1
|
Sun J, Du B, Chen M, Jia J, Wang X, Hong J. FBXO28 reduces high-fat diet-induced hyperlipidemia in mice by alleviating abnormal lipid metabolism and inflammatory responses. J Endocrinol Invest 2024; 47:2757-2774. [PMID: 38696123 DOI: 10.1007/s40618-024-02376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/12/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Hyperlipidemia is a lipid metabolism disorder with increasing incidence and prevalence worldwide. Abnormal lipid metabolism and inflammation are two significant characteristics of hyperlipidemia. The purpose of this study was to explore the role and mechanism of F-box only protein 28 (FBXO28) in hyperlipidemia. METHODS Mice were fed with high-fat diet (HFD) to elicit obesity, and 3T3-L1 preadipocytes were stimulated with MDI cocktail (IBMX, DEX and insulin) to evoke differentiation. In vivo and in vitro role of FBXO28 in hyperlipidemia was investigated by hematoxylin-eosin and oil Red O staining, the lipid biochemistry measurement, enzyme-linked immunosorbent assay, reverse transcription quantitative polymerase chain reaction and western blotting assays. The mechanism of FBXO28 explored by co-immunoprecipitation, immunofluorescence, ubiquitination and cycloheximide assays. RESULTS Low expression of FBXO28 was found in hyperlipidemia in silico, in vivo and in vitro. Upregulation of FBXO28 declined the body weight, fat accumulation, and serum lipid content in HFD-fed mice. Abnormal lipid accumulation, and the level of liposynthetic genes and beta-oxidation related genes were improved by overexpression of FBXO28 both in HFD-elicited mice and MDI-treated 3T3-L1 preadipocytes. Besides, overexpression of FBXO28 declined HFD-induced the level of proinflammatory factors and F4/80. Mechanically, FBXO28 directly bound RAB27A and promoted its ubiquitinated degradation. Thus, upregulation of RAB27A inverted the improved role of FBXO28 in abnormal lipid metabolism and inflammation in vivo and in vitro. CONCLUSION FBXO28 ameliorated abnormal lipid metabolism and inflammation through the ubiquitinated degradation of RAB27A, thereby attenuating HFD-induced hyperlipidemia. The results could promote the treatment of hyperlipidemia, and the relevant diseases.
Collapse
Affiliation(s)
- J Sun
- Cadre's Ward, The Fourth Clinical College of Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - B Du
- Department of Neurology, Urumqi Midong District Hospital of Traditional Chinese Medicine, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - M Chen
- Cadre's Ward, Traditional Chinese Medicine Hospital of Xinjiang Medical University, No.116, Huanghe Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - J Jia
- Cadre's Ward, Traditional Chinese Medicine Hospital of Xinjiang Medical University, No.116, Huanghe Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - X Wang
- Cadre's Ward, Traditional Chinese Medicine Hospital of Xinjiang Medical University, No.116, Huanghe Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - J Hong
- Cadre's Ward, Traditional Chinese Medicine Hospital of Xinjiang Medical University, No.116, Huanghe Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
2
|
Pourmehran Y, Sadri F, Hosseini SF, Mohammadi Y, Rezaei Z. Exploring the influence of non-coding RNAs on NF-κB signaling pathway regulation in ulcerative colitis. Biomed Pharmacother 2024; 179:117390. [PMID: 39243424 DOI: 10.1016/j.biopha.2024.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
The gastrointestinal tract is chronically inflamed in ulcerative colitis (UC), which has a complicated etiology involving immunological, environmental, and genetic factors. The inflammatory response that is typical of UC is significantly regulated via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. Latest research has displayed that NF-κB signaling is controlled by three main types of non-coding RNAs (ncRNAs): circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs). These ncRNAs can change the expression of key genes within the NF-κB pathway by acting as molecular sponges, transcriptional regulators, and epigenetic modifiers. This review synthesizes current knowledge on the functions by which ncRNAs modulate NF-κB signaling in UC, discusses their potential as biomarkers for disease prognosis and diagnosis, and explores their therapeutic potential. Understanding the intricate interactions between ncRNAs and NF-κB signaling may provide novel insights into UC pathogenesis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yasaman Pourmehran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Seyede Fatemeh Hosseini
- Faculty member, Tabas School of Nursing, Birjand University of medical sciences, Birjand, Iran
| | - Yaser Mohammadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Rezaei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Biology, University of Sistan and Baluchestan, ZahedanIran.
| |
Collapse
|
3
|
Zhao X, Yuan W, Yang L, Yan F, Cui D. Ginsenoside Rh2 suppresses ferroptosis in ulcerative colitis by targeting specific protein 1 by upregulating microRNA-125a-5p. Eur J Med Res 2024; 29:450. [PMID: 39223620 PMCID: PMC11370063 DOI: 10.1186/s40001-024-02025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Worldwide, ulcerative colitis (UC) is becoming increasingly fast growing. Ginsenoside Rh2 has been reported to alleviate UC. However, the latent biological mechanism of Rh2 in the treatment of UC remains uncertain. In this study, the goal was to determine the therapeutic effect of Rh2 on dextran sulfate sodium (DSS)-induced UC. METHODS A DSS-induced UC mouse model was established and divided into 7 groups for Rh2 gavage and/or miR-125a-5p lentivirus injection (n = 10 per group). Colonic specimens were collected for phenotypic and pathological analysis. miR-125a-5p and specific protein 1 (SP1) expression, inflammation-related factors IL-6 and IL-10, and apoptosis were detected in mice. Human normal colon epithelial cell line NCM460 was treated with H2O2 and ferric chloride hexahydrate to construct an in vitro cell model of colitis and induce ferroptosis. Independent sample t-test was used to compare cell proliferation, cell entry, apoptosis, and oxidative stress between the two groups. One way analysis of variance combined with the least significant difference t test was used for comparison between groups. Multiple time points were compared by repeated measurement analysis of variance. RESULTS DSS-induced UC mice had significantly decreased body weight, increased disease activity index, decreased colon length, and decreased miR-125a-5p expression (all P < 0.05). In the DSS-induced mouse model, the expression of miR-125a-5p rebounded and ferroptosis was inhibited after Rh2 treatment (all P < 0.05). Inhibition of miR-125a-5p or upregulation of SP1 expression counteracted the protective effects of Rh2 on UC mice and ferroptosis cell models (all P < 0.05). CONCLUSIONS Rh2 mitigated DSS-induced colitis in mice and restrained ferroptosis by targeting miR-125a-5p. Downregulating miR-125a-5p or elevating SP1 could counteract the protective impacts of Rh2 on ferroptotic cells. The findings convey that Rh2 has a latent application value in the treatment of UC.
