1
|
Xu X, Wu Y, Zhao Y, Liu A, Yi C, Zhang A, Wang X. Inhibition of Macrophage Pyroptosis─A New Therapeutic Strategy to Alleviate T-2 Toxin-Induced Subacute Liver Injury by Directly Competing with the Key Target. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18670-18681. [PMID: 39112929 DOI: 10.1021/acs.jafc.4c03340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Multiple compounds are related to the development of liver injury, such as toxins, drugs, and environmental pollutants. Although there are reports that the T-2 toxin can cause liver injury, its toxic mechanism remains unclear, which further impedes the development of effective antidotes. In this study, CRISPR-Cas9 genome-wide screening technology was used to identify transformation-related protein 53 inducible nuclear protein 1 (trp53inp1) as a toxic target of the T-2 toxin. Mechanism studies have shown that the T-2 toxin induced pyroptosis of macrophages (J774A.1 cells) by activating the trp53inp1/NF-κB/NLRP3/GSDMD-N pathway, leading to a subacute liver injury. Also, the new drug berberine (BER) identified through virtual screening significantly alleviated the subacute liver injury by competitively binding trp53inp1 via His224; the effect was better than those of the positive control drugs N-acetylcysteine (NAC) and disulfiram (DSF). In summary, the above results indicate that trp53inp1 is a key target for T-2 toxin to induce subacute liver injury and that inhibiting macrophage pyroptosis is a new method for treating liver injury. In addition, this study provides a new method and strategy for the discovery of key disease targets and the search for effective drugs.
Collapse
Affiliation(s)
- Xiaoqing Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan , Hubei 430070, China
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan , Hubei 430070, China
| | - Yue Wu
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan , Hubei 430070, China
| | - Yongxia Zhao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan , Hubei 430070, China
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan , Hubei 430070, China
| | - Aimei Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P.R. China
| | - Chenyang Yi
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan , Hubei 430070, China
| | - Anding Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan , Hubei 430070, China
- Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease prevention, Guangzhou, Guangdong 510000, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan , Hubei 430070, China
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan , Hubei 430070, China
| |
Collapse
|
2
|
García-Hernández AP, Sánchez-Sánchez G, Carlos-Reyes A, López-Camarillo C. Functional roles of microRNAs in vasculogenic mimicry and resistance to therapy in human cancers: an update. Expert Rev Clin Immunol 2024; 20:913-926. [PMID: 38712535 DOI: 10.1080/1744666x.2024.2352484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Vasculogenic mimicry (VM) alludes to the ability of cancer cells to organize on three-dimensional channel-like structures to obtain nutrients and oxygen. This mechanism confers an aggressive phenotype, metastatic potential, and resistance to chemotherapy resulting in a poor prognosis. Recent studies have been focused on the identification of microRNAs (miRNAs) that regulate the VM representing potential therapeutic targets in cancer. AREAS COVERED An overview of the roles of miRNAs on VM development and their functional relationships with tumor microenvironment. The functions of cancer stem-like cells in VM, and resistance to therapy are also discussed. Moreover, the modulation of VM by natural compounds is explored. The clinical significance of deregulated miRNAs as potential therapeutic targets in tumors showing VM is further highlighted. EXPERT OPINION The miRNAs are regulators of protein-encoding genes involved in VM; however, their specific expression signatures with clinical value in large cohorts of patients have not been established yet. We considered that genomic profiling of miRNAs could be useful to define some hallmarks of tumors such as stemness, drug resistance, and VM in cancer patients. However, additional studies are needed to establish the relevant role of miRNAs as effective therapeutic targets in tumors that have developed VM.
Collapse
Affiliation(s)
| | | | - Angeles Carlos-Reyes
- Laboratorio de Onco-Inmunobiología, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Ciudad de México
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México
| |
Collapse
|
3
|
Zhong J, Tang Y. Research progress on the role of reactive oxygen species in the initiation, development and treatment of breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:1-18. [PMID: 38387519 DOI: 10.1016/j.pbiomolbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
According to international cancer data, breast cancer (BC) is the leading type of cancer in women. Although significant progress has been made in treating BC, metastasis and drug resistance continue to be the primary causes of mortality for many patients. Reactive oxygen species (ROS) play a dual role in vivo: normal levels can maintain the body's normal physiological function; however, high levels of ROS below the toxicity threshold can lead to mtDNA damage, activation of proto-oncogenes, and inhibition of tumor suppressor genes, which are important causes of BC. Differences in the production and regulation of ROS in different BC subtypes have important implications for the development and treatment of BC. ROS can also serve as an important intracellular signal transduction factor by affecting the antioxidant system, activating MAPK and PI3K/AKT, and other signal pathways to regulate cell cycle and change the relationship between cells and the activity of metalloproteinases, which significantly impacts the metastasis of BC. Hypoxia in the BC microenvironment increases ROS production levels, thereby inducing the expression of hypoxia inducible factor-1α (HIF-1α) and forming "ROS- HIF-1α-ROS" cycle that exacerbates BC development. Many anti-BC therapies generate sufficient toxic ROS to promote cancer cell apoptosis, but because the basal level of ROS in BC cells exceeds that of normal cells, this leads to up-regulation of the antioxidant system, drug efflux, and apoptosis inhibition, rendering BC cells resistant to the drug. ROS crosstalks with tumor vessels and stromal cells in the microenvironment, increasing invasiveness and drug resistance in BC.
