1
|
Song J, Chen Y, Chen Y, Qiu M, Xiang W, Ke B, Fang X. DKK3 promotes renal fibrosis by increasing MFF-mediated mitochondrial dysfunction in Wnt/β-catenin pathway-dependent manner. Ren Fail 2024; 46:2343817. [PMID: 38682264 PMCID: PMC11060011 DOI: 10.1080/0886022x.2024.2343817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) lacks effective treatments and renal fibrosis (RF) is one of CKD's outcomes. Dickkopf 3 (DKK3) has been identified as an agonist in CKD. However, the underlying mechanisms of DKK3 in CKD are not fully understood. METHODS H2O2-treated HK-2 cells and ureteric obstruction (UUO) mice were used as RF models. Biomarkers, Masson staining, PAS staining, and TUNEL were used to assess kidney function and apoptosis. Oxidative stress and mitochondria function were also evaluated. CCK-8 and flow cytometry were utilized to assess cell viability and apoptosis. Western blotting, IHC, and qRT-PCR were performed to detect molecular expression levels. Immunofluorescence was applied to determine the subcellular localization. Dual luciferase assay, MeRIP, RIP, and ChIP were used to validate the m6A level and the molecule interaction. RESULTS DKK3 was upregulated in UUO mouse kidney tissue and H2O2-treated HK-2 cells. Knockdown of DKK3 inhibited oxidative stress, maintained mitochondrial homeostasis, and alleviated kidney damage and RF in UUO mice. Furthermore, DKK3 silencing suppressed HK-2 cell apoptosis, oxidative stress, and mitochondria fission. Mechanistically, DKK3 upregulation was related to the high m6A level regulated by METTL3. DKK3 activated TCF4/β-catenin and enhanced MFF transcriptional expression by binding to its promoter. Overexpression of MFF reversed in the inhibitory effect of DKK3 knockdown on cell damage. CONCLUSION Upregulation of DKK3 caused by m6A modification activated the Wnt/β-catenin pathway to increase MFF transcriptional expression, leading to mitochondrial dysfunction and oxidative stress, thereby promoting RF progression.
Collapse
Affiliation(s)
- Jianling Song
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Yanxia Chen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Yan Chen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Minzi Qiu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Wenliu Xiang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, P.R. China
| |
Collapse
|
2
|
Yi Z, Liu P, Zhang Y, Mamuti D, Zhou W, Liu Z, Chen Z. METTL3 aggravates renal fibrogenesis in obstructive nephropathy via the miR-199a-3p/PAR4 axis. Eur J Pharmacol 2024; 982:176931. [PMID: 39182553 DOI: 10.1016/j.ejphar.2024.176931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/11/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Renal fibrosis is among the major factors contributing to the development of chronic kidney disease. In this regard, although N6-methyladenosine (m6A) modification and micro-RNAs (miRNAs) have been established to play key roles in diverse physiological processes and disease/disorder development, further research is required to identify the probable mechanisms and processes associated with their involvement in renal fibrosis. In this study, we show that transforming growth factor β1 (TGF-β1)-induced human proximal tubule epithelial cells (HK2) are characterized by dose-dependently higher methyltransferase-like 3 (METTL3) expression. Furthermore, METTL3 was found to enhance pri-miR-199a-3p maturation and miR-199a-3p expression in an m6A-dependent manner, whereas miR-199a-3p sponges prostate apoptotic response 4 (Par4), thereby regulating its expression. Collectively, our findings in this study indicate that the METTL3/miR-199a-3p/Par4 axis plays a key role in the development of obstructive nephrogenic fibrosis.
Collapse
Affiliation(s)
- Zhenglin Yi
- Departments of Urology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Peihua Liu
- Departments of Urology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yinfan Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China; Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Dilishati Mamuti
- The Sixth Clinical Medical College Hospital, Xinjiang Medical University, Urumchi, China
| | - Weimin Zhou
- Departments of Urology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Zhi Liu
- Departments of Urology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Zhi Chen
- Departments of Urology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
3
|
Fang X, Lu X, Ma Y, Sun N, Jiao Y, Meng H, Song M, Jin H, Yao G, Song N, Wu Z, Wen S, Guo H, Xiong H, Song W. Possible involvement of a MEG3-miR-21-SPRY1-NF-κB feedback loop in spermatogenic cells proliferation, autophagy, and apoptosis. iScience 2024; 27:110904. [PMID: 39398251 PMCID: PMC11467676 DOI: 10.1016/j.isci.2024.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/20/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is the most incurable form of male infertility with a complex etiology. Long non-cording RNAs (lncRNAs) were associated with regulating spermatogenesis. Herein, differentially expressed lncRNAs between NOA and control male were screened by RNA-seq analysis. MEG3 was upregulated in NOA tissues and inhibited cell proliferation and promoted cell autophagy and apoptosis in vitro. Through RNA immunoprecipitation (RIP), biotin pull-down assays, and dual-luciferase reporter assays, MEG3 was proved to act as a competing endogenous RNA of microRNA (miR)-21 and thus influenced the SPRY1/ERK/mTOR signaling pathway. Additionally, bioinformatic prediction and chip assay revealed that MEG3 was possibly regulated by nuclear factor κB (NF-κB) and SPRY1/NF-κB/MEG3 formed a feedback loop. Seminiferous tubule microinjection further investigated the effects of MEG3 on testes in vivo. These findings demonstrated that MEG3-miR-21-SPRY1-NF-κB probably acted as a feedback loop leading to azoospermia. Our study might provide a target and theoretical basis for diagnosing and treating NOA.
Collapse
Affiliation(s)
- Xingyu Fang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaotong Lu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yujie Ma
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ning Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yunyun Jiao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hui Meng
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengjiao Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Haixia Jin
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guidong Yao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ning Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhaoting Wu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuang Wen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Haoran Guo
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haosen Xiong
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wenyan Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
4
|
Zhou Y, Jian N, Jiang C, Wang J. m 6A modification in non-coding RNAs: Mechanisms and potential therapeutic implications in fibrosis. Biomed Pharmacother 2024; 179:117331. [PMID: 39191030 DOI: 10.1016/j.biopha.2024.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
N6-methyladenosine (m6A) is one of the most prevalent and reversible forms of RNA methylation, with increasing evidence indicating its critical role in numerous physiological and pathological processes. m6A catalyzes messenger RNA(mRNA) as well as regulatory non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs, and circular RNAs. This modification modulates ncRNA fate and cell functions in various bioprocesses, including ncRNA splicing, maturity, export, and stability. Key m6A regulators, including writers, erasers, and readers, have been reported to modify the ncRNAs involved in fibrogenesis. NcRNAs affect fibrosis progression by targeting m6A regulators. The interactions between m6A and ncRNAs can influence multiple cellular life activities. In this review, we discuss the impact of the interaction between m6A modifications and ncRNAs on the pathological mechanisms of fibrosis, revealing the possibility of these interactions as diagnostic markers and therapeutic targets in fibrosis.
Collapse
Affiliation(s)
- Yutong Zhou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ni Jian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China.
| |
Collapse
|
5
|
Liufu C, Luo L, Pang T, Zheng H, Yang L, Lu L, Chang S. Integration of multi-omics summary data reveals the role of N6-methyladenosine in neuropsychiatric disorders. Mol Psychiatry 2024; 29:3141-3150. [PMID: 38684796 DOI: 10.1038/s41380-024-02574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
N6-methyladenosine (m6A) methylation regulates gene expression/protein by influencing numerous aspects of mRNA metabolism and contributes to neuropsychiatric diseases. Here, we integrated multi-omics data and genome-wide association study summary data of schizophrenia (SCZ), bipolar disorder (BP), attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), major depressive disorder (MDD), Alzheimer's disease (AD), and Parkinson's disease (PD) to reveal the role of m6A in neuropsychiatric disorders by using transcriptome-wide association study (TWAS) tool and Summary-data-based Mendelian randomization (SMR). Our investigation identified 86 m6A sites associated with seven neuropsychiatric diseases and then revealed 7881 associations between m6A sites and gene expressions. Based on these results, we discovered 916 significant m6A-gene associations involving 82 disease-related m6A sites and 606 genes. Further integrating the 58 disease-related genes from TWAS and SMR analysis, we obtained 61, 8, 7, 3, and 2 associations linking m6A-disease, m6A-gene, and gene-disease for SCZ, BP, AD, MDD, and PD separately. Functional analysis showed the m6A mapped genes were enriched in "response to stimulus" pathway. In addition, we also analyzed the effect of gene expression on m6A and the post-transcription effect of m6A on protein. Our study provided new insights into the genetic component of m6A in neuropsychiatric disorders and unveiled potential pathogenic mechanisms where m6A exerts influences on disease through gene expression/protein regulation.
Collapse
Affiliation(s)
- Chao Liufu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lingxue Luo
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Tao Pang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Haohao Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- Research Units of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- Research Units of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| |
Collapse
|
6
|
Tan M, Liu S, Liu L. N6-methyladenosine (m6A) RNA modification in fibrosis and collagen-related diseases. Clin Epigenetics 2024; 16:127. [PMID: 39261973 PMCID: PMC11391634 DOI: 10.1186/s13148-024-01736-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
Fibrosis is an abnormal tissue healing process characterized by the excessive accumulation of ECM components, such as COL I and COL III, in response to tissue injury or chronic inflammation. Recent advances in epitranscriptomics have underscored the importance of m6A modification in fibrosis. m6A, the most prevalent modification in eukaryotic RNA, is catalyzed by methyltransferases (e.g., METTL3), removed by demethylases (e.g., FTO), and recognized by reader proteins (e.g., YTHDF1/2). These modifications are crucial in regulating collagen metabolism and associated diseases. Understanding the role of m6A modification in fibrosis and other collagen-related conditions holds promise for developing targeted therapies. This review highlights the latest progress in this area.
Collapse
Affiliation(s)
- Man Tan
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, No. 120, Longshan Road, Yubei District, Chongqing, China
| | - Siyi Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, No. 120, Longshan Road, Yubei District, Chongqing, China
| | - Lubin Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, China.
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, No. 120, Longshan Road, Yubei District, Chongqing, China.
| |
Collapse
|
7
|
Cai Y, Zhou J, Xu A, Huang J, Zhang H, Xie G, Zhong K, Wu Y, Ye P, Wang H, Niu H. N6-methyladenosine triggers renal fibrosis via enhancing translation and stability of ZEB2 mRNA. J Biol Chem 2024; 300:107598. [PMID: 39059495 PMCID: PMC11381876 DOI: 10.1016/j.jbc.2024.107598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, a surge in studies investigating N6-methyladenosine (m6A) modification in human diseases has occurred. However, the specific roles and mechanisms of m6A in kidney disease remain incompletely understood. This study revealed that m6A plays a positive role in regulating renal fibrosis (RF) by inducing epithelial-to-mesenchymal phenotypic transition (EMT) in renal tubular cells. Through comprehensive analyses, including m6A sequencing, RNA-seq, and functional studies, we confirmed the pivotal involvement of zinc finger E-box binding homeobox 2 (ZEB2) in m6A-mediated RF and EMT. Notably, the m6A-modified coding sequence of ZEB2 mRNA significantly enhances its translational elongation and mRNA stability by interacting with the YTHDF1/eEF-2 complex and IGF2BP3, respectively. Moreover, targeted demethylation of ZEB2 mRNA using the dm6ACRISPR system substantially decreases ZEB2 expression and disrupts the EMT process in renal tubular epithelial cells. In vivo and clinical data further support the positive influence of m6A/ZEB2 on RF progression. Our findings highlight the m6A-mediated regulation of RF through ZEB2, revealing a novel therapeutic target for RF treatment and enhancing our understanding of the impact of mRNA methylation on kidney disease.