Collapse
Affiliation(s)
- Xun Zhao
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No. 83, East Zhongshan Road, Guiyang, 550002, Guizhou, China
| | - WenQiang Yuan
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No. 83, East Zhongshan Road, Guiyang, 550002, Guizhou, China
| | - LiuChan Yang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No. 83, East Zhongshan Road, Guiyang, 550002, Guizhou, China
| | - Fang Yan
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No. 83, East Zhongshan Road, Guiyang, 550002, Guizhou, China
| | - DeJun Cui
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No. 83, East Zhongshan Road, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
4
|
Chen G, Wang Y, Zhang L, Yang K, Wang X, Chen X. Research progress on miR-124-3p in the field of kidney disease. BMC Nephrol 2024; 25:252. [PMID: 39112935 PMCID: PMC11308398 DOI: 10.1186/s12882-024-03688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are 18-25 nucleotides long, single-stranded, non-coding RNA molecules that regulate gene expression. They play a crucial role in maintaining normal cellular functions and homeostasis in organisms. Studies have shown that miR-124-3p is highly expressed in brain tissue and plays a significant role in nervous system development. It is also described as a tumor suppressor, regulating biological processes like cancer cell proliferation, apoptosis, migration, and invasion by controlling multiple downstream target genes. miR-124-3p has been found to be involved in the progression of various kidney diseases, including diabetic kidney disease, calcium oxalate kidney stones, acute kidney injury, lupus nephritis, and renal interstitial fibrosis. It mediates these processes through mechanisms like oxidative stress, inflammation, autophagy, and ferroptosis. To lay the foundation for future therapeutic strategies, this research group reviewed recent studies on the functional roles of miR-124-3p in renal diseases and the regulation of its downstream target genes. Additionally, the feasibility, limitations, and potential application of miR-124-3p as a diagnostic biomarker and therapeutic target were thoroughly investigated.
Collapse
Affiliation(s)
- Guanting Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Linqi Zhang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Kang Yang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xixi Wang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xu Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| |
Collapse
|
5
|
Li R, Du Y, Li K, Xiong X, Zhang L, Guo C, Gao S, Yao Y, Xu Y, Yang J. Single-cell transcriptome profiling implicates the psychological stress-induced disruption of spermatogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102158. [PMID: 38439912 PMCID: PMC10910125 DOI: 10.1016/j.omtn.2024.102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Male infertility has emerged as a global issue, partly attributed to psychological stress. However, the cellular and molecular mechanisms underlying the adverse effects of psychological stress on male reproductive function remain elusive. We created a psychologically stressed model using terrified-sound and profiled the testes from stressed and control rats using single-cell RNA sequencing. Comparative and comprehensive transcriptome analyses of 11,744 testicular cells depicted the cellular landscape of spermatogenesis and revealed significant molecular alterations of spermatogenesis suffering from psychological stress. At the cellular level, stressed rats exhibited delayed spermatogenesis at the spermatogonia and pachytene phases, resulting in reduced sperm production. Additionally, psychological stress rewired cellular interactions among germ cells, negatively impacting reproductive development. Molecularly, we observed the down-regulation of anti-oxidation-related genes and up-regulation of genes promoting reactive oxygen species (ROS) generation in the stress group. These alterations led to elevated ROS levels in testes, affecting the expression of key regulators such as ATF2 and STAR, which caused reproductive damage through apoptosis or inhibition of testosterone synthesis. Overall, our study aimed to uncover the cellular and molecular mechanisms by which psychological stress disrupts spermatogenesis, offering insights into the mechanisms of psychological stress-induced male infertility in other species and promises in potential therapeutic targets.