Collapse
Affiliation(s)
- Jing Zhong
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China
| | - Yan Tang
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China.
| |
Collapse
|
4
|
Lucotte EA, Asgari Y, Sugier PE, Karimi M, Domenighetti C, Lesueur F, Boland-Augé A, Ostroumova E, de Vathaire F, Zidane M, Guénel P, Deleuze JF, Boutron-Ruault MC, Severi G, Liquet B, Truong T. Investigation of common genetic risk factors between thyroid traits and breast cancer. Hum Mol Genet 2023; 33:38-47. [PMID: 37740403 PMCID: PMC10729861 DOI: 10.1093/hmg/ddad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
Breast cancer (BC) risk is suspected to be linked to thyroid disorders, however observational studies exploring the association between BC and thyroid disorders gave conflicting results. We proposed an alternative approach by investigating the shared genetic risk factors between BC and several thyroid traits. We report a positive genetic correlation between BC and thyroxine (FT4) levels (corr = 0.13, p-value = 2.0 × 10-4) and a negative genetic correlation between BC and thyroid-stimulating hormone (TSH) levels (corr = -0.09, p-value = 0.03). These associations are more striking when restricting the analysis to estrogen receptor-positive BC. Moreover, the polygenic risk scores (PRS) for FT4 and hyperthyroidism are positively associated to BC risk (OR = 1.07, 95%CI: 1.00-1.13, p-value = 2.8 × 10-2 and OR = 1.04, 95%CI: 1.00-1.08, p-value = 3.8 × 10-2, respectively), while the PRS for TSH is inversely associated to BC risk (OR = 0.93, 95%CI: 0.89-0.97, p-value = 2.0 × 10-3). Using the PLACO method, we detected 49 loci associated to both BC and thyroid traits (p-value < 5 × 10-8), in the vicinity of 130 genes. An additional colocalization and gene-set enrichment analyses showed a convincing causal role for a known pleiotropic locus at 2q35 and revealed an additional one at 8q22.1 associated to both BC and thyroid cancer. We also found two new pleiotropic loci at 14q32.33 and 17q21.31 that were associated to both TSH levels and BC risk. Enrichment analyses and evidence of regulatory signals also highlighted brain tissues and immune system as candidates for obtaining associations between BC and TSH levels. Overall, our study sheds light on the complex interplay between BC and thyroid traits and provides evidence of shared genetic risk between those conditions.
Collapse
Affiliation(s)
- Elise A Lucotte
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Yazdan Asgari
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Pierre-Emmanuel Sugier
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
- Laboratoire de Mathématiques et de leurs Applications de Pau, Université de Pau et des Pays de l’Adour, UMR CNRS 5142, E2S-UPPA, 64013 Pau, France
| | - Mojgan Karimi
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Cloé Domenighetti
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, 75006 Paris, France
| | - Anne Boland-Augé
- National Centre of Human Genomics Research, François Jacob Institute of Biology, Commissariat à l’Energie Atomique, Paris-Saclay University, 91000 Evry, France
| | | | - Florent de Vathaire
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team of Epidemiology of radiations, 94807 Villejuif, France
| | - Monia Zidane
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team of Epidemiology of radiations, 94807 Villejuif, France
| | - Pascal Guénel
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Jean-François Deleuze
- National Centre of Human Genomics Research, François Jacob Institute of Biology, Commissariat à l’Energie Atomique, Paris-Saclay University, 91000 Evry, France
| | | | - Gianluca Severi
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
- Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, 50121 Florence, Italy
| | - Benoît Liquet
- Laboratoire de Mathématiques et de leurs Applications de Pau, Université de Pau et des Pays de l’Adour, UMR CNRS 5142, E2S-UPPA, 64013 Pau, France
- School of Mathematical and Physical Sciences, Macquarie University, 2109 Sydney, Australia
| | - Thérèse Truong
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| |
Collapse
|
5
|
Saha D, Mitra D, Alam N, Sen S, Mustafi SM, Majumder PK, Majumder B, Murmu N. Lupeol and Paclitaxel cooperate in hindering hypoxia induced vasculogenic mimicry via suppression of HIF-1α-EphA2-Laminin-5γ2 network in human oral cancer. J Cell Commun Signal 2023; 17:591-608. [PMID: 36063341 PMCID: PMC10409936 DOI: 10.1007/s12079-022-00693-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
Vasculogenic mimicry (VM), defined as an endothelial cell independent alternative mechanism of blood and nutrient supply by dysregulated tumor cells, is associated with poor prognosis in oral squamous cell carcinoma (OSCC). Here we aim to investigate the underlying molecular mechanism of the synergistic effect of phytochemical Lupeol and standard microtubule inhibitor Paclitaxel in reversing the hypoxia induced VM formation in OSCC. The results demonstrated that the hypoxia induced upregulation of HIF-1α led to augmentation of signaling cascade associated with extracellular matrix remodeling and EMT phenotypes that are mechanistically linked to VM. Induction of HIF-1α altered the expression of EMT/CSC markers (E-Cadherin, Vimentin, Snail, Twist and CD133) and enhanced the ability of cell migration/invasion and spheroid formation. Subsequently, the targeted knockdown of HIF-1α by siRNA led to the perturbation of matrigel mediated tube formation as well as of Laminin-5γ2 expression with the down-regulation of VE-Cadherin, total and phosphorylated (S-897) EphA2, pERK1/2 and MMP2. We also observed that Lupeol in association with Paclitaxel resulted to apoptosis and the disruption of VM associated phenotypes in vitro. We further validated the impact of this novel interventional approach in a patient derived tumor explant culture model of oral malignancy. The ex vivo tumor model mimicked the in vitro anti-VM potential of Lupeol-Paclitaxel combination through down-regulating HIF-1α/EphA2/Laminin-5γ2 cascade. Together, our findings elucidated mechanistic underpinning of hypoxia induced Laminin-5γ2 driven VM formation highlighting that Lupeol-Paclitaxel combination may serve as novel therapeutic intervention in perturbation of VM in human OSCC.
