1
|
Wang S, Liu S, Zhu Y, Zhang B, Yang Y, Li L, Sun Y, Zhang L, Fan L, Hu X, Huang C. A novel and independent survival prognostic model for OSCC: the functions and prognostic values of RNA-binding proteins. Eur Arch Otorhinolaryngol 2024; 281:397-409. [PMID: 37656222 DOI: 10.1007/s00405-023-08200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC), exhibiting high morbidity and malignancy, is the most common type of oral cancer. The abnormal expression of RNA-binding proteins (RBPs) plays important roles in the occurrence and progression of cancer. The objective of the present study was to establish a prognostic assessment model of RBPs and to evaluate the prognosis of OSCC patients. METHODS Gene expression data in The Cancer Genome Atlas (TCGA) were analyzed by univariate Cox regression analysis model that established a novel nine RBPs, which were used to build a prognostic risk model. A multivariate Cox proportional regression model and the survival analysis were used to evaluate the prognostic risk model. Moreover, the receive operator curve (ROC) analysis was tested further the efficiency of prognostic risk model based on data from TCGA database and Gene Expression Omnibus (GEO). RESULTS Nine RBPs' signatures (ACO1, G3BP1, NMD3, RNGTT, ZNF385A, SARS, CARS2, YARS and SMAD6) with prognostic value were identified in OSCC patients. Subsequently, the patients were further categorized into high-risk group and low-risk in the overall survival (OS) and disease-free survival (DFS), and external validation dataset. ROC analysis was significant for both the TCGA and GEO. Moreover, GSEA revealed that patients in the high-risk group significantly enriched in many critical pathways correlated with tumorigenesis than the low, including cell cycle, adheres junctions, oocyte meiosis, spliceosome, ERBB signaling pathway and ubiquitin-mediated proteolysis. CONCLUSIONS Collectively, we developed and validated a novel robust nine RBPs for OSCC prognosis prediction. The nine RBPs could serve as an independent and reliable prognostic biomarker and guiding clinical therapy for OSCC patients.
Collapse
Affiliation(s)
- Shanshan Wang
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Shuang Liu
- Shenzhen Luohu People's Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Yaomin Zhu
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Baorong Zhang
- Department of Stomatology, University of Chinese Academy of Sciences Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yongtao Yang
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Limei Li
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Yingying Sun
- Shenzhen Stomatology Hospital, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Long Zhang
- Department of Stomatology, University of Chinese Academy of Sciences Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Lina Fan
- Department of Stomatology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, Fujian, China
| | - Xuegang Hu
- Department of Stomatology, University of Chinese Academy of Sciences Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, People's Republic of China.
| | - Chunyu Huang
- Department of Stomatology, University of Chinese Academy of Sciences Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, People's Republic of China.
- Medical Affairs Department, University of Chinese Academy of Sciences-Shenzhen Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
2
|
Zhou H, Wang F. Tensin 1 regulated by hepatic leukemia factor represses the progression of prostate cancer. Mutagenesis 2023; 38:295-304. [PMID: 37712764 DOI: 10.1093/mutage/gead027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023] Open
Abstract
Hepatic leukemia factor (HLF), a transcription factor, is dysregulated in many cancers. This study investigates the function of HLF in prostate cancer (PCa) and its relation to tensin 1 (TNS1). Clinical tissues were collected from 24 PCa patients. Duke University 145 (DU145) and PC3 cells overexpressing HLF were established. HLF signaling was downregulated in PCa tissues compared to adjacent tissues and in DU145 and PC3 cells compared to prostate epithelial cells RWPE-1 or prostate stromal cells (WPMY-1). PCa cell lines with overexpression of HLF had reduced proliferative, migratory, and invasive activity, increased apoptosis, and cell mitosis mostly in the G0/G1 phase. HLF induced the TNS1 transcription to activate the p53 pathway. Depletion of TNS1 reversed the anti-tumor effects of HLF on PCa cells and tumor growth and metastasis in vivo. In summary, our findings suggest that HLF suppressed PCa progression by upregulating TNS1 expression and inducing the p53 pathway activation, which might provide insights into novel strategies for combating PCa.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Urology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410001, Hunan, P.R. China
| | - Fang Wang
- Medical College, Changsha Social Work College, Changsha 410004, Hunan, P.R. China
| |
Collapse
|
3
|