Collapse
Affiliation(s)
- Yating Cai
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinchang Huang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haisheng Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guoyou Xie
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ke Zhong
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - You Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pengfei Ye
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Hongxin Niu
- Department of General Practice, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Fu K, Jing C, Shi J, Mao S, Lu R, Yang M, Chen Y, Qian B, Wang Y, Li L. WTAP and METTL14 regulate the m6A modification of DKK3 in renal tubular epithelial cells of diabetic nephropathy. Biochem Biophys Res Commun 2024; 738:150524. [PMID: 39151294 DOI: 10.1016/j.bbrc.2024.150524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Diabetic nephropathy (DN) is an important cause of death in diabetes patients, which is mainly due to its complex pathogenesis. Here, we explored the role of N6-methyladenosine (m6A) RNA methylation in DN development. Renal tubular epithelial cells from DN patients and experimental DN mice treated with streptozotocin (STZ) exhibited a considerable increase in METTL14 and WTAP expression as well as overall m6A methylation. Knocking down the expression of METTL14 and WTAP inhibited the migration and proliferation of tubular epithelial cells. MeRIP-seq analysis of the renal tissues of DN patients revealed that the genes with elevated m6A methylation were concentrated in the Wnt/β-Catenin signaling pathway. Dickkopf homolog 3 (DKK3) was screened out as the gene with the most significant increase in m6A methylation. In addition, the expression change pattern of DKK3 under DN circumstances is in line with those of METTL14 and WTAP. DKK3's m6A methylation sites were confirmed to be located in the 3'UTR region, which is how METTL14 and WTAP improved DKK3's mRNA stability. Finally, YTHDF1, a m6A reader, was demonstrated to recognize m6A-methylated DKK3 and promote DKK3 expression.
Collapse
Affiliation(s)
- Kang Fu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Chenyang Jing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Jinsong Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Shuya Mao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Rui Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Miao Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yang Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Bin Qian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yu Wang
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China.
| | - Limin Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
9
|
Gao R, Mao J. Noncoding RNA-Mediated Epigenetic Regulation in Hepatic Stellate Cells of Liver Fibrosis. Noncoding RNA 2024; 10:44. [PMID: 39195573 DOI: 10.3390/ncrna10040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Liver fibrosis is a significant contributor to liver-related disease mortality on a global scale. Despite this, there remains a dearth of effective therapeutic interventions capable of reversing this condition. Consequently, it is imperative that we gain a comprehensive understanding of the underlying mechanisms driving liver fibrosis. In this regard, the activation of hepatic stellate cells (HSCs) is recognized as a pivotal factor in the development and progression of liver fibrosis. The role of noncoding RNAs (ncRNAs) in epigenetic regulation of HSCs transdifferentiation into myofibroblasts has been established, providing new insights into gene expression changes during HSCs activation. NcRNAs play a crucial role in mediating the epigenetics of HSCs, serving as novel regulators in the pathogenesis of liver fibrosis. As research on epigenetics expands, the connection between ncRNAs involved in HSCs activation and epigenetic mechanisms becomes more evident. These changes in gene regulation have attracted considerable attention from researchers in the field. Furthermore, epigenetics has contributed valuable insights to drug discovery and the identification of therapeutic targets for individuals suffering from liver fibrosis and cirrhosis. As such, this review offers a thorough discussion on the role of ncRNAs in the HSCs activation of liver fibrosis.
Collapse
Affiliation(s)
- Ruoyu Gao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
10
|
Li C, Liu L, Li S, Liu YS. N 6-Methyladenosine in Vascular Aging and Related Diseases: Clinical Perspectives. Aging Dis 2024; 15:1447-1473. [PMID: 37815911 PMCID: PMC11272212 DOI: 10.14336/ad.2023.0924-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Aging leads to progressive deterioration of the structure and function of arteries, which eventually contributes to the development of vascular aging-related diseases. N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic RNAs. This reversible m6A RNA modification is dynamically regulated by writers, erasers, and readers, playing a critical role in various physiological and pathological conditions by affecting almost all stages of the RNA life cycle. Recent studies have highlighted the involvement of m6A in vascular aging and related diseases, shedding light on its potential clinical significance. In this paper, we comprehensively discuss the current understanding of m6A in vascular aging and its clinical implications. We discuss the molecular insights into m6A and its association with clinical realities, emphasizing its significance in unraveling the mechanisms underlying vascular aging. Furthermore, we explore the possibility of m6A and its regulators as clinical indicators for early diagnosis and prognosis prediction and investigate the therapeutic potential of m6A-associated anti-aging approaches. We also examine the challenges and future directions in this field and highlight the necessity of integrating m6A knowledge into patient-centered care. Finally, we emphasize the need for multidisciplinary collaboration to advance the field of m6A research and its clinical application.
Collapse
Affiliation(s)
- Chen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - Le Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Lee JE, Kim JY, Leem J. Efficacy of Trametinib in Alleviating Cisplatin-Induced Acute Kidney Injury: Inhibition of Inflammation, Oxidative Stress, and Tubular Cell Death in a Mouse Model. Molecules 2024; 29:2881. [PMID: 38930946 PMCID: PMC11206428 DOI: 10.3390/molecules29122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cisplatin, a platinum-based chemotherapeutic, is effective against various solid tumors, but its use is often limited by its nephrotoxic effects. This study evaluated the protective effects of trametinib, an FDA-approved selective inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK1/2), against cisplatin-induced acute kidney injury (AKI) in mice. The experimental design included four groups, control, trametinib, cisplatin, and a combination of cisplatin and trametinib, each consisting of eight mice. Cisplatin was administered intraperitoneally at a dose of 20 mg/kg to induce kidney injury, while trametinib was administered via oral gavage at 3 mg/kg daily for three days. Assessments were conducted 72 h after cisplatin administration. Our results demonstrate that trametinib significantly reduces the phosphorylation of MEK1/2 and extracellular signal-regulated kinase 1/2 (ERK1/2), mitigated renal dysfunction, and ameliorated histopathological abnormalities. Additionally, trametinib significantly decreased macrophage infiltration and the expression of pro-inflammatory cytokines in the kidneys. It also lowered lipid peroxidation by-products, restored the reduced glutathione/oxidized glutathione ratio, and downregulated NADPH oxidase 4. Furthermore, trametinib significantly inhibited both apoptosis and necroptosis in the kidneys. In conclusion, our data underscore the potential of trametinib as a therapeutic agent for cisplatin-induced AKI, highlighting its role in reducing inflammation, oxidative stress, and tubular cell death.
Collapse
Affiliation(s)
- Joung Eun Lee
- Department of Emergency Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Jung-Yeon Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| |
Collapse
|
12
|
He X, Tang B, Zou P, Song Z, Liu J, Pi Z, Xiao Y, Xiao R. m6A RNA methylation: The latent string-puller in fibrosis. Life Sci 2024; 346:122644. [PMID: 38614300 DOI: 10.1016/j.lfs.2024.122644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Fibrosis is a pathological phenomenon characterized by the aberrant accumulation of extracellular matrix (ECM) in tissues. Fibrosis is a universally age-related disease involving that many organs and is the final stage of many chronic inflammatory diseases, which often threaten the patient's health. Undoubtedly, fibrosis has become a serious economic and health burden worldwide, However, the pathogenesis of fibrosis is complex. Further, the key molecules still remain to be unraveled. Hence, so far, there have been no effective treatments designed against the key targets of fibrosis. The methylation modification on the nitrogen atom at position 6 of adenine (m6A) is the most common mRNA modification in mammals. There is increasing evidence that m6A is actively involved in the pathogenesis of fibrosis. This review aims to highlight m6A-associated mechanisms and functions in several organic fibrosis, which implies that m6A is universal and critical for fibrosis and summarize the outlook of m6A in the treatment of fibrosis. This may light up the unknown aspects of this condition for researchers interested to explore fibrosis further.
Collapse
Affiliation(s)
- Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Puyu Zou
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Zehong Song
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Zixin Pi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan.