Collapse
Affiliation(s)
- Rufeng Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yuefeng Du
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Kang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Xiaofan Xiong
- Center for Tumor and Immunology, the Precision Medical Institute, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, P.R. China
| | - Lingyu Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Chen Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Shanfeng Gao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yufei Yao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Juan Yang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education of China, Xi’an 710061, P.R. China
| |
Collapse
|
6
|
Kong E, Geng X, Wu F, Yue W, Sun Y, Feng X. Microglial exosome miR-124-3p in hippocampus alleviates cognitive impairment induced by postoperative pain in elderly mice. J Cell Mol Med 2024; 28:e18090. [PMID: 38140846 PMCID: PMC10844686 DOI: 10.1111/jcmm.18090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/14/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Cognitive impairment induced by postoperative pain severely deteriorates the rehabilitation outcomes in elderly patients. The present study focused on the relationship between microglial exosome miR-124-3p in hippocampus and cognitive impairment induced by postoperative pain. Cognitive impairment model induced by postoperative pain was constructed by intramedullary nail fixation after tibial fracture. Morphine intraperitoneally was carried out for postoperative analgesia. Morris water maze tests were carried out to evaluate the cognitive impairment, while mRNA levels of neurotrophic factors (BDNF, NG) and neurodegenerative biomarker (VILIP-1) in hippocampus were tested by q-PCR. Transmission electron microscope was used to observe the axon degeneration in hippocampus. The levels of pro-inflammatory factors (TNF-α, IL-1β, IL-6), the levels of anti-inflammatory factors (Ym, Arg-1, IL-10) and microglia proliferation marker cyclin D1 in hippocampus were measured to evaluate microglia polarization. Bioinformatics analysis was conducted to identify key exosomes while BV-2 microglia overexpressing exosome miR-124-3p was constructed to observe microglia polarization in vitro experiments. Exogenous miR-124-3p-loaded exosomes were injected into hippocampus in vivo. Postoperative pain induced by intramedullary fixation after tibial fracture was confirmed by decreased mechanical and thermal pain thresholds. Postoperative pain induced cognitive impairment, promoted axon demyelination, decreased BDNF, NG and increased VILIP-1 expressions in hippocampus. Postoperative pain also increased pro-inflammatory factors, cyclin D1 and decreased anti-inflammatory factors in hippocampus. However, these changes were all reversed by morphine analgesia. Bioinformatics analysis identified the critical role of exosome miR-124-3p in cognitive impairment, which was confirmed to be down-regulated in hippocampus of postoperative pain mice. BV-2 microglia overexpressing exosome miR-124-3p showed decreased pro-inflammatory factors, cyclin D1 and increased anti-inflammatory factors. In vivo, stereotactic injection of exogenous miR-124-3p into hippocampus decreased pro-inflammatory factors, cyclin D1 and increased anti-inflammatory factors. The cognitive impairment, axon demyelination, decreased BDNF, NG and increased VILIP-1 expressions in hippocampus were all alleviated by exogenous exosome miR-124-3p. Microglial exosome miR-124-3p in hippocampus alleviates cognitive impairment induced by postoperative pain through microglia polarization in elderly mice.
Collapse
Affiliation(s)
- Erliang Kong
- Department of AnesthesiologyThe 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation ArmyZhengzhouChina
| | - Xuqiang Geng
- Department of Rheumatology and Immunology, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Feixiang Wu
- Department of Intensive Care Unit, Shanghai Eastern Hepatobiliary Surgery HospitalThird Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Wei Yue
- Department of AnesthesiologyThe 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation ArmyZhengzhouChina
| | - Yuming Sun
- Department of Anesthesiology, Shanghai Eastern Hepatobiliary Surgery HospitalThird Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Xudong Feng
- Department of AnesthesiologyThe 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation ArmyZhengzhouChina
| |
Collapse
|
7
|
Liu B, Zhang J, Wang X, Ye W, Yao J. Exploration of the Mechanisms Underlying Yu's Enema Formula in Treating Ulcerative Colitis by Blocking the RhoA/ROCK Pathway based on Network Pharmacology, High-performance Liquid Chromatography Analysis, and Experimental Verification. Curr Pharm Des 2024; 30:1085-1102. [PMID: 38523541 DOI: 10.2174/0113816128290586240315071044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND The traditional Chinese medicine formula, Yu's Enema Formula (YEF), has demonstrated potential in the treatment of Ulcerative Colitis (UC). OBJECTIVE This study aimed to unveil the anti-UC mechanisms of YEF. METHODS Utilizing public databases, we obtained YEF and UC-related targets. GO and KEGG analyses were conducted via clusterProfiler and Reactome. The STRING database facilitated the construction of the PPI network, and hub targets were selected using cytoHubba. We used R software for differential expression and correlation analyses, and molecular docking was performed with PyMOL and AutoDock. HPLC analysis identified the compounds in YEF. For in vivo validation, a UC rat model was employed. RESULTS AND DISCUSSION 495 YEF-UC overlapping targets were identified. GO and KEGG analyses indicated enrichment in exogenous stimuli response, peptide response, positive MAPK cascade regulation, interleukin- related signaling, and the TLR4 cascade. Hub targets included CTNNB1, JUN, MAPK1, MAPK3, SRC, STAT3, TLR4, TP53, and RELA, which were often interconnected. Molecular docking revealed quercetin's strong binding affinity with CTNNB1, MAPK1, MAPK3, SRC, STAT3, TLR4, and TP53, consistent with HPLC analysis. In vivo experiments suggested that YEF has the potential to alleviate UC symptoms and protect the intestinal mucosal barrier by inhibiting the RhoA/ROCK pathway. CONCLUSION YEF may safeguard the intestinal mucosal barrier in UC by targeting CTNNB1, MAPK1, MAPK3, SRC, STAT3, TLR4, and TP53, while blocking the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Binbin Liu
- Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jie Zhang
- Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaoqi Wang
- Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wei Ye
- Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiaming Yao
- Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Wu P, He B, Li X, Zhang H. Roles of microRNA-124 in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2023; 17:1298508. [PMID: 38034588 PMCID: PMC10687822 DOI: 10.3389/fncel.2023.1298508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Traumatic brain injury (TBI) is a prominent global cause of mortality due to the limited availability of effective prevention and treatment strategies for this disorder. An effective molecular biomarker may contribute to determining the prognosis and promoting the therapeutic efficiency of TBI. MicroRNA-124 (miR-124) is most abundantly expressed in the brain and exerts different biological effects in a variety of diseases by regulating pathological processes of apoptosis and proliferation. Recently, increasing evidence has demonstrated the association between miR-124 and TBI, but there is still a lack of relevant literature to summarize the current evidence on this topic. Based on this review, we found that miR-124 was involved as a regulatory factor in cell apoptosis and proliferation, and was also strongly related with the pathophysiological development of TBI. MiR-124 played an essential role in TBI by interacting with multiple biomolecules and signaling pathways, such as JNK, VAMP-3, Rela/ApoE, PDE4B/mTOR, MDK/TLR4/NF-κB, DAPK1/NR2B, JAK/STAT3, PI3K/AKT, Ras/MEK/Erk. The potential benefits of upregulating miR-124 in facilitating TBI recovery have been identified. The advancement of miRNA nanocarrier system technology presents an opportunity for miR-124 to emerge as a novel therapeutic target for TBI. However, the specific mechanisms underlying the role of miR-124 in TBI necessitate further investigation. Additionally, comprehensive large-scale studies are required to evaluate the clinical significance of miR-124 as a therapeutic target for TBI.