Li M, Bai G, Cen Y, Xie Q, Chen J, Chen J, Chen Q, Zhong W, Zhou X. Silencing HOXC13 exerts anti-prostate cancer effects by inducing DNA damage and activating cGAS/STING/IRF3 pathway. J Transl Med 2023; 21:884. [PMID: 38057852 PMCID: PMC10701956 DOI: 10.1186/s12967-023-04743-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Advanced prostate cancer (PCa) will develop into castration-resistant prostate cancer (CRPC) and lead to poor prognosis. As the primary subtype of CRPC, CRPC-AR accounts for the major induction of PCa heterogeneity. CRPC-AR is mainly driven by 25 transcription factors (TFs), which we speculate may be the key factors driving PCa toward CRPC. Therefore, it is necessary to clarify the key regulator and its molecular mechanism mediating PCa progression. METHODS Firstly, we downloaded transcriptomic data and clinical information from TCGA-PRAD. The characteristic gene cluster was identified by PPI clustering, GO enrichment, co-expression correlation and clinical feature analyses for 25 TFs. Then, the effects of 25 TFs expression on prognosis of PCa patients was analyzed using univariate Cox regression, and the target gene was identified. The expression properties of the target gene in PCa tissues were verified using tissue microarray. Meanwhile, the related mechanistic pathway of the target gene was mined based on its function. Next, the target gene was silenced by small interfering RNAs (siRNAs) for cellular function and mechanistic pathway validation. Finally, CIBERSORT algorithm was used to analyze the infiltration levels of 22 immune cells in PCa patients with low and high expression of target gene, and validated by assaying the expression of related immunomodulatory factor. RESULTS We found that HOX family existed independently in 25 TFs, among which HOXC10, HOXC12 and HOXC13 had unique clinical features and the PCa patients with high HOXC13 expression had the worst prognosis. In addition, HOXC13 was highly expressed in tumor tissues and correlated with Gleason score and pathological grade. In vitro experiments demonstrated that silencing HOXC13 inhibited 22RV1 and DU145 cell function by inducing cellular DNA damage and activating cGAS/STING/IRF3 pathway. Immune infiltration analysis revealed that high HOXC13 expression suppressed infiltration of γδ T cells and plasma cells and recruited M2 macrophages. Consistent with these results, silencing HOXC13 up-regulated the transcriptional expression of IFN-β, CCL2, CCL5 and CXCL10. CONCLUSION HOXC13 regulates PCa progression by mediating the DNA damage-induced cGAS/STING/IRF3 pathway and remodels TIME through regulation of the transcription of the immune factors IFN-β, CCL2, CCL5 and CXCL10.
Collapse
Affiliation(s)
- Maozhang Li
- School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Guangwei Bai
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Yi Cen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Qitong Xie
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Jiahong Chen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Jia Chen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Qingbiao Chen
- Department of Urology, The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, 528000, China
| | - Weide Zhong
- School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Xiaobo Zhou
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China.
| |
Collapse
|
4
|
Liu F, Chen S, Ming X, Li H, Zeng Z, Lv Y. Sortilin-induced lipid accumulation and atherogenesis are suppressed by HNF1b SUMOylation promoted by flavone of Polygonatum odoratum. J Zhejiang Univ Sci B 2023; 24:998-1013. [PMID: 37961802 PMCID: PMC10646395 DOI: 10.1631/jzus.b2200682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/17/2023] [Indexed: 11/15/2023]
Abstract
This study aims to investigate the impact of hepatocyte nuclear factor 1β (HNF1b) on macrophage sortilin-mediated lipid metabolism and aortic atherosclerosis and explore the role of the flavone of Polygonatum odoratum (PAOA-flavone)-promoted small ubiquitin-related modifier (SUMO) modification in the atheroprotective efficacy of HNF1b. HNF1b was predicted to be a transcriptional regulator of sortilin expression via bioinformatics, dual-luciferase reporter gene assay, and chromatin immunoprecipitation. HNF1b overexpression decreased sortilin expression and cellular lipid contents in THP-1 macrophages, leading to a depression in atherosclerotic plaque formation in low-density lipoprotein (LDL) receptor-deficient (LDLR-/-) mice. Multiple SUMO1-modified sites were identified on the HNF1b protein and co-immunoprecipitation confirmed its SUMO1 modification. The SUMOylation of HNF1b protein enhanced the HNF1b-inhibited effect on sortilin expression and reduced lipid contents in macrophages. PAOA-flavone treatment promoted SUMO-activating enzyme subunit 1 (SAE1) expression and SAE1-catalyzed SUMOylation of the HNF1b protein, which prevented sortilin-mediated lipid accumulation in macrophages and the formation of atherosclerotic plaques in apolipoprotein E-deficient (ApoE-/-) mice. Interference with SAE1 abrogated the improvement in lipid metabolism in macrophage cells and atheroprotective efficacy in vivo upon PAOA-flavone administration. In summary, HNF1b transcriptionally suppressed sortilin expression and macrophage lipid accumulation to inhibit aortic lipid deposition and the development of atherosclerosis. This anti-atherosclerotic effect was enhanced by PAOA-flavone-facilitated, SAE1-catalyzed SUMOylation of the HNF1b protein.
