1
|
Qi Y, Wang X, Chen Y, Sheng L, Wu D, Leng Y, Wang X, Wang J. Protective effect of walnut active peptide against dextran sulfate sodium-induced colitis in mice based on untargeted metabolomics. Int Immunopharmacol 2024; 141:112998. [PMID: 39182265 DOI: 10.1016/j.intimp.2024.112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic condition characterized by inflammation of the digestive tract, whose exact cause remains unknown, and its prevalence is on the rise. This study investigated the effects of a walnut-derived peptide LPLLR (LP-5) on intestinal inflammation and metabolism in IBD mice. Metabolomics revealed that LP-5 regulated the levels of metabolites, such as thalsimidine, fumagillin, and geniposide, and LP-5 could regulate several signaling pathways, such as protein digestion and absorption, aminoacyl-tRNA biosynthesis, and ABC transporters. Additionally, LP-5 alleviated dextran sulfate sodium (DSS)-induced colitis by modulating autophagy and inflammasome pathways. Western blotting demonstrated that LP-5 reduced the expressions of NLRP3, Caspase-1, ASC and IL-1β, and increased the expressions of Beclin-1 and LC3-II/LC3-I, corresponding to activation of the AMPK/mTOR/ULK1 pathway. These findings suggested that LP-5 activated autophagy in vivo to suppress inflammation and modulate metabolic substances, highlighting potential implications for gut health and the development of functional foods containing LP-5.
Collapse
Affiliation(s)
- Yuan Qi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Xuehang Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Yiming Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Lihan Sheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Yue Leng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China.
| |
Collapse
|
2
|
Hao WR, Cheng CY, Liu JC, Cheng TH. Unraveling autophagy-related pathogenesis in active ulcerative colitis: A bioinformatics approach. World J Clin Cases 2024; 12:6335-6338. [PMID: 39464329 PMCID: PMC11438679 DOI: 10.12998/wjcc.v12.i30.6335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
In this editorial, we provide commentary on the study by Gong et al. In this original research article, Gong et al employed a bioinformatics approach to investigate the involvement of autophagy in active ulcerative colitis (UC). Through differential gene expression analysis, they identified 58 differentially expressed autophagy-related genes in UC patients compared to healthy controls. Notably, HSPA5, CASP1, SERPINA1, CX3CL1, and BAG3, were found to be upregulated in active UC patients, suggesting their significance as core autophagy-related targets. Enrichment analysis unveiled associations with crucial signaling pathways and diseases such as middle cerebral artery occlusion and glomerulonephritis. Moreover, immune cell infiltration analysis revealed notable differences in immune cell composition between UC patients and healthy controls. These findings offer valuable insights into the role of autophagy in UC pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Wen-Rui Hao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11002, Taiwan
| | - Chun-Yao Cheng
- Department of Medical Education, National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei 10633, Taiwan
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11002, Taiwan
| | - Tzu-Hurng Cheng
- Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung City 404333, Taiwan
| |
Collapse
|
3
|
Chang W, Shi J, Li L, Zhang P, Ren Y, Yan Y, Ge Y. Network pharmacology and molecular docking analysis predict the mechanisms of Huangbai liniment in treating oral lichen planus. Medicine (Baltimore) 2024; 103:e39352. [PMID: 39151530 PMCID: PMC11332744 DOI: 10.1097/md.0000000000039352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/09/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
This study explored the mechanism of Huangbai liniment (HB) for the treatment of oral lichen planus (OLP) through network pharmacology and molecular docking techniques. The study identified HB' active ingredients, therapeutic targets for OLP, and associated signaling pathways. The chemical composition of HB was screened using the HERB database. The disease targets of OLP were obtained through the GeneCards and OMIM databases. A protein-protein interactions network was constructed with the String platform. Topological analysis was performed using Cytoscape software to identify core targets. Gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analysis were performed using the Hiplot database, and the active ingredients and core targets were verified by molecular docking. Date analysis showed that the active composition of HB in the treatment of OLP were quercetin, wogonin, kaempferol, and luteolin. This survey identified 10 potential therapeutic targets, including TNF, CXCL8, IL-6, IL1B, PIK3R1, ESR1, JUN, AKT1, PIK3CA, and CTNNB1. Molecular docking revealed stable interactions between OLP' key targets and HB. These key targets were predominantly involved in the PI3K-Akt signaling pathway, AGE-RAGE signaling pathway, TNF signaling pathway, and HIF-1 signaling pathway. HB plays a crucial role in the treatment of OLP, acting on multiple targets and pathways, particularly the PI3K-Akt signaling pathway. It regulated biological processes like the proliferation of epithelial cells and lymphocytes and mediates the expression of transcription factors, cytokines, and chemokines. Therefore, this study provides a theoretical basis for the clinical trial and application of HB in the therapy of OLP.
Collapse
Affiliation(s)
- Wei Chang
- Department of Stomatology, Changzhi Second People’s Hospital Affiliated to Changzhi Medical College, Changzhi, PR China
| | - Jing Shi
- Department of Stomatology, Shanxi Provincial People’s Hospital, Taiyuan, PR China
| | - Lingzhi Li
- Department of Stomatology, Changzhi Second People’s Hospital Affiliated to Changzhi Medical College, Changzhi, PR China
| | - Ping Zhang
- Department of Stomatology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, PR China
| | - Yanrong Ren
- Department of Stomatology, Changzhi Second People’s Hospital Affiliated to Changzhi Medical College, Changzhi, PR China
| | - Yan Yan
- Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Yana Ge
- Department of Stomatology, Changzhi Second People’s Hospital Affiliated to Changzhi Medical College, Changzhi, PR China
| |
Collapse
|
4
|
Huang Y, Wu Q, Li S, Lin X, Yang S, Zhu R, Fu C, Zhang Z. Harnessing nature's pharmacy: investigating natural compounds as novel therapeutics for ulcerative colitis. Front Pharmacol 2024; 15:1394124. [PMID: 39206263 PMCID: PMC11349575 DOI: 10.3389/fphar.2024.1394124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Backgrounds Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease, and UC diagnosis rates continue to rise throughout the globe. The research and development of new drugs for the treatment of UC are urgent, and natural compounds are an important source. However, there is a lack of systematic summarization of natural compounds and their mechanisms for the treatment of UC. Methods We reviewed the literature in the databases below from their inception until July 2023: Web of Science, PubMed, China National Knowledge Infrastructure, and Wanfang Data, to obtain information on the relationship between natural compounds and UC. Results The results showed that 279 natural compounds treat UC through four main mechanisms, including regulating gut microbiota and metabolites (Mechanism I), protecting the intestinal mucosal barrier (Mechanism II), regulating intestinal mucosal immune response (Mechanism III), as well as regulating other mechanisms (Mechanism Ⅳ) such as cellular autophagy modulation and ferroptosis inhibition. Of these, Mechanism III is regulated by all natural compounds. The 279 natural compounds, including 62 terpenoids, 57 alkaloids, 52 flavonoids, 26 phenols, 19 phenylpropanoids, 9 steroids, 9 saponins, 8 quinonoids, 6 vitamins, and 31 others, can effectively ameliorate UC. Of these, terpenoids, alkaloids, and flavonoids have the greatest potential for treating UC. It is noteworthy to highlight that a total of 54 natural compounds exhibit their therapeutic effects by modulating Mechanisms I, II, and III. Conclusion This review serves as a comprehensive resource for the pharmaceutical industry, researchers, and clinicians seeking novel therapeutic approaches to combat UC. Harnessing the therapeutic potential of these natural compounds may significantly contribute to the improvement of the quality of life of patients with UC and promotion of disease-modifying therapies in the future.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuhong Wu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Zhu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Zhao ZH, Dong YH, Jiang XQ, Wang J, Qin WL, Liu ZY, Zhang XQ, Wei YJ. Five commonly used traditional Chinese medicine formulas in the treatment of ulcerative colitis: A network meta-analysis. World J Clin Cases 2024; 12:5067-5082. [DOI: 10.12998/wjcc.v12.i22.5067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Currently, traditional Chinese medicine (TCM) formulas are commonly being used as adjunctive therapy for ulcerative colitis in China. Network meta-analysis, a quantitative and comprehensive analytical method, can systematically compare the effects of different adjunctive treatment options for ulcerative colitis, providing scientific evidence for clinical decision-making.
AIM To evaluate the clinical efficacy and safety of commonly used TCM for the treatment of ulcerative colitis (UC) in clinical practice through a network meta-analysis.
METHODS Clinical randomized controlled trials of these TCM formulas used for the adjuvant treatment of UC were searched from the establishment of the databases to July 1, 2022. Studies that met the inclusion criteria were screened and evaluated for literature quality and risk of bias according to the Cochrane 5.1 standard. The methodological quality of the studies was assessed using ReviewManager (RevMan) 5.4, and a funnel plot was constructed to test for publication bias. ADDIS 1.16 statistical software was used to perform statistical analysis of the treatment measures and derive the network relationship and ranking diagrams of the various intervention measures.
RESULTS A total of 64 randomized controlled trials involving 5456 patients with UC were included in this study. The adjuvant treatment of UC using five TCM formulations was able to improve the clinical outcome of the patients. Adjuvant treatment with Baitouweng decoction (BTWT) showed a significant effect [mean difference = 36.22, 95% confidence interval (CI): 7.63 to 65.76]. For the reduction of tumor necrosis factor in patients with UC, adjunctive therapy with BTWT (mean difference = −9.55, 95%CI: −17.89 to −1.41), Shenlingbaizhu powder [SLBZS; odds ratio (OR) = 0.19, 95%CI: 0.08 to 0.39], and Shaoyao decoction (OR = −23.02, 95%CI: −33.64 to −13.14) was effective. Shaoyao decoction was more effective than BTWT (OR = 0.12, 95%CI: 0.03 to 0.39), SLBZS (OR = 0.19, 95%CI: 0.08 to 0. 39), and Xi Lei powder (OR = 0.34, 95%CI: 0.13 to 0.81) in reducing tumor necrosis factor and the recurrence rate of UC.
CONCLUSION TCM combined with mesalazine is more effective than mesalazine alone in the treatment of UC.
Collapse
Affiliation(s)
- Zhi-Hui Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi-Hang Dong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xin-Qi Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wan-Li Qin
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhang-Yi Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiao-Qing Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Jie Wei
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
6
|
Guo D, Ma Y, Zhang N, Zhang Y, Guo S. PTGS2 as target of compound Huangbai liquid in the nursing of pressure ulcer. Medicine (Baltimore) 2024; 103:e39000. [PMID: 39029075 PMCID: PMC11398748 DOI: 10.1097/md.0000000000039000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
OBJECTIVE Pressure ulcer refers to ulceration and necrosis caused by local skin and cell tissues being compressed for a long time, continuous ischemia, hypoxia, and malnutrition. However, role of prostaglandin-endoperoxide synthase 2 (PTGS2) in the management of pressure ulcers in with compound Huangbai liquid is still unclear. METHODS Traditional Chinese medicine components and related targets of compound Huangbai liquid were collected through traditional Chinese medicine systems pharmacology (TCMSP) and Batman-traditional Chinese medicine database. Disease-related targets were obtained using the Gene Cards database. The protein-protein interaction (PPI) network was constructed using the Search tool for retrieval of interacting genes (STRING) and analyzed by Cytoscape to obtain the core components. To evaluate the clinical efficacy of the compound Huangbai liquid in the treatment of pressure ulcers, 40 patients with pressure ulcers were selected and divided into an observation group and a control group, with 20 individuals in each group. The observation group received treatment with compound Huangbai liquid. RESULTS Sixty-five components and 480 targets of compound Huangbai liquid were obtained from TCMSP and Batman - traditional Chinese medicine databases. Two hundred seventy-three pressure ulcer-related targets were obtained. Seventy-two potential targets of compound Huangbai pigment in treatment of pressure ulcer were obtained, and 2 unrelated targets were deleted. There were 70 nodes and 1167 edges in PPI network. Gene ontology (GO) function is involved in biological processes such as reactive oxygen species metabolism and cellular response to chemical stress. Cellular components such as platelet α granules lumen and membrane rafts were involved. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results showed that compound Huangbai liquid in treatment of pressure ulcer. The clinical results indicate that the compound Huangbai liquid has a good therapeutic effect on pressure ulcers. CONCLUSION PTGS2 may be a target for treatment of pressure ulcers with compound Huangbai liquid, providing a new direction for its treatment.