Collapse
Affiliation(s)
- Depanwita Saha
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Debarpan Mitra
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Sagar Sen
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Saunak Mitra Mustafi
- Department of Pathology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Pradip K Majumder
- Department of Cancer Biology, Praesidia Biotherapeutics, 1167 Massachusetts Avenue, Arlington, MA, 02476, USA
| | - Biswanath Majumder
- Departments of Cancer Biology, Molecular Profiling and Molecular Pathology, Mitra Biotech, Bangalore, India
- Oncology Division, Bugworks Research, C-CAMP, Bangalore, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India.
| |
Collapse
|
6
|
Contreras-Rodríguez JA, Puente-Rivera J, Córdova-Esparza DM, Nuñez-Olvera SI, Silva-Cázares MB. Bioinformatic miRNA-mRNAs Analysis Revels to miR-934 as a Potential Regulator of the Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer. Cells 2023; 12:cells12060834. [PMID: 36980175 PMCID: PMC10047237 DOI: 10.3390/cells12060834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer and has the worst prognosis. In patients with TNBC tumors, the tumor cells have been reported to have mesenchymal features, which help them migrate and invade. Various studies on cancer have revealed the importance of microRNAs (miRNAs) in different biological processes of the cell in that aberrations, in their expression, lead to alterations and deregulations in said processes, giving rise to tumor progression and aggression. In the present work, we determined the miRNAs that are deregulated in the epithelial-mesenchymal transition process in breast cancer. We discovered that 25 miRNAs that regulate mesenchymal genes are overexpressed in patients with TNBC. We found that miRNA targets modulate different processes and pathways, such as apoptosis, FoxO signaling pathways, and Hippo. We also found that the expression level of miR-934 is specific to the molecular subtype of the triple-negative breast cancer and modulates a set of related epithelial-mesenchymal genes. We determined that miR-934 inhibition in TNBC cell lines inhibits the migratory abilities of tumor cells.
Collapse
Affiliation(s)
| | | | | | - Stephanie I Nuñez-Olvera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | |
Collapse
|
7
|
Liu T, Liao S, Mo J, Bai X, Li Y, Zhang Y, Zhang D, Cheng R, Zhao N, Che N, Guo Y, Dong X, Zhao X. LncRNA n339260 functions in hepatocellular carcinoma progression via regulation of miRNA30e-5p/TP53INP1 expression. J Gastroenterol 2022; 57:784-797. [PMID: 35802258 DOI: 10.1007/s00535-022-01901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Currently, the molecular mechanism of the interaction between lncRNAs and microRNAs (miRNAs) and the target of miRNAs in tumor vasculogenic mimicry (VM) formation have not been clarified. Our aim is to study the interaction between lncRNA n339260 and miRNA30e-5p in the formation of VM. METHODS Animal xenografts were established, 104 hepatocellular carcinoma (HCC) patients' frozen tissues were obtained and HCC cells in vitro were used to observe the role of n339260 in HCC progression. RESULTS In vivo experiment showed lncRNA n339260 promoted tumor growth and VM formation. LncRNA n339260 and miRNA30e-5p were found to be associated with VM formation, metastasis and survival time in HCC patients. In vitro experiment showed that LncRNA n339260 could inhibit miRNA30e-5p expression and TP53INP1 was found to be the downstream targets of miRNA30e-5p. Snail, MMP2, MMP9, VE-cadherin, vimentin and N-cadherin overexpression and the downregulation of TP53INP1 and E-cadherin were observed in HCCLM3 and HepG2 cells overexpressing lncRNA n339260 or in cells with decreased expression of miRNA30e-5p. CONCLUSION LncRNA n339260 promotes the development of VM, and lncRNA n339260 may enhance Snail expression by decreasing the expression of miRNA30e-5p, thereby reducing TP53INP1 expression. Therefore, a potential lncRNA n339260- miRNA30e-5p- TP53INP1 regulatory axis was associated with HCC progression.
Collapse
Affiliation(s)
- Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Shihan Liao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Jing Mo
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Xiaoyu Bai
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Yanhui Zhang
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Runfen Cheng
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Na Che
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Yuhong Guo
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
8
|
Luo X, Xu Y, Zhong Z, Xiang P, Wu X, Chong A. miR-8485 alleviates the injury of cardiomyocytes through TP53INP1. J Biochem Mol Toxicol 2022; 36:e23159. [PMID: 35876212 DOI: 10.1002/jbt.23159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 04/25/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
MicroRNAs (miRNAs) feature prominently in regulating the progression of chronic heart failure (CHF). This study was performed to investigate the role of miR-8485 in the injury of cardiomyocytes and CHF. It was found that miR-8485 level was markedly reduced in the plasma of CHF patients, compared with the healthy controls. H2 O2 treatment increased tumor necrosis factor-α, interleukin (IL)-6, and IL-1β levels, inhibited the viability of human adult ventricular cardiomyocyte cell line AC16, and increased the apoptosis, while miR-8485 overexpression reversed these effects. Tumor protein p53 inducible nuclear protein 1 (TP53INP1) was identified as a downstream target of miR-8485, and TP53INP1 overexpression weakened the effects of miR-8485 on cell viability, apoptosis, as well as inflammatory responses. Our data suggest that miR-8485 attenuates the injury of cardiomyocytes by targeting TP53INP1, suggesting it is a protective factor against CHF.
Collapse
Affiliation(s)
- Xiuying Luo
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanlin Xu
- Department of Nephrology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ze Zhong
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng Xiang
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xindong Wu
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Aiguo Chong
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Dis 2022; 13:483. [PMID: 35595748 PMCID: PMC9122982 DOI: 10.1038/s41419-022-04950-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Exploring the epigenetic regulation mechanism of colorectal cancer (CRC) from the perspective of N6-methyladenosine (m6A) modification may provide a new target for tumor therapy. Analysis using high-throughput RNA-seq profile from TCGA found that the gene expression of Methyltransferase-like 3 (METTL3) was significantly upregulated among 20 m6A binding proteins in CRC, which was also validated in CRC cancer tissues and cell lines. Moreover, transcriptome sequencing in METTL3 knockdown cells using CRISPR/Cas9 editing suggested that EphA2 and VEGFA were differential expression, which were enriched in the vasculature development, PI3K/AKT and ERK1/2 signal pathway through the functional enrichment analysis. The results in vitro revealed that METTL3 as the m6A "writers" participates the methylation of EphA2 and VEGFA, which were recognized by the m6A "readers", insulin-like growth factor 2 mRNA binding protein 2/3 (IGF2BP2/3), to prevent their mRNA degradation. In addition, EphA2 and VEGFA targeted by METTL3 via different IGF2BP-dependent mechanisms were found to promote vasculogenic mimicry (VM) formation via PI3K/AKT/mTOR and ERK1/2 signaling in CRC. The study suggests that intervention with m6A-binding proteins (METTL3 and IGF2BP2/3) may provide a potential diagnostic or prognostic target of VM-based anti-metastasis drugs for CRC.