Collapse
Affiliation(s)
- Fang Liu
- Guangxi Key Laboratory of Diabetic Systems Medicine & Institute of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China
| | - Shirui Chen
- Guangxi Key Laboratory of Diabetic Systems Medicine & Institute of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China
| | - Xinyue Ming
- Guangxi Key Laboratory of Diabetic Systems Medicine & Institute of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China
| | - Huijuan Li
- Guangxi Key Laboratory of Diabetic Systems Medicine & Institute of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China
| | - Zhaoming Zeng
- Hunan Mingshun Pharmaceutical Co., Ltd., Shaodong 422800, China. ,
| | - Yuncheng Lv
- Guangxi Key Laboratory of Diabetic Systems Medicine & Institute of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
5
|
Wang Q, Xiong F, Wu G, Wang D, Liu W, Chen J, Qi Y, Wang B, Chen Y. SMAD Proteins in TGF-β Signalling Pathway in Cancer: Regulatory Mechanisms and Clinical Applications. Diagnostics (Basel) 2023; 13:2769. [PMID: 37685308 PMCID: PMC10487229 DOI: 10.3390/diagnostics13172769] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Suppressor of mother against decapentaplegic (SMAD) family proteins are central to one of the most versatile cytokine signalling pathways in metazoan biology, the transforming growth factor-β (TGF-β) pathway. The TGF-β pathway is widely known for its dual role in cancer progression as both an inhibitor of tumour cell growth and an inducer of tumour metastasis. This is mainly mediated through SMAD proteins and their cofactors or regulators. SMAD proteins act as transcription factors, regulating the transcription of a wide range of genes, and their rich post-translational modifications are influenced by a variety of regulators and cofactors. The complex role, mechanisms, and important functions of SMAD proteins in tumours are the hot topics in current oncology research. In this paper, we summarize the recent progress on the effects and mechanisms of SMAD proteins on tumour development, diagnosis, treatment and prognosis, and provide clues for subsequent research on SMAD proteins in tumours.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Fei Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Guanhua Wu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Wenzheng Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Junsheng Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongqiang Qi
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongjun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| |
Collapse
|
6
|
Kobayashi H. Clinicopathological characteristics, molecular features and novel diagnostic strategies for the detection of malignant transformation of endometriosis (Review). Exp Ther Med 2023; 25:279. [PMID: 37206546 PMCID: PMC10189589 DOI: 10.3892/etm.2023.11978] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/20/2023] [Indexed: 05/21/2023] Open
Abstract
Endometriosis is a benign gynecological disease that affects women of reproductive age. Although malignant transformation of endometriosis is rare, physicians must be aware of this due to the high incidence of clear cell carcinoma of the ovary (CCC) in Japan. The most prevalent histological subtype of ovarian cancer is CCC (~70%) followed by endometrioid carcinoma (30%). The present review discusses the clinicopathological and molecular features of endometriosis-associated ovarian cancer (EAOC) as well as prospects for novel diagnostic strategies. Papers published between 2000 and 2022 in the PubMed and Google Scholar databases were included. Contents of the endometriotic cyst fluid may be involved in carcinogenesis, although the underlying mechanisms are largely unknown. Some studies have proposed a possible mechanism wherein excessive hemoglobin, heme and iron could cause an imbalance in intracellular redox homeostasis in endometriotic cells. Combined with DNA damage and mutations, the imbalances may induce the development of EAOC. Endometriotic cells evolve to adapt to the prolonged unfavorable oxidative microenvironmental stress. On the other hand, macrophages enhance the antioxidative defense mechanism and protect endometriotic cells against oxidative damage through intercellular crosstalk and signaling pathways. Therefore, changes in redox signaling, energy metabolism and the tumor immune microenvironment could be the key elements in the malignant transformation of certain endometriotic cell clones. Additionally, non-invasive bioimaging (i.e., magnetic resonance relaxometry) and biomarkers (i.e., tissue factor pathway inhibitor 2) may be promising tools for early-stage detection of the disease. In conclusion, the present review summarizes the latest advancements in research on the biological characteristics and early diagnosis of malignant transformation of endometriosis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology, Ms.Clinic MayOne, Kashihara, Nara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
- Correspondence to: Dr Hiroshi Kobayashi, Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
7
|