| |
Collapse
|
13
|
Zhang Q, Li J, Wang C, Li Z, Luo P, Gao F, Sun W. N6-Methyladenosine in Cell-Fate Determination of BMSCs: From Mechanism to Applications. RESEARCH (WASHINGTON, D.C.) 2024; 7:0340. [PMID: 38665846 PMCID: PMC11045264 DOI: 10.34133/research.0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 04/28/2024]
Abstract
The methylation of adenosine base at the nitrogen-6 position is referred to as "N6-methyladenosine (m6A)" and is one of the most prevalent epigenetic modifications in eukaryotic mRNA and noncoding RNA (ncRNA). Various m6A complex components known as "writers," "erasers," and "readers" are involved in the function of m6A. Numerous studies have demonstrated that m6A plays a crucial role in facilitating communication between different cell types, hence influencing the progression of diverse physiological and pathological phenomena. In recent years, a multitude of functions and molecular pathways linked to m6A have been identified in the osteogenic, adipogenic, and chondrogenic differentiation of bone mesenchymal stem cells (BMSCs). Nevertheless, a comprehensive summary of these findings has yet to be provided. In this review, we primarily examined the m6A alteration of transcripts associated with transcription factors (TFs), as well as other crucial genes and pathways that are involved in the differentiation of BMSCs. Meanwhile, the mutual interactive network between m6A modification, miRNAs, and lncRNAs was intensively elucidated. In the last section, given the beneficial effect of m6A modification in osteogenesis and chondrogenesis of BMSCs, we expounded upon the potential utility of m6A-related therapeutic interventions in the identification and management of human musculoskeletal disorders manifesting bone and cartilage destruction, such as osteoporosis, osteomyelitis, osteoarthritis, and bone defect.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Orthopedics,
Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, China
| | - Junyou Li
- School of Mechanical Engineering,
Sungkyunkwan University, Suwon 16419, South Korea
| | - Cheng Wang
- Department of Orthopaedic Surgery,
Peking UniversityThird Hospital, Peking University, Beijing 100191, China
| | - Zhizhuo Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital,
the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Pan Luo
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Fuqiang Gao
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wei Sun
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Orthopaedic Surgery of the Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Zhang M, Jin Y, Guo X, Shan W, Zhang J, Yuan A, Shi Y. Resveratrol protects mesangial cells under high glucose by regulating the miR-1231/IGF1/ERK pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2326-2339. [PMID: 38156429 DOI: 10.1002/tox.24103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/13/2023] [Accepted: 12/10/2023] [Indexed: 12/30/2023]
Abstract
Diabetic nephropathy (DN) is one of the complications of diabetes mellitus and the main cause of end-stage renal disease (ESRD), which is a serious threat to human health. In DN, mesangial cells (MCs) are a critical target cell that perform a variety of key functions, and abnormal proliferation of MCs is a common and prominent pathological change in DN. In recent years, the investigation of Chinese medicine interventions for DN has increased significantly in recent years due to the many potential adverse effects and controversies associated with the treatment of DN with Western medicines. In this study, we evaluated the protective effect of resveratrol (RES), an active ingredient known as a natural antioxidant, on HMCs under high glucose and explored its possible mechanism of action. We found that RES inhibited the proliferation of human mesangial cell (HMC) under high glucose and blocked cell cycle progression. In the high glucose environment, RES upregulated miR-1231, reduced IGF1 expression, inhibited the activity of the extracellular signal-regulated kinase (ERK) signaling pathway and reduced levels of the inflammatory factors TNF-α and IL-6. In addition, we found that miR-1231 mimics were synergistically inhibited with RES, whereas miR-1231 inhibitor attenuated the protective effect of RES on HMCs. Thus, our results suggest that the protective effect of RES on HMCs under high glucose is achieved, at least in part, through modulation of the miR-1231/IGF1/ERK pathway. The discovery of this potential mechanism may provide a new molecular therapeutic target for the prevention and treatment of DN, and may also bring new ideas for the clinical research in DN.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin Province, China
| | - Yingli Jin
- Department of Pharmacology, School of Basic Medical Science, Jilin University, Changchun, Jilin Province, China
| | - Xuerui Guo
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin Province, China
| | - Wanxin Shan
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin Province, China
| | - Jinlong Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin Province, China
| | - Aoxue Yuan
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin Province, China
| | - Yan Shi
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
15
|
Jung HR, Lee J, Hong SP, Shin N, Cho A, Shin DJ, Choi JW, Kim JI, Lee JP, Cho SY. Targeting the m 6A RNA methyltransferase METTL3 attenuates the development of kidney fibrosis. Exp Mol Med 2024; 56:355-369. [PMID: 38297163 PMCID: PMC10907702 DOI: 10.1038/s12276-024-01159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 02/02/2024] Open
Abstract
Kidney fibrosis is a major mechanism underlying chronic kidney disease (CKD). N6-methyladenosine (m6A) RNA methylation is associated with organ fibrosis. We investigated m6A profile alterations and the inhibitory effect of RNA methylation in kidney fibrosis in vitro (TGF-β-treated HK-2 cells) and in vivo (unilateral ureteral obstruction [UUO] mouse model). METTL3-mediated signaling was inhibited using siRNA in vitro or the METTL3-specific inhibitor STM2457 in vivo and in vitro. In HK-2 cells, METTL3 protein levels increased in a dose- and time-dependent manner along with an increase in the cellular m6A levels. In the UUO model, METTL3 expression and m6A levels were significantly increased. Transcriptomic and m6A profiling demonstrated that epithelial-to-mesenchymal transition- and inflammation-related pathways were significantly associated with RNA m6A methylation. Genetic and pharmacologic inhibition of METTL3 in HK-2 cells decreased TGF-β-induced fibrotic marker expression. STM2457-induced inhibition of METTL3 attenuated the degree of kidney fibrosis in vivo. Furthermore, METTL3 protein expression was significantly increased in the tissues of CKD patients with diabetic or IgA nephropathy. Therefore, targeting alterations in RNA methylation could be a potential therapeutic strategy for treating kidney fibrosis.
Collapse
Affiliation(s)
- Hae Rim Jung
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Seung-Pyo Hong
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nayeon Shin
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Ara Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Jin Shin
- Medicine Major, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Choi
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea.
| | - Sung-Yup Cho
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Ren N, Wang WF, Zou L, Zhao YL, Miao H, Zhao YY. The nuclear factor kappa B signaling pathway is a master regulator of renal fibrosis. Front Pharmacol 2024; 14:1335094. [PMID: 38293668 PMCID: PMC10824958 DOI: 10.3389/fphar.2023.1335094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Renal fibrosis is increasingly recognized as a global public health problem. Acute kidney injury (AKI) and chronic kidney disease (CKD) both result in renal fibrosis. Oxidative stress and inflammation play central roles in progressive renal fibrosis. Oxidative stress and inflammation are closely linked and form a vicious cycle in which oxidative stress induces inflammation through various molecular mechanisms. Ample evidence has indicated that a hyperactive nuclear factor kappa B (NF-ƙB) signaling pathway plays a pivotal role in renal fibrosis. Hyperactive NF-ƙB causes the activation and recruitment of immune cells. Inflammation, in turn, triggers oxidative stress through the production of reactive oxygen species and nitrogen species by activating leukocytes and resident cells. These events mediate organ injury through apoptosis, necrosis, and fibrosis. Therefore, developing a strategy to target the NF-ƙB signaling pathway is important for the effective treatment of renal fibrosis. This Review summarizes the effect of the NF-ƙB signaling pathway on renal fibrosis in the context of AKI and CKD (immunoglobulin A nephropathy, membranous nephropathy, diabetic nephropathy, hypertensive nephropathy, and kidney transplantation). Therapies targeting the NF-ƙB signaling pathway, including natural products, are also discussed. In addition, NF-ƙB-dependent non-coding RNAs are involved in renal inflammation and fibrosis and are crucial targets in the development of effective treatments for kidney disease. This Review provides a clear pathophysiological rationale and specific concept-driven therapeutic strategy for the treatment of renal fibrosis by targeting the NF-ƙB signaling pathway.
Collapse
Affiliation(s)
- Na Ren
- The First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wen-Feng Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Yan-Long Zhao
- Dialysis Department of Nephrology Hospital, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, Shaanxi, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Sadat Sandoghsaz R, Montazeri F, Shafienia H, Mehdi Kalantar S, Javaheri A, Samadi M. Expression of miR-21 &IL-4 in endometriosis. Hum Immunol 2024; 85:110746. [PMID: 38155071 DOI: 10.1016/j.humimm.2023.110746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Endometriosis characterized with existence of endometrial-like tissue outside the uterus. Fibrosis of ectopic lesions is an important feature of endometriosis. IL-4 induces fibrosis via fibroblast proliferation, collagen production and myofibroblast differentiation. Increasing of miR-21 expression promotes fibroblast activation and fibrosis expansion. The aim of study was to evaluate the expression of miR-21 and its relationship with IL-4 gene expression in endometrial ectopic and eutopic tissues of endometriosis patients. METHODS AND RESULTS Ectopic and eutopic tissue samples were taken from 20 women with endometriosis, and control samples were taken from the endometrium of 20 endometriosis-free women. The relative expression of IL-4 and miR-21 evaluated by Real Time PCR. IL-4 relative gene expression was significantly increased in ectopic tissue compared to eutopic (p = 0.025) and control tissue (p = 0.021). The relative expression of miR-21 gene in ectopic tissue was increased compared to eutopic (p = 0.850) and control tissue (p = 0.978) but these differences were not significant. Also, the correlation between IL-4 and miR-21 relative gene expression was not significant (p = 0.083). CONCLUSION The increased expression of miR-21 in endometrium of women with endometriosis may upregulate the IL-4 gene expression and lead to fibrosis. Further studies may suggest miR-21 and IL-4 as candidates for diagnosis of endometriosis.
Collapse
Affiliation(s)
- Reyhaneh Sadat Sandoghsaz
- International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hanieh Shafienia
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Reproductive & Genetic Unit, Recurrent Abortion Research Center, Yazd Reproductive Science Institute, Yazd University of Medical Sciences, Yazd, Iran
| | - Atiyeh Javaheri
- Department of Obstetrics and Gynecology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Morteza Samadi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
18
|
Qi S, Song J, Chen L, Weng H. The role of N-methyladenosine modification in acute and chronic kidney diseases. Mol Med 2023; 29:166. [PMID: 38066436 PMCID: PMC10709953 DOI: 10.1186/s10020-023-00764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
N6-methyladenosine (m6A) modification is a kind of RNA modification in which methylation occurs at the sixth N position in adenosine in RNA, which can occur in various RNAs such as mRNAs, lncRNAs and miRNAs. This is one of the most prominent and frequent posttranscriptional modifications within organisms and has been shown to function dynamically and reversibly in a variety of ways, including splicing, export, attenuation and translation initiation efficiency to regulate RNA expression. There are three main enzymes associated with m6A modification: writers, readers and erasers. Increasing evidence has shown that m6A modification is associated with the onset and development of kidney disease. In this article, we address the important physiological and pathological roles of m6A modification in kidney diseases (uremia, ischemia-reperfusion kidney injury, drug-induced kidney injury, and diabetic nephropathy) and its molecular mechanisms to provide reference for the diagnosis and clinical management of kidney diseases.
Collapse
Affiliation(s)
- Saiqi Qi
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China
| | - Jie Song
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China
| | - Linjun Chen
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China.
| | - Huachun Weng
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China.
| |
Collapse
|
19
|
Sun Y, Jin D, Zhang Z, Ji H, An X, Zhang Y, Yang C, Sun W, Zhang Y, Duan Y, Kang X, Jiang L, Zhao X, Lian F. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194967. [PMID: 37553065 DOI: 10.1016/j.bbagrm.2023.194967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The N6-methyladenosine (m6A) modification is regulated by methylases, commonly referred to as "writers," and demethylases, known as "erasers," leading to a dynamic and reversible process. Changes in m6A levels have been implicated in a wide range of cellular processes, including nuclear RNA export, mRNA metabolism, protein translation, and RNA splicing, establishing a strong correlation with various diseases. Both physiologically and pathologically, m6A methylation plays a critical role in the initiation and progression of kidney disease. The methylation of m6A may also facilitate the early diagnosis and treatment of kidney diseases, according to accumulating research. This review aims to provide a comprehensive overview of the potential role and mechanism of m6A methylation in kidney diseases, as well as its potential application in the treatment of such diseases. There will be a thorough examination of m6A methylation mechanisms, paying particular attention to the interplay between m6A writers, m6A erasers, and m6A readers. Furthermore, this paper will elucidate the interplay between various kidney diseases and m6A methylation, summarize the expression patterns of m6A in pathological kidney tissues, and discuss the potential therapeutic benefits of targeting m6A in the context of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangyu Ji
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
20
|
Chen W, Zhao S, Xing J, Yu W, Rao T, Zhou X, Ruan Y, Li S, Xia Y, Song T, Zou F, Li W, Cheng F. BMAL1 inhibits renal fibrosis and renal interstitial inflammation by targeting the ERK1/2/ELK-1/Egr-1 axis. Int Immunopharmacol 2023; 125:111140. [PMID: 37951191 DOI: 10.1016/j.intimp.2023.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
RATIONALE Renal fibrosis and renal interstitial inflammation due to hydronephrosis are associated with progressive chronic kidney disease (CKD). The clock gene BMAL1 is thought to be involved in various diseases, including hypertension, diabetes, etc. However, little is known about how BMAL1 regulates renal fibrosis and renal interstitial inflammation in obstructed kidneys. METHODS The expression level of BMAL1 in UUO was examined using the GEO database. Lentivirus, siRNA and adeno-associated virus were used to modulate BMAL1 levels in HK-2 cells and mouse kidney. qRT-PCR, immunofluorescence staining, histological analysis, ELISA and Western blot were used to determine the level of fibrin deposition and the release of inflammatory factors. Immunofluorescence staining and western blotting were used to examine the interaction between BMAL1 and the ERK1/2/ELK-1/Egr-1 axis. RESULTS Bioinformatics analysis and in vivo experiments in this study showed that the expression level of BMAL1 in UUO model kidneys was higher than that in normal kidneys. We then found that downregulation of BMAL1 promoted the production of extracellular matrix (ECM) proteins and proinflammatory factors in vivo and in vitro, whereas upregulation inhibited this process. In addition, we demonstrated that the ERK1/2/ELK-1/Egr-1 axis is an important pathway for BMAL1 to play a regulatory role, and the use of PD98059 abolished the promoting effect of down-regulation of BMAL1 on fibrosis and inflammation. CONCLUSIONS Our findings suggest that BAML1 can target the ERK1/2/ELK-1/Egr-1 axis to suppress fibrotic progression and inflammatory events in obstructed kidneys, thereby inhibiting the development of CKD.