Collapse
Affiliation(s)
- Panxing Wu
- Department of Neurosurgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Bao He
- Department of Neurosurgery, The First People’s hospital of Kunshan, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Xiaoliang Li
- Department of Neurosurgery, The First People’s hospital of Kunshan, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
- Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Suzhou, Jiangsu, China
| | - Hongwei Zhang
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
9
|
Shen Y, Gao Y, Fu J, Wang C, Tang Y, Chen S, Zhao Y. Lack of Rab27a attenuates foam cell formation and macrophage inflammation in uremic apolipoprotein E knockout mice. J Mol Histol 2023:10.1007/s10735-023-10125-w. [PMID: 37166546 DOI: 10.1007/s10735-023-10125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
As the most common cardiovascular disease, atherosclerosis (AS), is a leading cause of high mortality in patients with chronic renal failure. Rab27a has been reported to regulate the progression of cardiovascular and renal diseases. Nevertheless, little studies investigated the role and mechanism of Rab27a in uremic-accelerated AS (UAAS). An animal model of UAAS was established in apolipoprotein E knockout (apoE-/-) mice using 5/6 nephrectomy (NX). We conducted in vitro and in vivo functional experiments to explore the role of Rab27a in UAAS, including the presence of oxidized low-density lipoprotein (ox-LDL). Rab27a expression was upregulated in the plaque tissues of NX apoE-/- mice. The knockout of Rab27a (Rab27a-/-) reduced AS-induced artery injury, as manifested by the reductions of plaque area, collagen deposition, inflammation and lipid droplet. Besides, cholesterol efflux was increased, while the expression of lipid metabolism-related proteins and the secretions of pro-inflammatory factors were decreased in ox-LDL-induced NX Rab27a-/- apoE-/- mice group. Further, Rab27a deletion inhibited the activation of nuclear factor κB (NF-κB) pathway. In conclusion, our study indicated that Rab27a deficiency attenuated foam cell formation and macrophage inflammation, depending on the NF-κB pathway activation, to inhibit AS progression in uremic apoE-/- mice. This finding may provide a new targeting strategy for UAAS therapy.
Collapse
Affiliation(s)
- Yan Shen
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China.
| | - Yajuan Gao
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Jiani Fu
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Cui Wang
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Yali Tang
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Shengnan Chen
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Yan Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
10
|
Yang R, Shi L, Si H, Hu Z, Zou L, Li L, Xu X, Schmalzing G, Nie H, Li G, Liu S, Liang S, Xu C. Gallic Acid Improves Comorbid Chronic Pain and Depression Behaviors by Inhibiting P2X7 Receptor-Mediated Ferroptosis in the Spinal Cord of Rats. ACS Chem Neurosci 2023; 14:667-676. [PMID: 36719132 DOI: 10.1021/acschemneuro.2c00532] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ferroptosis is an inflammatory programmed cell death process that is dependent on iron deposition and lipid peroxidation. The P2X7 receptor not only is involved in the pain process but also is closely related to the onset of depression. Gallic acid (3,4,5-trihydroxybenzoic acid), which is naturally found in a variety of plants, exhibits anti-inflammatory, antioxidant, and analgesic effects. This study established a rat model with the comorbidity of chronic constrictive injury (CCI) plus chronic unpredictable mild stress (CUMS) to explore the role and mechanism of gallic acid in the treatment of pain and depression comorbidity. Our experimental results showed that pain and depression-like behaviors were more obvious in the chronic constriction injury (CCI) plus chronic unpredictable mild stimulation (CUMS) group than they were in the sham operation group, and the P2X7-reactive oxygen species (ROS) signaling pathway was activated. The tissue iron concentration was increased, and mitochondrial damage was observed in the CCI plus CUMS group. These results were alleviated with gallic acid treatment. Therefore, we speculate that gallic acid inhibits the ferroptosis of the spinal microglia by regulating the P2X7-ROS signaling pathway and relieves the behavioral changes in rats with comorbid pain and depression.