Collapse
|
10
|
Chong ZX, Yeap SK, Ho WY. Unraveling the roles of miRNAs in regulating epithelial-to-mesenchymal transition (EMT) in osteosarcoma. Pharmacol Res 2021; 172:105818. [PMID: 34400316 DOI: 10.1016/j.phrs.2021.105818] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/01/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is one of the most prevalent primary bone tumors with a high metastatic and recurrence rate with poor prognosis. MiRNAs are short and non-coding RNAs that could regulate various cellular activities and one of them is the epithelial-to-mesenchymal transition (EMT). Osteosarcoma cells that have undergone EMT would lose their cellular polarity and acquire invasive and metastatic characteristics. Our literature search showed that many pre-clinical and clinical studies have reported the roles of miRNAs in modulating the EMT process in osteosarcoma and compared to other cancers like breast cancer, there is a lack of review article which effectively summarizes the various roles of EMT-regulating miRNAs in osteosarcoma. This review, therefore, was aimed to discuss and summarize the EMT-promoting and EMT-suppressing roles of different miRNAs in osteosarcoma. The review would begin with the discussion on the concepts and principles of EMT, followed by the exploration of the diverse roles of EMT-regulating miRNAs in osteosarcoma. Subsequently, the potential use of miRNAs as prognostic biomarkers in osteosarcoma to predict the likelihood of metastases and as therapeutic agents would be discussed.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
11
|
Yu P, Zhu X, Zhu JL, Han YB, Zhang H, Zhou X, Yang L, Xia YZ, Zhang C, Kong LY. The Chk2-PKM2 axis promotes metabolic control of vasculogenic mimicry formation in p53-mutated triple-negative breast cancer. Oncogene 2021; 40:5262-5274. [PMID: 34244606 DOI: 10.1038/s41388-021-01933-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Vasculogenic mimicry (VM) formation, which participates in the process of neovascularization, is highly activated in p53-mutated triple-negative breast cancer (TNBC). Here, we show that Chk2 is negatively correlated with VM formation in p53-mutated TNBC. Its activation by DNA-damaging agents such as cisplatin, etoposide, and DPT reduces VM formation. Mechanistically, the Chk2-PKM2 axis plays an important role in the inhibition of VM formation at the level of metabolic regulation. Chk2 promotes the Chk2-PKM2 interaction through the Chk2 SCD (SQ/TQ cluster domain) and the PKM2 C domain. Furthermore, Chk2 promotes the nuclear export of PKM2 by phosphorylating PKM2 at Ser100. P-PKM2 S100 reduces VM formation by decreasing glucose flux, and the PKM2 S100A mutation abolishes the inhibition of glucose flux and VM formation induced by Chk2 activation. Overall, this study proposes a novel strategy of VM suppression through Chk2 induction, which prevents PKM2-mediated glucose flux in p53-mutated TNBC.
Collapse
Affiliation(s)
- Pei Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiong Zhu
- Medical and Chemical Institute, China Pharmaceutical University, Nanjing, China
| | - Jia-Le Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Bao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
12
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Moghadam ER, Owrang M, Hashemi F, Makvandi P, Goharrizi MASB, Najafi M, Khan H. Lung cancer cells and their sensitivity/resistance to cisplatin chemotherapy: Role of microRNAs and upstream mediators. Cell Signal 2021; 78:109871. [PMID: 33279671 DOI: 10.1016/j.cellsig.2020.109871] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin (CP) is a well-known chemotherapeutic agent with excellent clinical effects. The anti-tumor activity of CP has been demonstrated in different cancers such as breast, cervical, reproductive, lung, brain, and prostate cancers. However, resistance of cancer cells to CP chemotherapy has led to its failure in eradication of cancer cells, and subsequent death of patients with cancer. Fortunately, much effort has been put to identify molecular pathways and mechanisms involved in CP resistance/sensitivity. It seems that microRNAs (miRs) are promising candidates in mediating CP resistance/sensitivity, since they participate in different biological aspects of cells such as proliferation, migration, angiogenesis, and differentiation. In this review, we focus on miRs and their regulation in CP chemotherapy of lung cancer, as the most malignant tumor worldwide. Oncogenic miRs trigger CP resistance in lung cancer cells via targeting various pathways such as Wnt/β-catenin, Rab6, CASP2, PTEN, and Apaf-1. In contrast, onco-suppressor miRs inhibit oncogene pathways such as STAT3 to suppress CP resistance. These topics are discussed to determine the role of miRs in CP resistance/sensitivity. We also describe the upstream modulators of miRs such as lncRNAs, circRNAs, NF-κB, SOX2 and TRIM65 and their association with CP resistance/sensitivity in lung cancer cells. Finally, the effect of anti-tumor plant-derived natural compounds on miR expression during CP sensitivity of lung cancer cells is discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Owrang
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
13
|
Aggarwal V, Miranda O, Johnston PA, Sant S. Three dimensional engineered models to study hypoxia biology in breast cancer. Cancer Lett 2020; 490:124-142. [PMID: 32569616 PMCID: PMC7442747 DOI: 10.1016/j.canlet.2020.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Breast cancer is the second leading cause of mortality among women worldwide. Despite the available therapeutic regimes, variable treatment response is reported among different breast cancer subtypes. Recently, the effects of the tumor microenvironment on tumor progression as well as treatment responses have been widely recognized. Hypoxia and hypoxia inducible factors in the tumor microenvironment have long been known as major players in tumor progression and survival. However, the majority of our understanding of hypoxia biology has been derived from two dimensional (2D) models. Although many hypoxia-targeted therapies have elicited promising results in vitro and in vivo, these results have not been successfully translated into clinical trials. These limitations of 2D models underscore the need to develop and integrate three dimensional (3D) models that recapitulate the complex tumor-stroma interactions in vivo. This review summarizes role of hypoxia in various hallmarks of cancer progression. We then compare traditional 2D experimental systems with novel 3D tissue-engineered models giving accounts of different bioengineering platforms available to develop 3D models and how these 3D models are being exploited to understand the role of hypoxia in breast cancer progression.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Oshin Miranda
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
14
|
Vasculogenic mimicry in carcinogenesis and clinical applications. J Hematol Oncol 2020; 13:19. [PMID: 32169087 PMCID: PMC7071697 DOI: 10.1186/s13045-020-00858-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Distinct from classical tumor angiogenesis, vasculogenic mimicry (VM) provides a blood supply for tumor cells independent of endothelial cells. VM has two distinct types, namely tubular type and patterned matrix type. VM is associated with high tumor grade, tumor progression, invasion, metastasis, and poor prognosis in patients with malignant tumors. Herein, we discuss the recent studies on the role of VM in tumor progression and the diverse mechanisms and signaling pathways that regulate VM in tumors. Furthermore, we also summarize the latest findings of non-coding RNAs, such as lncRNAs and miRNAs in VM formation. In addition, we review application of molecular imaging technologies in detection of VM in malignant tumors. Increasing evidence suggests that VM is significantly associated with poor overall survival in patients with malignant tumors and could be a potential therapeutic target.