Collapse
Affiliation(s)
- Wu Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sheng Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ji Xing
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Siqi Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tianbao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Zou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
21
|
Ye W, Lv X, Gao S, Li Y, Luan J, Wang S. Emerging role of m6A modification in fibrotic diseases and its potential therapeutic effect. Biochem Pharmacol 2023; 218:115873. [PMID: 37884198 DOI: 10.1016/j.bcp.2023.115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Fibrosis can occur in a variety of organs such as the heart, lung, liver and kidney, and its pathological changes are mainly manifested by an increase in fibrous connective tissue and a decrease in parenchymal cells in organ tissues, and continuous progression can lead to structural damage and organ hypofunction, or even failure, seriously threatening human health and life. N6-methyladenosine (m6A) modification, as one of the most common types of internal modifications of RNA in eukaryotes, exerts a multifunctional role in physiological and pathological processes by regulating the metabolism of RNA. With the in-depth understanding and research of fibrosis, we found that m6A modification plays an important role in fibrosis, and m6A regulators can further participate in the pathophysiological process of fibrosis by regulating the function of specific cells. In our review, we summarized the latest research advances in m6A modification in fibrosis, as well as the specific functions of different m6A regulators. In addition, we focused on the mechanisms and roles of m6A modification in cardiac fibrosis, liver fibrosis, pulmonary fibrosis, renal fibrosis, retinal fibrosis and oral submucosal fibrosis, with the aim of providing new insights and references for finding potential therapeutic targets for fibrosis. Finally, we discussed the prospects and challenges of targeted m6A modification in the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China.
| |
Collapse
|
22
|
Huang Y, Luo W, Chen S, Su H, Zhu W, Wei Y, Qiu Y, Long Y, Shi Y, Wei J. Isovitexin alleviates hepatic fibrosis by regulating miR-21-mediated PI3K/Akt signaling and glutathione metabolic pathway: based on transcriptomics and metabolomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155117. [PMID: 37820467 DOI: 10.1016/j.phymed.2023.155117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Effective drugs for the treatment of hepatic fibrosis have not yet been identified. Isovitexin (IVT) is a promising hepatoprotective agent owing to its efficacy against acute liver injury. However, the role of IVT in liver fibrosis has not been reported. PURPOSE To explore the effect of IVT on liver fibrosis both in vitro and in vivo. STUDY DESIGN AND METHODS A mouse model of liver fibrosis induced by carbon tetrachloride (CCl4) and two types of hepatic stellate cell models induced by platelet-derived growth factor-BB (PDGF-BB) were established to evaluate the effect of IVT on hepatic fibrosis. Transcriptomics and metabolomics were used to predict the underlying targets of IVT and were validated by a combination of in vitro and in vivo experiments. Exploration of miRNA and N6-methyladenosine (m6A) modifications was also carried out to detect the key upstream targets of the above targets. RESULTS IVT reduced collagen deposition and hepatic stellate cell activation to alleviate liver fibrosis. The transcriptomics and metabolomics analyses showed that phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling and the glutathione (GSH) metabolic pathway may be the main regulatory processes of IVT in hepatic fibrosis. Both the in vitro and in vivo experiments confirmed the inhibitory effect of IVT on the PTEN-PI3K-Akt-mTOR axis and activation of the GSH metabolic pathway. A miR-21 mimic inhibited the effects of IVT on these two pathways, suggesting that miR-21 is the hub for IVT regulation of PI3K-Akt signaling and the GSH metabolic pathway. IVT also increased pri-miR-21 level and reduced the m6A enrichment of pri-miR-21, demonstrating that IVT may regulate pri-miR-21 through m6A modification, thereby affecting the maturation of miR-21. CONCLUSION This study is the first to propose a protective effect of IVT against liver fibrosis. The mechanism of IVT against hepatic fibrosis is based on the regulation of miR-21, targeting PTEN-Akt signaling and the GSH metabolic pathway, which is also a novel discovery.
Collapse
Affiliation(s)
- Yushen Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Wen Luo
- Department of Gastrointestinal Surgery, Liuzhou Workers Hospital, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Siyun Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Hongmei Su
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Wuchang Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanyuan Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Qiu
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Long
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanxia Shi
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
23
|
Wang Q, Fan X, Sheng Q, Yang M, Zhou P, Lu S, Gao Y, Kong Z, Shen N, Lv Z, Wang R. N6-methyladenosine methylation in kidney injury. Clin Epigenetics 2023; 15:170. [PMID: 37865763 PMCID: PMC10590532 DOI: 10.1186/s13148-023-01586-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Multiple mechanisms are involved in kidney damage, among which the role of epigenetic modifications in the occurrence and development of kidney diseases is constantly being revealed. However, N6-methyladenosine (M6A), a well-known post-transcriptional modification, has been regarded as the most prevalent epigenetic modifications in higher eukaryotic, which is involved in various biological processes of cells such as maintaining the stability of mRNA. The role of M6A modification in the mechanism of kidney damage has attracted widespread attention. In this review, we mainly summarize the role of M6A modification in the progression of kidney diseases from the following aspects: the regulatory pattern of N6-methyladenosine, the critical roles of N6-methyladenosine in chronic kidney disease, acute kidney injury and renal cell carcinoma, and then reveal its potential significance in the diagnosis and treatment of various kidney diseases. A better understanding of this field will be helpful for future research and clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ping Zhou
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
24
|
Wong YS, Mançanares AC, Navarrete FI, Poblete PM, Méndez-Pérez L, Ferreira-Dias GML, Rodriguez-Alvarez L, Castro FO. Mare stromal endometrial cells differentially modulate inflammation depending on oestrus cycle status: an in vitro study. Front Vet Sci 2023; 10:1271240. [PMID: 37869492 PMCID: PMC10587403 DOI: 10.3389/fvets.2023.1271240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/13/2023] [Indexed: 10/24/2023] Open
Abstract
The modulation of inflammation is pivotal for uterine homeostasis. Here we evaluated the effect of the oestrus cycle on the expression of pro-inflammatory and anti-inflammatory markers in a cellular model of induced fibrosis. Mare endometrial stromal cells isolated from follicular or mid-luteal phase were primed with 10 ng/mL of TGFβ alone or in combination with either IL1β, IL6, or TNFα (10 ng/mL each) or all together for 24 h. Control cells were not primed. Messenger and miRNA expression were analyzed using real-time quantitative PCR (RT-qPCR). Cells in the follicular phase primed with pro-inflammatory cytokines showed higher expression of collagen-related genes (CTGF, COL1A1, COL3A1, and TIMP1) and mesenchymal marker (SLUG, VIM, CDH2, and CDH11) genes; p < 0.05. Cells primed during the mid-luteal overexpressed genes associated with extracellular matrix, processing, and prostaglandin E synthase (MMP2, MMP9, PGR, TIMP2, and PTGES; p < 0.05). There was a notable upregulation of pro-fibrotic miRNAs (miR17, miR21, and miR433) in the follicular phase when the cells were exposed to TGFβ + IL1β, TGFβ + IL6 or TGFβ + IL1β + IL6 + TNFα. Conversely, in cells from the mid-luteal phase, the treatments either did not or diminished the expression of the same miRNAs. On the contrary, the anti-fibrotic miRNAs (miR26a, miR29b, miR29c, miR145, miR378, and mir488) were not upregulated with treatments in the follicular phase. Rather, they were overexpressed in cells from the mid-luteal phase, with the highest regulation observed in TGFβ + IL1β + IL6 + TNFα treatment groups. These miRNAs were also analyzed in the extracellular vesicles secreted by the cells. A similar trend as seen with cellular miRNAs was noted, where anti-fibrotic miRNAs were downregulated in the follicular phase, while notably elevated pro-fibrotic miRNAs were observed in extracellular vesicles originating from the follicular phase. Pro-inflammatory cytokines may amplify the TGFβ signal in the follicular phase resulting in significant upregulation of extracellular matrix-related genes, an imbalance in the metalloproteinases, downregulation of estrogen receptors, and upregulation of pro-fibrotic factors. Conversely, in the luteal phase, there is a protective role mediated primarily through an increase in anti-fibrotic miRNAs, a decrease in SMAD2 phosphorylation, and reduced expression of fibrosis-related genes.