Collapse
Affiliation(s)
- Dongmei Guo
- Department of Nursing, Baoding Second Hospital, Baoding City, China
| | - Yanhong Ma
- Department of ICU, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Nan Zhang
- Department E of Cardiology, Baoding Second Hospital, Baoding City, China
| | - Yan Zhang
- Department of Hepatobiliary Surgery, Baoding Second Hospital, Baoding City, China
| | - Suzhi Guo
- Department of ICU, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Zhang W, Zou M, Fu J, Xu Y, Zhu Y. Autophagy: A potential target for natural products in the treatment of ulcerative colitis. Biomed Pharmacother 2024; 176:116891. [PMID: 38865850 DOI: 10.1016/j.biopha.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the mucosa of the colon and rectum. UC is characterized by recurrent episodes, often necessitating lifelong medication use, imposing a significant burden on patients. Current conventional and advanced treatments for UC have the disadvantages of insufficient efficiency, susceptibility to drug resistance, and notable adverse effects. Therefore, developing effective and safe drugs has become an urgent need. Autophagy is an intracellular degradation process that plays an important role in intestinal homeostasis. Emerging evidence suggests that aberrant autophagy is involved in the development of UC, and modulating autophagy can effectively alleviate experimental colitis. A growing number of studies have established that autophagy can interplay with endoplasmic reticulum stress, gut microbiota, apoptosis, and the NLRP3 inflammasome, all of which contribute to the pathogenesis of UC. In addition, a variety of intestinal epithelial cells, including absorptive cells, goblet cells, and Paneth cells, as well as other cell types like neutrophils, antigen-presenting cells, and stem cells in the gut, mediate the development of UC through autophagy. To date, many studies have found that natural products hold the potential to exert therapeutic effects on UC by regulating autophagy. This review focuses on the possible effects and pharmacological mechanisms of natural products to alleviate UC with autophagy as a potential target in recent years, aiming to provide a basis for new drug development.
Collapse
Affiliation(s)
- Wei Zhang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Menglong Zou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jia Fu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| |
Collapse
|
8
|
Li Z, Ma T, Liu Y, Liu W, Zhao X, Zhang G, Wang J, Zhang Y. Screening and Mechanism Study of Three Antagonistic Drugs, Oxysophoridine, Rutin, and Phellodendrine, against Zearalenone-Induced Reproductive Toxicity in Ovine Oocytes. Antioxidants (Basel) 2024; 13:752. [PMID: 38929191 PMCID: PMC11201285 DOI: 10.3390/antiox13060752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Zearalenone (ZEN) is a common fungal toxin with reproductive toxicity in various grains. It poses a serious threat to ovine and other animal husbandry industries, as well as human reproductive health. Therefore, investigating the mechanism of toxicity and screening antagonistic drugs are of great importance. In this study, based on the natural compound library and previous Smart-seq2 results, antioxidant and anti-apoptotic drugs were selected for screening as potential antagonistic drugs. Three natural plant compounds (oxysophoridine, rutin, and phellodendrine) were screened for their ability to counteract the reproductive toxicity of ZEN on ovine oocytes in vitro using quantitative polymerase chain reaction (qPCR) and reactive oxygen species detection. The compounds exhibited varying pharmacological effects, notably impacting the expression of antioxidant (GPX, SOD1, and SOD2), autophagic (ATG3, ULK2, and LC3), and apoptotic (CAS3, CAS8, and CAS9) genes. Oxysophoridine promoted GPX, SOD1, ULK2, and LC3 expression, while inhibiting CAS3 and CAS8 expression. Rutin promoted SOD2 and ATG3 expression, and inhibited CAS3 and CAS9 expression. Phellodendrine promoted SOD2 and ATG3 expression, and inhibited CAS9 expression. However, all compounds promoted the expression of genes related to cell cycle, spindle checkpoint, oocyte maturation, and cumulus expansion factors. Although the three drugs had different regulatory mechanisms in enhancing antioxidant capacity, enhancing autophagy, and inhibiting cell apoptosis, they all maintained a stable intracellular environment and a normal cell cycle, promoted oocyte maturation and release of cumulus expansion factors, and, ultimately, counteracted ZEN reproductive toxicity to promote the in vitro maturation of ovine oocytes. This study identified three drugs that antagonize the reproductive toxicity of ZEN on ovine oocytes, and compared their mechanisms of action, providing data support and a theoretical basis for their subsequent application in the ovine breeding industry, reducing losses in the breeding industry, screening of ZEN reproductive toxicity antagonists and various toxin antagonists, improving the study of ZEN reproductive toxicity mechanisms, and even protection of human reproductive health.
Collapse
Affiliation(s)
- Zongshuai Li
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
- State Key Laboratory of Grassland Agro Ecosystems, Lanzhou University, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (W.L.); (X.Z.)
| | - Tian Ma
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (W.L.); (X.Z.)
| | - Yali Liu
- Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730020, China;
| | - Wanruo Liu
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (W.L.); (X.Z.)
| | - Xingxu Zhao
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (W.L.); (X.Z.)
| | - Gaiping Zhang
- Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China;
| | - Jianlin Wang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
- State Key Laboratory of Grassland Agro Ecosystems, Lanzhou University, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
| | - Yong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China; (T.M.); (W.L.); (X.Z.)
- Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China;
| |
Collapse
|
9
|
Zhu L, Liang J. Network pharmacological prediction of the mechanism of action of Shen-Zhu-Lian-Bai Decoction in the treatment of ulcerative colitis. Sci Rep 2024; 14:14183. [PMID: 38902425 PMCID: PMC11190269 DOI: 10.1038/s41598-024-64683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
The incidence of ulcerative colitis (UC) is on the rise globally. Shen-Zhu-Lian-Bai decoction (SZLBD) can relieve the clinical symptoms of UC. This study aimed to investigate the underlying molecular mechanism of SZLBD in the treatment of UC. The key treatment targets of SZLBD for UC were obtained based on the online database, and combined with the STRING database and Cytoscape 3.7.2 software, PPI network was constructed and visualized. The GEO database was utilized to validate the expression levels of core targets in UC. Metascape database GO functional annotation and KEGG pathway enrichment analysis. Molecular docking technology was used to verify the docking of core compounds with key targets. RT-qPCR and Western Blot were used to detect the expression of key targets in HCoEpiC cells for verification. After screening, 67 targets shared by SZLBD and UC were obtained. It is predicted that IL-6, IL-1B, and AKT1 might be the key targets of SZLBD in the treatment of UC. Quercetin was the main active ingredient. GEO results showed that the expression levels of IL-6, IL-1B and AKT1 were higher in the UC group compared to the control group. GO and KEGG analyses showed that these targets were related to apoptosis and inflammation. The results of molecular docking demonstrated that the AKT1 gene, a key target of quercetin, had the highest affinity of -9.2 kcal/mol. Cell experiments found that quercetin could affect the expression of IL-6, IL-1B, and AKT1. This study preliminarily explored and verified the mechanism of action of SZLBD in the treatment of UC, which provides a theoretical basis for subsequent in vivo mechanism studies.
Collapse
Affiliation(s)
- Li Zhu
- Anorectal Surgery, Shenzhen TCM Anorectal Hospital, Shenzhen, Guangdong, China.
- Anorectal Surgery, Meizhou People's Hospital, Meizhou, Guangdong, China.
| | - Jinghua Liang
- Anorectal Surgery, Shenzhen TCM Anorectal Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
10
|
Wang J, Liu J, Yang Y, Sun G, Yang D, Yin S, Zhang S, Jin W, Zhao D, Sun L, Jiang R. Inhibitory effect of phellodendrine on C48/80-induced allergic reaction in vitro and in vivo. Int Immunopharmacol 2024; 134:112256. [PMID: 38744172 DOI: 10.1016/j.intimp.2024.112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The incidence of allergic reactions has risen steadily in recent years, prompting growing interest in the identification of efficacious and safe natural compounds that can prevent or treat allergic diseases. Phellodendron amurense Rupr. has long been applied as a treatment for allergic diseases, whose primary component is phellodendrine. However, the efficacy of phellodendrine as a treatment for allergic diseases remains to be assessed. Mast cells are the primary effectors of allergic reactions, which are not only activated by IgE-dependent pathway, but also by IgE-independent pathways via human MRGPRX2, rat counterpart MRGPRB3. As such, this study explored the effect and mechanism of phellodendrine through this family receptors in treating allergic diseases in vitro and in vivo. These analyses revealed that phellodendrine administration was sufficient to protect against C48/80-induced foot swelling and Evans blue exudation in mice, and suppressed C48/80-induced RBL-2H3 rat basophilic leukemia cells degranulation, and β-HEX, HIS, IL-4, and TNF-α release. Moreover, phellodendrine could reduce the mRNA expression of MRGPRB3 and responsiveness of MRGPRX2 by altering its structure. It was able to decrease Ca2+ levels, phosphorylation levels of CaMK, PLCβ1, PKC, ERK, JNK, p38, and p65, and inhibit the degradation of IκB-α. These analyses indicate that berberine inhibits the activation of PLC and downregulates the release of Ca2+ in the endoplasmic reticulum by altering the conformation of MRGPRB3/MRGPRX2 protein, thereby inhibiting the activation of PKC and subsequently inhibiting downstream MAPK and NF-κB signaling, ultimately suppressing allergic reactions. There may thus be further value in studies focused on developing phellodendrine as a novel anti-allergic drug.
Collapse
Affiliation(s)
- Jing Wang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jianzeng Liu
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yang Yang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guang Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Dan Yang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Shuhe Yin
- Kanglong Huacheng (Ningbo) Technology Development Co., Ltd, Ningbo 315000, China
| | - Shuai Zhang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Wenqi Jin
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Daqing Zhao
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China; Jilin Province Traditional Chinese Medicine Characteristic Health Product Research and Development Cross-regional Cooperation Science and Technology Innovation Center, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China.
