focuses on the human septins, their structural composition, regulatory functions, and implication in pathophysiological conditions underscores their importance in fundamental cellular biology. Moreover, their potential as therapeutic targets across various diseases further emphasizes their significance.
Collapse
Affiliation(s)
- Aurosikha Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
5
|
Gao Y, Xu SM, Cheng Y, Takenaka K, Lindner G, Janitz M. Investigation of the Circular Transcriptome in Alzheimer's Disease Brain. J Mol Neurosci 2024; 74:64. [PMID: 38981928 PMCID: PMC11233389 DOI: 10.1007/s12031-024-02236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Circular RNAs (circRNAs) are a subclass of non-coding RNAs which have demonstrated potential as biomarkers for Alzheimer's disease (AD). In this study, we conducted a comprehensive exploration of the circRNA transcriptome within AD brain tissues. Specifically, we assessed circRNA expression patterns in the dorsolateral prefrontal cortex collected from nine AD-afflicted individuals and eight healthy controls. Utilising two circRNA detection tools, CIRI2 and CIRCexplorer2, we detected thousands of circRNAs and performed a differential expression analysis. CircRNAs which exhibited statistically significantly differential expression were identified as AD-specific differentially expressed circRNAs. Notably, our investigation revealed 120 circRNAs with significant upregulation and 1325 circRNAs displaying significant downregulation in AD brains when compared to healthy brain tissue. Additionally, we explored the expression profiles of the linear RNA counterparts corresponding to differentially expressed circRNAs in AD-afflicted brains and discovered that the linear RNA counterparts exhibited no significant changes in the levels of expression. We used CRAFT tool to predict that circUBE4B had potential to target miRNA named as hsa-miR-325-5p, ultimately regulated CD44 gene. This study provides a comprehensive overview of differentially expressed circRNAs in the context of AD brains, underscoring their potential as molecular biomarkers for AD. These findings significantly enhance our comprehension of AD's underlying pathophysiological mechanisms, offering promising avenues for future diagnostic and therapeutic developments.
Collapse
Affiliation(s)
- Yulan Gao
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Yuning Cheng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Grace Lindner
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
6
|
Ayanoğlu M, Çevik Ö, Erdoğan Ö, Tosun AF. TARC and Septin 7 can be better monitoring biomarkers than CX3CL1, sICAM5, and IRF5 in children with seizure-free epilepsy with monotherapy and drug-resistant epilepsy. Int J Neurosci 2024; 134:243-252. [PMID: 35822432 DOI: 10.1080/00207454.2022.2100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/04/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Aim: To evaluate i) the relationship between epilepsy and inflammation by analyzing the levels of thymus activation-regulated chemokine (TARC), and interferon regulatory factor 5 (IRF5) in healthy controls, patients with epilepsy on monotherapy and polytherapy, ii) the levels of sICAM5, chemokine (c-x3-c motif) ligand 1 (CX3CL1), and septin 7 (SEPT7) which are important in both inflammation and synaptic formation. Methods: Patients who were seizure-free with monotherapy (epilepsy group-1), patients with drug-resistant epilepsy (epilepsy group-2), and healthy controls were included. Demographical data, disease durations, and medications were noted. Measurements were made by commercial ELISA kits. Results: The numbers of epilepsy group-1, epilepsy group-2, and healthy controls were 23, 20, and 21, respectively. TARC levels were significantly lower in healthy controls than in both epilepsy groups. Higher TARC levels than 0.58 pg/ml indicated epilepsy with a sensitivity of 81.8% and specificity of 84.0%. SEPT7 levels were significantly higher in epilepsy group-1 than in those epilepsy group-2. A negative correlation was found between SEPT7 levels and disease duration as is the case for the correlation between SEPT7 and average seizure duration. A positive correlation was found between IRF5 and CX3CL1 levels, SEPT7 and IRF5 levels, and IRF5 and sICAM5 levels. Conclusions: We suggest that TARC is a promising biomarker, even in a heterogeneous epilepsy group not only for drug-resistance epilepsy but also for seizure-free epilepsy with monotherapy. Additionally, drug resistance, longer disease, and longer seizure durations are related to lower levels of SEPT7, which has an essential role in immunological functions and dendritic morphology.
Collapse
Affiliation(s)
- Müge Ayanoğlu
- Department of Pediatric Neurology, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Özge Çevik
- Department of Biochemistry, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Ömer Erdoğan
- Department of Biochemistry, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Ayşe Fahriye Tosun
- Department of Pediatric Neurology, Adnan Menderes University School of Medicine, Aydın, Turkey
| |
Collapse
|
7
|
Khairat J, Hatta M, Abdullah N, Azman A, Calvin S, Syed Hassan S. Unearthing the role of septins in viral infections. Biosci Rep 2024; 44:BSR20231827. [PMID: 38372298 PMCID: PMC10920062 DOI: 10.1042/bsr20231827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Septin proteins are a subfamily of closely related GTP-binding proteins conserved in all species except for higher plants and perform essential biological processes. Septins self-assemble into heptameric or octameric complexes and form higher-order structures such as filaments, rings, or gauzes by end-to-end binding. Their close association with cell membrane components makes them central in regulating critical cellular processes. Due to their organisation and properties, septins function as diffusion barriers and are integral in providing scaffolding to support the membrane's curvature and stability of its components. Septins are also involved in vesicle transport and exocytosis through the plasma membrane by co-localising with exocyst protein complexes. Recently, there have been emerging reports of several human and animal diseases linked to septins and abnormalities in their functions. Most of our understanding of the significance of septins during microbial diseases mainly pertains to their roles in bacterial infections but not viruses. This present review focuses on the known roles of septins in host-viral interactions as detailed by various studies.