Collapse
Affiliation(s)
- Yat S. Wong
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Ana C. Mançanares
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Felipe I. Navarrete
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Pamela M. Poblete
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Lídice Méndez-Pérez
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Graça M. L. Ferreira-Dias
- Faculty of Veterinary Medicine, Department of Morphology and Function, CIISA—Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Lleretny Rodriguez-Alvarez
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| | - Fidel Ovidio Castro
- Laboratory of Animal Biotechnology, Faculty of Veterinary Sciences, Department of Animal Science, Universidad de Concepción, Chillán, Chile
| |
Collapse
|
25
|
Botor M, Auguściak-Duma A, Lesiak M, Sieroń Ł, Dziedzic-Kowalska A, Witecka J, Asman M, Madetko-Talowska A, Bik-Multanowski M, Galicka A, Sieroń AL, Gawron K. Analysis of miRNAs in Osteogenesis imperfecta Caused by Mutations in COL1A1 and COL1A2: Insights into Molecular Mechanisms and Potential Therapeutic Targets. Pharmaceuticals (Basel) 2023; 16:1414. [PMID: 37895885 PMCID: PMC10609877 DOI: 10.3390/ph16101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a group of connective tissue disorders leading to abnormal bone formation, mainly due to mutations in genes encoding collagen type I (Col I). Osteogenesis is regulated by a number of molecules, including microRNAs (miRNAs), indicating their potential as targets for OI therapy. The goal of this study was to identify and analyze the expression profiles of miRNAs involved in bone extracellular matrix (ECM) regulation in patients diagnosed with OI type I caused by mutations in COL1A1 or COL1A2. Primary skin fibroblast cultures were used for DNA purification and sequence analysis, followed by analysis of miRNA expression. Sequencing analysis revealed mutations of the COL1A1 or COL1A2 genes in all OI patients, including four previously unreported. Amongst the 40 miRNAs analyzed, 9 were identified exclusively in OI cells and 26 in both OI patients and the controls. In the latter case, the expression of six miRNAs (hsa-miR-10b-5p, hsa-miR-19a-3p, hsa-miR-19b-3p, has-miR-204-5p, has-miR-216a-5p, and hsa-miR-449a) increased, while four (hsa-miR-129-5p, hsa-miR-199b-5p, hsa-miR-664a-5p, and hsa-miR-30a-5p) decreased significantly in OI cells in comparison to their expression in the control cells. The identified mutations and miRNA expression profiles shed light on the intricate processes governing bone formation and ECM regulation, paving the way for further research and potential therapeutic advancements in OI and other genetic diseases related to bone abnormality management.
Collapse
Affiliation(s)
- Malwina Botor
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (A.A.-D.); (M.L.); (Ł.S.); (A.L.S.)
| | - Aleksandra Auguściak-Duma
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (A.A.-D.); (M.L.); (Ł.S.); (A.L.S.)
| | - Marta Lesiak
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (A.A.-D.); (M.L.); (Ł.S.); (A.L.S.)
| | - Łukasz Sieroń
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (A.A.-D.); (M.L.); (Ł.S.); (A.L.S.)
| | - Agata Dziedzic-Kowalska
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (A.A.-D.); (M.L.); (Ł.S.); (A.L.S.)
| | - Joanna Witecka
- Department of Parasitology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| | - Marek Asman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland;
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.-T.); (M.B.-M.)
| | - Mirosław Bik-Multanowski
- Department of Medical Genetics, Jagiellonian University Medical College, 30-663 Krakow, Poland; (A.M.-T.); (M.B.-M.)
| | - Anna Galicka
- Department of Medical Chemistry, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Aleksander L. Sieroń
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (A.A.-D.); (M.L.); (Ł.S.); (A.L.S.)
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (A.A.-D.); (M.L.); (Ł.S.); (A.L.S.)
| |
Collapse
|
26
|
You L, Han Z, Chen H, Chen L, Lin Y, Wang B, Fan Y, Zhang M, Luo J, Peng F, Ma Y, Wang Y, Yuan L, Han Z. The role of N6-methyladenosine (m 6A) in kidney diseases. Front Med (Lausanne) 2023; 10:1247690. [PMID: 37841018 PMCID: PMC10569431 DOI: 10.3389/fmed.2023.1247690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Chemical modifications are a specific and efficient way to regulate the function of biological macromolecules. Among them, RNA molecules exhibit a variety of modifications that play important regulatory roles in various biological processes. More than 170 modifications have been identified in RNA molecules, among which the most common internal modifications include N6-methyladenine (m6A), n1-methyladenosine (m1A), 5-methylcytosine (m5C), and 7-methylguanine nucleotide (m7G). The most widely affected RNA modification is m6A, whose writers, readers, and erasers all have regulatory effects on RNA localization, splicing, translation, and degradation. These functions, in turn, affect RNA functionality and disease development. RNA modifications, especially m6A, play a unique role in renal cell carcinoma disease. In this manuscript, we will focus on the biological roles of m6A in renal diseases such as acute kidney injury, chronic kidney disease, lupus nephritis, diabetic kidney disease, and renal cancer.
Collapse
Affiliation(s)
- Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Binjian Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiyue Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ji Luo
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Ma
- School of Clinical Medicine, Southeast University, Nanjing, China
| | - Yanmei Wang
- Institute of Traditional Chinese Medicine, Sichuan College of Traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Chen X, Hocher CF, Shen L, Krämer BK, Hocher B. Reno- and cardioprotective molecular mechanisms of SGLT2 inhibitors beyond glycemic control: from bedside to bench. Am J Physiol Cell Physiol 2023; 325:C661-C681. [PMID: 37519230 DOI: 10.1152/ajpcell.00177.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Large placebo-controlled clinical trials have shown that sodium-glucose cotransporter-2 inhibitors (SGLT2i) delay the deterioration of renal function and reduce cardiovascular events in a glucose-independent manner, thereby ultimately reducing mortality in patients with chronic kidney disease (CKD) and/or heart failure. These existing clinical data stimulated preclinical studies aiming to understand the observed clinical effects. In animal models, it was shown that the beneficial effect of SGLT2i on the tubuloglomerular feedback (TGF) improves glomerular pressure and reduces tubular workload by improving renal hemodynamics, which appears to be dependent on salt intake. High salt intake might blunt the SGLT2i effects on the TGF. Beyond the salt-dependent effects of SGLT2i on renal hemodynamics, SGLT2i inhibited several key aspects of macrophage-mediated renal inflammation and fibrosis, including inhibiting the differentiation of monocytes to macrophages, promoting the polarization of macrophages from a proinflammatory M1 phenotype to an anti-inflammatory M2 phenotype, and suppressing the activation of inflammasomes and major proinflammatory factors. As macrophages are also important cells mediating atherosclerosis and myocardial remodeling after injury, the inhibitory effects of SGLT2i on macrophage differentiation and inflammatory responses may also play a role in stabilizing atherosclerotic plaques and ameliorating myocardial inflammation and fibrosis. Recent studies suggest that SGLT2i may also act directly on the Na+/H+ exchanger and Late-INa in cardiomyocytes thus reducing Na+ and Ca2+ overload-mediated myocardial damage. In addition, the renal-cardioprotective mechanisms of SGLT2i include systemic effects on the sympathetic nervous system, blood volume, salt excretion, and energy metabolism.
Collapse
Affiliation(s)
- Xin Chen
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Carl-Friedrich Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Klinik für Innere Medizin, Bundeswehrkrankenhaus Berlin, Berlin, Germany
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- IMD Institut für Medizinische Diagnostik Berlin-Potsdam GbR, Berlin, Germany
| |
Collapse
|
28
|
Song B, Zeng Y, Cao Y, Zhang J, Xu C, Pan Y, Zhao X, Liu J. Emerging role of METTL3 in inflammatory diseases: mechanisms and therapeutic applications. Front Immunol 2023; 14:1221609. [PMID: 37671161 PMCID: PMC10475571 DOI: 10.3389/fimmu.2023.1221609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/27/2023] [Indexed: 09/07/2023] Open
Abstract
Despite improvements in modern medical therapies, inflammatory diseases, such as atherosclerosis, diabetes, non-alcoholic fatty liver, chronic kidney diseases, and autoimmune diseases have high incidence rates, still threaten human health, and represent a huge financial burden. N6-methyladenosine (m6A) modification of RNA contributes to the pathogenesis of various diseases. As the most widely discussed m6A methyltransferase, the pathogenic role of METTL3 in inflammatory diseases has become a research hotspot, but there has been no comprehensive review of the topic. Here, we summarize the expression changes, modified target genes, and pathogenesis related to METTL3 in cardiovascular, metabolic, degenerative, immune, and infectious diseases, as well as tumors. In addition to epithelial cells, endothelial cells, and fibroblasts, METTL3 also regulates the function of inflammation-related immune cells, including macrophages, neutrophils, dendritic cells, Th17 cells, and NK cells. Regarding therapeutic applications, METTL3 serves as a target for the treatment of inflammatory diseases with natural plant drug components, such as emodin, cinnamaldehyde, total flavonoids of Abelmoschus manihot, and resveratrol. This review focuses on recent advances in the initiation, development, and therapeutic application of METTL3 in inflammatory diseases. Knowledge of the specific regulatory mechanisms involving METTL3 can help to deepen understanding of inflammatory diseases and lay the foundation for the development of precisely targeted drugs to address inflammatory processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jingbo Liu
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
29
|
Liu Y, Lei H, Zhang W, Xing Q, Liu R, Wu S, Liu Z, Yan Q, Li W, Liu X, Hu Y. Pyroptosis in renal inflammation and fibrosis: current knowledge and clinical significance. Cell Death Dis 2023; 14:472. [PMID: 37500614 PMCID: PMC10374588 DOI: 10.1038/s41419-023-06005-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Pyroptosis is a novel inflammatory form of regulated cell death (RCD), characterized by cell swelling, membrane rupture, and pro-inflammatory effects. It is recognized as a potent inflammatory response required for maintaining organismal homeostasis. However, excessive and persistent pyroptosis contributes to severe inflammatory responses and accelerates the progression of numerous inflammation-related disorders. In pyroptosis, activated inflammasomes cleave gasdermins (GSDMs) and generate membrane holes, releasing interleukin (IL)-1β/18, ultimately causing pyroptotic cell death. Mechanistically, pyroptosis is categorized into caspase-1-mediated classical pyroptotic pathway and caspase-4/5/11-mediated non-classical pyroptotic pathway. Renal fibrosis is a kidney disease characterized by the loss of structural and functional units, the proliferation of fibroblasts and myofibroblasts, and extracellular matrix (ECM) accumulation, which leads to interstitial fibrosis of the kidney tubules. Histologically, renal fibrosis is the terminal stage of chronic inflammatory kidney disease. Although there is a multitude of newly discovered information regarding pyroptosis, the regulatory roles of pyroptosis involved in renal fibrosis still need to be fully comprehended, and how to improve clinical outcomes remains obscure. Hence, this review systematically summarizes the novel findings regarding the role of pyroptosis in the pathogenesis of renal fibrosis and discusses potential biomarkers and drugs for anti-fibrotic therapeutic strategies.
Collapse
Affiliation(s)
- Ya Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Haibo Lei
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Wenyou Zhang
- Department of Pharmacy, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qichang Xing
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Renzhu Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Shiwei Wu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Zheng Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Qingzi Yan
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Wencan Li
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Xiang Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China.
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China.
| | - Yixiang Hu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China.
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China.
| |
Collapse
|
30
|
Xiong Q, Zhang Y. Small RNA modifications: regulatory molecules and potential applications. J Hematol Oncol 2023; 16:64. [PMID: 37349851 PMCID: PMC10286502 DOI: 10.1186/s13045-023-01466-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Small RNAs (also referred to as small noncoding RNAs, sncRNA) are defined as polymeric ribonucleic acid molecules that are less than 200 nucleotides in length and serve a variety of essential functions within cells. Small RNA species include microRNA (miRNA), PIWI-interacting RNA (piRNA), small interfering RNA (siRNA), tRNA-derived small RNA (tsRNA), etc. Current evidence suggest that small RNAs can also have diverse modifications to their nucleotide composition that affect their stability as well as their capacity for nuclear export, and these modifications are relevant to their capacity to drive molecular signaling processes relevant to biogenesis, cell proliferation and differentiation. In this review, we highlight the molecular characteristics and cellular functions of small RNA and their modifications, as well as current techniques for their reliable detection. We also discuss how small RNA modifications may be relevant to the clinical applications for the diagnosis and treatment of human health conditions such as cancer.