Collapse
Affiliation(s)
- Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Liran Shi
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,The People's Hospital of Jiawang of Xuzhou, Xuzhou, Jiangsu 221011, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Han Si
- Nursing College, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Zihui Hu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Lifang Zou
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Clinical Research Center for Hematologic Disease of Jiangxi Province, Nanchang, Jiangxi 330006, P. R. China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Günther Schmalzing
- Institute of Clinical Pharmacology, RWTH Aachen University, Aachen 52062, Germany
| | - Hong Nie
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Guilin Li
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Shuangmei Liu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| | - Changshui Xu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang, Jiangxi 330006, P. R. China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, P. R. China
| |
Collapse
|
11
|
Liu M, Liu S, Li F, Li C, Chen S, Gao X, Wang X. The miR-124-3p regulates the allergic airway inflammation and remodeling in an ovalbumin-asthmatic mouse model by inhibiting S100A4. Immun Inflamm Dis 2023; 11:e730. [PMID: 36799806 PMCID: PMC9896513 DOI: 10.1002/iid3.730] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Asthma is a chronic respiratory disease with an increasing incidence every year. microRNAs (miRNAs) have been demonstrated to have implications for asthma. However, limited information is available regarding the effect of miR-124-3p on this disease. Therefore, this study aimed to explore the possible effects of miR-124-3p and S100A4 on inflammation and epithelial-mesenchymal transition (EMT) in asthma using mouse models. METHOD Ovalbumin was used to induce asthmatic mouse models. Lung injury in mouse models was assessed, and the bronchoalveolar lavage fluid of mice was collected to determine the number of eosinophilic granulocytes and assess inflammation. The expression levels of miR-124-3p, S100A4, E-cadherin, N-cadherin, Snail1, vimentin, and TGF-β1/Smad2 signaling pathway-related proteins were measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. In vitro experiments, cells were transfected with miR-124-3p mimics or inhibitors to test the expression of S100A4 by RT-qPCR and western blot analysis, and the mutual binding of miR-124-3p and S100A4 was validated by dual-luciferase reporter gene assay. RESULTS Overexpression of miR-124-3p or inhibition of S100A4 expression attenuated bronchial mucus secretion and collagenous fibers and suppressed inflammatory cell infiltration. Additionally, upon miR-124-3p overexpression or S100A4 suppression, eosinophilic granulocytes were decreased, interleukin-4 (IL-4) and IL-13 expression levels were reduced in the bronchoalveolar lavage fluid, serum total IgE level was reduced, and the TGF-β1/Smad2 signaling pathway was suppressed. Mechanically, a dual-luciferase reporter gene assay verified the binding relationship between miR-124-3p and S100A4. CONCLUSION miR-124-3p can negatively target S100A4 to attenuate inflammation in asthmatic mouse models by suppressing the EMT process and the TGF-β/smad2 signaling pathway.
Collapse
Affiliation(s)
- Min Liu
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Shuang Liu
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Fajiu Li
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Chenghong Li
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Shi Chen
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Xiaoyan Gao
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Xiaojiang Wang
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| |
Collapse
|
12
|
Yuan W, Tian Y, Lin C, Wang Y, Liu Z, Zhao Y, Chen F, Miao X. Pectic polysaccharides derived from Hainan Rauwolfia ameliorate NLR family pyrin domain-containing 3-mediated colonic epithelial cell pyroptosis in ulcerative colitis. Physiol Genomics 2023; 55:27-40. [PMID: 36440907 DOI: 10.1152/physiolgenomics.00081.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pectic polysaccharides (PPs) could exert functions on ulcerative colitis (UC), which is classified as a nonspecific inflammatory disorder. This study investigated the molecular mechanism of PPs derived from Rauwolfia in UC. First, the dextran sodium sulfate (DSS)-induced mouse colitis models and lipopolysaccharide (LPS)-treated colonic epithelial cell (YAMC) models were established and treated with PP. Subsequently, the effects of PPs on mucosal damages in DSS mice were detected, and the levels of inflammatory cytokines, pyroptosis-related factors, oxidative stress-related markers, and the tight junction-related proteins in the tissues or cells were examined, and the results suggested that PPs ameliorated colonic mucosal damages and cell pyroptosis in DSS mice, and limited colonic epithelial cell pyroptosis in in vitro UC models. Subsequently, the binding relations of retinol-binding protein 4 (RBP4) to miR-124-3p and NLR pyrin domain-containing 3 (NLRP3) were analyzed. miR-124-3p targeted RBP4 and reduced the binding of RBP4 to NLRP3, thus inhibiting NLRP3-mediated pyroptosis. Finally, functional rescue experiments revealed that miR-124-3p suppression or RBP4 overexpression promoted colonic epithelial cell pyroptosis. Collectively, Rauwolfia-derived PPs limited miR-124-3p and targeted RBP4 and reduced the binding potency of RBP4 to NLRP3 to inhibit NLRP3-mediated pyroptosis, resulting in the alleviation of colonic epithelial cell pyroptosis and mucosal damages in UC.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Emergency Surgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuanyuan Tian
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Cheng Lin
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuxuan Wang
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhanju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ye Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengying Chen
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xinpu Miao
- Department of Gastroenterology, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
13
|
Yang Y, Hua Y, Chen W, Zheng H, Wu H, Qin S, Huang S. Therapeutic targets and pharmacological mechanisms of Coptidis Rhizoma against ulcerative colitis: Findings of system pharmacology and bioinformatics analysis. Front Pharmacol 2022; 13:1037856. [PMID: 36532769 PMCID: PMC9748441 DOI: 10.3389/fphar.2022.1037856] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 08/09/2023] Open
Abstract
Evidence of the advantages of Coptidis Rhizoma (CR) for the treatment of ulcerative colitis (UC) is accumulating. However, research revealing the targets and molecular mechanisms of CR against UC is scarce. In this research, a bioinformatics analysis was performed to carry out the physicochemical properties and biological activities of phytochemicals in CR and analyze the binding activities, targets, biological functions and mechanisms of CR against UC. This research shows that the CR's key phytochemicals, which are named Coptisine, Berberrubine, Berlambine, Berberine, Epiberberine, Obacunone, Worenine, Quercetin, (R)-Canadine, Magnograndiolide, Palmatine and Moupinamide, have ideal physicochemical properties and bioactivity. A total of 1,904 potential phytochemical targets and 17,995 UC-related targets are identified, and we finally acquire 233 intersection targets between key phytochemicals and disease. A protein-protein interaction network of 233 common targets was constructed; and six hub targets were acquired with a degree greater than or equal to median, namely TP53, HSP90AA1, STAT3, ESR1, MYC, and RELA. The enrichment analysis suggested that the core targets may exert an impact on anti-inflammatory, immunoregulatory, anti-oxidant and anti-fibrosis functions mainly through the PI3K/ART signaling pathway, Th17 differentiation signaling pathway, inflammatory bowel disease signaling pathway, etcetera. Also, a molecular docking analysis shows that the key phytochemicals have strong affinity for binding to the core targets. Finally, the interaction network of CR, phytochemicals, targets, GO functions, KEGG pathways and UC is constructed. This study indicates that the key phytochemicals in CR have superior drug likeness and bioactivity, and the molecular mechanism of key phytochemicals against UC may be via the signaling pathway mentioned above. The potential and critical pharmacological mechanisms provide a direction for future research.