Collapse
Affiliation(s)
- Jasmine Elanie Khairat
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhammad Nur Adam Hatta
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nurshariza Abdullah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Adzzie Shazleen Azman
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Shee Yin Ming Calvin
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
8
|
Archer DB, Eissman JM, Mukherjee S, Lee ML, Choi S, Scollard P, Trittschuh EH, Mez JB, Bush WS, Kunkle BW, Naj AC, Gifford KA, Cuccaro ML, Pericak‐Vance MA, Farrer LA, Wang L, Schellenberg GD, Mayeux RP, Haines JL, Jefferson AL, Kukull WA, Keene CD, Saykin AJ, Thompson PM, Martin ER, Bennett DA, Barnes LL, Schneider JA, Crane PK, Dumitrescu L, Hohman TJ. Longitudinal change in memory performance as a strong endophenotype for Alzheimer's disease. Alzheimers Dement 2024; 20:1268-1283. [PMID: 37985223 PMCID: PMC10896586 DOI: 10.1002/alz.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION Although large-scale genome-wide association studies (GWAS) have been conducted on AD, few have been conducted on continuous measures of memory performance and memory decline. METHODS We conducted a cross-ancestry GWAS on memory performance (in 27,633 participants) and memory decline (in 22,365 participants; 129,201 observations) by leveraging harmonized cognitive data from four aging cohorts. RESULTS We found high heritability for two ancestry backgrounds. Further, we found a novel ancestry locus for memory decline on chromosome 4 (rs6848524) and three loci in the non-Hispanic Black ancestry group for memory performance on chromosomes 2 (rs111471504), 7 (rs4142249), and 15 (rs74381744). In our gene-level analysis, we found novel genes for memory decline on chromosomes 1 (SLC25A44), 11 (BSX), and 15 (DPP8). Memory performance and memory decline shared genetic architecture with AD-related traits, neuropsychiatric traits, and autoimmune traits. DISCUSSION We discovered several novel loci, genes, and genetic correlations associated with late-life memory performance and decline. HIGHLIGHTS Late-life memory has high heritability that is similar across ancestries. We discovered four novel variants associated with late-life memory. We identified four novel genes associated with late-life memory. Late-life memory shares genetic architecture with psychiatric/autoimmune traits.
Collapse
|
9
|
Zupanc C, Franko A, Štrbac D, Kovač V, Dolžan V, Goričar K. Serum Calretinin and Genetic Variability as a Prognostic and Predictive Factor in Malignant Mesothelioma. Int J Mol Sci 2023; 25:190. [PMID: 38203360 PMCID: PMC10778798 DOI: 10.3390/ijms25010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Calretinin is a promising diagnostic biomarker for malignant mesothelioma (MM), but less is known about its prognostic role. Our aim was to evaluate the association between serum calretinin concentration or genetic factors and the survival or outcome of cisplatin-based chemotherapy in MM. Our study included 265 MM patients. Serum calretinin concentration was determined using ELISA. Patients were genotyped for seven polymorphisms in CALB2, E2F2, MIR335, NRF1, and SEPTIN7 using competitive allele-specific PCR. Nonparametric tests, logistic regression, and survival analysis were used for statistical analysis. Higher serum calretinin concentration was associated with shorter progression-free (PFS) (HR = 1.18 (1.02-1.37), p = 0.023) and overall survival (OS) (HR = 1.20 (1.03-1.41), p = 0.023), but the association was not significant after adjusting for clinical factors (HR = 1.05 (0.85-1.31), p = 0.653 and HR = 1.06 (0.84-1.34), p = 0.613, respectively). SEPTIN7 rs3801339 and MIR335 rs3807348 were associated with survival even after adjustment (HR = 1.76 (1.17-2.64), p = 0.007 and HR = 0.65 (0.45-0.95), p = 0.028, respectively). Calretinin concentration was higher in patients who progressed after treatment with cisplatin-based chemotherapy (1.68 vs. 0.45 ng/mL, p = 0.001). Calretinin concentration above 0.89 ng/mL was associated with shorter PFS and OS from the start of chemotherapy (HR = 1.88 (1.28-2.77), p = 0.001 and HR = 1.91 (1.22-2.97), p = 0.004, respectively), even after adjusting for clinical factors (p < 0.05). MIR335 rs3807348 was associated with a better response to chemotherapy (OR = 2.69 (1.17-6.18), p = 0.020). We showed that serum calretinin is associated with survival and chemotherapy treatment outcomes in MM and could serve as a predictive biomarker.
Collapse
Affiliation(s)
- Cita Zupanc
- Military Medical Unit-Slovenian Army, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.F.); (D.Š.); (V.K.)
| | - Alenka Franko
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.F.); (D.Š.); (V.K.)
- Clinical Institute of Occupational Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Danijela Štrbac
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.F.); (D.Š.); (V.K.)
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Viljem Kovač
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.F.); (D.Š.); (V.K.)
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
10
|
Zupanc C, Franko A, Strbac D, Kovac V, Dolzan V, Goricar K. The association of genetic factors with serum calretinin levels in asbestos-related diseases. Radiol Oncol 2023; 57:473-486. [PMID: 38038422 PMCID: PMC10690752 DOI: 10.2478/raon-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Asbestos exposure is associated with different asbestos-related diseases, including malignant mesothelioma (MM). MM diagnosis is confirmed with immunohistochemical analysis of several markers, including calretinin. Increased circulating calretinin was also observed in MM. The aim of the study was to determine if CALB2 polymorphisms or polymorphisms in genes that can regulate calretinin expression are associated with serum calretinin levels or MM susceptibility. SUBJECTS AND METHODS The study included 288 MM patients and 616 occupationally asbestos-exposed subjects without MM (153 with asbestosis, 380 with pleural plaques and 83 without asbestos-related disease). Subjects were genotyped for seven polymorphisms in CALB2, E2F2, MIR335, NRF1 and SEPTIN7 genes using competitive allele-specific polymerase chain reaction (PCR). Serum calretinin was determined with ELISA in 545 subjects. Nonparametric tests, logistic regression and receiver operating characteristic (ROC) curve analysis were used for statistical analysis. RESULTS Carriers of at least one polymorphic CALB2 rs889704 allele had lower calretinin levels (P = 0.036). Carriers of two polymorphic MIR335 rs3807348 alleles had higher calretinin (P = 0.027), while carriers of at least one polymorphic NRF1 rs13241028 allele had lower calretinin levels (P = 0.034) in subjects without MM. Carriers of two polymorphic E2F2 rs2075995 alleles were less likely to develop MM (odds ratio [OR] = 0.64, 95% confidence interval [CI] = 0.43-0.96, P = 0.032), but the association was no longer significant after adjustment for age (P = 0.093). Optimal serum calretinin cut-off values differentiating MM patients from other subjects differed according to CALB2, NRF1, E2F2, and MIR335 genotypes. CONCLUSIONS The results of presented study suggest that genetic variability could influence serum calretinin levels. These findings could contribute to a better understanding of calretinin regulation and potentially to earlier MM diagnosis.