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China.
| |
Collapse
|
11
|
Cui H, Jin Y, Wang N, Liu H, Shu R, Wang J, Wang X, Jia B, Wang Y, Bian Y, Wen W. Mechanic evaluation of Wu-Mei-Pill on colitis-associated colorectal cancer: An integrated transcriptomics, metabolomics, and experimental validation study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155509. [PMID: 38452403 DOI: 10.1016/j.phymed.2024.155509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/26/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Chronic intestinal inflammatory diseases play a crucial role in the onset of colorectal cancer (CRC). Effectively impeding the progression of colitis-associated colorectal cancer (CAC) can be instrumental in hindering CRC development. Wu-Mei-Pill (WMP), a formulation comprising various herbal extracts, is clinically employed for CAC treatment, yet the underlying mechanism of WMP's efficacy in CAC remains unclear. Our study firstly demonstrated the effects and mechanisms of WMP on transcriptional and metabolic levels based on integrated transcriptomics and untargeted metabolomics and relative experimental validations. MATERIALS AND METHODS A CAC mouse model was established through a single injection of azoxymethane (AOM) followed by intermittent dextran sodium sulfate (DSS) intervention, with subsequent WMP administration. Initially, the therapeutic impact of WMP on the CAC model was assessed by observing survival rate, body weight change, colon length, tumor number, tumor load, and pathological changes in the colon tissue of CAC mice post-WMP intervention. Subsequently, differential genes and metabolites in the colorectal tissue of CAC mice following WMP intervention were identified through transcriptomics and non-targeted metabolomics. Finally, the influence of WMP on the peroxisome proliferator activated receptor (PPAR) pathway, Wnt pathway, and CC motif chemokine ligand 3 (CCL3)/ CC motif chemokine receptor 1 (CCR1) axis in CAC mice was verified through western blot, immunofluorescence, and ELISA based on the results of transcriptomics and non-targeted metabolomics. RESULTS WMP intervention enhanced survival, alleviated body weight loss, shortened colon length, tumor occurrence, and pathological changes in the colorectal tissue of CAC mice, such as glandular damage, tumourigenesis, and inflammatory cell infiltration. Transcriptomic and non-targeted metabolomic results revealed that WMP intervention up-regulated the expression of key regulatory mechanisms of fatty acid oxidation PPAR pathway-related genes (Pparg, Ppara, Cpt1a, and Acadm) and metabolites (L-carnitine and L-palmitoylcarnitine). Additionally, it down-regulated Wnt pathway-related genes (Wnt3, Axin2, Tcf7, Mmp7, Lgr5, Wnt5a, Fzd6, Wnt7b, Lef1, and Fzd10 etc.) and pro-inflammatory related genes (Il1b, Il6, Il17a, Ccl3, and Ccr1 etc.). Experimental validation demonstrated that WMP up-regulated PPAR pathway-related proteins [PPARγ, PPARα, carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA dehydrogenase medium chain (ACADM)] in the colorectal tissue of CAC mice. It also down-regulated Wnt pathway-related proteins [β-catenin, T-cell factor (TCF), lymphoid enhancer-binding factor (LEF), and matrix metallopeptidase 7 (MMP7)], inhibited the nuclear translocation of the key transcription factor β-catenin in the Wnt pathway, and suppressed epithelial-to-mesenchymal transition (EMT) activation induced by the Wnt pathway (up-regulated E-cadherin and down-regulated Vimentin). Furthermore, WMP intervention reduced pro-inflammatory factors [interleukin (IL)-6, IL-1β, and IL-17A] and decreased CCL3/CCR1 axis factors, including CCL3 protein levels and diminished F4/80+CCR1+ positive expressed cells. CONCLUSION WMP significantly inhibits CAC tumorigenesis by up-regulating PPARα-mediated fatty acid oxidation, inhibiting the Wnt signaling pathway-mediated EMT, and suppressing CCL3/CCR1-mediated inflammatory responses.
Collapse
Affiliation(s)
- Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yutong Jin
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ning Wang
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Haizhao Liu
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rongli Shu
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jida Wang
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiangling Wang
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Beitian Jia
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yiyang Wang
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuhong Bian
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Weibo Wen
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
12
|
Awad MM, El-Gohary RM, Ibrahim S, Abdel Ghafar MT, Farghal EE, Aboalsoud A, El-Shaer RAA. Potential mitigating impact of a dipeptidyl peptidase-IV inhibitor, vildagliptin, on oxazolone-induced ulcerative colitis: Targeting the role of PI3K/AKT/mTOR and AMPK/Nrf2 signaling pathways. Int Immunopharmacol 2024; 133:112110. [PMID: 38652960 DOI: 10.1016/j.intimp.2024.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Growing evidence suggests that phosphoinositide 3-kinase (PI3K) and adenosine monophosphate-activated protein kinase (AMPK) signaling cascades are critical in ulcerative colitis (UC) pathophysiology by influencing gut mucosal inflammation. Recently, the coloprotective properties of dipeptidyl peptidase-IV (DPP-IV) inhibitors have emerged. Thus, this study assessed for the first time the potential mitigating impact of a DPP-IV inhibitor, vildagliptin (Vilda), on oxazolone (OXZ)-induced colitis in rats, targeting the role of PI3K/AKT/mTOR and AMPK/Nrf2 pathways. Thirty-two adult Albino rats were divided into four groups: control, Vilda (10 mg/kg/day orally), OXZ (300 µL of 5 % OXZ in 50 % aqueous ethanol solution introduced once into the colon via catheter), and Vilda+OXZ. Inflammatory cytokines (interleukin 13, tumor necrosis factor-α, interleukin 10), oxidative/endoplasmic reticulum stress markers (myeloperoxidase, reduced glutathione, catalase, CHOP), mitochondrial reactive oxygen species, adenosine triphosphate levels, and mitochondrial transmembrane potential were estimated. p-AMPK, p-AKT, beclin-1, and SQSTM1 levels were immunoassayed. Nrf2, PI3K, and mTOR expression levels were quantified using the real-time polymerase chain reaction. Furthermore, p-NF-ĸBp65 and LC3II immunoreactivity were evaluated. Vilda administration effectively ameliorated OXZ-induced colitis, as evidenced by the reduced Disease Activity Index, macroscopic colon damage score, colon weight/length ratio, ulcer index, and histopathological and electron microscopic changes in the colon tissues. Vilda treatment also counteracted OXZ-triggered inflammation, oxidative/endoplasmic reticulum stress, mitochondrial dysfunction, and enhanced autophagy in the colon. Vilda substantially suppressed PI3K/AKT/mTOR and activated the AMPK/Nrf2 pathway. Vilda has potent coloprotective and anti-ulcerogenic properties, primarily attributed to its antiinflammatory, antioxidant, and modulatory impact on mitochondrial dysfunction and autophagy activity. These effects were mostly mediated by suppressing PI3K/AKT/mTOR and activating AMPK/Nrf2 signaling cascades, suggesting a potential role of Vilda in UC therapy.
Collapse
Affiliation(s)
- Marwa Mahmoud Awad
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Rehab M El-Gohary
- Medical Biochemistry Department, Faculty of Medicine,Tanta University,Tanta, Egypt.
| | - Sarah Ibrahim
- Human Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | | - Eman E Farghal
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Alshimaa Aboalsoud
- Pharmacology Depatrtment, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | | |
Collapse
|
13
|
Zhang H, Wang X, Zhao L, Zhang K, Cui J, Xu G. Biochanin a ameliorates DSS-induced ulcerative colitis by improving colonic barrier function and protects against the development of spontaneous colitis in the Muc2 deficient mice. Chem Biol Interact 2024; 395:111014. [PMID: 38648921 DOI: 10.1016/j.cbi.2024.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/25/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
There is an increasing appreciation that colonic barrier function is closely related to the development and progression of colitis. The mucus layer is a crucial component of the colonic barrier, responsible for preventing harmful bacteria from invading the intestinal epithelium and causing inflammation. Furthermore, a defective mucus barrier is also a significant characteristic of ulcerative colitis (UC). Biochanin A (BCA), an isoflavonoid, has garnered increasing interest due to its significant biological activities. However, the impact of BCA on UC has not been reported yet. In this study, we used a dextran sodium sulfate (DSS)-induced ulcerative colitis model and the Muc2 deficient (Muc2-/-) mice spontaneous colitis model to explore the mechanisms of BCA in the treatment of UC. Here, we verified that DSS-induced UC was observably attenuated and spontaneous colitis in Muc2-/- mice was relieved by BCA. Treatment with BCA improved colitis-related symptoms and reduced intestinal permeability by upregulating the levels of goblet cells and tight junction (TJ) proteins. In addition, we confirmed that BCA promotes autophagy through the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway, thereby alleviating DSS-induced UC. In addition, the administration of BCA was able to reduce apoptosis and promote proliferation by suppressing Cleaved Caspase-3 (Cleaved Cas-3) expression, and increasing PCNA and Ki67 levels. Further research revealed that BCA treatment ameliorated spontaneous colitis and alleviated epithelial damage in Muc2-/- mice by restoring the intestinal barrier and promoting autophagy. Our results demonstrated that BCA alleviated UC by enhancing intestinal barrier function and promoting autophagy. These findings indicate that BCA may be a novel treatment alternative for UC.
Collapse
Affiliation(s)
- Haina Zhang
- Department of Rehabilitation, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Xueqi Wang
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, PR China
| | - Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Jiaming Cui
- Changchun University of Chinese Medicine, Jilin University, Changchun, 130000, PR China
| | - Guangmeng Xu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China.
| |
Collapse
|
14
|
Wang M, Wang Z, Li Z, Qu Y, Zhao J, Wang L, Zhou X, Xu Z, Zhang D, Jiang P, Fan B, Liu Y. Targeting programmed cell death in inflammatory bowel disease through natural products: New insights from molecular mechanisms to targeted therapies. Phytother Res 2024. [PMID: 38706097 DOI: 10.1002/ptr.8216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder primarily characterized by intestinal inflammation and recurrent ulceration, leading to a compromised intestinal barrier and inflammatory infiltration. This disorder's pathogenesis is mainly attributed to extensive damage or death of intestinal epithelial cells, along with abnormal activation or impaired death regulation of immune cells and the release of various inflammatory factors, which contribute to the inflammatory environment in the intestines. Thus, maintaining intestinal homeostasis hinges on balancing the survival and functionality of various cell types. Programmed cell death (PCD) pathways, including apoptosis, pyroptosis, autophagy, ferroptosis, necroptosis, and neutrophil extracellular traps, are integral in the pathogenesis of IBD by mediating the death of intestinal epithelial and immune cells. Natural products derived from plants, fruits, and vegetables have shown potential in regulating PCD, offering preventive and therapeutic avenues for IBD. This article reviews the role of natural products in IBD treatment by focusing on targeting PCD pathways, opening new avenues for clinical IBD management.