Ding N, Luo H, Zhang T, Peng T, Yao Y, He Y. Correlation between SMADs and Colorectal Cancer Expression, Prognosis, and Immune Infiltrates. Int J Anal Chem 2023; 2023:8414040. [PMID: 36969909 PMCID: PMC10038740 DOI: 10.1155/2023/8414040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Background In recent years, the incidence and mortality of colorectal cancer (CRC) are increasing, and the 5-year survival rate of advanced metastatic CRC is poor. Small mothers against decapentaplegic (SMAD) superfamily are intracellular signal transduction proteins associated with the development and prognosis of a variety of tumors. At present, no study has systematically analysed the relationship between SMADs and CRC. Methods Here, R3.6.3 was used to analyse the expression of SMADs in pan-cancer and CRC. Protein expression of SMADs were analysed by Human Protein Atlas (HPA). Gene expression profiling interactive analysis (GEPIA) was used to evaluate the correlation between SMADs and tumor stage in CRC. The effect of R language and GEPIA on prognosis was analysed. Mutation rates of SMADs in CRC were determined by cBioPortal, and potentially related genes were predicted using GeneMANIA. R analysis was used to correlate immune cell infiltration in CRC. Results Both SMAD1 and SMAD2 were found to be weakly expressed in CRC and correlated with the immune invasion level. SMAD1 was correlated with patient prognosis, and SMAD2 was correlated with tumor stage. SMAD3, SMAD4, and SMAD7 were all expressed at low levels in CRC and associated with a variety of immune cells. SMAD3 and SMAD4 proteins were also expressed at low levels, and SMAD4 had the highest mutation rate. SMAD5 and SMAD6 were overexpressed in CRC, and SMAD6 was also associated with patient overall survival (OS) and CD8+ T cells, macrophages, and neutrophils. Conclusions Our results reveal innovative and strong evidence that SMADs can be used as biomarkers for the treatment and prognosis of CRC.
Collapse
Affiliation(s)
- Ning Ding
- 1Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Hongbiao Luo
- 1Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- 2Department of Anorectal Surgery, Chenzhou NO. 1 People's Hospital, Chenzhou 423000, China
| | - Tao Zhang
- 1Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Tianshu Peng
- 3Department of Anorectal Surgery, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China
| | - Yanru Yao
- 1Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yongheng He
- 4Department of Anorectal Surgery, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan 410006, China
| |
Collapse
|
8
|
Grand K, Stoltz M, Rizzo L, Röck R, Kaminski MM, Salinas G, Getwan M, Naert T, Pichler R, Lienkamp SS. HNF1B Alters an Evolutionarily Conserved Nephrogenic Program of Target Genes. J Am Soc Nephrol 2023; 34:412-432. [PMID: 36522156 PMCID: PMC10103355 DOI: 10.1681/asn.2022010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
SIGNIFICANCE STATEMENT Mutations in hepatocyte nuclear factor-1 β ( HNF1B ) are the most common monogenic causes of congenital renal malformations. HNF1B is necessary to directly reprogram fibroblasts to induced renal tubule epithelial cells (iRECs) and, as we demonstrate, can induce ectopic pronephric tissue in Xenopus ectodermal organoids. Using these two systems, we analyzed the effect of HNF1B mutations found in patients with cystic dysplastic kidney disease. We found cross-species conserved targets of HNF1B, identified transcripts that are differentially regulated by the patient-specific mutant protein, and functionally validated novel HNF1B targets in vivo . These results highlight evolutionarily conserved transcriptional mechanisms and provide insights into the genetic circuitry of nephrogenesis. BACKGROUND Hepatocyte nuclear factor-1 β (HNF1B) is an essential transcription factor during embryogenesis. Mutations in HNF1B are the most common monogenic causes of congenital cystic dysplastic renal malformations. The direct functional consequences of mutations in HNF1B on its transcriptional activity are unknown. METHODS Direct reprogramming of mouse fibroblasts to induced renal tubular epithelial cells was conducted both with wild-type HNF1B and with patient mutations. HNF1B was expressed in Xenopus ectodermal explants. Transcriptomic analysis by bulk RNA-Seq identified conserved targets with differentially regulated expression by the wild-type or R295C mutant. CRISPR/Cas9 genome editing in Xenopus embryos evaluated transcriptional targets in vivo . RESULTS HNF1B is essential for reprogramming mouse fibroblasts to induced renal tubular epithelial cells and induces development of ectopic renal organoids from pluripotent Xenopus cells. The mutation R295C retains reprogramming and inductive capacity but alters the expression of specific sets of downstream target genes instead of diminishing overall transcriptional activity of HNF1B. Surprisingly, targets associated with polycystic kidney disease were less affected than genes affected in congenital renal anomalies. Cross-species-conserved transcriptional targets were dysregulated in hnf1b CRISPR-depleted Xenopus embryos, confirming their dependence on hnf1b . CONCLUSIONS HNF1B activates an evolutionarily conserved program of target genes that disease-causing mutations selectively disrupt. These findings provide insights into the renal transcriptional network that controls nephrogenesis.