Collapse
Affiliation(s)
- Cita Zupanc
- Military Medical Unit-Slovenian Army, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alenka Franko
- University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
- University Medical Centre Ljubljana, Clinical Institute of Occupational Medicine, Ljubljana, Slovenia
| | - Danijela Strbac
- University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Viljem Kovac
- University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Vita Dolzan
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, Pharmacogenetics Laboratory, Ljubljana, Slovenia
| | - Katja Goricar
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, Pharmacogenetics Laboratory, Ljubljana, Slovenia
| |
Collapse
|
11
|
Szabó L, Telek A, Fodor J, Dobrosi N, Dócs K, Hegyi Z, Gönczi M, Csernoch L, Dienes B. Reduced Expression of Septin7 Hinders Skeletal Muscle Regeneration. Int J Mol Sci 2023; 24:13536. [PMID: 37686339 PMCID: PMC10487768 DOI: 10.3390/ijms241713536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Septins are considered the fourth component of the cytoskeleton with the septin7 isoform playing a critical role in the formation of diffusion barriers in phospholipid bilayers and intra- and extracellular scaffolds. While its importance has already been confirmed in different intracellular processes, very little is known about its role in skeletal muscle. Muscle regeneration was studied in a Sept7 conditional knock-down mouse model to prove the possible role of septin7 in this process. Sterile inflammation in skeletal muscle was induced which was followed by regeneration resulting in the upregulation of septin7 expression. Partial knock-down of Sept7 resulted in an increased number of inflammatory cells and myofibers containing central nuclei. Taken together, our data suggest that partial knock-down of Sept7 hinders the kinetics of muscle regeneration, indicating its crucial role in skeletal muscle functions.
Collapse
Affiliation(s)
- László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrea Telek
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Nóra Dobrosi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Klaudia Dócs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zoltán Hegyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
12
|
Gabbert AM, Campanale JP, Mondo JA, Mitchell NP, Myers A, Streichan SJ, Miolane N, Montell DJ. Septins regulate border cell surface geometry, shape, and motility downstream of Rho in Drosophila. Dev Cell 2023; 58:1399-1413.e5. [PMID: 37329886 PMCID: PMC10519140 DOI: 10.1016/j.devcel.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/14/2023] [Accepted: 05/25/2023] [Indexed: 06/19/2023]
Abstract
Septins self-assemble into polymers that bind and deform membranes in vitro and regulate diverse cell behaviors in vivo. How their in vitro properties relate to their in vivo functions is under active investigation. Here, we uncover requirements for septins in detachment and motility of border cell clusters in the Drosophila ovary. Septins and myosin colocalize dynamically at the cluster periphery and share phenotypes but, surprisingly, do not impact each other. Instead, Rho independently regulates myosin activity and septin localization. Active Rho recruits septins to membranes, whereas inactive Rho sequesters septins in the cytoplasm. Mathematical analyses identify how manipulating septin expression levels alters cluster surface texture and shape. This study shows that the level of septin expression differentially regulates surface properties at different scales. This work suggests that downstream of Rho, septins tune surface deformability while myosin controls contractility, the combination of which governs cluster shape and movement.
Collapse
Affiliation(s)
- Allison M Gabbert
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Joseph P Campanale
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - James A Mondo
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Noah P Mitchell
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Physics Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Adele Myers
- Electrical and Computer Engineering Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Sebastian J Streichan
- Physics Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Nina Miolane
- Electrical and Computer Engineering Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Denise J Montell
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
13
|
Ráduly Z, Szabó L, Dienes B, Szentesi P, Bana ÁV, Hajdú T, Kókai E, Hegedűs C, Csernoch L, Gönczi M. Migration of Myogenic Cells Is Highly Influenced by Cytoskeletal Septin7. Cells 2023; 12:1825. [PMID: 37508490 PMCID: PMC10378681 DOI: 10.3390/cells12141825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Septin7 as a unique member of the GTP binding protein family, is widely expressed in the eukaryotic cells and considered to be essential in the formation of hetero-oligomeric septin complexes. As a cytoskeletal component, Septin7 is involved in many important cellular processes. However, its contribution in striated muscle physiology is poorly described. In skeletal muscle, a highly orchestrated process of migration is crucial in the development of functional fibers and in regeneration. Here, we describe the pronounced appearance of Septin7 filaments and a continuous change of Septin7 protein architecture during the migration of myogenic cells. In Septin7 knockdown C2C12 cultures, the basic parameters of migration are significantly different, and the intracellular calcium concentration change in migrating cells are lower compared to that of scrambled cultures. Using a plant cytokinin, forchlorfenuron, to dampen septin dynamics, the altered behavior of the migrating cells is described, where Septin7-depleted cells are more resistant to the treatment. These results indicate the functional relevance of Septin7 in the migration of myoblasts, implying its contribution to muscle myogenesis and regeneration.