Collapse
Affiliation(s)
- Qunli Xiong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Abdominal Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
31
|
Seo JW, Lee YH, Tae DH, Kim YG, Moon JY, Jung SW, Kim JS, Hwang HS, Jeong KH, Jeong HY, Lee SY, Chung BH, Kim CD, Park JB, Seok J, Kim YH, Lee SH. Development and validation of urinary exosomal microRNA biomarkers for the diagnosis of acute rejection in kidney transplant recipients. Front Immunol 2023; 14:1190576. [PMID: 37228607 PMCID: PMC10203902 DOI: 10.3389/fimmu.2023.1190576] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Acute rejection (AR) continues to be a significant obstacle for short- and long-term graft survival in kidney transplant recipients. Herein, we aimed to examine urinary exosomal microRNAs with the objective of identifying novel biomarkers of AR. Materials and methods Candidate microRNAs were selected using NanoString-based urinary exosomal microRNA profiling, meta-analysis of web-based, public microRNA database, and literature review. The expression levels of these selected microRNAs were measured in the urinary exosomes of 108 recipients of the discovery cohort using quantitative real-time polymerase chain reaction (qPCR). Based on the differential microRNA expressions, AR signatures were generated, and their diagnostic powers were determined by assessing the urinary exosomes of 260 recipients in an independent validation cohort. Results We identified 29 urinary exosomal microRNAs as candidate biomarkers of AR, of which 7 microRNAs were differentially expressed in recipients with AR, as confirmed by qPCR analysis. A three-microRNA AR signature, composed of hsa-miR-21-5p, hsa-miR-31-5p, and hsa-miR-4532, could discriminate recipients with AR from those maintaining stable graft function (area under the curve [AUC] = 0.85). This signature exhibited a fair discriminative power in the identification of AR in the validation cohort (AUC = 0.77). Conclusion We have successfully demonstrated that urinary exosomal microRNA signatures may form potential biomarkers for the diagnosis of AR in kidney transplantation recipients.
Collapse
Affiliation(s)
- Jung-Woo Seo
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
- Research Laboratory, Medical Science Institute, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Dong Hyun Tae
- School of Electrical Engineering, Korea University, Seoul, Republic of Korea
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeon Seok Hwang
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung-Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hye Yun Jeong
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - So-Young Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Byung Ha Chung
- Research Center, Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan-Duck Kim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Seoul, Republic of Korea
| | - Junhee Seok
- School of Electrical Engineering, Korea University, Seoul, Republic of Korea
| | - Yeong Hoon Kim
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
- Research Laboratory, Medical Science Institute, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| |
Collapse
|
32
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
33
|
Ghafouri-Fard S, Shoorei H, Hussen BM, Dong P, Zhai T, Taheri M, Samadian M. The significance of N6-methyladenosine-modified non-coding RNAs in different disorders. Eur J Pharmacol 2023; 946:175644. [PMID: 36921707 DOI: 10.1016/j.ejphar.2023.175644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
N6-methyladenosine (m6A) is the most widespread endogenous modification affecting the expression of eukaryotic mRNA transcripts. Recent studies have shown that the m6A marks within non-coding RNAs can affect their functions and expression in a manner similar to that of mRNA-coding genes. Since non-coding RNAs are involved in the pathophysiology of several disorders, identification of the role of m6A marks in the regulation of expression of non-coding RNAs can open a new era for identifying underlying mechanisms of several disorders and designing novel therapeutic modalities for a variety of disorders, particularly cancers. Moreover, a number of non-coding RNAs can affect m6A levels. In the current review, we discuss the impacts of m6A marks on the expression of non-coding RNAs in the context of different disorders, such as bone, gastrointestinal, neurologic, renal, pulmonary, hepatic and other disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tianyue Zhai
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Department of Neurosurgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Zhu X, Tang H, Yang M, Yin K. N6-methyladenosine in macrophage function: a novel target for metabolic diseases. Trends Endocrinol Metab 2023; 34:66-84. [PMID: 36586778 DOI: 10.1016/j.tem.2022.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent internal transcriptional modifications. Evidence has highlighted changes in m6A in metabolic disorders and various metabolic diseases. However, the precise mechanisms of these m6A changes in such conditions are not understood. Macrophages are crucial for the innate immune system and exert either beneficial or harmful roles in metabolic disease. Notably, m6A was found to be closely related to macrophage phenotype and dysfunction. In this review, we summarize m6A in macrophage function from the perspective of macrophage development, activation, and polarization, pyroptosis, and metabolic disorders. Furthermore, we discuss how m6A-mediated macrophage function affects metabolic diseases, including atherosclerosis and nonalcoholic fatty liver disease (NAFLD). Finally, we discuss challenges and prospects for m6A in macrophage and metabolic diseases with the aim of providing guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541100, China; Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi 541199, China
| | - HaoJun Tang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541100, China
| | - Min Yang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541100, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541100, China; Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi 541199, China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, China.
| |
Collapse
|
35
|
Mei Z, Mou Y, Zhang N, Liu X, He Z, Gu S. Emerging Mutual Regulatory Roles between m 6A Modification and microRNAs. Int J Mol Sci 2023; 24:ijms24010773. [PMID: 36614216 PMCID: PMC9821650 DOI: 10.3390/ijms24010773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 01/03/2023] Open
Abstract
N6-metyladenosine (m6A), one of the most common RNA methylation modifications in mammals, has attracted extensive attentions owing to its regulatory roles in a variety of physiological and pathological processes. As a reversible epigenetic modification on RNAs, m6A is dynamically mediated by the functional interplay among the regulatory proteins of methyltransferases, demethylases and methyl-binding proteins. In recent years, it has become increasingly clear that m6A modification is associated with the production and function of microRNAs (miRNAs). In this review, we summarize the specific kinds of m6A modification methyltransferases, demethylases and methyl-binding proteins. In particular, we focus on describing the roles of m6A modification and its regulatory proteins in the production and function of miRNAs in a variety of pathological and physiological processes. More importantly, we further discuss the mediating mechanisms of miRNAs in m6A modification and its regulatory proteins during the occurrence and development of various diseases.
Collapse
|
36
|
Ni WJ, Lu H, Ma NN, Hou BB, Zeng J, Zhou H, Shao W, Meng XM. RNA N 6 -methyladenosine modifications and potential targeted therapeutic strategies in kidney disease. Br J Pharmacol 2023; 180:5-24. [PMID: 36196023 DOI: 10.1111/bph.15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications have received increasing attention and have been shown to be extensively involved in kidney development and disease progression. Among them, the most common RNA modification, N6 -methyladenosine (m6 A), has been shown to dynamically and reversibly exert its functions in multiple ways, including splicing, export, decay and translation initiation efficiency to regulate mRNA fate. Moreover, m6 A has also been reported to exert biological effects by destabilizing base pairing to modulate various functions of RNAs. Most importantly, an increasing number of kidney diseases, such as renal cell carcinoma, acute kidney injury and chronic kidney disease, have been found to be associated with aberrant m6 A patterns. In this review, we comprehensively review the critical roles of m6 A in kidney diseases and discuss the possibilities and relevance of m6 A-targeted epigenetic therapy, with an integrated comprehensive description of the detailed alterations in specific loci that contribute to cellular processes that are associated with kidney diseases.
Collapse
Affiliation(s)
- Wei-Jian Ni
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China.,Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hao Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Nan-Nan Ma
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Bing-Bing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jing Zeng
- Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
37
|
Sun J, Wu M, Wang L, Wang P, Xiao T, Wang S, Liu Q. miRNA-21, which disrupts metabolic reprogramming to facilitate CD4 + T cell polarization toward the Th2 phenotype, accelerates arsenite-induced hepatic fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114321. [PMID: 36427370 DOI: 10.1016/j.ecoenv.2022.114321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/02/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Elevated levels of arsenic may be present in groundwater, and long-term exposure to arsenic increases hepatic fibrosis. T helper 2 (Th2) cells are involved in the fibrotic cascade, and cell metabolism is a regulatory factor participating in CD4+ T cell differentiation and function. However, the mechanism for Th2 cell regulation of arsenite-induced hepatic fibrosis is not fully understood. In present study, for arsenite-fed mice, activated hepatic stellate cells may be involved in the infiltration of CD4+ T cells, accompanied by up-regulation of GATA3, a transcription factor, and IL-13, the major Th2 cytokine. Exposed to arsenite, Jurkat cells had increased aerobic glycolysis to promote the cell cycle and cell proliferation. Further, this process elevated levels of marker molecules, including those of the Th2 paradigm characterized by GATA3, IL-4, and IL-13. LX-2 cells were activated when treated with culture medium from Jurkat cells exposed to arsenite. miR-21 may be a therapeutic target for arsenite-induced hepatic fibrosis. In vitro, miR-21 knock-down caused inhibition of the PTEN/PI3K/AKT pathway induced by arsenite. It also reversed the elevated glycolysis and the accelerated cell cycle and cell proliferation. Indeed, this alteration led to diminished expression of GATA3, IL-4, and IL-13 in T cells differentiated under Th2 conditions, which inhibits activation of LX-2 cells. Consistent with the results in vitro, miR-21 knock-out in mice reversed hepatic fibrosis and attenuated the levels of GATA3 and IL-13 induced by arsenite. These findings indicate that miR-21 regulates the glycolysis of CD4+ T cells through the PTEN/PI3K/AKT pathway to accelerate the cell cycle, thereby facilitating CD4+ T cell polarization toward Th2 and releasing the fibrogenic factor IL-13, which participates in arsenite-associated hepatic fibrosis. Inhibition of Th2 polarization of CD4+T cells or miR-21 could be a therapeutic strategy to combat hepatic fibrosis caused by exposure to arsenic.
Collapse
Affiliation(s)
- Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Department of Nutrition, Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Li Wang
- Department of Toxicology, School of Public Health, Baotou Medical College, Baotou 014040, Inner Mongolia, People's Republic of China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Suhua Wang
- Department of Toxicology, School of Public Health, Baotou Medical College, Baotou 014040, Inner Mongolia, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
38
|
The Role of N 6-Methyladenosine in Inflammatory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9744771. [PMID: 36578520 PMCID: PMC9792239 DOI: 10.1155/2022/9744771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
N6-Methyladenosine (m6A) is the most abundant epigenetic RNA modification in eukaryotes, regulating RNA metabolism (export, stability, translation, and decay) in cells through changes in the activity of writers, erasers, and readers and ultimately affecting human life or disease processes. Inflammation is a response to infection and injury in various diseases and has therefore attracted significant attention. Currently, extensive evidence indicates that m6A plays an essential role in inflammation. In this review, we focus on the mechanisms of m6A in inflammatory autoimmune diseases, metabolic disorder, cardio-cerebrovascular diseases, cancer, and pathogen-induced inflammation, as well as its possible role as targets for clinical diagnosis and treatment.