Collapse
Affiliation(s)
- Kelli Grand
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Martine Stoltz
- The University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludovica Rizzo
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Ruth Röck
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Michael M. Kaminski
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | | | - Maike Getwan
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Thomas Naert
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Roman Pichler
- The University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Soeren S. Lienkamp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- The University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Ren L, Yang X, Wang W, Lin H, Huang G, Liu Z, Pan J, Mao X. A cuproptosis-related LncRNA signature: Integrated analysis associated with biochemical recurrence and immune landscape in prostate cancer. Front Genet 2023; 14:1096783. [PMID: 36911392 PMCID: PMC9999016 DOI: 10.3389/fgene.2023.1096783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/10/2023] [Indexed: 03/14/2023] Open
Abstract
Background: As a new form of regulated cell death, cuproptosis differs profoundly from apoptosis, ferroptosis, pyroptosis, and necroptosis. The correlation between cuproptosis and long non-coding RNAs (lncRNAs) has been increasingly studied recently. In this study, a novel cuproptosis-related lncRNA prognostic signature was developed to investigate biochemical recurrence (BCR) and tumor immune landscape in prostate cancer (PCa). Methods and Materials: The transcriptome data and clinicopathologic information of PCa patients were downloaded from The Cancer Genome Atlas (TCGA). Pearson's correlation analysis was applied to identify lncRNAs associated with cuproptosis. Based on Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) regression analysis, we developed a cuproptosis-related lncRNA prognostic model (risk score) to predict the BCR of PCa patients. Additionally, we also constructed a nomogram with the risk score and clinicopathologic features. The biological function, tumor mutation burden (TMB), immune cell infiltration, expression levels of immune checkpoint genes, and anti-cancer drug sensitivity were investigated. Results: We constructed and validated the cuproptosis-related lncRNA signature prognostic model (risk score) by six crlncRNAs. All patients were divided into the low- and high-risk groups based on the median risk score. The Kaplan-Meier (KM) survival analysis revealed that the high-risk group had shorter BCR-free survival (BCRFS). The risk score has been proven to be an independent prognostic factor of BCR in PCa patients. In addition, a nomogram of risk scores and clinicopathologic features was established and demonstrated an excellent predictive capability of BCR. The ROC curves further validated that this nomogram had higher accuracy of predicting the BCR compared to other clinicopathologic features. We also found that the high-risk group had higher TMB levels and more infiltrated immune cells. Furthermore, patients with high TMB in the high-risk group were inclined to have the shortest BCRFS. Finally, patients in the high-risk group were more susceptible to docetaxel, gefitinib, methotrexate, paclitaxel, and vinblastine. Conclusion: The novel crlncRNA signature prognostic model shows a greatly prognostic prediction value of BCR for PCa patients, extends our thought on the association of cuproptosis and PCa, and provides novel insights into individual-based treatment strategies for PCa.