Collapse
Affiliation(s)
- Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ágnes Viktória Bana
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tibor Hajdú
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
14
|
Gönczi M, Ráduly Z, Szabó L, Fodor J, Telek A, Dobrosi N, Balogh N, Szentesi P, Kis G, Antal M, Trencsenyi G, Dienes B, Csernoch L. Septin7 is indispensable for proper skeletal muscle architecture and function. eLife 2022; 11:e75863. [PMID: 35929607 PMCID: PMC9355566 DOI: 10.7554/elife.75863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Today septins are considered as the fourth component of the cytoskeleton, with the Septin7 isoform playing a critical role in the formation of higher-order structures. While its importance has already been confirmed in several intracellular processes of different organs, very little is known about its role in skeletal muscle. Here, using Septin7 conditional knockdown (KD) mouse model, the C2C12 cell line, and enzymatically isolated adult muscle fibers, the organization and localization of septin filaments are revealed, and an ontogenesis-dependent expression of Septin7 is demonstrated. KD mice displayed a characteristic hunchback phenotype with skeletal deformities, reduction in in vivo and in vitro force generation, and disorganized mitochondrial networks. Furthermore, knockout of Septin7 in C2C12 cells resulted in complete loss of cell division while KD cells provided evidence that Septin7 is essential for proper myotube differentiation. These and the transient increase in Septin7 expression following muscle injury suggest that it may be involved in muscle regeneration and development.
Collapse
Affiliation(s)
- Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Andrea Telek
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Nóra Dobrosi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Norbert Balogh
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Gréta Kis
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - György Trencsenyi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| |
Collapse
|
15
|
Liu P, Li Y, Zhang Y, Choi J, Zhang J, Shang G, Li B, Lin YJ, Saleh L, Zhang L, Yi L, Yu S, Lim M, Yang X. Calcium-Related Gene Signatures May Predict Prognosis and Level of Immunosuppression in Gliomas. Front Oncol 2022; 12:708272. [PMID: 35646664 PMCID: PMC9136236 DOI: 10.3389/fonc.2022.708272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Gliomas are the most common primary brain cancer. While it has been known that calcium-related genes correlate with gliomagenesis, the relationship between calcium-related genes and glioma prognosis remains unclear. We assessed TCGA datasets of mRNA expressions with differentially expressed genes (DEGs) and enrichment analysis to specifically screen for genes that regulate or are affected by calcium levels. We then correlated the identified calcium-related genes with unsupervised/supervised learning to classify glioma patients into 2 risk groups. We also correlated our identified genes with immune signatures. As a result, we discovered 460 calcium genes and 35 calcium key genes that were associated with OS. There were 13 DEGs between Clusters 1 and 2 with different OS. At the same time, 10 calcium hub genes (CHGs) signature model were constructed using supervised learning, and the prognostic risk scores of the 3 cohorts of samples were calculated. The risk score was confirmed as an independent predictor of prognosis. Immune enrichment analysis revealed an immunosuppressive tumor microenvironment with upregulation of checkpoint markers in the high-risk group. Finally, a nomogram was generated with risk scores and other clinical prognostic independent indicators to quantify prognosis. Our findings suggest that calcium-related gene expression patterns could be applicable to predict prognosis and predict levels of immunosuppression.
Collapse
Affiliation(s)
- Peidong Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Yu Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Yiming Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - John Choi
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Jinhao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Guanjie Shang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Bailiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Ya-Jui Lin
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Laura Saleh
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Liang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Li Yi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
- *Correspondence: Xuejun Yang, ; Michael Lim,
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- *Correspondence: Xuejun Yang, ; Michael Lim,
| |
Collapse
|
16
|
Chen KR, Wang HY, Liao YH, Sun LH, Huang YH, Yu L, Kuo PL. Effects of Septin-14 Gene Deletion on Adult Cognitive/Emotional Behavior. Front Mol Neurosci 2022; 15:880858. [PMID: 35571367 PMCID: PMC9100402 DOI: 10.3389/fnmol.2022.880858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
While various septin GTPases have been reported for their physiological functions, their roles in orchestrating complex cognitive/emotional functions in adult mammals remained scarcely explored. A comprehensive behavioral test battery was administered to two sexes of 12-week-old Septin-14 (SEPT14) knockout (KO) and wild-type (WT) mice. The sexually dimorphic effects of brain SEPT14 KO on inhibitory avoidance (IA) and hippocampal mGluR5 expression were noticed with greater IA latency and elevated mGluR5 level exclusively in male KO mice. Moreover, SEPT14 KO appeared to be associated with stress-provoked anxiety increase in a stress-related navigation task regardless of animals’ sexes. While male and female WT mice demonstrated comparable cell proliferation in the dorsal and ventral hippocampal dentate gyrus (DG), both sexes of SEPT14 KO mice had increased cell proliferation in the ventral DG. Finally, male and female SEPT14 KO mice displayed dampened observational fear conditioning magnitude and learning-provoked corticosterone secretion as compared to their same-sex WT mice. These results, taken together, prompt us to conclude that male, but not female, mice lacking the Septin-14 gene may exhibit increased aversive emotion-related learning and dorsal/ventral hippocampal mGluR5 expressions. Moreover, deletion of SEPT14 may be associated with elevated ventral hippocampal DG cell proliferation and stress-provoked anxiety-like behavior, while dampening vicarious fear conditioning magnitudes.