Collapse
Affiliation(s)
- Yuanming Yang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
| | - Yiwei Hua
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihuan Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Haomeng Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Shumin Qin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Shaogang Huang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Yang Chunbo Academic Experience Inheritance Studio of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Chi F, Zhang G, Ren N, Zhang J, Du F, Zheng X, Zhang C, Lin Z, Li R, Shi X, Zhu Y. The anti-alcoholism drug disulfiram effectively ameliorates ulcerative colitis through suppressing oxidative stresses-associated pyroptotic cell death and cellular inflammation in colonic cells. Int Immunopharmacol 2022; 111:109117. [PMID: 35969897 DOI: 10.1016/j.intimp.2022.109117] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Oxidative stress, cell pyroptosis and inflammation are considered as important pathogenic factors for ulcerative colitis (UC) development, and the traditional anti-alcoholism drug disulfiram (DSF) has recently been reported to exert its regulating effects on all the above cellular functions, which makes DSF as ideal therapeutic agent for UC treatment, but this issue has not been fully studied. METHODS Dextran sulfate sodium (DSS)-induced animal models in C57BL/6J mice and lipopolysaccharide (LPS)-induced cellular models in colonic cell lines (HT-29 and Caco-2) for UC were respectively established. Cytokine secretion was determined by ELISA. Cell viability and proliferation were evaluated by MTT assay and EdU assay. Real-Time qPCR, Western Blot, immunofluorescent staining assay and immunohistochemistry (IHC) were employed to evaluate gene expressions. The correlations of the genes in the clinical tissues were analyzed by using the Pearson Correlation analysis. RESULTS DSF restrained oxidative stress, pyroptotic cell death and cellular inflammation in UC models in vitro and in vivo, and elimination of Reactive Oxygen Species (ROS) by N-acetyl-l-cysteine (NAC) rescued cell viability in LPS-treated colonic cells (HT-29 and Caco-2). Further experiments suggested that a glycogen synthase kinase-3β (GSK-3β)/Nrf2/NLRP3 signaling cascade played critical role in this process. Mechanistically, DSF downregulated GSK-3β and NLRP3, whereas upregulated Nrf2 in LPS-treated colonic cells. Also, the regulating effects of DSF on Nrf2 and NLRP3 were abrogated by upregulating GSK-3β. Moreover, upregulation of GSK-3β abolished the protective effects of DSF on LPS-treated colonic cells. CONCLUSIONS Taken together, data of this study indicated that DSF restrained oxidative damages-related pyroptotic cell death and inflammation via regulating the GSK-3β/Nrf2/NLRP3 pathway, leading to the suppression of LPS-induced UC development.
Collapse
Affiliation(s)
- Fengxu Chi
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Qunli Seventh Street No. 2075, Daoli District, Harbin 150001, Heilongjiang, China
| | - Guangquan Zhang
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shennan Middle Road No. 3025, Shenzhen 518033, China.
| | - Niansheng Ren
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Qunli Seventh Street No. 2075, Daoli District, Harbin 150001, Heilongjiang, China.
| | - Jian Zhang
- Department of Tumor Laparoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Road No. 23, Nangang District, Harbin 150001, Heilongjiang, China.
| | - Fei Du
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shennan Middle Road No. 3025, Shenzhen 518033, China
| | - Xiyan Zheng
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shennan Middle Road No. 3025, Shenzhen 518033, China
| | - Cong Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Qunli Seventh Street No. 2075, Daoli District, Harbin 150001, Heilongjiang, China
| | - Zhiqun Lin
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shennan Middle Road No. 3025, Shenzhen 518033, China
| | - Ruixi Li
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shennan Middle Road No. 3025, Shenzhen 518033, China.
| | - Xianjie Shi
- Department of Hepatobiliary Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shennan Middle Road No. 3025, Shenzhen 518033, China.
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Qunli Seventh Street No. 2075, Daoli District, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
15
|
Xu Y, Yang J, Chen X, Deng J, Gong H, Li F, Ouyang M. MicroRNA-182-5p aggravates ulcerative colitis by inactivating the Wnt/β-catenin signaling pathway through DNMT3A-mediated SMARCA5 methylation. Genomics 2022; 114:110360. [PMID: 35378241 DOI: 10.1016/j.ygeno.2022.110360] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023]
Abstract
This research focused on novel molecular mechanisms underlying microRNA (miR)-182-5p in ulcerative colitis (UC). Colon tissues were obtained from UC patients, and dextrose sodium sulfate (DSS)-induced mouse and interleukin-1β (IL-1β)-induced Caco-2 cell models were generated. Then, miR-182-5p, SMARCA5, and the Wnt/β-catenin signaling pathway were altered in IL-1β-stimulated Caco-2 cells and DSS-treated mice to assess their function. MiR-182-5p and SMARCA5 were upregulated and DNMT3A, β-catenin, and Cyclin D1 were downregulated in UC patients, IL-1β-stimulated Caco-2 cells, and DSS-treated mice. Mechanistically, miR-182-5p targeted DNMT3A to upregulate SMARCA5, thus blocking the Wnt/β-catenin signaling pathway. Moreover, SMARCA5 silencing or Wnt/β-catenin signaling pathway activation repressed apoptosis and augmented proliferation and epithelial barrier function of IL-1β-stimulated Caco-2 cells. SMARCA5 silencing annulled the impacts of miR-182-5p overexpression on IL-1β-stimulated Caco-2 cells. SMARCA5 silencing or miR-182-5p inhibition ameliorated intestinal barrier dysfunction in DSS-treated mice. Collectively, miR-182-5p aggravates UC by inactivating the Wnt/β-catenin signaling pathway through DNMT3A-mediated SMARCA5 methylation.