Collapse
Affiliation(s)
- Lei Ren
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Xu Yang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Hansen Lin
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Guankai Huang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Zixiong Liu
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jincheng Pan
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Mao
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Vieira GM, Gellen LPA, da Veiga Borges Leal DF, Pastana LF, Vinagre LWMS, Aquino VT, Fernandes MR, de Assumpção PP, Burbano RMR, dos Santos SEB, dos Santos NPC. Correlation between Genomic Variants and Worldwide Epidemiology of Prostate Cancer. Genes (Basel) 2022; 13:genes13061039. [PMID: 35741800 PMCID: PMC9222668 DOI: 10.3390/genes13061039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) incidence and mortality vary across territories and populations. This can be explained by the genetic factor of this disease. This article aims to correlate the epidemiological data, worldwide incidence, and mortality of PCa with single-nucleotide polymorphisms (SNPs) associated with the susceptibility and severity of this neoplasm in different populations. Eighty-four genetic variants associated with prostate cancer susceptibility were selected from the literature through genome association studies (GWAS). Allele frequencies were obtained from the 1000 Genomes Project, and epidemiological data were obtained from Surveillance, Epidemiology, and End Results (SEER). The PCa incidence, mortality rates, and allele frequencies of variants were evaluated by Pearson’s correlation. Our study demonstrated that 12 SNPs (rs2961144, rs1048169, rs7000448, rs4430796, rs2066827, rs12500426, rs6983267, rs11649743, rs2075110, rs114798100, rs855723, and rs2075109) were correlated with epidemiological data in different ethnic groups. Ten SNPs (rs2961144, rs1048169, rs7000448, rs4430796, rs2066827, rs12500426, rs11649743, rs2075110, rs114798100, and rs2075109) were positively correlated with the mortality rate. Seven SNPs (rs1048169, rs2961144, rs7000448, rs4430796, rs2066827, rs12500426, and rs114798100) were positively correlated with incidence. Positive correlations of incidence and mortality rates were more frequent in the African population. The genetic variants investigated here are likely to predispose to PCa and could play a role in its progression and aggressiveness. This genetic study demonstrated here is promising for implementing personalized strategies to screen for prostate cancer in diverse populations.
Collapse
Affiliation(s)
- Giovana Miranda Vieira
- Research Center of Oncology, Federal University of Pará Belém, Belém 66073-000, Brazil; (G.M.V.); (L.P.A.G.); (D.F.d.V.B.L.); (L.F.P.); (L.W.M.S.V.); (V.T.A.); (P.P.d.A.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Laura Patrícia Albarello Gellen
- Research Center of Oncology, Federal University of Pará Belém, Belém 66073-000, Brazil; (G.M.V.); (L.P.A.G.); (D.F.d.V.B.L.); (L.F.P.); (L.W.M.S.V.); (V.T.A.); (P.P.d.A.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Diana Feio da Veiga Borges Leal
- Research Center of Oncology, Federal University of Pará Belém, Belém 66073-000, Brazil; (G.M.V.); (L.P.A.G.); (D.F.d.V.B.L.); (L.F.P.); (L.W.M.S.V.); (V.T.A.); (P.P.d.A.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Lucas Favacho Pastana
- Research Center of Oncology, Federal University of Pará Belém, Belém 66073-000, Brazil; (G.M.V.); (L.P.A.G.); (D.F.d.V.B.L.); (L.F.P.); (L.W.M.S.V.); (V.T.A.); (P.P.d.A.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Lui Wallacy Morikawa Souza Vinagre
- Research Center of Oncology, Federal University of Pará Belém, Belém 66073-000, Brazil; (G.M.V.); (L.P.A.G.); (D.F.d.V.B.L.); (L.F.P.); (L.W.M.S.V.); (V.T.A.); (P.P.d.A.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Vitória Teixeira Aquino
- Research Center of Oncology, Federal University of Pará Belém, Belém 66073-000, Brazil; (G.M.V.); (L.P.A.G.); (D.F.d.V.B.L.); (L.F.P.); (L.W.M.S.V.); (V.T.A.); (P.P.d.A.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Marianne Rodrigues Fernandes
- Research Center of Oncology, Federal University of Pará Belém, Belém 66073-000, Brazil; (G.M.V.); (L.P.A.G.); (D.F.d.V.B.L.); (L.F.P.); (L.W.M.S.V.); (V.T.A.); (P.P.d.A.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
- Ophir Loyola Hospital, Belém 66063-005, Brazil
- Correspondence:
| | - Paulo Pimentel de Assumpção
- Research Center of Oncology, Federal University of Pará Belém, Belém 66073-000, Brazil; (G.M.V.); (L.P.A.G.); (D.F.d.V.B.L.); (L.F.P.); (L.W.M.S.V.); (V.T.A.); (P.P.d.A.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Rommel Mario Rodríguez Burbano
- Research Center of Oncology, Federal University of Pará Belém, Belém 66073-000, Brazil; (G.M.V.); (L.P.A.G.); (D.F.d.V.B.L.); (L.F.P.); (L.W.M.S.V.); (V.T.A.); (P.P.d.A.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
- Ophir Loyola Hospital, Belém 66063-005, Brazil
| | - Sidney Emanuel Batista dos Santos
- Research Center of Oncology, Federal University of Pará Belém, Belém 66073-000, Brazil; (G.M.V.); (L.P.A.G.); (D.F.d.V.B.L.); (L.F.P.); (L.W.M.S.V.); (V.T.A.); (P.P.d.A.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
| | - Ney Pereira Carneiro dos Santos
- Research Center of Oncology, Federal University of Pará Belém, Belém 66073-000, Brazil; (G.M.V.); (L.P.A.G.); (D.F.d.V.B.L.); (L.F.P.); (L.W.M.S.V.); (V.T.A.); (P.P.d.A.); (R.M.R.B.); (S.E.B.d.S.); (N.P.C.d.S.)