Collapse
Affiliation(s)
- Kuan-Ru Chen
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Han-Yu Wang
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Yi-Han Liao
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Li-Han Sun
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Yu-Han Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Lung Yu
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Lung Yu,
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University College of Medicine, Tainan, Taiwan
- *Correspondence: Pao-Lin Kuo,
| |
Collapse
|
17
|
Rast JP, D'Alessio S, Kraev I, Lange S. Post-translational protein deimination signatures in sea lamprey (Petromyzon marinus) plasma and plasma-extracellular vesicles. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104225. [PMID: 34358577 DOI: 10.1016/j.dci.2021.104225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Lampreys are a jawless vertebrate species belonging to an ancient vertebrate lineage that diverged from a common ancestor with humans ~500 million years ago. The sea lamprey (Petromyzon marinus) has a filter feeding ammocoete larval stage that metamorphoses into a parasitic adult, feeding both on teleost and elasmobranch fish. Lampreys are a valuable comparative model species for vertebrate immunity and physiology due to their unique phylogenetic position, unusual adaptive immune system, and physiological adaptions such as tolerance to salinity changes and urea. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family which catalyses post-translational deimination/citrullination in target proteins, enabling proteins to gain new functions (moonlighting). The identification of deiminated protein targets in species across phylogeny may provide novel insights into post-translational regulation of physiological and pathophysiological processes. Extracellular vesicles (EVs) are membrane vesicles released from cells that carry cargos of small molecules and proteins for cellular communication, involved in both normal and pathological processes. The current study identified deimination signatures in proteins of both total plasma and plasma-EVs in sea lamprey and furthermore reports the first characterisation of plasma-EVs in lamprey. EVs were poly-dispersed in the size range of 40-500 nm, similar to what is observed in other taxa, positive for CD63 and Flotillin-1. Plasma-EV morphology was confirmed by transmission electron microscopy. Assessment of deimination/citrullination signatures in lamprey plasma and plasma-EVs, revealed 72 deimination target proteins involved in immunity, metabolism and gene regulation in whole plasma, and 37 target proteins in EVs, whereof 24 were shared targets. Furthermore, the presence of deiminated histone H3, indicative of gene-regulatory mechanisms and also a marker of neutrophil extracellular trap formation (NETosis), was confirmed in lamprey plasma. Functional protein network analysis revealed some differences in KEGG and GO pathways of deiminated proteins in whole plasma compared with plasma-EVs. For example, while common STRING network clusters in plasma and plasma-EVs included Peptide chain elongation, Viral mRNA translation, Glycolysis and gluconeogenesis, STRING network clusters specific for EVs only included: Cellular response to heat stress, Muscle protein and striated muscle thin filament, Nucleosome, Protein processing in endoplasmic reticulum, Nucleosome and histone deacetylase complex. STRING network clusters specific for plasma were: Adipokinetic hormone receptor activity, Fibrinogen alpha/beta chain family, peptidase S1A, Glutathione synthesis and recycling-arginine, Fructose 1,6-bisphosphate metabolic process, Carbon metabolism and lactate dehydrogenase activity, Post-translational protein phosphorylation, Regulation of insulin-like growth factor transport and clotting cascade. Overall, for the EV citrullinome, five STRING network clusters, 10 KEGG pathways, 15 molecular GO pathways and 29 Reactome pathways were identified, compared with nine STRING network clusters, six KEGG pathways, two Molecular GO pathways and one Reactome pathway specific for whole plasma; while further pathways were shared. The reported findings indicate that major pathways relevant for immunity and metabolism are targets of deimination in lamprey plasma and plasma-EVs, with some differences, and may help elucidating roles for the conserved PAD enzyme family in regulation of immune and metabolic function throughout phylogeny.
Collapse
Affiliation(s)
- Jonathan P Rast
- Emory University School of Medicine, Pathology & Laboratory Medicine, Atlanta, GA, 30322, USA.
| | - Stefania D'Alessio
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
18
|
Sahlin K, Mäkinen V. Accurate spliced alignment of long RNA sequencing reads. Bioinformatics 2021; 37:4643-4651. [PMID: 34302453 PMCID: PMC8665758 DOI: 10.1093/bioinformatics/btab540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Long-read RNA sequencing technologies are establishing themselves as the primary techniques to detect novel isoforms, and many such analyses are dependent on read alignments. However, the error rate and sequencing length of the reads create new challenges for accurately aligning them, particularly around small exons. RESULTS We present an alignment method uLTRA for long RNA sequencing reads based on a novel two-pass collinear chaining algorithm. We show that uLTRA produces higher accuracy over state-of-the-art aligners with substantially higher accuracy for small exons on simulated and synthetic data. On simulated data, uLTRA achieves an accuracy of about 60% for exons of length 10 nucleotides or smaller and close to 90% accuracy for exons of length between 11 to 20 nucleotides. On biological data where true read location is unknown, we show several examples where uLTRA aligns to known and novel isoforms containing small exons that are not detected with other aligners. While uLTRA obtains its accuracy using annotations, it can also be used as a wrapper around minimap2 to align reads outside annotated regions. AVAILABILITY uLTRA is available at https://github.com/ksahlin/ultra. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kristoffer Sahlin
- Department of Mathematics, Science for Life Laboratory, Stockholm University, Stockholm, 106 91, Sweden
| | - Veli Mäkinen
- Department of Computer Science, University of Helsinki, P. O. Box 68, Pietari Kalmin katu 5, 00014, Finland
| |
Collapse
|
19
|
Shen S, Wei Y, Li Y, Duan W, Dong X, Lin L, You D, Tardon A, Chen C, Field JK, Hung RJ, Liu G, Zhu D, Amos CI, Su L, Zhao Y, Hu Z, Shen H, Zhang R, Chen F, Christiani DC. A multi-omics study links TNS3 and SEPT7 to long-term former smoking NSCLC survival. NPJ Precis Oncol 2021; 5:39. [PMID: 34002017 PMCID: PMC8128887 DOI: 10.1038/s41698-021-00182-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/19/2021] [Indexed: 11/15/2022] Open
Abstract
The genetic architecture of non-small cell lung cancer (NSCLC) is relevant to smoking status. However, the genetic contribution of long-term smoking cessation to the prognosis of NSCLC patients remains largely unknown. We conducted a genome-wide association study primarily on the prognosis of 1299 NSCLC patients of long-term former smokers from independent discovery (n = 566) and validation (n = 733) sets, and used in-silico function prediction and multi-omics analysis to identify single nucleotide polymorphisms (SNPs) on prognostics with NSCLC. We further detected SNPs with at least moderate association strength on survival within each group of never, short-term former, long-term former, and current smokers, and compared their genetic similarity at the SNP, gene, expression quantitative trait loci (eQTL), enhancer, and pathway levels. We identified two SNPs, rs34211819TNS3 at 7p12.3 (P = 3.90 × 10-9) and rs1143149SEPT7 at 7p14.2 (P = 9.75 × 10-9), were significantly associated with survival of NSCLC patients who were long-term former smokers. Both SNPs had significant interaction effects with years of smoking cessation (rs34211819TNS3: Pinteraction = 8.0 × 10-4; rs1143149SEPT7: Pinteraction = 0.003). In addition, in silico function prediction and multi-omics analysis provided evidence that these QTLs were associated with survival. Moreover, comparison analysis found higher genetic similarity between long-term former smokers and never-smokers, compared to short-term former smokers or current smokers. Pathway enrichment analysis indicated a unique pattern among long-term former smokers that was related to immune pathways. This study provides important insights into the genetic architecture associated with long-term former smoking NSCLC.