Collapse
|
15
|
Liu T, Zhao X, Zheng X, Zheng Y, Dong X, Zhao N, Liao S, Sun B. The EMT transcription factor, Twist1, as a novel therapeutic target for pulmonary sarcomatoid carcinomas. Int J Oncol 2020; 56:750-760. [PMID: 32124963 PMCID: PMC7010216 DOI: 10.3892/ijo.2020.4972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/12/2019] [Indexed: 12/25/2022] Open
Abstract
Pulmonary sarcomatoid carcinomas (PSCs) are a rare subtype of non‑small‑cell lung cancer and are typically biphasic neoplasms. No effective treatment for PSCs is currently available in clinical practice. The expression of the epithelial‑mesenchymal transition (EMT) transcription factors, Twist1, Slug and Snail, as well as the EMT phenotype and vasculogenic mimicry (VM) were analysed in 41 PSC and 79 pulmonary squamous carcinoma (PSCC) samples. Compared with the PSCCs, the PSCs exhibited an EMT phenotype and VM, and they also exhibited an increased expression of the Twist1, Slug, Snail and VM markers. Twist1 expression was associated with metastasis and TNM stage. Twist1‑positive patients exhibited a poorer prognosis for overall survival (OS) than those with Twist1‑negative PSCs. Transforming growth factor β1 (TGFβ1) was used to induce an EMT transition in a PSCC cell line. SK‑MES‑1 cells treated with TGFβ1 exhibited an increased expression of Twist1. The EMT phenotype, VM and increased migratory and invasive abilities were induced following TGFβ1 treatment. Importantly, in cells treated with TGFβ1, the EMT phenotype was reversed, VM marker expression was decreased, and the migratory and invasive ability of the PSCC cell line was decreased following Twist1 knockdown. Collectively, this study provides a new perspective of Twist1 in the aggressiveness of PSCs. The identification of Twist1 as an independent marker of poor prognoses may lead to the development of novel strategies for improving the treatment of patients with PSC.
Collapse
Affiliation(s)
- Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xu Zheng
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yanjun Zheng
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Shihan Liao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
16
|
Ye W, Liang F, Ying C, Zhang M, Feng D, Jiang X. Downregulation of microRNA-3934-5p induces apoptosis and inhibits the proliferation of neuroblastoma cells by targeting TP53INP1. Exp Ther Med 2019; 18:3729-3736. [PMID: 31616506 PMCID: PMC6781830 DOI: 10.3892/etm.2019.8007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 03/21/2019] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma is the most common pediatric extracranial solid tumour in the world. miRNAs are a group of endogenous small non-coding RNAs that act on target genes to serve critical roles in many biological processes. Presently, the expression and role of miR-3934-5p in neuroblastoma remains unclear. Therefore, the aim of the present study was to investigate the expression of miR-3934-5p in neuroblastoma tissues and cell lines and to assess the role of miR-3934-5p in neuroblastoma. In the current study, the results revealed that miR-3934-5p was significantly upregulated in neuroblastoma tissues and cell lines. The data also identified TP53INP1 as a direct target gene of miR-3934-5p, which was negatively regulated by miR-3934-5p. The present study further demonstrated that TP53INP1 was downregulated in both neuroblastoma tissues and cell lines. Furthermore, the results of the current study indicate that miR-3934-5p downregulation may induce apoptosis and inhibit neuroblastoma cell viability. However, these effects were reversed via TP53INP1-siRNA. Data from the current study indicates that the miR-3934-5p/TP53INP1 axis may be a novel therapeutic target for neuroblastoma treatment.
Collapse
Affiliation(s)
- Wei Ye
- Department of Neurology, Jianou Municipal Hospital, Jianou, Fujian 353100, P.R. China
| | - Fulv Liang
- Department of Urology, The Third Hospital of Xiamen, Xiamen, Fujian 361000, P.R. China
| | - Chen Ying
- Department of Urology, Haicang Hospital of Xiamen, Xiamen, Fujian 361026, P.R. China
| | - Maolin Zhang
- Department of Surgery, Xiapu County Hospital, Xiapu County, Ningde, Fujian 355100, P.R. China
| | - Dongbo Feng
- Department of Sports Medicine, The Central Hospital of Yongzhou, Yongzhou, Hunan 425000, P.R. China
| | - Xinyu Jiang
- Department of General Surgery, Xiamen Maternity and Child Health Care Hospital, Xiamen, Fujian 361000, P.R. China
| |
Collapse
|
17
|
Nishimoto M, Nishikawa S, Kondo N, Wanifuchi-Endo Y, Hato Y, Hisada T, Dong Y, Okuda K, Sugiura H, Kato H, Takahashi S, Toyama T. Prognostic impact of TP53INP1 gene expression in estrogen receptor α-positive breast cancer patients. Jpn J Clin Oncol 2019; 49:567-575. [PMID: 30855679 DOI: 10.1093/jjco/hyz029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/01/2019] [Accepted: 02/13/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Tumor protein 53-induced nuclear protein 1 (TP53INP1) is a key stress protein with tumor suppressor function. Several studies have demonstrated TP53INP1 downregulation in many cancers. In this study, we investigated the correlations of TP53INP1 mRNA expression in breast cancer tissues with prognosis and the correlations of microRNAs that regulate TP53INP1 expression in breast cancer patients with long follow-up. METHODS A total of 453 invasive breast cancer tissues were analyzed for TP53INP1 mRNA expression. We examined correlations of clinicopathological factors and expression levels of TP53INP1 mRNA in these samples. The expressions of miR-155, miR-569 and markers associated with tumor-initiating capacity were also analyzed. The median follow-up period was 9.0 years. RESULTS We found positive correlations between low expression of TP53INP1 mRNA and shorter disease-free survival and overall survival in breast cancer patients (P = 0.0002 and P < 0.0001, respectively), as well as in estrogen receptor α (ERα)-positive patients receiving adjuvant endocrine therapy (P = 0.01 and P = 0.0008, respectively). No correlations were found in ERα-negative patients. Low TP53INP1 mRNA levels positively correlated with higher grade and ERα-negativity. Multivariate analysis indicated that TP53INP1 mRNA level was an independent risk factor for overall survival both in overall breast cancer patients (hazard ratio, 2.13; 95% confidence interval, 1.17-3.92) and ERα-positive patients (hazard ratio, 2.34; 95% confidence interval, 1.18-4.64). CONCLUSIONS We show that low expression of TP53INP1 is an independent factor of poor prognosis in breast cancer patients, especially ERα-positive patients. TP53INP1 might be a promising candidate biomarker and therapeutic target in ERα-positive breast cancer patients.