| |
Collapse
|
11
|
Piedrafita A, Balayssac S, Casemayou A, Saulnier-Blache JS, Lucas A, Iacovoni JS, Breuil B, Chauveau D, Decramer S, Malet-Martino M, Schanstra JP, Faguer S. Hepatocyte nuclear factor-1β shapes the energetic homeostasis of kidney tubule cells. FASEB J 2021; 35:e21931. [PMID: 34653285 DOI: 10.1096/fj.202100782rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022]
Abstract
Energetic metabolism controls key steps of kidney development, homeostasis, and epithelial repair following acute kidney injury (AKI). Hepatocyte nuclear factor-1β (HNF-1β) is a master transcription factor that controls mitochondrial function in proximal tubule (PT) cells. Patients with HNF1B pathogenic variant display a wide range of kidney developmental abnormalities and progressive kidney fibrosis. Characterizing the metabolic changes in PT cells with HNF-1β deficiency may help to identify new targetable molecular hubs involved in HNF1B-related kidney phenotypes and AKI. Here, we combined 1 H-NMR-based metabolomic analysis in a murine PT cell line with CrispR/Cas9-induced Hnf1b invalidation (Hnf1b-/- ), clustering analysis, targeted metabolic assays, and datamining of published RNA-seq and ChIP-seq dataset to identify the role of HNF-1β in metabolism. Hnf1b-/- cells grown in normoxic conditions display intracellular ATP depletion, increased cytosolic lactate concentration, increased lipid droplet content, failure to use pyruvate for energetic purposes, increased levels of tricarboxylic acid (TCA) cycle intermediates and oxidized glutathione, and a reduction of TCA cycle byproducts, all features consistent with mitochondrial dysfunction and an irreversible switch toward glycolysis. Unsupervised clustering analysis showed that Hnf1b-/- cells mimic a hypoxic signature and that they cannot furthermore increase glycolysis-dependent energetic supply during hypoxic challenge. Metabolome analysis also showed alteration of phospholipid biosynthesis in Hnf1b-/- cells leading to the identification of Chka, the gene coding for choline kinase α, as a new putative target of HNF-1β. HNF-1β shapes the energetic metabolism of PT cells and HNF1B deficiency in patients could lead to a hypoxia-like metabolic state precluding further adaptation to ATP depletion following AKI.