Collapse
Affiliation(s)
- Sipeng Shen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yongyue Wei
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Weiwei Duan
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Xuesi Dong
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Lijuan Lin
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Dongfang You
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Adonina Tardon
- University of Oviedo and CIBERESP, Faculty of Medicine, Oviedo, 33003, Spain
| | - Chu Chen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - John K Field
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, ON, M5T 3L9, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, Toronto, ON, M5G 2C1, Canada
| | - Dakai Zhu
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, TX, 77030, USA
| | - Christopher I Amos
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, TX, 77030, USA
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Yang Zhao
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Hongbing Shen
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Ruyang Zhang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- China International Cooperation Center of Environment and Human Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA.
- Pulmonary and Critical Care Division, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
20
|
Takagi J, Cho C, Duvalyan A, Yan Y, Halloran M, Hanson-Smith V, Thorner J, Finnigan GC. Reconstructed evolutionary history of the yeast septins Cdc11 and Shs1. G3-GENES GENOMES GENETICS 2021; 11:6025175. [PMID: 33561226 PMCID: PMC7849910 DOI: 10.1093/g3journal/jkaa006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022]
Abstract
Septins are GTP-binding proteins conserved across metazoans. They can polymerize into extended filaments and, hence, are considered a component of the cytoskeleton. The number of individual septins varies across the tree of life—yeast (Saccharomyces cerevisiae) has seven distinct subunits, a nematode (Caenorhabditis elegans) has two, and humans have 13. However, the overall geometric unit (an apolar hetero-octameric protomer and filaments assembled there from) has been conserved. To understand septin evolutionary variation, we focused on a related pair of yeast subunits (Cdc11 and Shs1) that appear to have arisen from gene duplication within the fungal clade. Either Cdc11 or Shs1 occupies the terminal position within a hetero-octamer, yet Cdc11 is essential for septin function and cell viability, whereas Shs1 is not. To discern the molecular basis of this divergence, we utilized ancestral gene reconstruction to predict, synthesize, and experimentally examine the most recent common ancestor (“Anc.11-S”) of Cdc11 and Shs1. Anc.11-S was able to occupy the terminal position within an octamer, just like the modern subunits. Although Anc.11-S supplied many of the known functions of Cdc11, it was unable to replace the distinct function(s) of Shs1. To further evaluate the history of Shs1, additional intermediates along a proposed trajectory from Anc.11-S to yeast Shs1 were generated and tested. We demonstrate that multiple events contributed to the current properties of Shs1: (1) loss of Shs1–Shs1 self-association early after duplication, (2) co-evolution of heterotypic Cdc11–Shs1 interaction between neighboring hetero-octamers, and (3) eventual repurposing and acquisition of novel function(s) for its C-terminal extension domain. Thus, a pair of duplicated proteins, despite constraints imposed by assembly into a highly conserved multi-subunit structure, could evolve new functionality via a complex evolutionary pathway.
Collapse
Affiliation(s)
- Julie Takagi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Christina Cho
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Angela Duvalyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Yao Yan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Megan Halloran
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Victor Hanson-Smith
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94158, USA
| | - Jeremy Thorner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Gregory C Finnigan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
21
|
Perumal N, Straßburger L, Herzog DP, Müller MB, Pfeiffer N, Grus FH, Manicam C. Bioenergetic shift and actin cytoskeleton remodelling as acute vascular adaptive mechanisms to angiotensin II in murine retina and ophthalmic artery. Redox Biol 2020; 34:101597. [PMID: 32513477 PMCID: PMC7327981 DOI: 10.1016/j.redox.2020.101597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Ocular vascular dysfunction is a major contributing factor to the pathogenesis of glaucoma. In recent years, there has been a renewed interest in the role of angiotensin II (Ang II) in mediating the disease progression. Despite its (patho)physiological importance, the molecular mechanisms underlying Ang II-mediated oxidative stress remain largely unexplored in the ocular vasculature. Here, we provide the first direct evidence of the alterations of proteome and signalling pathways underlying Ang II-elicited oxidative insult independent of arterial pressure changes in the ophthalmic artery (OA) and retina (R) employing an in vitro experimental model. Both R and OA were isolated from male C57Bl/6J mice (n = 15/group; n = 5/biological replicate) and incubated overnight in medium containing either vehicle or Ang II (0.1 μM) at physiological conditions. Label-free quantitative mass spectrometry (MS)-based proteomics analysis identified a differential expression of 107 and 34 proteins in the R and OA, respectively. Statistical and bioinformatics analyses revealed that protein clusters involved in actin cytoskeleton and integrin-linked kinase signalling were significantly activated in the OA. Conversely, a large majority of differentially expressed retinal proteins were involved in dysregulation of numerous energy-producing and metabolic signalling pathways, hinting to a possible shift in retinal cell bioenergetics. Particularly, Ang II-mediated downregulation of septin-7 (Sept7; p < 0.01) and superoxide dismutase [Cu-Zn] (Sod1; p < 0.05), and upregulation of troponin T, fast skeletal muscle (Tnnt3; p < 0.05) and tropomyosin alpha-3 chain (Tpm3; p < 0.01) in the OA, and significant decreased expressions of two crystallin proteins (Cryab; p < 0.05 and Crybb2; p < 0.0001) in the R were verified at the mRNA level, corroborating our proteomics findings. In summary, these results demonstrated that exogenous application of Ang II over an acute time period caused impairment of retinal bioenergetics and cellular demise, and actin cytoskeleton-mediated vascular remodelling in the OA. Acute Ang II stimulation elicits oxidative stress in ocular vasculature without pressor effect. . Dysregulation of energy-producing and metabolic pathways are implicated in the retina. . Actin cytoskeleton remodelling are vascular adaptation processes in the ophthalmic artery. .