Collapse
|
39
|
The m 6A methyltransferase Mettl3 deficiency attenuates hepatic stellate cell activation and liver fibrosis. Mol Ther 2022; 30:3714-3728. [PMID: 35923112 PMCID: PMC9734030 DOI: 10.1016/j.ymthe.2022.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/21/2022] [Accepted: 07/30/2022] [Indexed: 12/14/2022] Open
Abstract
Activation of hepatic stellate cells (HSCs) is a central driver of liver fibrosis. Previous investigations have identified various altered epigenetic landscapes during the cellular progression of HSC activation. N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic cells and is dynamically regulated under various physiological and pathophysiological conditions. However, the functional role of Mettl3-mediated m6A in liver fibrosis remains elusive. Here, we found that the HSC-specific knockout of m6A methyltransferase Mettl3 suppressed HSC activation and significantly alleviated liver fibrosis. Multi-omics analysis of HSCs showed that Mettl3 depletion reduced m6A deposition on mRNA transcripts of Lats2 (a central player of the Hippo/YAP signaling pathway) and slowed down their degradation. Elevated Lats2 increased phosphorylation of the downstream transcription factor YAP, suppressed YAP nuclear translocation, and decreased pro-fibrotic gene expression. Overexpressing YAP mutant resistant to phosphorylation by Lats2 partially rescued the activation and pro-fibrotic gene expression of Mettl3-deficient HSCs. Our study revealed that disruption of Mettl3 in HSCs mitigated liver fibrosis by controlling the Hippo/YAP signaling pathway, providing potential therapeutic strategies to alleviate liver fibrosis by targeting epitranscriptomic machinery.
Collapse
|
40
|
Huang L, Liang D, Zhang Y, Chen X, Chen J, Wen C, Liu H, Yang X, Yang X, Lin S. METTL3 promotes colorectal cancer metastasis by promoting the maturation of pri-microRNA-196b. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04429-9. [PMID: 36348020 DOI: 10.1007/s00432-022-04429-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Methyltransferase-like 3 (METTL3), a key member of the m6A methyltransferase complex, is upregulated in multiple human malignancies and plays a role in regulating tumor migration. This study aimed to reveal the underlying mechanism by which METTL3 in regulates the metastasis of colorectal cancer (CRC). METHODS We compared METTL3 expression levels in CRC tumor tissues and adjacent nontumor tissues by immunohistochemistry (IHC). The functional roles of METTL3 in CRC were assessed by real-time cell migration assays, wound-healing assays and Transwell assays. miRNA sequencing (miRNA-seq), RNA-binding protein immunoprecipitation (RIP) assays and N6-methyladenosine immunoprecipitation (MeRIP) assays were performed to confirm the molecular mechanism underlying the involvement of METTL3 in CRC cell metastasis. RESULTS We found that METTL3 was overexpressed in CRC tissues. METTL3 knockdown significantly inhibited CRC cell migration and invasion, while METTL3 overexpression had the opposite effects. Furthermore, we demonstrated that METTL3 regulates miR-196b expression via an N6-methyladenosine (m6A)-pri-miR-196b-dependent mechanism and thereby promotes CRC metastasis. CONCLUSION This study shows the important role of METTL3 in CRC metastasis and provides novel insight into m6A modification in CRC metastasis.
Collapse
Affiliation(s)
- Lanlan Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Danlu Liang
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Zhang
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoting Chen
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junxiong Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chuangyu Wen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaorong Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiangling Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Shaoqiang Lin
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
41
|
Luan J, Kopp JB, Zhou H. N6-methyladenine RNA Methylation Epigenetic Modification and Kidney Diseases. Kidney Int Rep 2022; 8:36-50. [PMID: 36644366 PMCID: PMC9831943 DOI: 10.1016/j.ekir.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
RNA methylation modification is a rapidly developing field in epigenetics. N6-methyladensine (m6A) is the most common internal modification in eukaryotic mRNA. m6A group regulates RNA splicing, stability, translocation, and translation. Enzymes catalyzing this process were termed as writers, erasers, and readers. Recent studies have focused on exploring the role of RNA methylation in human diseases. RNA methylation modifications, particularly m6A, play important roles in the pathogenesis of kidney diseases. In this review, we provide a brief description of m6A and summarize the impact of m6A on acute and chronic kidney disease (CKD) and possible future study directions for this research.
Collapse
Affiliation(s)
- Junjun Luan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jeffrey B. Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Bethesda, Maryland, USA,Jeffrey B. Kopp, Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, 10 Center Drive, 3N116, Bethesda, Maryland 20892-1268, USA.
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China,Correspondence: Hua Zhou, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning 110004, China.
| |
Collapse
|
42
|
Tang H, Huang L, Hu J. Inhibition of the m6A Methyltransferase METTL3 Attenuates the Inflammatory Response in Fusarium solani-Induced Keratitis via the NF-κB Signaling Pathway. Invest Ophthalmol Vis Sci 2022; 63:2. [PMID: 36194423 PMCID: PMC9547362 DOI: 10.1167/iovs.63.11.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to elucidate the effect of methyltransferase-like enzyme 3 (METTL3) on inflammation and the NF-κB signaling pathway in fungal keratitis (FK). Methods We established corneal stromal cell models and FK mouse models by incubation with Fusarium solani. The overall RNA N6-methyladenosine (m6A) level was determined using an m6A RNA methylation assay kit. The expression of METTL3 was quantified via real-time quantitative polymerase chain reaction (RT–PCR), Western blotting, and immunofluorescence. Subsequently, the level of tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) was identified by Western blotting and immunofluorescence. Moreover, we assessed the effect of METTL3 by transfecting cells with siRNA (in vitro) or adeno-associated virus (in vivo). Hematoxylin and eosin (H&E) staining and slit-lamp biomicroscopy were performed to evaluate corneal damage. Furthermore, the state of NF-κB signaling pathway activation was examined by Western blotting. In addition, RT–PCR and enzyme-linked immunosorbent assays (ELISAs) were performed to evaluate levels of the pro-inflammatory factors interleukin-1β (IL-1β), interleukin-6 (IL-6) and TNF-ɑ. Results Our data demonstrated that the levels of the RNA m6A methylation and METTL3 were dramatically increased and that the NF-κB signaling pathway was activated in Fusarium solani-induced keratitis. Inhibition of METTL3 decreased the level of TRAF6, downregulated the phospho-p65(p-p65)/p65 and phospho-IκB(p-IκB)/IκB protein ratios, simultaneously attenuating the inflammatory response and fungal burden in FK. Conclusions Our research suggests that the m6A methyltransferase METTL3 regulates the inflammatory response in FK by modulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hanfeng Tang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Liwei Huang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| |
Collapse
|
43
|
Chen X, Li W, Chen T, Ren X, Zhu J, Hu F, Luo J, Xing L, Zhou H, Sun J, Jiang Q, Zhang Y, Xi Q. miR-146a-5p promotes epithelium regeneration against LPS-induced inflammatory injury via targeting TAB1/TAK1/NF-κB signaling pathway. Int J Biol Macromol 2022; 221:1031-1040. [PMID: 36096257 DOI: 10.1016/j.ijbiomac.2022.09.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Intestinal inflammation often restricts the health and production of animals. MiR-146a has been proved to be an anti-inflammatory molecule in inflammatory disorders, but its role in the intestinal injury and regeneration remains unclear. The study aimed to explore the inflammatory response of intestinal epithelial cells (IECs) in intestinal tissue-specific miR-146a-5p knockout mouse models. We identified the role of miR-146a-5p in inhibiting inflammatory response and promoting proliferation under lipopolysaccharide (LPS) stimulation in vitro and vivo. LPS stimulation significantly increased the expression of TNF-α, IL6 and inhibited IPEC-J2 cell proliferation. Overexpression of miR-146a-5p can reverse the effect of LPS stimulation, and promote the proliferation of intestinal epithelial cells. In the LPS challenge experiment in intestine-specific miR-146a knock-out mice (CKO) and Floxp+/+ mice (CON), CKO mice were more sensitive to LPS stimulation, with more weight loss and more severe intestinal morphological damage than CON mice. Also, miR-146a-5p regulated LPS-induced intestinal injury, inflammation by targeting TAB1. Taken together, miR-146a may function as an anti-inflammatory factor in IECs by targeting TAB1/TAK1-IKK-NF-κB signaling pathway. miR-146a-5p may represent a promising biomarker for inflammatory disorders, and may provide an effective therapeutic method to alleviate weaning stress in piglets and some experimental basis to improve the intestinal health of livestock.
Collapse
Affiliation(s)
- Xingping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Weite Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Xiaohui Ren
- Ocean College of Hebei Agricultural University, Qinhuangdao 066003, China
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Fangxin Hu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Lipeng Xing
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Hao Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China.
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
44
|
METTL3 m6A-dependently promotes miR-21-5p maturation to accelerate choriocarcinoma progression via the HIF1AN-induced inactivation of the HIF1A/VEGF pathway. Genes Genomics 2022; 44:1311-1322. [PMID: 36074324 DOI: 10.1007/s13258-022-01309-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/14/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Gestational choriocarcinoma is a highly malignant neoplastic disease derived from pathological changes in trophoblastic cells. Recent evidences have shown that N6-methyladenosine (m6A) modifications play important role in modulating the development of multiple cancers, but the detailed mechanisms by which m6A-mediated choriocarcinoma progression have not been fully delineated. OBJECTIVES This study aimed to investigate the role of m6A in choriocarcinoma and reveal its underlying molecular mechanisms. METHODS The expression of METTL3, miR-21-5p and HIF1AN was detected using RT-qPCR in tissues and cells. The protein expression of METTL3, HIF1AN, HIF1A and VEGF were measured by western blot. The luciferase reporter assays and RNA immunoprecipitation (RIP) were used to verify the relationship between miR-21-5p and HIF1AN. The CCK-8, colony formation and transwell assays were used to detected cell proliferation and cell migration, respectively. RESULTS Here, we demonstrated that the m6A methyltransferase-like 3 (METTL3) was aberrantly high-expressed in the clinical choriocarcinoma tissues and choriocarcinoma cell lines compared to the corresponding normal counterparts. The following functional experiments verified that silencing of METTL3 suppressed cell proliferation, migration, epithelial-mesenchymal transition (EMT) and tumorigenesis in vitro and in vivo to hamper the aggressiveness of choriocarcinoma. Next, the mechanical experiments confirmed that METTL3 promoted the maturation of miR-21-5p in an m6A-dependent manner, and elevated miR-21-5p subsequently degraded its downstream hypoxia-inducible factor asparagine hydroxylase (HIF1AN) by targeting its 3' untranslated regions (3'-UTR), resulting in the activation of the tumor-promoting HIF1A/VEGF pathway. Finally, the rescuing experiments verified that METTL3 ablation-induced inhibitory effects on the malignant phenotypes in choriocarcinoma were all abrogated by both miR-21-5p overexpression and HIF1AN downregulation. CONCLUSIONS Collectively, this study firstly reported the involvement of the METTL3/m6A/miR-21-5p/HIF1AN signaling cascade in regulating the progression of choriocarcinoma, which provided novel biomarkers for the diagnosis and treatment of this disease.