Collapse
Affiliation(s)
- Mengjie Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyuan Wang
- People's Hospital of Zhengzhou, Zhengzhou, China
| | - Zhichao Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Qu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiting Zhao
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinpeng Zhou
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziqi Xu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Fan
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Liu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
15
|
肖 红, 韩 保, 郭 家, 吴 超, 吴 敬. [HTD4010 attenuates myocardial injury in mice with septic cardiomyopathy by promoting autophagy via the AMPK/mTOR signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:507-514. [PMID: 38597442 PMCID: PMC11006686 DOI: 10.12122/j.issn.1673-4254.2024.03.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To investigate the protective effects of HTD4010 against lipopolysaccharide (LPS)-induced septic cardiomyopathy (SCM) in mice and explore the mechanisms mediating its effect. METHODS Forty-five male ICR mice were randomized equally into control group, LPS (10 mg/kg) group, and LPS+HTD4010 group (in which 2.5 mg/kg HTD4010 was injected subcutaneously at 1 h and 6 h after LPS injection). Cardiac function of the mice was evaluated by ultrasound, and pathological changes in the myocardial tissues were observed with HE staining. The levels of IL-6 and TNF-α in serum and myocardial tissues were detected using ELISA, and apoptosis of the cardiomyocytes was detected with TUNEL staining. The expression levels of the key proteins associated with apoptosis, autophagy and the AMPK/mTOR pathway in the myocardial tissues were detected using Western blotting. The ultrastructural changes of cardiac myocardial mitochondria was observed with transmission electron microscopy. RESULTS LPS exposure caused severe myocardial damage in mice, characterized by myocardial fiber rupture, structural disorder, inflammatory cell infiltration, and mitochondrial damage. The LPS-treated mice exhibited significantly decreased cardiac LVEF and FS values, elevated IL-6 and TNF-αlevels in serum and myocardial tissue, and an increased myocardial cell apoptosis rate with enhanced expressions of Bax, p-62 and p-mTOR and lowered expressions of Bcl-2, LC3 II/I, Beclin-1 and p-AMPK (P < 0.05 or 0.01). Treatment of the septic mice with HTD4010 significantly alleviated myocardial damage, increased LVEF and FS values, reduced IL-6 and TNF-α levels in serum and myocardial tissue, decreased cardiomyocyte apoptosis, lowered myocardial expressions of Bax, p-62 and p-mTOR, and increased Bcl-2, LC3 II/I, Beclin-1 and p-AMPK expressions (P < 0.05 or 0.01). CONCLUSION HTD4010 can attenuate myocardial injury in SCM mice possibly by promoting autophagy via modulating the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- 红敏 肖
- 皖南医学院第一附属医院急诊科,安徽 芜湖 241002Department of Emergency Medicine of First Affiliated Hospital, Wannan Medical College, Wuhu 241002, China
| | - 保松 韩
- 皖南医学院第一附属医院急诊科,安徽 芜湖 241002Department of Emergency Medicine of First Affiliated Hospital, Wannan Medical College, Wuhu 241002, China
| | - 家成 郭
- 皖南医学院病理生理学教研室,安徽 芜湖 241002Department of Pathophysiology, Wannan Medical College, Wuhu 241002, China
| | - 超 吴
- 皖南医学院病理生理学教研室,安徽 芜湖 241002Department of Pathophysiology, Wannan Medical College, Wuhu 241002, China
| | - 敬医 吴
- 皖南医学院第一附属医院急诊科,安徽 芜湖 241002Department of Emergency Medicine of First Affiliated Hospital, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
16
|
Zhou J, Wang J, Wang J, Li D, Hou J, Li J, Bai Y, Gao J. An inulin-type fructan CP-A from Codonopsis pilosula attenuates experimental colitis in mice by promoting autophagy-mediated inactivation of NLRP3 inflammasome. Chin J Nat Med 2024; 22:249-264. [PMID: 38553192 DOI: 10.1016/s1875-5364(24)60556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 04/02/2024]
Abstract
Inulin-type fructan CP-A, a predominant polysaccharide in Codonopsis pilosula, demonstrates regulatory effects on immune activity and anti-inflammation. The efficacy of CP-A in treating ulcerative colitis (UC) is, however, not well-established. This study employed an in vitro lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) and an in vivo dextran sulfate sodium (DSS)-induced colitis mouse model to explore CP-A's protective effects against experimental colitis and its underlying mechanisms. We monitored the clinical symptoms in mice using various parameters: body weight, disease activity index (DAI), colon length, spleen weight, and histopathological scores. Additionally, molecular markers were assessed through enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF), immunohistochemistry (IHC), and Western blotting assays. Results showed that CP-A significantly reduced reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), and interleukins (IL-6, IL-1β, IL-18) in LPS-induced cells while increasing IL-4 and IL-10 levels and enhancing the expression of Claudin-1, ZO-1, and occludin proteins in NCM460 cells. Correspondingly, in vivo findings revealed that CP-A administration markedly improved DAI, reduced colon shortening, and decreased the production of myeloperoxidase (MPO), malondialdehyde (MDA), ROS, IL-1β, IL-18, and NOD-like receptor protein 3 (NLRP3) inflammasome-associated genes/proteins in UC mice. CP-A treatment also elevated glutathione (GSH) and superoxide dismutase (SOD) levels, stimulated autophagy (LC3B, P62, Beclin-1, and ATG5), and reinforced Claudin-1 and ZO-1 expression, thereby aiding in intestinal epithelial barrier repair in colitis mice. Notably, the inhibition of autophagy via chloroquine (CQ) diminished CP-A's protective impact against colitis in vivo. These findings elucidate that CP-A's therapeutic effect on experimental colitis possibly involves mitigating intestinal inflammation through autophagy-mediated NLRP3 inflammasome inactivation. Consequently, inulin-type fructan CP-A emerges as a promising drug candidate for UC treatment.
Collapse
Affiliation(s)
- Jiangtao Zhou
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jun Wang
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jiajing Wang
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Deyun Li
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jing Hou
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jiankuan Li
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Yun'e Bai
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jianping Gao
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China.
| |
Collapse
|
17
|
Chen B, Dong X, Zhang JL, Sun X, Zhou L, Zhao K, Deng H, Sun Z. Natural compounds target programmed cell death (PCD) signaling mechanism to treat ulcerative colitis: a review. Front Pharmacol 2024; 15:1333657. [PMID: 38405669 PMCID: PMC10885814 DOI: 10.3389/fphar.2024.1333657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Ulcerative colitis (UC) is a nonspecific inflammatory bowel disease characterized by abdominal pain, bloody diarrhea, weight loss, and colon shortening. However, UC is difficult to cure due to its high drug resistance rate and easy recurrence. Moreover, long-term inflammation and increased disease severity can lead to the development of colon cancer in some patients. Programmed cell death (PCD) is a gene-regulated cell death process that includes apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis. PCD plays a crucial role in maintaining body homeostasis and the development of organs and tissues. Abnormal PCD signaling is observed in the pathological process of UC, such as activating the apoptosis signaling pathway to promote the progression of UC. Targeting PCD may be a therapeutic strategy, and natural compounds have shown great potential in modulating key targets of PCD to treat UC. For instance, baicalin can regulate cell apoptosis to alleviate inflammatory infiltration and pathological damage. This review focuses on the specific expression of PCD and its interaction with multiple signaling pathways, such as NF-κB, Nrf2, MAPK, JAK/STAT, PI3K/AKT, NLRP3, GPX4, Bcl-2, etc., to elucidate the role of natural compounds in targeting PCD for the treatment of UC. This review used (ulcerative colitis) (programmed cell death) and (natural products) as keywords to search the related studies in PubMed and the Web of Science, and CNKI database of the past 10 years. This work retrieved 72 studies (65 from the past 5 years and 7 from the past 10 years), which aims to provide new treatment strategies for UC patients and serves as a foundation for the development of new drugs.
Collapse
Affiliation(s)
- Bo Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinqian Dong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin Long Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xitong Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kangning Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hualiang Deng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
18
|
Shi Y, Jiang B, Zhao J. Induction mechanisms of autophagy and endoplasmic reticulum stress in intestinal ischemia-reperfusion injury, inflammatory bowel disease, and colorectal cancer. Biomed Pharmacother 2024; 170:115984. [PMID: 38070244 DOI: 10.1016/j.biopha.2023.115984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024] Open
Abstract
In recent years, the incidence of intestinal ischemia-reperfusion injury (II/RI), inflammatory bowel disease (IBD), and colorectal cancer (CRC) has been gradually increasing, posing significant threats to human health. Autophagy and endoplasmic reticulum stress (ERS) play important roles in II/RI. Damage caused by ischemia and cellular stress can activate ERS, which in turn initiates autophagy to clear damaged organelles and abnormal proteins, thereby alleviating ERS and maintaining the intestinal environment. In IBD, chronic inflammation damages intestinal tissues and activates autophagy and ERS. Autophagy is initiated by upregulating ATG genes and downregulating factors that inhibit autophagy, thereby clearing abnormal proteins, damaged organelles, and bacteria. Simultaneously, persistent inflammatory stimulation can also trigger ERS, leading to protein imbalance and abnormal folding in the ER lumen. The activation of ERS can maintain cellular homeostasis by initiating the autophagy process, thereby reducing inflammatory responses and cell apoptosis in the intestine. In CRC, excessive cell proliferation and protein synthesis lead to increased ERS. The activation of ERS, regulated by signaling pathways such as IRE1α and PERK, can initiate autophagy to clear abnormal proteins and damaged organelles, thereby reducing the negative effects of ERS. It can be seen that autophagy and ERS play a crucial regulatory role in the development of intestinal diseases. Therefore, the progress in targeted therapy for intestinal diseases based on autophagy and ERS provides novel strategies for managing intestinal diseases. In this paper, we review the advances in regulation of autophagy and ERS in intestinal diseases, emphasizing the potential molecular mechanisms for therapeutic applications.
Collapse
Affiliation(s)
- Yan Shi
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Jingwen Zhao
- Department of Proctology, Baoji Traditional Chinese Medicine Hospital, Baoji 721001, Shanxi, PR China.
| |
Collapse
|
19
|
Patel K, Patel DK. Biological Importance of Phellodendrine in Traditional and Modern Medicines: An Update on Therapeutic Potential in Medicine. Curr Drug Res Rev 2024; 16:209-218. [PMID: 37488762 DOI: 10.2174/2589977515666230721153904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Herbal medicines have been used for the preparation of numerous pharmaceutical products for the treatment of human disorders. Plant-derived products have been used in medicine, nutraceuticals, perfumery, beverages, and cosmetics industries for different purposes. Herbal medicines are mainly derived from different parts of plant materials. Phellodendron bark has been widely known as one of the fundamental herbs of traditional Chinese medicine. Phellodendron bark contains phellodendrine as a main active phytochemical. Phellodendrine ((7S,13aS)-3,10-dimethoxy-7-methyl-6,8,13,13atetrahydro-5H-isoquinolino[2,1-b]isoquinolin-7- ium-2,11-diol), is a quaternary ammonium alkaloid. METHODS This present study aimed to investigate the biological potential and therapeutic effectiveness of phellodendrine in medicine through scientific data analysis of different research works on phellodendrine. The therapeutic value of phellodendrine was analyzed in the present work through scientific data available in Google, Google Scholar, ScienceDirect, and PubMed. All the scientific data on phellodendrine were collected from these databases using the terms herbal drugs and phellodendrine. Pharmacological and analytical data of phellodendrine were analyzed in the present work in order to know the medicinal importance of phellodendrine. RESULTS Scientific data analysis of phellodendrine in the present work signified the biological importance of phellodendrine in medicine. Phellodendrine has numerous beneficial aspects in medicine due to its potential benefits in ulcerative colitis, inflammation, pancreatic cancer, nephritis, immune response, acetylcholinesterase activity, psoriasis, arthritis, atopic dermatitis, and oxidative stress. However, it also has significant effects on eicosanoid generation, neuraminidase-1, inflammasome generation, cytochrome p450, taste receptors, and hepatic gluconeogenesis. Furthermore, scientific data has indicated the presence of phellodendrine in different natural sources, including Phellodendri cortex. Analytical data on phellodendrines has signified their importance in the isolation and separation of pure phytochemicals in medicine. Pharmacokinetic parameters have highlighted the tissue distribution of phellodendrine in different tissue of human beings and higher animals. CONCLUSION In the present work, scientific data analysis has indicated the biological importance, pharmacological activities, and analytical aspects of phellodendrine in medicine.
Collapse
Affiliation(s)
- Kanika Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, India
| |
Collapse
|
20
|
Yuan Y, Wang F, Liu X, Shuai B, Fan H. The Role of AMPK Signaling in Ulcerative Colitis. Drug Des Devel Ther 2023; 17:3855-3875. [PMID: 38170149 PMCID: PMC10759424 DOI: 10.2147/dddt.s442154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease characterized by inflammation and ulcer formation of the intestinal mucosa. Due to its high recurrence rate, prolonged course, limited curative options, and significant impact on patients' quality of life, along with a notable potential for malignant transformation, UC is designated as a refractory global health challenge by the World Health Organization (WHO). The elucidation of the pathogenesis and therapeutic strategies for UC requires further in-depth investigation. AMP-activated protein kinase (AMPK) serves as a central regulator of cellular energy metabolic homeostasis. Emerging evidence indicates that interventions involving traditional Chinese medicine (TCM) components, as well as other pharmacological measures, exert beneficial effects on the intestinal mucosal inflammation and epithelial barrier dysfunction in UC by modulating AMPK signaling, thereby influencing biological processes such as cellular autophagy, apoptosis, inflammatory responses, macrophage polarization, and NLRP3 inflammasome-mediated pyroptosis. The role of AMPK in UC is of significant importance. This manuscript provides a comprehensive overview of the mechanisms through which AMPK is involved in UC, as well as a compilation of pharmacological agents capable of activating the AMPK signaling pathway within the context of UC. The primary objective is to facilitate a deeper comprehension of the pivotal role of AMPK in UC among researchers and clinical practitioners, thereby advancing the identification of novel therapeutic targets for interventions in UC.