Collapse
Affiliation(s)
- Natarajan Perumal
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Lars Straßburger
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - David P Herzog
- Department of Psychiatry and Psychotherapy & Focus Program Translational Neurosciences (FTN), University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Marianne B Müller
- Department of Psychiatry and Psychotherapy & Focus Program Translational Neurosciences (FTN), University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Franz H Grus
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
22
|
The Impact of Transcription Factor Prospero Homeobox 1 on the Regulation of Thyroid Cancer Malignancy. Int J Mol Sci 2020; 21:ijms21093220. [PMID: 32370142 PMCID: PMC7247360 DOI: 10.3390/ijms21093220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Transcription factor Prospero homeobox 1 (PROX1) is continuously expressed in the lymphatic endothelial cells, playing an essential role in their differentiation. Many reports have shown that PROX1 is implicated in cancer development and acts as an oncoprotein or suppressor in a tissue-dependent manner. Additionally, the PROX1 expression in many types of tumors has prognostic significance and is associated with patient outcomes. In our previous experimental studies, we showed that PROX1 is present in the thyroid cancer (THC) cells of different origins and has a high impact on follicular thyroid cancer (FTC) phenotypes, regulating migration, invasion, focal adhesion, cytoskeleton reorganization, and angiogenesis. Herein, we discuss the PROX1 transcript and protein structures, the expression pattern of PROX1 in THC specimens, and its epigenetic regulation. Next, we emphasize the biological processes and genes regulated by PROX1 in CGTH-W-1 cells, derived from squamous cell carcinoma of the thyroid gland. Finally, we discuss the interaction of PROX1 with other lymphatic factors. In our review, we aimed to highlight the importance of vascular molecules in cancer development and provide an update on the functionality of PROX1 in THC biology regulation.
Collapse
|
23
|
Zou H, Li C, Wanggou S, Li X. Survival Risk Prediction Models of Gliomas Based on IDH and 1p/19q. J Cancer 2020; 11:4297-4307. [PMID: 32489448 PMCID: PMC7255380 DOI: 10.7150/jca.43805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Gliomas have been classified into different molecular subtypes based on their molecular features. To explore the prognostic factors of different subtypes of gliomas, we performed a univariate survival analysis based on the RNA-seq data of 653 patients obtained from The Cancer Genome Atlas. We identified 12205 (20.18%), 6125 (10.13%) and 5206 (8.61%) genes associated with the overall survival (OS) of the IDH-wildtype, IDH-mutation 1p/19q intact and IDH-mutation 1p/19q codeletion gliomas, respectively. Pathway enrichment analysis revealed that OS related genes were mainly involved in alcoholism, systemic lupus erythematosus, hematopoietic cell lineage and diabetes. The OS related genes were further selected using Lasso regression, and three prognostic risk score models were constructed to effectively predict the OS of the patients with different subtypes of gliomas. In total, 76 signature genes were identified and were selected to construct the three models. Moreover, neither of the 76 genes overlapped between different models, which suggested the enormous difference among the three subtypes, although some signature genes (SERPINA5, RP11.229A12.2 and RP11.62F24.2) were also identified as the OS related genes in different glioma subtypes. Interestingly, five genes (RP11.229A12.2, RP11.62F24.2, C3orf67, RP11.275H4.1 and TBX3) played opposing roles (protective or risk factor) in different subtypes. Additionally, the prognosis models consisted of a substantial proportion of non-coding RNA (58.74%, 70.13% and 58.11% in the IDH-wildtype, IDH-mutation 1p/19q intact and IDH-mutation 1p/19q codeletion). Furthermore, multivariate analysis integrating clinical variables demonstrated that risk group predicted by the prognostic models was an independent prognostic factor for gliomas. In conclusion, we have constructed and validated three models that have the potential to predict the prognosis of glioma patients. The genes and pathways identified in this study require further investigation for their underlying mechanisms and potential clinical significance in improving the OS of the glioma patients.