Collapse
Affiliation(s)
- Mayumi Nishimoto
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Sayaka Nishikawa
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Naoto Kondo
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Yumi Wanifuchi-Endo
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Yukari Hato
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Tomoka Hisada
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Yu Dong
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences
| | - Hiroshi Sugiura
- Department of Education and Research Center for Advanced Medicine, Nagoya City University Graduate School of Medical Sciences
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Tatsuya Toyama
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences
| |
Collapse
|
18
|
Ren A, Wen Z, Zheng L. Downregulation of miR-3934-5p enhances A549 cell sensitivity to cisplatin by targeting TP53INP1. Exp Ther Med 2019; 18:1653-1660. [PMID: 31410122 PMCID: PMC6676217 DOI: 10.3892/etm.2019.7718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 05/31/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor protein p53-inducible nuclear protein 1 (TP53INP1) is a tumor suppressor associated with malignant tumor metastasis. In addition, it has been reported that hsa-microRNA (miR)-3934 serves key roles in various types of lung cancer, including small-cell lung carcinomas (SCLC) and non-SCLC (NSCLC). Therefore, the present study aimed to determine the effects of miR-3934-5p on cell proliferation and apoptosis, and on sensitivity to cisplatin (DDP). Reverse transcription-quantitative polymerase chain reaction analysis and western blotting were conducted for the analysis of mRNA and protein expression, respectively. Furthermore, the target of miR-3934-5p was investigated using a luciferase reporter assay and apoptosis was analyzed by flow cytometry. The results demonstrated that miR-3934-5p was upregulated in NSCLC tissues and A549 cells. Increases in the half-maximal inhibitory concentration (IC50) and the expression of miR-3934-5p were observed in the A549/DDP group. miR-3934-5p mimic promoted the expression of miR-3934-5p and the IC50 of the A549 cells. miR-3934-5p inhibitor downregulated miR-3934-5p and reduced the IC50 of A549/DDP cells. miR-3934-5p was revealed to target the 3'-untranslated region of TP53INP1. The downregulation of miR-3934-5p significantly suppressed the proliferation and promoted the apoptosis of A549/DDP cells, which were reversed by transfection with TP53INP1 small interfering (si)RNA. The protein and mRNA expression levels of TP53INP1, B-cell lymphoma 2 (Bcl-2)-associated-X and p21 were significantly increased, whereas those of Bcl-2 were significantly decreased in the miR-3934-5p inhibitor group, which was significantly reduced by TP53INP1 siRNA transfection. miR-3934-5p, as a tumor suppressor in NSCLC, may promote the sensitivity of cells to DDP by targeting TP53INP1, associated with the suppression of cell proliferation and promotion of apoptosis.
Collapse
Affiliation(s)
- Aijun Ren
- Department of Oncology, The People's Hospital of Yucheng, Yucheng, Shandong 251200, P.R. China
| | - Zhenzhen Wen
- Department of Oncology, The People's Hospital of Yucheng, Yucheng, Shandong 251200, P.R. China
| | - Liangjie Zheng
- Department of Oncology, The People's Hospital of Leling, Leling, Shandong 253600, P.R. China
| |
Collapse
|
19
|
Wang HF, Wang SS, Zheng M, Dai LL, Wang K, Gao XL, Cao MX, Yu XH, Pang X, Zhang M, Wu JB, Wu JS, Yang X, Tang YJ, Chen Y, Tang YL, Liang XH. Hypoxia promotes vasculogenic mimicry formation by vascular endothelial growth factor A mediating epithelial-mesenchymal transition in salivary adenoid cystic carcinoma. Cell Prolif 2019; 52:e12600. [PMID: 30945361 PMCID: PMC6536414 DOI: 10.1111/cpr.12600] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/27/2019] [Accepted: 02/12/2019] [Indexed: 02/05/2023] Open
Abstract
Objectives To investigate the role of hypoxia in vasculogenic mimicry (VM) of salivary adenoid cystic carcinoma (SACC) and the underlying mechanism involved. Materials and methods Firstly, wound healing, transwell invasion, immunofluorescence and tube formation assays were performed to measure the effect of hypoxia on migration, invasion, EMT and VM of SACC cells, respectively. Then, immunofluorescence and RT‐PCR were used to detect the effect of hypoxia on VE‐cadherin and VEGFA expression. And pro‐vasculogenic mimicry effect of VEGFA was investigated by confocal laser scanning microscopy and Western blot. Moreover, the levels of E‐cadherin, N‐cadherin, Vimentin, CD44 and ALDH1 were determined by Western blot and immunofluorescence in SACC cells treated by exogenous VEGFA or bevacizumab. Finally, CD31/ PAS staining was performed to observe VM and immunohistochemistry was used to determine the levels of VEGFA and HIF‐1α in 95 SACC patients. The relationships between VM and clinicopathological variables, VEGFA or HIF‐1α level were analysed. Results Hypoxia promoted cell migration, invasion, EMT and VM formation, and enhanced VE‐cadherin and VEGFA expression in SACC cells. Further, exogenous VEGFA markedly increased the levels of N‐cadherin, Vimentin, CD44 and ALDH1, and inhibited the expression of E‐cadherin, while the VEGFA inhibitor reversed these changes. In addition, VM channels existed in 25 of 95 SACC samples, and there was a strong positive correlation between VM and clinic stage, distant metastases, VEGFA and HIF‐1α expression. Conclusions VEGFA played an important role in hypoxia‐induced VM through regulating EMT and stemness, which may eventually fuel the migration and invasion of SACC.