Collapse
Affiliation(s)
- Alexis Piedrafita
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France.,Université Paul Sabatier - Toulouse 3, Toulouse, France.,Département de Néphrologie et Transplantation d'Organes, Centre de Référence des Maladies Rénales Rares, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Stéphane Balayssac
- Groupe de RMN Biomédicale, Laboratoire SPCMIB, UMR CNRS 5068, Université Paul Sabatier, Centre National de la Recherche Scientifique, Toulouse, France.,Laboratoire des Interaction Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR 5623, Toulouse, France
| | - Audrey Casemayou
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France.,Université Paul Sabatier - Toulouse 3, Toulouse, France.,Département de Néphrologie et Transplantation d'Organes, Centre de Référence des Maladies Rénales Rares, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Jean-Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France.,Université Paul Sabatier - Toulouse 3, Toulouse, France
| | - Alexandre Lucas
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France
| | - Jason S Iacovoni
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France
| | - Benjamin Breuil
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France
| | - Dominique Chauveau
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France.,Université Paul Sabatier - Toulouse 3, Toulouse, France.,Département de Néphrologie et Transplantation d'Organes, Centre de Référence des Maladies Rénales Rares, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Stéphane Decramer
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France.,Université Paul Sabatier - Toulouse 3, Toulouse, France.,Service de Néphrologie, Médecine interne et Hypertension artérielle, Hôpital des Enfants, Centre de Référence des Maladies Rénales Rares, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Myriam Malet-Martino
- Groupe de RMN Biomédicale, Laboratoire SPCMIB, UMR CNRS 5068, Université Paul Sabatier, Centre National de la Recherche Scientifique, Toulouse, France
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France.,Université Paul Sabatier - Toulouse 3, Toulouse, France
| | - Stanislas Faguer
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France.,Université Paul Sabatier - Toulouse 3, Toulouse, France.,Département de Néphrologie et Transplantation d'Organes, Centre de Référence des Maladies Rénales Rares, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
12
|
Bi Y, Ji J, Zhou Y. LncRNA-PVT1 indicates a poor prognosis and promotes angiogenesis via activating the HNF1B/EMT axis in glioma. J Cancer 2021; 12:5732-5744. [PMID: 34475987 PMCID: PMC8408127 DOI: 10.7150/jca.60257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022] Open
Abstract
Recent studies identified that long non-coding RNAs (lncRNAs) exhibited critical roles in tumor migration and invasion. However, the roles of lncRNAs in glioma remain unclear. The aim of this study was to uncover the underlying mechanisms of glioma progression and provide potential therapeutic targets for its treatment in clinic. Our microarray study showed that lncRNA-PVT1 was significantly upregulated in glioma tissues and played an important role in cell proliferation, migration, invasion and angiogenesis. Our data showed that the expression of lncRNA-PVT1 was increased obviously and associated with advanced tumor stage, metastasis, invasion ability, and poor prognosis in glioma patients. Up-regulation of lncRNA-PVT1 was observed to promote glioma cells proliferation, and invasion abilities in vitro as well as tumor growth in vivo by regulating miR-1207-3p expression. Online software (TargetScan, miRDB and miR TarBase) were used to predict the regulating mechanisms of lncRNA-PVT1, miR-1207-3p and HNF1B, which were validated by dual-luciferase reporter gene system. In vivo tumor-bearing mice models were established to validate the cellular results. Therefore, we suggested that lncRNA-PVT1/miR-1207-3p/HNF1B axis might play critical roles in glioma progression, indicating that lncRNA-PVT1/miR-1207-3p/HNF1B signaling axis may serve as novel molecular targets for glioma prevention and treatment.
Collapse
Affiliation(s)
- Yongyan Bi
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Neurosurgery, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Jie Ji
- Department of Rehabilitation Medicine, Minhang Hospital, Fudan University, Minhang, Shanghai, China
| | - Youxin Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Acquired Evolution of Mitochondrial Metabolism Regulated by HNF1B in Ovarian Clear Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13102413. [PMID: 34067626 PMCID: PMC8157013 DOI: 10.3390/cancers13102413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/11/2023] Open
Abstract
Clear cell carcinoma (CCC) of the ovary exhibits a unique morphology and clinically malignant behavior. The eosinophilic cytoplasm includes abundant glycogen. Although the growth is slow, the prognosis is poor owing to resistance to conventional chemotherapies. CCC often arises in endometriotic cysts and is accompanied by endometriosis. Based on these characteristics, three clinical questions are considered: why does ovarian cancer, especially CCC and endometrioid carcinoma, frequently occur in endometriotic cysts, why do distinct histological subtypes (CCC and endometrioid carcinoma) arise in the endometriotic cyst, and why does ovarian CCC possess unique characteristics? Mutations in AT-rich interacting domain-containing protein 1A and phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit alpha genes may contribute to the carcinogenesis of ovarian CCC, whereas hepatocyte nuclear factor-1-beta (HNF1B) plays crucial roles in sculpting the unique characteristics of ovarian CCC through metabolic alterations. HNF1B increases glutathione synthesis, activates anaerobic glycolysis called the Warburg effect, and suppresses mitochondria. These metabolic changes may be induced in stressful environments. Life has evolved to utilize and control energy; eukaryotes require mitochondria to transform oxygen reduction into useful energy. Because mitochondrial function is suppressed in ovarian CCC, these cancer cells probably acquired further metabolic evolution during the carcinogenic process in order to survive stressful environments.
Collapse
|