Collapse
Affiliation(s)
- Yan Xu
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Junwen Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Xiaoli Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jiawen Deng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Hui Gong
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Fujun Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| | - Miao Ouyang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| |
Collapse
|
16
|
Zhang Z, Ding S, Wang Z, Zhu X, Zhou Z, Zhang W, Yang X, Ge J. Prmt1 upregulated by Hdc deficiency aggravates acute myocardial infarction via NETosis. Acta Pharm Sin B 2022; 12:1840-1855. [PMID: 35847488 PMCID: PMC9279636 DOI: 10.1016/j.apsb.2021.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/20/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023] Open
Abstract
Neutrophils are mobilized and recruited to the injured heart after myocardial infarction, and neutrophil count has been clinically implicated to be associated with coronary disease severity. Histidine decarboxylase (HDC) has been implicated in regulating reactive oxidative species (ROS) and the differentiation of myeloid cells. However, the effect of HDC on neutrophils after myocardial infarction remains unclear. Here, we found that neutrophils were disorderly recruited into the ischemic injured area of the myocardium of Hdc deficiency (Hdc−/−) mice. Moreover, Hdc deficiency led to attenuated adhesion but enhanced migration and augmented ROS/neutrophil extracellular traps (NETs) production in neutrophils. Hdc−/− mouse-derived NETs promoted cardiomyocyte death and cardiac fibroblast proliferation/migration. Furthermore, protein arginine methyltransferase 1 (PRMT1) was increased in Hdc−/− mouse-derived neutrophils but decreased with exogenous histamine treatment. Its expression could be rescued by blocking histamine receptor 1 (H1R), inhibiting ATP synthesis or reducing SWItch/sucrose non fermentable (SWI/SNF) chromatin remodeling complex. Accordingly, histamine or MS023 treatment could decrease ROS and NETs ex vivo, and ameliorated cardiac function and fibrosis, along with the reduced NETs in plasma in vivo. Together, our findings unveil the role of HDC in NETosis by histamine–H1R–ATP–SWI/SNF–PRMT1–ROS signaling and provide new biomarkers and targets for identifying and tuning the detrimental immune state in cardiovascular disease.
Collapse
|
17
|
Li R, Chen C, Liu B, Shi W, Shimizu K, Zhang C. Bryodulcosigenin a natural cucurbitane-type triterpenoid attenuates dextran sulfate sodium (DSS)-induced colitis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153814. [PMID: 34798522 DOI: 10.1016/j.phymed.2021.153814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bryodulcosigenin (BDG) a cucurbitane-type triterpenoid has been isolated from the roots of Bryonia dioca and possesses marked anti-inflammatory effects, although its beneficial effect against intestinal disorders remains unclear. PURPOSE To explore the underlying mechanism of BDG on the dysbiosis of chronic ulcerative colitis (UC) and its associated side-effects on lung tissues. METHODS A chronic UC model was established using 2.5% dextran sulfate sodium (DSS) in mice treated for 64 days and diagnostic assessments, western blot analysis and quantitative real time-PCR were employed to determine the protective mechanism of BDG. RESULTS Oral administration of BDG (10 mg/kg/day) significantly improved colon length, disease activity index, and alleviated colonic histopathological damage in the DSS-induced colitis mice. BDG not only reversed the TNF-α-induced degradation of tight junction proteins (occludin and ZO-1) but also suppressed the elevated apoptosis seen in intestinal epithelial cells (NCM460). In addition, BDG significantly attenuated damage in alveolar epithelial cells (MLE-12) co-cultured with NCM460 cells under inflammatory conditions. Furthermore, BDG in vivo significantly prevented the symptoms of respiratory disorders and repressed alveolar inflammation by regulating DSS-induced chronic colitis in mice. CONCLUSION BDG effectively inhibited the apoptosis of intestinal epithelial cells and suppressed the activation of the NLRP3 inflammasome which resulted in the restoration of the intestinal barrier. Therefore, the enhanced integrity of intestinal epithelial cells produced by BDG intervention contributed to its anti-colitis effects, indicating its great potential as an inhibitor of UC and lung injury. Therefore, restoring intestinal integrity may represent a promising strategy in the prevention of pulmonary disease.
Collapse
Affiliation(s)
- Renshi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China; Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ce Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China; Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bei Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wen Shi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kuniyoshi Shimizu
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China; Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China; Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
18
|
The protective role of Chitooligosaccharides against chronic ulcerative colitis induced by dextran sulfate sodium in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
19
|
Wu J, Zhang G, Xiong H, Zhang Y, Ding G, Ge J. miR-181c-5p mediates apoptosis of vascular endothelial cells induced by hyperoxemia via ceRNA crosstalk. Sci Rep 2021; 11:16582. [PMID: 34400675 PMCID: PMC8368219 DOI: 10.1038/s41598-021-95712-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Oxygen therapy has been widely used in clinical practice, especially in anesthesia and emergency medicine. However, the risks of hyperoxemia caused by excessive O2 supply have not been sufficiently appreciated. Because nasal inhalation is mostly used for oxygen therapy, the pulmonary capillaries are often the first to be damaged by hyperoxia, causing many serious consequences. Nevertheless, the molecular mechanism by which hyperoxia injures pulmonary capillary endothelial cells (LMECs) has not been fully elucidated. Therefore, we systematically investigated these issues using next-generation sequencing and functional research techniques by focusing on non-coding RNAs. Our results showed that hyperoxia significantly induced apoptosis and profoundly affected the transcriptome profiles of LMECs. Hyperoxia significantly up-regulated miR-181c-5p expression, while down-regulated the expressions of NCAPG and lncRNA-DLEU2 in LMECs. Moreover, LncRNA-DLEU2 could bind complementarily to miR-181c-5p and acted as a miRNA sponge to block the inhibitory effect of miR-181c-5p on its target gene NCAPG. The down-regulation of lncRNA-DLEU2 induced by hyperoxia abrogated its inhibition of miR-181c-5p function, which together with the hyperoxia-induced upregulation of miR-181c-5p, all these significantly decreased the expression of NCAPG, resulting in apoptosis of LMECs. Our results demonstrated a ceRNA network consisting of lncRNA-DLEU2, miR-181c-5p and NCAPG, which played an important role in hyperoxia-induced apoptosis of vascular endothelial injury. Our findings will contribute to the full understanding of the harmful effects of hyperoxia and to find ways for effectively mitigating its deleterious effects.