Collapse
Affiliation(s)
- Yuyi Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Fang Wang
- Department of Rehabilitation Medicine, Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Jingshan, Hubei, 431800, People’s Republic of China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Bo Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| |
Collapse
|
21
|
Shi YR, Hao WW, Zhang EX, Wang ZH, Li L. Role of autophagy in pathogenesis of ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2023; 31:1022-1028. [DOI: 10.11569/wcjd.v31.i24.1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Ulcerative colitis is a chronic idiopathic inflammatory disease involving the colorectal mucosa. It is characterized by recurrent attacks, such as abdominal pain, diarrhea, mucus, and purulent stool. At present, the pathogenesis of ulcerative colitis is not fully understood. Most scholars generally believe that the pathogenesis of ulcerative colitis is affected by genetic susceptibility, environmental factors, immune system disorders, microflora and intestinal microflora disorders, and other factors. In recent years, the concept of autophagy has gradually attracted the attention of the scientific community, and more and more scholars have begun to study the pathogenesis of ulcerative colitis on the basis of autophagy theory. This review will give an overview of cellular autophagy and discuss its role in the pathogenesis of ulcerative colitis.
Collapse
Affiliation(s)
- Yi-Rong Shi
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Wei-Wei Hao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Er-Xin Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Zhu-Huan Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Le Li
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| |
Collapse
|
22
|
Cui Y, Hu J, Li Y, Au R, Fang Y, Cheng C, Xu F, Li W, Wu Y, Zhu L, Shen H. Integrated Network Pharmacology, Molecular Docking and Animal Experiment to Explore the Efficacy and Potential Mechanism of Baiyu Decoction Against Ulcerative Colitis by Enema. Drug Des Devel Ther 2023; 17:3453-3472. [PMID: 38024534 PMCID: PMC10680469 DOI: 10.2147/dddt.s432268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background Baiyu Decoction (BYD), a clinical prescription of traditional Chinese medicine, has been proven to be valuable for treating ulcerative colitis (UC) by enema. However, the mechanism of BYD against UC remains unclear. Purpose A combination of bioinformatics methods including network pharmacology and molecular docking and animal experiments were utilized to investigate the potential mechanism of BYD in the treatment of UC. Materials and Methods Firstly, the representative compounds of each herb in BYD were detected by liquid chromatography-mass spectrometry. Subsequently, we predicted the core targets and potential pathways of BYD for treating UC through network pharmacology. And rat colitis model was established with dextran sodium sulfate. UC rats were subjected to BYD enema administration, during which we recorded body weight changes, disease activity index, and colon length to assess the effectiveness of BYD. Besides, quantitative real-time PCR, western blotting, ELISA and immunofluorescence were used to detect intestinal inflammatory factors, intestinal barrier biomarkers and TOLL-like receptor pathway in rats. Finally, the core components and targets of BYD were subjected to molecular docking so as to further validate the results of network pharmacology. Results A total of 41 active compositions and 203 targets related to BYD-UC were subjected to screening. The results of bioinformatics analysis showed that quercetin and kaempferol may be the main compounds. Additionally, AKT1, IL-6, TP53, TNF and IL-1β were regarded as potential therapeutic targets. KEGG results explained that TOLL-like receptor pathway might play a pivotal role in BYD protecting against UC. In addition, animal experiments and molecular docking validated the network pharmacology results. BYD enema treatment can reduce body weight loss, lower disease activity index score, reverse colon shortening, relieve intestinal inflammation, protect intestinal barrier, and inhibit TOLL-like receptor pathway in UC rats. Besides, molecular docking suggested that quercetin and kaempferol docked well with TLR4, AKT1, IL-6, TP53. Conclusion Utilizing network pharmacology, animal studies, and molecular docking, enema therapy with BYD was confirmed to have anti-UC efficacy by alleviating intestinal inflammation, protecting the intestinal barrier, and inhibiting the TOLL-like receptor pathway. Researchers should focus not only on oral medications but also on the rectal administration of medications in furtherance of the cure of ulcerative colitis.
Collapse
Affiliation(s)
- Yuan Cui
- Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jingyi Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yanan Li
- Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ryan Au
- Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yulai Fang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Cheng Cheng
- Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Feng Xu
- Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Weiyang Li
- Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yuguang Wu
- Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Lei Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Hong Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
23
|
Li J, Qin Y, Zhao C, Zhang Z, Zhou Z. Tetracycline antibiotics: Potential anticancer drugs. Eur J Pharmacol 2023; 956:175949. [PMID: 37541377 DOI: 10.1016/j.ejphar.2023.175949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
In recent years, research on tetracycline antibiotics has gradually shifted from their antibacterial effects to anticancer effects. Doxycycline, minocycline, and tigecycline as the US Food and Drug Administration (FDA) approved tetracycline antibiotics have been the main subjects of studies. Evidence indicated that they have anticancer properties and are able to control cancer progression through different mechanisms, such as anti-proliferation, anti-metastasis, and promotion of autophagy or apoptosis. In addition, studies have shown that these three tetracycline antibiotics can be utilized in conjunction with chemotherapeutic and targeted drugs to inhibit cancer progression and improve the quality of patient survival. Therefore, doxycycline, minocycline, and tigecycline are taken as examples in this work. Their mechanisms of action in different cancers and related combination therapies are introduced. Their current roles in alleviating the suffering of patients undergoing chemotherapy when used as adjuvant drugs in clinical treatment are also described. Finally, the research gaps and potential research directions at this stage are briefly summarized.
Collapse
Affiliation(s)
- Jiayu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China; College of Pharmacy, Nankai University, China
| | - Chenhao Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhi Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhiruo Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
24
|
Ma T, Yang L, Zhang B, Lv X, Gong F, Yang W. Hydrogen inhalation enhances autophagy via the AMPK/mTOR pathway, thereby attenuating doxorubicin-induced cardiac injury. Int Immunopharmacol 2023; 119:110071. [PMID: 37080067 DOI: 10.1016/j.intimp.2023.110071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
AIMS Doxorubicin is a drug widely used in clinical cancer treatment, but severe cardiotoxicity limits its clinical application. Autophagy disorder is an important factor in the mechanism of doxorubicin-induced cardiac injury. As the smallest molecule in nature, hydrogen has various biological effects such as anti-oxidation, anti-apoptosis and regulation of autophagy. Hydrogen therapy is currently considered to be an emerging therapeutic method, but the effect and mechanism of hydrogen on doxorubicin-induced myocardial injury have not been determined. The purpose of this study was to investigate the protective effect of hydrogen inhalation on doxorubicin-induced chronic myocardial injury and its effect and mechanism on autophagy. METHODS In this study, we established a chronic heart injury model by intraperitoneal injection of doxorubicin in rats for 30 days, accumulating 20 mg/kg. The effect of hydrogen inhalation on the cardiac function in rats was explored by echocardiography, Elisa, and H&E staining. To clarify the influence of autophagy, we detected the expression of LC3 and related autophagy proteins in vivo and in vitro by immunofluorescence and western blot.In order to further explore the mechanism of autophagy, we added pathway inhibitors and used western blot to preliminarily investigate the protective effect of hydrogen inhalation on myocardial injury caused by doxorubicin. RESULTS Hydrogen inhalation can improve doxorubicin-induced cardiac function decline and pathological structural abnormalities in rats. It was confirmed by immunofluorescence that hydrogen treatment could restore the expression of autophagy marker protein LC3 (microtubule-associated protein 1 light chain 3) in cardiomyocytes reduced by doxorubicin, while reducing cardiomyocyte apoptosis. Mechanistically, Western blot results consistently showed that hydrogen treatment up-regulated the ratio of p-AMPK (phosphorylated AMP-dependent protein kinase) to AMPK and down-regulated p-mTOR (phosphorylated mammalian target of rapamycin) and mTOR ratio. CONCLUSIONS These results suggest that hydrogen inhalation can activate autophagy through the AMPK/mTOR pathway and protect against myocardial injury induced by doxorubicin. Hydrogen inhalation therapy may be a potential treatment for doxorubicin-induced myocardial injury.
Collapse
Affiliation(s)
- Tianjiao Ma
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Lei Yang
- Department of Urinary Surgery, The First Hospital of Harbin, Harbin 150010, China
| | - Binmei Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xin Lv
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, 150001, China
| | - Feifei Gong
- Department of Imaging, Chest Hospital of Harbin, 150056, China
| | - Wei Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
25
|
Chen Z, Gu Q, Chen R. miR-146a-5p regulates autophagy and NLRP3 inflammasome activation in epithelial barrier damage in the in vitro cell model of ulcerative colitis through the RNF8/Notch1/mTORC1 pathway. Immunobiology 2023; 228:152386. [PMID: 37329823 DOI: 10.1016/j.imbio.2023.152386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease affecting the colon that can be influenced by microRNAs (miRNAs). This study aims to investigate the impact of miR-146a-5p on lipopolysaccharide (LPS)-induced Caco-2/HT-29 cell autophagy and NLRP3 inflammasome activation and the underlying mechanism, with the aim of identifying potential therapeutic targets. We used LPS to establish Caco-2/HT-29 cell models and measured cell viability by CCK-8. The levels of miR-146a-5p, RNF8, markers of NLRP3 inflammasome activation and autophagy, proteins involved in the Notch1/mTORC1 pathway, and inflammatory factors were assessed by RT-qPCR, Western blot, and ELISA. Intestinal epithelial barrier function was evaluated by measuring transepithelial electrical resistance. Autophagic flux was measured using tandem fluorescent-labeled LC3. miR-146a-5p was highly-expressed in LPS-induced Caco-2/HT-29 cells, and autophagy flux was blocked at the autolysosomal stage after LPS induction. Inhibition of miR-146a-5p suppressed NLRP3 inflammasome activation, reduced intestinal epithelial barrier damage, and facilitated autophagy inhibition in LPS-induced Caco-2/HT-29 cells. The autophagy inhibitor NH4Cl partially nullified the inhibitory effects of miR-146a-5p inhibition on NLRP3 inflammation activation. miR-146a-5p targeted RNF8, and silencing RNF8 partly abrogated the action of miR-146a-5p inhibition on promoting autophagy and inhibiting NLRP3 inflammasome activation. miR-146a-5p inhibition suppressed the Notch1/mTORC1 pathway activation by upregulating RNF8. Inhibition of the Notch1/mTORC1 pathway partially nullified the function of silencing RNF8 on inhibiting autophagy and bolstering NLRP3 inflammasome activation. In conclusion, miR-146a-5p inhibition may be a potential therapeutic approach for UC, as it facilitates autophagy of LPS-stimulated Caco-2/HT-29 cells, inhibits NLRP3 inflammasome activation, and reduces intestinal epithelial barrier damage by upregulating RNF8 and suppressing the Notch1/mTORC1 pathway.