Collapse
Affiliation(s)
- Han Zou
- Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China.,Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan 410008, China
| | - Chang Li
- Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China.,Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan 410008, China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan 410008, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan 410008, China
| |
Collapse
|
24
|
Blum W, Henzi T, Pecze L, Diep KL, Bochet CG, Schwaller B. The phytohormone forchlorfenuron decreases viability and proliferation of malignant mesothelioma cells in vitro and in vivo. Oncotarget 2019; 10:6944-6956. [PMID: 31857849 PMCID: PMC6916748 DOI: 10.18632/oncotarget.27341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
Malignant mesothelioma (MM) is one of the most aggressive cancer types with a patient’s life expectancy of typically less than one year upon diagnosis. The urgency of finding novel therapeutic approaches to treat mesothelioma is evident. Here we tested the effect of the plant-growth regulator forchlorfenuron (FCF), an inhibitor of septin function(s) in mammalian cells, on the viability and proliferation of MM cell lines, as well as other tumor cell lines derived from lung, prostate, colon, ovary, cervix and breast. Exposure to FCF strongly inhibited proliferation of human and mouse (most efficiently epithelioid) MM cells and all other tumor cells in a concentration-dependent manner and led to cell cycle arrest and cell death. The role of septin 7 (SEPT7), a presumably essential target of FCF in MM cells was confirmed by an shRNA strategy. FCF was robustly inhibiting tumor cell growth in vitro at low micromolar (IC50: ≈20-60µM) concentrations and more promisingly also in vivo. Initial experiments with FCF analogous revealed the importance of FCF’s chloride group for efficient cell growth inhibition. FCF’s rather low systemic toxicity might warrant for an extended search for other related and possibly more potent FCF analogues to target MM and putatively other septin-dependent tumors.
Collapse
Affiliation(s)
- Walter Blum
- Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Thomas Henzi
- Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - László Pecze
- Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Kim-Long Diep
- Department of Chemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Christian G Bochet
- Department of Chemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Beat Schwaller
- Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
25
|
Jin J, Zhang S, Hu Y, Zhang Y, Guo C, Feng F. SP1 induced lncRNA CASC11 accelerates the glioma tumorigenesis through targeting FOXK1 via sponging miR-498. Biomed Pharmacother 2019; 116:108968. [PMID: 31121483 DOI: 10.1016/j.biopha.2019.108968] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 01/31/2023] Open
Abstract
The biological functions of long noncoding RNAs (lncRNAs) in the glioma have gained much attention in recent researches. However, the deepgoing mechanism by which lncRNA regulates the gliomagenesis is still ambiguous. In this work, we found that lncRNA CASC11 was significantly up-regulated in the glioma specimens and cells, and the ectopic overexpression indicated the poor prognosis of glioma patients. CASC11 expression could be activated by the transcription factor SP1. In vivo and vitro, the knockdown of CASC11 impaired the proliferation, migration and tumor growth of glioma cells. In mechanical experiments, the miR-498 was found to target the 3'-UTR of lncRNA CASC11 and FOXK1 mRNA. Taken together, the data suggest the regulation of SP1/CASC11/miR-498/FOXK1 in the gliomagenesis, which might provide a potential therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Jungong Jin
- Department of Neurosurgery, The First Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710061, PR China
| | - Shitao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710061, PR China
| | - Yan Hu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, PR China
| | - Yu Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, PR China
| | - Chen Guo
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, PR China
| | - Fuqiang Feng
- Department of Neurosurgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China.
| |
Collapse
|
26
|
Septin 7 mediates high glucose-induced podocyte apoptosis. Biochem Biophys Res Commun 2018; 506:522-528. [PMID: 30361092 DOI: 10.1016/j.bbrc.2018.10.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/13/2018] [Indexed: 12/21/2022]
Abstract
Podocyte depletion is a central pathological mechanism of diabetic nephropathy (DN). Hyperglycemia induced podocyte apoptosis, resulting in podocyte depletion. However, the crucial mechanism of hyperglycemia-induced podocyte apoptosis remains poorly understood. In this study, we evaluated the expression of septin 7, a GTP-binding protein, in glomerular podocytes of patients and mice with DN, and investigated the pro-apoptotic effect of septin 7 on high glucose (HG) induced podocyte apoptosis in vitro. We found septin 7 expression was markedly increased not only in glomerular podocytes of patients and db/db mice with DN but also in cultured podocytes with HG stimulation. Knocking down septin 7 with siRNA could attenuate HG induced podocytes apoptosis and excessive intracellular Ca2+ concentration. This study revealed septin7 may potentially play a proapoptotic role in podocyte under diabetic conditions and may provide a potential target for preventing podocyte apoptosis in DN.
Collapse
|
27
|
Wang X, Fei F, Qu J, Li C, Li Y, Zhang S. The role of septin 7 in physiology and pathological disease: A systematic review of current status. J Cell Mol Med 2018; 22:3298-3307. [PMID: 29602250 PMCID: PMC6010854 DOI: 10.1111/jcmm.13623] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
Septins are a conserved family of cytoskeletal GTPases present in different organisms, including yeast, drosophila, Caenorhabditis elegans and humans. In humans, septins are involved in various cellular processes, including exocytosis, apoptosis, leukemogenesis, carcinogenesis and neurodegeneration. Septin 7 is unique out of 13 human septins. Mammalian septin 6, septin 7, septin 2 and septin 9 coisolate together in complexes to form the core unit for the generation of the septin filaments. Physiological septin filaments are hetero‐oligomeric complexes consisting of core septin hexamers and octamers. Furthermore, septin 7 plays a crucial role in cytokinesis and mitosis. Septin 7 is localized to the filopodia and branches of developing hippocampal neurons, and is the most abundant septin in the adult rat forebrain as well as a structural component of the human and mouse sperm annuli. Septin 7 is crucial to the spine morphogenesis and dendrite growth in neurons, and is also a structural constituent of the annulus in human and mouse sperm. It can suppress growth of some tumours such as glioma and papillary thyroid carcinoma. However, the molecular mechanisms of involvement of septin 7 in human disease, especially in the development of cancer, remain unclear. This review focuses on the structure, function and mechanism of septin 7 in vivo, and summarizes the role of septin 7 in cell proliferation, cytokinesis, nervous and reproductive systems, as well as the underlying molecular events linking septin 7 to various diseases, such as Alzheimer's disease, schizophrenia, neuropsychiatric systemic lupus erythematosus, tumour and so on.
Collapse
Affiliation(s)
- Xinlu Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Fei Fei
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Jie Qu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Chunyuan Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|