Collapse
Affiliation(s)
- Jizhi Wu
- Department of Anesthesiology, Shandong Second Provincial General Hospital, Jinan, Shandong People’s Republic of China
| | - Guangqi Zhang
- Department of Anesthesiology, Jinan Second People’s Hospital, No. 148 Jingyi Road, Jinan, 250021 Shandong People’s Republic of China
| | - Hui Xiong
- grid.440144.10000 0004 1803 8437Department of Pediatric Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong People’s Republic of China
| | - Yuguang Zhang
- Eye Reseach Institute, Jinan Eye Hospital, Jinan, Shandong People’s Republic of China
| | - Gang Ding
- Ophthalmology, Jinan Eye Hospital, Jinan, Shandong People’s Republic of China
| | - Junfeng Ge
- Department of Anesthesiology, Jinan Second People’s Hospital, No. 148 Jingyi Road, Jinan, 250021 Shandong People’s Republic of China
| |
Collapse
|
20
|
Li Q, Liu S, Yan J, Sun MZ, Greenaway FT. The potential role of miR-124-3p in tumorigenesis and other related diseases. Mol Biol Rep 2021; 48:3579-3591. [PMID: 33877528 DOI: 10.1007/s11033-021-06347-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/07/2021] [Indexed: 01/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of single-stranded noncoding and endogenous RNA molecules with a length of 18-25 nucleotides. Previous work has shown that miR-124-3p leads to malignant progression of cancer including cell apoptosis, migration, invasion, drug resistance, and also recovers neural function, affects adipogenic differentiation, facilitates wound healing through control of various target genes. miR-124-3p has been mainly previously characterized as a tumor suppressor regulating tumorigenesis and progression in several cancers, such as hepatocellular carcinoma (HCC), gastric cancer (GC), bladder cancer, ovarian cancer (OC), and leukemia, as a tumor promotor in breast cancer (BC), and it has been also widely studied in a variety of neurological diseases, like Parkinson's disease (PD), dementia and Alzheimer's disease (AD), and cardiovascular diseases, ulcerative colitis (UC), acute respiratory distress syndrome (ARDS). To lay the groundwork for future therapeutic strategies, in this review we mainly focus on the most recent years of literature on the functions of miR-124-3p in related major cancers, as well as its downstream target genes. Although current work as yet provides an incomplete picture, miR-124-3p is still worthy of more attention as a practical and effective clinical biomarker.
Collapse
Affiliation(s)
- Qian Li
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian, 116044, China.,Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian, 116044, China. .,Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Jinsong Yan
- Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun Southern Road, Dalian, 116044, China. .,Department of Hematology, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Frederick T Greenaway
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, 01610, USA
| |
Collapse
|
21
|
Luo Y, Yu MH, Yan YR, Zhou Y, Qin SL, Huang YZ, Qin J, Zhong M. Rab27A promotes cellular apoptosis and ROS production by regulating the miRNA-124-3p/STAT3/RelA signalling pathway in ulcerative colitis. J Cell Mol Med 2020; 24:11330-11342. [PMID: 32815642 PMCID: PMC7576264 DOI: 10.1111/jcmm.15726] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Ulcerative colitis (UC) is a multifactorial inflammatory disease, and increasing evidence has demonstrated that the mechanism of UC pathogenesis is associated with excessive cellular apoptosis and reactive oxygen species (ROS) production. However, their function and molecular mechanisms related to UC remain unknown. In this study, Rab27A mRNA and protein were proven to be overexpressed in intestinal epithelial cells of UC patients and DSS‐induced colitis mice, compared with control (P < 0.05). And Rab27A silencing inhibits inflammatory process in DSS‐induced colitis mice (P < 0.05). Then, it was shown that knockdown of Rab27A suppressed apoptosis and ROS production through modulation of miR‐124‐3p, whereas overexpression of Rab27A promoted apoptosis and ROS production in LPS‑induced colonic cells. In addition, enhanced expression of miR‐124‐3p attenuated apoptosis and ROS production by targeting regulation of STAT3 in LPS‑induced colonic cells. Mechanistically, we found Rab27A reduced the expression and activity of miR‐124‐3p to activate STAT3/RelA signalling pathway and promote apoptosis and ROS production in LPS‑induced colonic cells, whereas overexpression of miR‐124‐3p abrogated these effects of Rab27A. More importantly, animal experiments illustrated that ectopic expression of Rab27A promoted the inflammatory process, whereas overexpression of miR‐124‐3p might interfere with the inflammatory effect in DSS‐induced colitis mice. In summary, Rab27A might modulate the miR‐124‐3p/STAT3/RelA axis to promote apoptosis and ROS production in inflammatory colonic cells, suggesting that Rab27A as a novel therapeutic target for the prevention and treatment of UC patients.
Collapse
Affiliation(s)
- Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Min-Hao Yu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ya-Ru Yan
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zhou
- Department of Gastrointestinal Surgery, Jiading Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Shao-Lan Qin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yi-Zhou Huang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jun Qin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|