Collapse
Affiliation(s)
- Zepeng Chen
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Qinglong Gu
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Ruichao Chen
- Department of Anorectal Surgery, Xuzhou City Hospital of TCM, Xuzhou, Jiangsu 221000, China.
| |
Collapse
|
26
|
Huang A, Ji L, Li Y, Li Y, Yu Q. Gut microbiome plays a vital role in post-stroke injury repair by mediating neuroinflammation. Int Immunopharmacol 2023; 118:110126. [PMID: 37031605 DOI: 10.1016/j.intimp.2023.110126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
Cerebral stroke is a common neurological disease and often causes severe neurological deficits. With high morbidity, mortality, and disability rates, stroke threatens patients' life quality and brings a heavy economic burden on society. Ischemic cerebral lesions incur pathological changes as well as spontaneous nerve repair following stroke. Strategies such as drug therapy, physical therapy, and surgical treatment, can ameliorate blood and oxygen supply in the brain, hamper the inflammatory responses and maintain the structural and functional integrity of the brain. The gut microbiome, referred to as the "second genome" of the human body, participates in the regulation of multiple physiological functions including metabolism, digestion, inflammation, and immunity. The gut microbiome is not only inextricably associated with dangerous factors pertaining to stroke, including high blood pressure, diabetes, obesity, and atherosclerosis, but also influences stroke occurrence and prognosis. AMPK functions as a hub of metabolic control and is responsible for the regulation of metabolic events under physiological and pathological conditions. The AMPK mediators have been found to exert dual roles in regulating gut microbiota and neuroinflammation/neuronal apoptosis in stroke. In this study, we reviewed the role of the gut microbiome in cerebral stroke and the underlying mechanism of the AMPK signaling pathway in stroke. AMPK mediators in nerve repair and the regulation of intestinal microbial balance were also summarized.
Collapse
Affiliation(s)
- Airu Huang
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Ling Ji
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yamei Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yufeng Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| | - Qian Yu
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| |
Collapse
|
27
|
Shi W, Peng K, Yu H, Wang Z, Xia S, Xiao S, Tian D, Vallance BA, Yu Q. Autotaxin (ATX) inhibits autophagy leading to exaggerated disruption of intestinal epithelial barrier in colitis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166647. [PMID: 36746254 DOI: 10.1016/j.bbadis.2023.166647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated disease. Autotaxin (ATX) is associated with increased inflammatory molecules, however, its effect on IBD is not well understood. Autophagy plays an important role in IBD, whether ATX and autophagy act in concert in IBD remains unknown. This study is to explore the possible mechanisms of ATX affecting autophagy leading to the disruption of intestinal epithelial barrier, thereby exacerbating colitis. The expression of ATX was upregulated in UC patients and dextran sulfate sodium (DSS)-induced colitis mice. Here, we described that providing an ATX inhibitor during DSS colitis increased autophagy and ameliorated colonic inflammation. Conversely, intrarectal administration with recombinant (r)ATX increased colitis and decreased autophagy. This pro-colitic effect was attenuated in mice treated with rapamycin, resulting in increased autophagy activity and mild colitis. Moreover, the inhibitory effect of rATX on autophagy was confirmed in vitro and was reversed by the addition of rapamycin. The damaging effects of ATX on epithelial barrier function were reversed by ATX inhibitor or rapamycin treatment. In sum, our results show that ATX can inhibit autophagy through the mTOR pathway, resulting in exaggerated damage to the intestinal epithelial barrier during colitis. These findings suggest that ATX may be a key pro-colitic factor, and represent a potential therapeutic target for treating IBD in the future.
Collapse
Affiliation(s)
- Wenjie Shi
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Kaixin Peng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hongbing Yu
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Zi Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Shuhong Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Siqi Xiao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Qin Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, China; Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
28
|
Zhou Y, Wang D, Yan W. Treatment Effects of Natural Products on Inflammatory Bowel Disease In Vivo and Their Mechanisms: Based on Animal Experiments. Nutrients 2023; 15:nu15041031. [PMID: 36839389 PMCID: PMC9967064 DOI: 10.3390/nu15041031] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory disease of the intestine that can be classified as ulcerative colitis (UC) and Crohn's disease (CD). Currently, the incidence of IBD is still increasing in developing countries. However, current treatments for IBD have limitations and do not fully meet the needs of patients. There is a growing demand for new, safe, and highly effective alternative drugs for IBD patients. Natural products (NPs) are used in drug development and disease treatment because of their broad biological activity, low toxicity, and low side effects. Numerous studies have shown that some NPs have strong therapeutic effects on IBD. In this paper, we first reviewed the pathogenesis of IBD as well as current therapeutic approaches and drugs. Further, we summarized the therapeutic effects of 170 different sources of NPs on IBD and generalized their modes of action and therapeutic effects. Finally, we analyzed the potential mechanisms of NPs for the treatment of IBD. The aim of our review is to provide a systematic and credible summary, thus supporting the research on NPs for the treatment of IBD and providing a theoretical basis for the development and application of NPs in drugs and functional foods.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
- Correspondence: ; Tel.: +86-010-6238-8926
| |
Collapse
|
29
|
Xiong X, Cheng Z, Zhou Y, Wu F, Xie L, Lawless L, Dong R, Zhao Y, Yu L, Chen G. HuanglianGanjiang Tang alleviates DSS-induced colitis in mice by inhibiting necroptosis through vitamin D receptor. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115655. [PMID: 35988837 DOI: 10.1016/j.jep.2022.115655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE HuanglianGanjiang Tang (HGT) is a classic prescription of traditional Chinese medicine (TCM) recorded in Dan Xi Xin Fa, which was used to alleviate manifestations like diarrhea, abdominal pain and hemafecia. In current clinical practices, HGT is adopted for the treatment of ulcerative colitis (UC) and affords good curative effect. However, the underlying mechanism deserves further elucidation. AIM OF THE STUDY UC is a hard-to-curable and easy-to-recurrent inflammatory disease. This study is to evaluate the potential therapeutics and explore the molecular mechanism of HGT on UC in the mouse model. MATERIALS AND METHODS The components of HGT extracts were identified by HPLC. The colitis of mice was induced by 3% (w./v.) dextran sulfate sodium (DSS). The HGT decoction was prepared through boiling and centrifuging. The mice were given HGT decoction via oral gavage (0.34 g/ml & 0.68 g/ml; 5 ml/kg b.w.). The protective role of HGT on colitis mice was evaluated by body weight change, colon length, disease activity index (DAI) and histological scores. The expressions of necroptosis-related and vitamin D receptor (VDR)-related proteins were measured by Western blot, RT-qPCR and immunofluorescence. RESULTS HGT could significantly reduce the loss of body weight and colon length in colitis mice, and alleviated the DAI and histological scores. Mechanically, HGT also promoted the expression of E-cadherin, Occludin, ZO-1 and VDR, and reduced the level of intestinal inflammatory cytokines, such as, IL-6, IL-1β and TNF-α. Besides, HGT downregulated the protein level of p-RIPK3, p-RIPK1 and p-MLKL while upregulated the protein level of Caspase-8 in colon tissue compared to the model group. CONCLUSION Our study addressed that HGT can alleviate DSS-induced colitis of mice through inhibiting colonic necroptosis by upregulating the level of VDR.
Collapse
Affiliation(s)
- Xinyu Xiong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhe Cheng
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Lauren Lawless
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Ruolan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingling Yu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
30
|
Hu L, Wang J, Wu N, Zhao X, Cai D. Utilizing network pharmacology and experimental validation to investigate the underlying mechanism of phellodendrine on inflammation. PeerJ 2022; 10:e13852. [PMID: 36172495 PMCID: PMC9512003 DOI: 10.7717/peerj.13852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/16/2022] [Indexed: 01/18/2023] Open
Abstract
Background Phellodendrine, one of the characteristic and important active components of Cortex phellodendri, has been proven to show anti-inflammatory effects. However, the underlying mechanism of phellodendrine on inflammation remains largely unclear. Aim of the study In this study, network pharmacology and experimental validation were used to explore the underlying mechanism of phellodendrine on inflammation. Materials and Methods PubChem and SwissADME database were used to evaluate the drug-likeness and other characteristics of phellodendrine. The targets of phellodendrine for the treatment of inflammation were analyzed with multiple databases. Other extensive analyses including protein-protein interaction, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment were accomplished with the STRING database, Cytoscape software, and DAVID database. Moreover, the effect of phellodendrine on anti-inflammation was proven in RAW264.7. Results The network pharmacology results indicated that phellodendrine had drug potential. Phellodendrine acted directly on 12 targets, including PTGS1, PTGS2, HTR1A, and PIK3CA, and then regulated cAMP, estrogen, TNF, serotonergic synapse, and other signaling pathways to exert anti-inflammatory effects. The experimental results showed that phellodendrine reduced the levels of IL-6 compared with the LPS group in 24 h and changed the mRNA expression of PTGS1, PTGS2, HSP90ab1, AKT1, HTR1A, PI3CA, and F10. Conclusion Our research preliminarily uncovered the therapeutic mechanisms of phellodendrine on inflammation with multiple targets and pathways. Phellodendrine may be a potential treatment for inflammation-related diseases related to the cAMP and TNF signaling pathways.
Collapse
Affiliation(s)
- Lili Hu
- Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jue Wang
- Shanxi University of Chinese Medicine, Jinzhong, China
| | - Na Wu
- Shanxi University of Chinese Medicine, Jinzhong, China
| | | | - Donghui Cai
- Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
31
|
Nasr M, Cavalu S, Saber S, Youssef ME, Abdelhamid AM, Elagamy HI, Kamal I, Gaafar AGA, El-Ahwany E, Amin NA, Girgis S, El-Sandarosy R, Mahmoud F, Rizk H, Mansour M, Hasaballah A, El-Rafi AA, El-Azez RA, Essam M, Mohamed D, Essam N, Mohammed OA. Canagliflozin-loaded chitosan-hyaluronic acid microspheres modulate AMPK/NF-κB/NLRP3 axis: A new paradigm in the rectal therapy of ulcerative colitis. Biomed Pharmacother 2022; 153:113409. [DOI: 10.1016/j.biopha.2022.113409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022] Open
|
32
|
Zhang S, Luo H, Tan D, Peng B, Zhong Z, Wang Y. Holism of Chinese herbal medicine prescriptions for inflammatory bowel disease: A review based on clinical evidence and experimental research. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154202. [PMID: 35665678 DOI: 10.1016/j.phymed.2022.154202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic nonspecific inflammatory disease that causes a heavy burden and lacks effective treatments. Chinese herbal medicine prescriptions (CHMPs), which are characterized by a synergistic usage of herbs, are widely used in the management of IBD. The molecular mechanisms of action of CHMP are still ambiguous as the canonical "one-compound-one-target" approach has difficulty describing the dynamic bioreactions among CHMP objects. It seems more flexible to define the holism of CHMP for IBD by employing high-throughput analysis. However, studies that discuss the development of CHMP in treating IBD in a holistic view are still lacking. PURPOSE This review appraised preclinical and clinical research to fully describe the anti-IBD capacity of CHMPs and discussed CHMPs' holistic characteristics that can contribute to better management of IBD. METHODS & RESULTS We screened clinical and preclinical references of CHMP being used as treatments for IBD. We discussed the complexity of IBD and the development of CHMP to present the sophistication of CHMP treatments. To describe the clinical effectiveness of CHMPs against IBD, we performed an umbrella review of CHMP-associated META analyses, in which 1174 records were filtered down to 12 references. Then, we discussed 14 kinds of CHMPs that had a long history of use and analyzed their mechanisms of action. Representative herbs were employed to provide a subordinate explanation for the whole prescription. As holism is the dominant characteristic of CHMPs, we explored applications of CHMPs for IBD with the help of omics, gut microbiome, and network pharmacology, which are potential approaches to a dynamic figure of bioactions of CHMPs. CONCLUSION This review is the first to discuss the potential of CHMPs to manage IBD in a holistic context and will provide inspiring explanations for CHMP applications for further product transformation and application to other diseases.