Collapse
Affiliation(s)
- Hao-Fan Wang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Sha-Sha Wang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Min Zheng
- Department of Stomatolog, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, China
| | - Lu-Ling Dai
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ke Wang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xiao-Lei Gao
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ming-Xin Cao
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xiang-Hua Yu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Jing-Biao Wu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xiao Yang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| |
Collapse
|
20
|
Sun H, Yao N, Cheng S, Li L, Liu S, Yang Z, Shang G, Zhang D, Yao Z. Cancer stem-like cells directly participate in vasculogenic mimicry channels in triple-negative breast cancer. Cancer Biol Med 2019; 16:299-311. [PMID: 31516750 PMCID: PMC6713644 DOI: 10.20892/j.issn.2095-3941.2018.0209] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective Vasculogenic mimicry (VM) channels that are lined by tumor cells are a functional blood supply in malignant tumors. However, the role of VM-initiating cells remains poorly understood. Cancer stem-like cells (CSCs) are positively correlated with VM. In this study, triple-negative breast cancer (TNBC) enriched with CSCs was used to investigate the relationship between VM and CSCs. Methods The expression of several CSC markers was detected by immunohistochemistry in 100 human breast cancer samples. The clinical significance of CSC markers and the relationship between VM, CSCs, breast cancer subtypes, and VM-associated proteins were analyzed. CD133+ and ALDH+ human and mouse TNBC cells were isolated by FACS to examine the ability of VM formation and the spatial relationship between VM and CSCs. Results CSCs were associated with TNBC subtype and VM in human invasive breast cancer. CSCs in TNBC MDA-MB-231 cells formed more VM channels and expressed more molecules promoting VM than the non-TNBC MCF-7 cells in vitro. MDA-MB-231 cells that encircled VM channels on Matrigel expressed CD133. Moreover, CSCs were located near VM channels in the 3D reconstructed blood supply system in human TNBC grafts. The CD133+ and ALDH+ cells isolated from TA2 mouse breast cancer formed more VM channels in vivo.
Conclusions CSCs line VM channels directly. Additionally, CSCs provide more VM-related molecules to synergize VM formation. The signaling pathways that control CSC differentiation may also be potential treatment targets for TNBC.
Collapse
Affiliation(s)
- Huizhi Sun
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Nan Yao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Siqi Cheng
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Linqi Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Shiqi Liu
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Yang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Guanjie Shang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China.,Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
21
|
Xiao WY, Zong Z, Qiu ML, Chen XY, Shen HX, Lao LF. Paclitaxel Induce Apoptosis of Giant Cells Tumor of Bone via TP53INP1 Signaling. Orthop Surg 2018; 11:126-134. [PMID: 30592172 PMCID: PMC6430463 DOI: 10.1111/os.12414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/04/2018] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To evaluate the antitumor capability and to investigate the underlying molecular mechanism of paclitaxel. METHODS First, cck-8 and apoptosis assays were used to determine survival and apoptotic effects of HS 737.T cells under treatment of paclitaxel. Next, RNA-seq and bioinformatics were used to determine the differentially expressed genes and to analyze the pathway involved. Quantitative real-time polymerase chain reaction was used to verify the accuracy of some differentially expressed genes (DEG). ClueGO was used to decode and visualize functionally grouped GO terms of differentially expressed genes, and to map the DEG protein-protein interactions (PPI) network. Western blotting was used to check the expression of target genes, the cleavage of Caspase-3 and PARP1, and the phosphorylation level of p53. Finally, transcriptomics, bioinformatics, and RNAi were used to estimate the antitumor capability and to identify the underlying mechanisms of paclitaxel in GCTB. RESULTS Our data revealed that paclitaxel had significant time-dependent effects on the viability and induced apoptosis of HS 737.T cells. RNA-seq and bioinformatics analysis showed that apoptosis, death receptor signaling pathway, TNF signaling pathway, and TP53 regulated transcription of cell death genes pathway were closely associated with paclitaxel in the treatment of GCTB. Western bolt results revealed that paclitaxel induced cleavage of Caspase-3 and PARP1, and increased the phosphorylation level of p53 in HS 737.T cells. RNAi results showed that the expression level of TP53INP1 was significantly decreased in HS737.T cells (the decrease was more than 70%). In addition, we found that the inhibitory ratios of paclitaxel on HS737.T cells deficient in TP53INP1 were less than in HS737.T cells with empty vector (19.88 and 40.60%, respectively). Hence, our data revealed that TP53INP1 regulated paclitaxel-driven apoptosis in HS737.T cells. CONCLUSION Paclitaxel can significantly repress cell proliferation and induce apoptosis of HS 737.T cells through activating Caspase-3, PARP1, p53, and TP53INP1. Paclitaxel may be an effective drug in the management of GCTB.