Collapse
Affiliation(s)
- Siyuan Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Dechao Tan
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Bo Peng
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
33
|
Wen SS, Zhou HS, Zhu CS, Li P, Gao W. Direct infusion electrospray ionization-ion mobility-mass spectrometry for rapid metabolite marker discovery of medicinal Phellodendron Bark. J Pharm Biomed Anal 2022; 219:114939. [PMID: 35908412 DOI: 10.1016/j.jpba.2022.114939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
Ion-mobility mass spectrometry (IM-MS) currently serves as a powerful tool for the structural identification of numerous biological compounds and small molecules. In this work, rapid metabolomic analysis of closely-related herbal medicines by direct injection ion mobility-quadrupole time-of-flight mass spectrometry (DI-IM-QTOF MS) was established. Phellodendron chinense Bark (PC) and Phellodendron amurense Bark (PA) were studied as a case. Thirty-three batches of PC and twenty-two batches of PA have been directly injected in electrospray ionization-IM-QTOF MS in positive mode. Without chromatographic separation, each run was completed within 3 min. After data alignment and statistical analysis, a total of seven chemical markers were found (p-value < 0.05, VIP > 1.00). Among them, the ion m/z 342.17 and m/z 356.18 present a single peak in the drift spectrum, respectively, but their drift time has a certain deviation compared with the pure substance of known compounds. In addition, the MS/MS spectra also confirmed that the single peak includes two chemical isomers. To investigate the composition ratio of individual isomers, the calibration curves of relative drift time (rDT) based on the standard superposition method were established, which were found to fit the least square regression. The ion [M]+m/z 342.17 was recognized consisting of magnoflorine (MAG) and phellodendrine (PHE), and their composition ratio in PA and PC samples was calculated. The results were compared with those obtained by the HPLC quantitative method, which produced equivalent quantification results. Our DI-IM-QTOF MS methodology provides an additional methodology for the relative quantification of unresolved isomers in drift tube IM-MS and offers DI-IM-QTOF MS based metabolomics.
Collapse
Affiliation(s)
- Shan-Shan Wen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hong-Shan Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Chuan-Sheng Zhu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
34
|
Xu P, Lin B, Deng X, He S, Chen N, Wang N. Anti-osteoporosis effects of Anemarrhenae Rhizoma / Phellodendri Chinensis Cortex herb pair and its major active components in diabetic rats and zebrafish. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115269. [PMID: 35398497 DOI: 10.1016/j.jep.2022.115269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anemarrhenae Rhizoma/Phellodendri Chinensis Cortex (AR/PCC) herb pair has been widely used in traditional Chinese medicines for the treatment of diabetic osteoporosis. However, the anti-diabetic osteoporotic active components of AR/PCC remain unclear. This study aimed to explore the major active ingredients in AR/PCC for its protective effects against bone deterioration induced by diabetes. MATERIALS AND METHODS The aqueous extracts of AR/PCC with different proportions (AR:PCC = 1:3, 1:2, 1:1, 2:1 and 3:1, w/w) were prepared. Streptozotocin-induced diabetic rats were orally administrated with the AR/PCC extracts. The absorbed phytochemical compounds in serum of diabetic rats were identified by ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry method and their contents in the AR/PCC extracts were determined by high performance liquid chromatography-ultraviolet detector-evaporative light scattering detector method. The absorbed compounds in the extracts were considered as the major potential active components in AR/PCC, and their combination was defined as M-AR/PCC. A component-knockout approach was applied to evaluate the contribution of each compound in M-AR/PCC. The larvae and adults of diabetic zebrafish models were then used to evaluated the anti-diabetic osteoporotic performance of the M-AR/PCC. The real-time reverse transcription polymerase chain reaction technique was applied to study the regulation effects of M-AR/PCC on osteogenesis and osteoclastgensis in diabetic zebrafish models. RESULTS The phenotypes of diabetic osteoporosis rats induced by streptozotocin were reversed by the oral administration of AR/PCC extracts with different ratios, as evidenced by the increased bone mineral density, bone volume density, trabecular thickness, trabecular number, and decreased trabecular separation of femoral metaphysis. Seven phytochemical compounds were detected in the serum and their contents in AR/PCC varied dramatically with different proportions, including 1 xanthone glycoside and 6 alkaloids. By using diabetic zebrafish larvae model and compound-knockout strategy, each compound in M-AR/PCC were proved to play an indispensable role in the positive regulatory actions in the bone mass of diabetic zebrafish. Furthermore, the herb pair with a ratio of 1:1 and the related M-AR/PCC showed the best therapeutic effects on diabetic osteoporosis. They showed similar performances on the inhibition of the tartrate-resistant acid phosphatase activity and the promotion of the alkaline phosphatase activity in diabetic adult zebrafish model. The M-AR/PCC treatment could decrease the blood glucose, upregulate the mRNA expression levels of osteoblast-related genes (alp, runx2b and opg) and downregulate the expression of osteoclast-related genes (acp5α, rankl and sost) in streptozotocin-induced zebrafish. CONCLUSION AR/PCC herb pair and its major active components possess potent anti-diabetic osteoporotic effect on streptozotocin-induced in vivo models. The combination of the seven active compounds derived from AR/PCC herbal pair could be a potential agent for protection against osteoporosis associated with diabetes.
Collapse
Affiliation(s)
- Pingcui Xu
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China.
| | - Bingfeng Lin
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China.
| | - Xuehui Deng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311400, China.
| | - Shiwei He
- Zhejiang Science and Technology Project Management and Service Center, Hangzhou, Zhejiang, 310007, China.
| | - Ning Chen
- Zhejiang Science and Technology Project Management and Service Center, Hangzhou, Zhejiang, 310007, China.
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China.
| |
Collapse
|
35
|
Tian R, Liu X, Jing L, Yang L, Xie N, Hou Y, Tao H, Tao Y, Wu J, Meng X. Huang-Lian-Jie-Du decoction attenuates cognitive dysfunction of rats with type 2 diabetes by regulating autophagy and NLRP3 inflammasome activation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115196. [PMID: 35337922 DOI: 10.1016/j.jep.2022.115196] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Lian-Jie-Du decoction (HLJDD) is a traditional Chinese formula that is efficacious in treating diabetes mellitus, Alzheimer's disease, and diabetic encephalopathy; the underlying mechanisms of HLJDD in diabetes-associated cognitive dysfunction remain unclear. AIM OF THE STUDY This study investigated the neuroprotective effects of HLJDD on cognitive function, and the possible underlying mechanisms in type 2 diabetes mellitus (T2DM) in a rat model of cognitive impairment. MATERIALS AND METHODS Twelve active ingredients in HLJDD were detected using high-performance liquid chromatography analysis. An animal model of cognitive dysfunction in T2DM was induced via a high-sugar and high-fat diet combined with a low dose of streptozotocin. Sprague-Dawley rats were randomly divided into six groups: control, T2DM, metformin (0.34 g/kg/day), and HLJDD groups (3, 1.5, and 0.75 g/kg/day). All treatments were intragastrically administrated for nine continuous weeks after the development of T2DM. Body weight, food and water intake, fasting blood glucose, insulin sensitivity, and blood lipid levels were measured. Spatial learning and memory of the rats were assessed using the Morris water maze test. Hematoxylin and eosin and Nissl staining were performed to evaluate neuronal morphology and vitality. Glutathione, malondialdehyde, and superoxide dismutase levels were measured to determine the level of oxidative stress in the hippocampus. Transmission electron microscopy was performed to observe the synaptic morphology and structure of hippocampal neurons. IL-1β levels in the hippocampus and cerebrospinal fluid were determined. The protein expression of NLRP3, cleaved caspase-1, mature IL-1β, ATG7, P62, LC3, and brain-derived neurotrophic factor (BDNF) was determined using western blotting and immunofluorescence analysis. RESULTS HLJDD attenuated cognitive dysfunction in rats with T2DM as shown by the decreased escape latency, increased times crossing the platform and time spent in the target quadrant in the Morris water maze test (P < 0.05), improvement in hippocampal histopathological changes, and an elevated level of cell vitality. HLJDD treatment also reduced blood glucose and lipid levels, ameliorated oxidative stress, and downregulated IL-1β expression in the hippocampus and cerebrospinal fluid (P < 0.05). Moreover, HLJDD enhanced BDNF, ATG7, and LC3 protein expression and significantly inhibited the expression of P62, NLRP3, cleaved caspase-1, and mature IL-1β in the hippocampal CA1 region (P < 0.05). Immunofluorescence results further confirmed that the fluorescence intensity of NLRP3 and P62 in the hippocampus decreased after HLJDD intervention (P < 0.05). CONCLUSIONS HLJDD ameliorated cognitive dysfunction in T2DM rats. The neuroprotective effect is exerted via the modulation of glucose and lipid metabolism, upregulation of autophagy, and inhibition of NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Ruimin Tian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacology, North Sichuan Medical College, Nanchong, 637000, China
| | - Xianfeng Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lijia Jing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Na Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiwen Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
36
|
Zhang JJ, Zhou R, Deng LJ, Cao GZ, Zhang Y, Xu H, Hou JY, Ju S, Yang HJ. Huangbai liniment and berberine promoted wound healing in high-fat diet/Streptozotocin-induced diabetic rats. Biomed Pharmacother 2022; 150:112948. [PMID: 35430394 DOI: 10.1016/j.biopha.2022.112948] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetic ulcer is a challenging complication of diabetes mellitus but current treatments cannot achieve satisfactory results. In this study, the effect of Huangbai liniment (HB) and berberine on the wound healing in high fat diet/streptozotocin injection induced diabetic rats was investigated by RNA-seq technology. HB topical treatment promoted wound healing in the diabetic patients and diabetic rats, and it affected multiple processes, of which IL-17 signalling pathway was of importance. Inhibiting IL-17a by its inhibitor or antibody remarkably facilitated wound healing and HB significantly repressed the high IL-17 expression and its downstream targets, including Cxcl1, Ccl2, Mmp3, Mmp9, G-CSF, IL1B and IL6, in diabetic wounds, promoted T-AOC, SOD activity and GSH levels; decreased the levels of nitrotyrosine and 8-OHdG; enhanced angiogenesis-related CD31, PDGF-BB and ANG1 expression; inhibited cleaved caspase-3 levels and promoted TIMP1 and TGFB1. Moreover, berberine (a major component in HB) repressed the IL-17 signalling pathway, and promoted wound healing in diabetes mellitus. This study highlights the strategy of targeting IL-17a in diabetic wounds, deepens the understanding of wound healing in diabetes mellitus in a dynamic way and reveals the characteristics of HB and berberine in promoting wound healing of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li-Juan Deng
- Beijing University of Chinese Medicine, Beijing 100105, China
| | - Guang-Zhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing-Yi Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shang Ju
- Dongzhimen Hospital, Beijing University of Chinese Medicine, 100007, China.
| | - Hong-Jun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Experimental Research Centre, China Academy of Chinese Medical Science, 100007, China.
| |
Collapse
|
37
|
Yan S, Wei H, Jia R, Zhen M, Bao S, Wang W, Liu F, Li J. Wu-Mei-Wan Ameliorates Murine Ulcerative Colitis by Regulating Macrophage Polarization. Front Pharmacol 2022; 13:859167. [PMID: 35387334 PMCID: PMC8978603 DOI: 10.3389/fphar.2022.859167] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
An increasing body of evidence shows that macrophages play an important role in the pathogenesis of ulcerative colitis (UC). Macrophage polarization and changes in related signaling pathways are reported to have a protective effect on intestinal inflammation. The well-known Chinese medicine Wumeiwan (WMW) has been used to treat diarrhea, one of the main symptoms of colitis, for more than 2,000 years. Increasing evidence shows that WMW can inhibit intestinal inflammation and repair damaged intestinal mucosa, but its effector mechanisms are unknown. Therefore, we studied the prophylactic effects of WMW in dextran sulfate sodium (DSS)-induced UC and its effects on macrophage mechanisms and polarization. The results show that colitis was significantly alleviated in mice in the WMW group, and the secretion and expression of pro-inflammatory factors TNF-α, IL-1, and IL-6 were inhibited in the serum and colonic tissues of mice with WMW-treated colitis, whereas anti-inflammatory factors IL-10, Arg-1, and TGF-β1 were increased. Subsequent studies found that WMW could inhibit M1 polarization and promote M2 polarization in colonic macrophages in DSS-induced colitis mice. Network pharmacology was used to predict potential targets and pathways, and further studies confirmed the related targets The results showed that WMW gradually inhibits the activation of the P38MAPK and NF-κB signaling pathways and further activates the STAT6 signaling pathway. In summary, WMW interferes with the p38MAPK, NF-κB and STAT6 signaling pathways to regulate M1/M2 polarization in macrophages, thereby protecting mice against DSS-induced colitis.
Collapse
Affiliation(s)
- Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hailiang Wei
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of General Surgery, The Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Rui Jia
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Meijia Zhen
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shengchuan Bao
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wenba Wang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China.,Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fanrong Liu
- Department of Gastroenterology, Yulin Hospital of Traditional Chinese Medicine in Shaanxi Province, Yulin, China
| | - Jingtao Li
- Key Laboratory of Gastrointestinal Diseases and Prescriptions in Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, China.,Departments of Infectious Disease, The Affliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
38
|
Li H, Pang B, Nie B, Qu S, Zhang K, Xu J, Yang M, Liu J, Li S. Dioscin promotes autophagy by regulating the AMPK-mTOR pathway in ulcerative colitis. Immunopharmacol Immunotoxicol 2022; 44:238-246. [PMID: 35174751 DOI: 10.1080/08923973.2022.2037632] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dioscin is reported to alleviate the dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in mice. Autophagy plays an anti-inflammatory role in UC. We herein aimed to explore the biological functions of dioscin in autophagy in UC. METHODS To explore the effects of dioscin on UC progression, a DSS-induced mouse model of UC was established. Body weight, disease activity index and macroscopic damage index scores were recorded for seven days. Hematoxylin & Eosin (HE) staining was used to stain colon sections and an BX53 microscope was prepared to observe pathological changes. The activities of glutathione, superoxidative dismutase, and malondialdehyde were determined by commercially available kits. Western blotting was performed to measure the protein levels of p-AMPK/AMPK, p-mTOR/mTOR and autophagy-related genes. RESULTS The DSS-induced colitis and oxidative stress in mice were ameliorated after dioscin treatment. Dioscin promoted the phosphorylation of AMPK to inhibit mTOR activation and facilitated autophagy in DSS-induced mice model of UC. CONCLUSION Dioscin promotes autophagy by promoting the phosphorylation of AMPK to inhibit mTOR activation in ulcerative colitis.
Collapse
Affiliation(s)
- Han Li
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Bo Pang
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Bin Nie
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Shifang Qu
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Kuanxin Zhang
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jinxiu Xu
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Ming Yang
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jie Liu
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Shasha Li
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
39
|
Maimaiti A, Tuerhong M, Wang Y, Aisha M, Jiang L, Wang X, Mahemuti Y, Aili Y, Feng Z, Kasimu M. An innovative prognostic model based on autophagy-related long noncoding RNA signature for low-grade glioma. Mol Cell Biochem 2022; 477:1417-1438. [DOI: 10.1007/s11010-022-04368-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022]
|
40
|
Jiang M, Cao J, Zhang C, Su B, Wang S, Ning N, Lei T, Li P. A comprehensive strategy for quality evaluation of Wushe Zhiyang Pills by integrating UPLC-DAD fingerprint and multi-ingredients rapid quantitation with UPLC-MS/MS technology. J Pharm Biomed Anal 2021; 210:114556. [PMID: 34979493 DOI: 10.1016/j.jpba.2021.114556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/18/2022]
Abstract
Wushe Zhiyang Pills (WZP), a classical traditional Chinese medicine (TCM) formula, has been extensively used for the treatment of chronic urticaria and other relevant dermatologic diseases. In this study, a holistic method combining ultra-performance liquid chromatography coupled with diode array detector (UPLC-DAD) fingerprint and multi-components quantitative analysis was developed and validated for quality evaluation of WZP. As a result, a total of 34 characteristic peaks were screened to assess the chemical similarities of 16 batches of WZP samples. By coupling with a hybrid linear ion trap (LTQ)-Orbitrap mass spectrometer, 163 compounds were identified or tentatively identified in WZP. Furthermore, a rapid quantitative analysis method based on ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) technique was optimized and validated for simultaneously determination of 16 chemical markers within 13 min in WZP. The developed UPLC-MS/MS approach was successfully employed for analysis of 16 batches of WZP samples. The proposed comprehensive method combining holistic chemical profile with notable target compounds has proved to be suitable for the systematical quality evaluation of WZP, which provides a feasible and efficient strategy to monitor the overall quality consistency of TCM formulae.
Collapse
Affiliation(s)
- Maoyuan Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jiliang Cao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Chunbo Zhang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou, China
| | - Biru Su
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Na Ning
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou, China
| | - Ting Lei
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
41
|
Meng Q, Cheng Y, Zhou C. Pharmacokinetic interaction between rhynchopylline and pellodendrine via CYP450 enzymes and P-gp. PHARMACEUTICAL BIOLOGY 2021; 59:1551-1555. [PMID: 34757861 PMCID: PMC8583760 DOI: 10.1080/13880209.2021.1999988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 06/04/2023]
Abstract
CONTEXT Rhynchopylline and pellodendrine are major extractions of commonly used Chinese medicine in gynaecology. The interaction between these two compounds could affect treatment efficiency and even result in toxicity during their co-administration in gynaecological prescription. OBJECTIVE The pharmacokinetic interaction between rhynchopylline and pellodendrine and the potential mechanism were investigated in this study. MATERIALS AND METHODS Sprague-Dawley rats were randomly divided into four groups to investigate the pharmacokinetic interaction between rhynchopylline (30 mg/kg) and pellodendrine (20 mg/kg) with single dose of these two drugs as the control. The transport of rhynchopylline was evaluated in the Caco-2 cell model. Additionally, the metabolic stability and the activity of corresponding CYP450 enzymes were assessed in rat liver microsomes. RESULTS The pharmacokinetic profile of rhynchopylline was dramatically affected by pellodendrine with the increased area under the pharmacokinetic curve (3080.14 ± 454.54 vs. 1728.08 ± 220.598 μg/L*h), Cmax (395.1 ± 18.58 vs. 249.1 ± 16.20 μg/L), prolonged t1/2 (9.74 ± 2.94 vs. 4.81 ± 0.42 h) and the reduced clearance rate (from 11.39 ± 1.37 to 5.67 ± 1.42 L/h/kg). No significant changes were observed in the pharmacokinetics of pellodendrine. The transport of rhynchopylline was significantly inhibited by pellodendrine with a decreasing efflux ratio (1.43 vs. 1.79). Pellodendrine significantly inhibited the activity of CYP1A2 and CYP2C9 with IC50 values of 22.99 and 16.23 μM, which are critical enzymes responsible for the metabolism of rhynchopylline. DISCUSSION AND CONCLUSIONS The adverse interaction between rhynchopylline and pellodendrine draws attention to the co-administration of these two herbs and provides a reference for further investigations with a broader study population.
Collapse
Affiliation(s)
- Qingzhen Meng
- Department of Intravenous Drug Allocation, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Yongheng Cheng
- Outpatient Pharmacy, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Cui Zhou
- Department of Intravenous Drug Allocation, Weifang Maternal and Child Health Hospital, Weifang, China
| |
Collapse
|
42
|
Su S, Wang X, Xi X, Zhu L, Chen Q, Zhang H, Qin Y, Yang B, Che N, Cao H, Zhong W, Wang B. Phellodendrine promotes autophagy by regulating the AMPK/mTOR pathway and treats ulcerative colitis. J Cell Mol Med 2021; 25:5707-5720. [PMID: 34002930 PMCID: PMC8184668 DOI: 10.1111/jcmm.16587] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
To investigate the therapeutic effects of phellodendrine in ulcerative colitis (UC) through the AMPK/mTOR pathway. Volunteers were recruited to observe the therapeutic effects of Compound Cortex Phellodendri Liquid (Huangbai liniment). The main components of Compound Cortex Phellodendri Liquid were analysed via network pharmacology. The target of phellodendrine was further analysed. Caco-2 cells were cultured, and H2 O2 was used to stimulate in vitro cell model. Expression levels of LC3, AMPK, p-AMPK, mTOR and p-mTOR were detected via Western blotting and through immunofluorescence experiments. The therapeutic effects of phellodendrine were analysed via expression spectrum chip sequencing. The sequencing of intestinal flora further elucidated the therapeutic effects of phellodendrine. Compared with the control group, Compound Cortex Phellodendri Liquid could substantially improve the healing of intestinal mucosa. Network pharmacology analysis revealed that phellodendrine is the main component of Compound Cortex Phellodendri Liquid. Moreover, this alkaloid targets the AMPK signalling pathway. Results of animal experiments showed that phellodendrine could reduce the intestinal damage of UC compared with the model group. Findings of cell experiments indicated that phellodendrine treatment could activate the p-AMPK /mTOR signalling pathway, as well as autophagy. Expression spectrum chip sequencing showed that treatment with phellodendrine could promote mucosal healing and reduce inflammatory responses. Results of intestinal flora detection demonstrated that treatment with phellodendrine could increase the abundance of flora and the content of beneficial bacteria. Phellodendrine may promote autophagy by regulating the AMPK-mTOR signalling pathway, thereby reducing intestinal injury due to UC.
Collapse
Affiliation(s)
- Shuai Su
- Department of Gastroenterology and HepatologyTianjin Medical University General HospitalTianjin Institute of Digestive DiseaseTianjinChina
| | - Xin Wang
- Department of Gastroenterology and HepatologyTianjin Medical University General HospitalTianjin Institute of Digestive DiseaseTianjinChina
| | - Xiaonan Xi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Lanping Zhu
- Department of Gastroenterology and HepatologyTianjin Medical University General HospitalTianjin Institute of Digestive DiseaseTianjinChina
| | - Qiuyu Chen
- Department of Gastroenterology and HepatologyTianjin Medical University General HospitalTianjin Institute of Digestive DiseaseTianjinChina
| | - Hongxia Zhang
- Department of Gastroenterology and HepatologyTianjin Medical University General HospitalTianjin Institute of Digestive DiseaseTianjinChina
| | - Yuan Qin
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Boli Yang
- Department of Gastroenterology and HepatologyTianjin Medical University General HospitalTianjin Institute of Digestive DiseaseTianjinChina
| | - Na Che
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Hailong Cao
- Department of Gastroenterology and HepatologyTianjin Medical University General HospitalTianjin Institute of Digestive DiseaseTianjinChina
| | - Weilong Zhong
- Department of Gastroenterology and HepatologyTianjin Medical University General HospitalTianjin Institute of Digestive DiseaseTianjinChina
| | - Bangmao Wang
- Department of Gastroenterology and HepatologyTianjin Medical University General HospitalTianjin Institute of Digestive DiseaseTianjinChina
| |
Collapse
|