Collapse
Affiliation(s)
- Wei-Yuan Xiao
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zong
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Man-Le Qiu
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiu-Yuan Chen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong-Xing Shen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Feng Lao
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Oncogenic Metabolism Acts as a Prerequisite Step for Induction of Cancer Metastasis and Cancer Stem Cell Phenotype. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1027453. [PMID: 30671168 PMCID: PMC6323533 DOI: 10.1155/2018/1027453] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
Abstract
Metastasis is a major obstacle to the efficient and successful treatment of cancer. Initiation of metastasis requires epithelial-mesenchymal transition (EMT) that is regulated by several transcription factors, including Snail and ZEB1/2. EMT is closely linked to the acquisition of cancer stem cell (CSC) properties and chemoresistance, which contribute to tumor malignancy. Tumor suppressor p53 inhibits EMT and metastasis by negatively regulating several EMT-inducing transcription factors and regulatory molecules; thus, its inhibition is crucial in EMT, invasion, metastasis, and stemness. Metabolic alterations are another hallmark of cancer. Most cancer cells are more dependent on glycolysis than on mitochondrial oxidative phosphorylation for their energy production, even in the presence of oxygen. Cancer cells enhance other oncogenic metabolic pathways, such as glutamine metabolism, pentose phosphate pathway, and the synthesis of fatty acids and cholesterol. Metabolic reprogramming in cancer is regulated by the activation of oncogenes or loss of tumor suppressors that contribute to tumor progression. Oncogenic metabolism has been recently linked closely with the induction of EMT or CSC phenotypes by the induction of several metabolic enzyme genes. In addition, several transcription factors and molecules involved in EMT or CSCs, including Snail, Dlx-2, HIF-1α, STAT3, TGF-β, Wnt, and Akt, regulate oncogenic metabolism. Moreover, p53 induces metabolic change by directly regulating several metabolic enzymes. The collective data indicate the importance of oncogenic metabolism in the regulation of EMT, cell invasion and metastasis, and adoption of the CSC phenotype, which all contribute to malignant transformation and tumor development. In this review, we highlight the oncogenic metabolism as a key regulator of EMT and CSC, which is related with tumor progression involving metastasis and chemoresistance. Targeting oncometabolism might be a promising strategy for the development of effective anticancer therapy.
Collapse
|
23
|
Izawa Y, Kashii-Magaribuchi K, Yoshida K, Nosaka M, Tsuji N, Yamamoto A, Kuroyanagi K, Tono K, Tanihata M, Imanishi M, Onishi M, Sakiyama M, Inoue S, Takahashi R. Stem-like Human Breast Cancer Cells Initiate Vasculogenic Mimicry on Matrigel. Acta Histochem Cytochem 2018; 51:173-183. [PMID: 30647492 PMCID: PMC6328367 DOI: 10.1267/ahc.18041] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Vasculogenic mimicry (VM), referring to vasculogenic structures lined by tumor cells, can be distinguished from angiogenesis, and is responsible for the aggressiveness and metastatic potential of tumors. HCC1937/p53 cells were derived from triple-negative breast cancer (TNBC), and used to investigate the roles of breast cancer stem cells (CSCs) in the formation of VM. HCC1937/p53 cells formed mesh-like structures on matrigel culture in which expression of VM-related genes, vascular endothelial (VE)-cadherin, matrix metalloproteinase (MMP)-2 and MMP-9 was confirmed by droplet digital polymerase chain reaction (PCR). In immunofluorescence microscopy, aldehyde dehydrogenase (ALDH)1A3+ cells with properties of CSCs or progenitors and GATA binding protein 3 (GATA3)+ cells with more differentiated characteristics were localized in the bridging region and aggregated region of VM structures, respectively. In fluorescence-activated cell sorting analysis, ALDH+ cells, considered to be a subpopulation of CSCs sorted by the aldefluor assay, exhibited marked VM formation on matrigel in 24 hr, whereas ALDH− cells did not form VM, indicating possible roles of CSCs in VM formation. The stem-like cancer cells resistant to p53-induced apoptosis, which expressed a high rate of ALDH1A3 and Sex-determining region Y (SRY)-box binding protein-2 (Sox-2), completed VM formation much faster than the control. These findings may provide clues to elucidate the significance of VM formed by treatment-resistant CSCs in the metastatic potential and poor prognosis associated with TNBC.
Collapse
Affiliation(s)
- Yuki Izawa
- Graduate School of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | | | - Kana Yoshida
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Mayu Nosaka
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Nanami Tsuji
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Ai Yamamoto
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Kana Kuroyanagi
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Kanoko Tono
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Misato Tanihata
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Moe Imanishi
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Momoka Onishi
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Mayu Sakiyama
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Sana Inoue
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Rei Takahashi
- Graduate School of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| |
Collapse
|
24
|
Wang Y, Sun H, Zhang D, Fan D, Zhang Y, Dong X, Liu S, Yang Z, Ni C, Li Y, Liu F, Zhao X. TP53INP1 inhibits hypoxia-induced vasculogenic mimicry formation via the ROS/snail signalling axis in breast cancer. J Cell Mol Med 2018; 22:3475-3488. [PMID: 29655255 PMCID: PMC6010892 DOI: 10.1111/jcmm.13625] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/05/2018] [Indexed: 12/28/2022] Open
Abstract
Tumour protein p53‐inducible nuclear protein 1 (TP53INP1) is a tumour suppressor associated with malignant tumour metastasis. Vasculogenic mimicry (VM) is a new tumour vascular supply pattern that significantly influences tumour metastasis and contributes to a poor prognosis. However, the molecular mechanism of the relationship between TP53INP1 and breast cancer VM formation is unknown. Here, we explored the underlying mechanism by which TP53INP1 regulates VM formation in vitro and in vivo. High TP53INP1 expression was not only negatively correlated with a poor prognosis but also had a negative relationship with VE‐cadherin, HIF‐1α and Snail expression. TP53INP1 overexpression inhibited breast cancer invasion, migration, epithelial‐mesenchymal transition (EMT) and VM formation; conversely, TP53INP1 down‐regulation promoted these processes in vitro by functional experiments and Western blot analysis. We established a hypoxia model induced by CoCl2 and assessed the effects of TP53INP1 on hypoxia‐induced EMT and VM formation. In addition, we confirmed that a reactive oxygen species (ROS)‐mediated signalling pathway participated in TP53INP1‐mediated VM formation. Together, our results show that TP53INP1 inhibits hypoxia‐induced EMT and VM formation via the ROS/GSK‐3β/Snail pathway in breast cancer, which offers new insights into breast cancer clinical therapy.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Huizhi Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Dan Fan
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Shiqi Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Zhao Yang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Chunsheng Ni
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Fang Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|