Collapse
|
45
|
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022; 7:182. [PMID: 35680856 PMCID: PMC9184651 DOI: 10.1038/s41392-022-01036-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a chronic renal dysfunction syndrome that is characterized by nephron loss, inflammation, myofibroblasts activation, and extracellular matrix (ECM) deposition. Lipotoxicity and oxidative stress are the driving force for the loss of nephron including tubules, glomerulus, and endothelium. NLRP3 inflammasome signaling, MAPK signaling, PI3K/Akt signaling, and RAAS signaling involves in lipotoxicity. The upregulated Nox expression and the decreased Nrf2 expression result in oxidative stress directly. The injured renal resident cells release proinflammatory cytokines and chemokines to recruit immune cells such as macrophages from bone marrow. NF-κB signaling, NLRP3 inflammasome signaling, JAK-STAT signaling, Toll-like receptor signaling, and cGAS-STING signaling are major signaling pathways that mediate inflammation in inflammatory cells including immune cells and injured renal resident cells. The inflammatory cells produce and secret a great number of profibrotic cytokines such as TGF-β1, Wnt ligands, and angiotensin II. TGF-β signaling, Wnt signaling, RAAS signaling, and Notch signaling evoke the activation of myofibroblasts and promote the generation of ECM. The potential therapies targeted to these signaling pathways are also introduced here. In this review, we update the key signaling pathways of lipotoxicity, oxidative stress, inflammation, and myofibroblasts activation in kidneys with chronic injury, and the targeted drugs based on the latest studies. Unifying these pathways and the targeted therapies will be instrumental to advance further basic and clinical investigation in CKD.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
46
|
Doersch KM, Barnett D, Chase A, Johnston D, Gabrielsen JS. The contribution of the immune system to genitourinary fibrosis. Exp Biol Med (Maywood) 2022; 247:765-778. [PMID: 35531654 PMCID: PMC9134766 DOI: 10.1177/15353702221090872] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Fibrotic diseases of the genitourinary tract are devastating and incompletely understood pathologies. These diseases include urethral and ureteral strictures, retroperitoneal fibrosis, and Peyronie's disease. They can contribute to obstructive uropathy and sexual dysfunction. Poor understanding of the pathophysiology of these diseases severely limits our ability to prevent and treat them. Genitourinary fibrotic diseases likely represent related pathologies that share common underlying mechanisms involving wound healing in response to injury. These diseases share the common feature of extracellular matrix abnormalities-such as collagen deposition, transforming growth factor-β accumulation, and dysregulation of collagen maturation-leading to abnormal tissue stiffness. Given the association of many of these diseases with autoimmunity, a systemic pro-inflammatory state likely contributes to their associated fibrogenesis. Herein, we explore the immunologic contribution to fibrogenesis in several fibrotic diseases of the genitourinary system. Better understanding how the immune system contributes to fibrosis in these diseases may improve prevention and therapeutic strategies and elucidate the functions of immunologic contributors to fibrosis in general.
Collapse
Affiliation(s)
- Karen M Doersch
- Department of Urology, University of
Rochester Medical Center, Rochester, NY 14642, USA
| | - Daniel Barnett
- Department of Pediatrics, University of
Toledo, Toledo, OH 43614, USA
| | - Abbie Chase
- Department of Urology, University of
Rochester Medical Center, Rochester, NY 14642, USA
| | - Daniel Johnston
- Department of Urology, University of
Rochester Medical Center, Rochester, NY 14642, USA
| | - J Scott Gabrielsen
- Department of Urology, University of
Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
47
|
Yang JJ, Wang J, Yang Y, Yang Y, Li J, Lu D, Lu C. ALKBH5 ameliorated liver fibrosis and suppressed HSCs activation via triggering PTCH1 activation in an m6A dependent manner. Eur J Pharmacol 2022; 922:174900. [DOI: 10.1016/j.ejphar.2022.174900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/03/2022]
|
48
|
Han Y, Cai X, Pan M, Gong J, Cai W, Lu D, Xu C. MicroRNA-21-5p acts via the PTEN/Akt/FOXO3a signaling pathway to prevent cardiomyocyte injury caused by high glucose/high fat conditions. Exp Ther Med 2022; 23:230. [PMID: 35222707 PMCID: PMC8815051 DOI: 10.3892/etm.2022.11154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/15/2021] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) play important roles in cardiovascular disease. miR-21-5p is known to be involved in the regulation of cardiomyocyte injury under high glucose and high fat (HG-HF) conditions, but its mechanism of action remains unclear. In the present study, a cardiomyocyte cell line, H9c2, was treated with 33 mM glucose and 250 µM sodium palmitate for 24, 48, and 72 h to produce HG-HF injury. After treatment, miR-21-5p expression was detected by reverse transcription-quantitative PCR. A miR-21-5p mimic was then constructed and transfected into the cells and the potential molecular mechanism was investigated using Cell Counting Kit-8, TUNEL, flow cytometry and western blot assays. Expression of miR-21-5p was significantly downregulated by HG-HF treatment of H9c2 cells for 24, 48, and 72 h. In subsequent experiments, cells were treated for an intermediate period (48 h). Compared with the control group, HG-HF treatment significantly inhibited H9c2 proliferation and promoted apoptosis, while these effects were significantly reduced in the miR-21-5p mimic. Compared with the control group, HG-HF treatment significantly increased reactive oxygen species, while miR-21-5p mimic significantly reduced this effect. Compared with the control group, HG-HF treatment significantly increased the expression of the pro-apoptotic proteins Bax and phosphorylated (p)-Akt and decreased the expression of the anti-apoptotic proteins Bcl-2, p-PTEN, and p-FOXO3a, while overexpression of miR-21-5p significantly reduced these effects. The results revealed that miR-21-5p inhibited apoptosis and oxidative stress in H9c2 cells induced by HG-HF, likely through the PTEN/Akt/FOXO3a signaling pathway.
Collapse
Affiliation(s)
- Ying Han
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Xiaoqi Cai
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Min Pan
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jin Gong
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Wenqin Cai
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China.,Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Dan Lu
- Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Changsheng Xu
- Fujian Institute of Hypertension, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
49
|
Yue Y, Deng P, Xiao H, Tan M, Wang H, Tian L, Xie J, Chen M, Luo Y, Wang L, Liang Y, Pi H, Zhou Z, Yu Z. N6-methyladenosine-mediated downregulation of miR-374c-5p promotes cadmium-induced cell proliferation and metastasis by targeting GRM3 in breast cancer cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113085. [PMID: 34920184 DOI: 10.1016/j.ecoenv.2021.113085] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that can facilitate the development and progression of breast cancer (BC). Emerging evidence has indicated that the progression of Cd-exposed BC is related to the dysregulation of microRNAs (miRNAs). The purpose of our study was to investigate the expression pattern and underlying mechanisms of miR-374c-5p in Cd-mediated BC progression. In this study, T-47D cells and MCF-7 cells were treated with different concentrations of Cd (0.1, 1 and 10 μM) for 72 h. MiR-374c-5p expression was downregulated, and transfection of miR-374c-5p mimics significantly decreased BC cell proliferation, migration and invasion induced by 10 μM Cd. Importantly, we used the Cytoscape software plugin cytoHubba to analyse the intersected genes between our RNA-Seq results and the mirDIP database, and six hub genes (CNR1, CXCR4, GRM3, RTN1, SLC1A6 and ZEB1) were identified as potential direct targets of miR-374c-5p in our model; however, luciferase reporter assays indicated that miR-374c-5p only repressed GRM3 by directly binding to its 3'-untranslated region (UTR). Of note, we verified that suppression of N6-methyladenosine (m6A) modification led to miR-374c-5p downregulation by decreasing its RNA transcript stability. Together, these findings demonstrated that m6A modification of pri-miRNA-374c blocks miRNA-374c-5p maturation and then activates GRM3 expression, which drives BC cell metastasis after Cd exposure.
Collapse
Affiliation(s)
- Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Heng Xiao
- Department of Anus & Intestine Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine (Central Hospital of Zhuzhou City), Central South University, Zhuzhou, Hunan, China
| | - Miduo Tan
- Surgery Department of Galactophore, Zhuzhou Hospital Affiliated to Xiangya School of Medicine (Central Hospital of Zhuzhou City), Central South University, Zhuzhou, Hunan, China
| | - Hui Wang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China
| | - Yidan Liang
- School of Medicine, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China.
| | - Zhou Zhou
- Department of Environmental Medicine, School of Public Health, and Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, China.
| |
Collapse
|
50
|
Wang Y, Xu M, Yue P, Zhang D, Tong J, Li Y. Novel Insights Into the Potential Mechanisms of N6-Methyladenosine RNA Modification on Sepsis-Induced Cardiovascular Dysfunction: An Update Summary on Direct and Indirect Evidences. Front Cell Dev Biol 2021; 9:772921. [PMID: 34869371 PMCID: PMC8633316 DOI: 10.3389/fcell.2021.772921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a host’s dysfunctional response to infection. As is known to all, septic heart disease occurs because pathogens invading the blood stimulate the activation of endothelial cells, causing a large number of white blood cells to accumulate and trigger an immune response. However, in severe sepsis, the hematopoietic system is inhibited, and there will also be a decline in white blood cells, at which time the autoimmune system will also be suppressed. During the immune response, a large number of inflammatory factors are released into cells to participate in the inflammatory process, which ultimately damages cardiac myocytes and leads to impaired cardiac function. N6-methyladenosine (m6A) is a common RNA modification in mRNA and non-coding RNA that affects RNA splicing, translation, stability, and epigenetic effects of some non-coding RNAs. A large number of emerging evidences demonstrated m6A modification had been involved in multiple biological processes, especially for sepsis and immune disorders. Unfortunately, there are limited results provided to analyze the association between m6A modification and sepsis-induced cardiovascular dysfunction (SICD). In this review, we firstly summarized current evidences on how m6A mediates the pathophysiological process in cardiac development and cardiomyopathy to emphasize the importance of RNA methylation in maintaining heart biogenesis and homeostasis. Then, we clarified the participants of m6A modification in extended inflammatory responses and immune system activation, which are the dominant and initial changes secondary to sepsis attack. After that, we deeply analyzed the top causes of SICD and identified the activation of inflammatory cytokines, endothelial cell dysfunction, and mitochondrial failure. Thus, the highlight of this review is that we systematically collected all the related potential mechanisms between m6A modification and SICD causes. Although there is lack of direct evidences on SICD, indirect evidences had been demonstrated case by case on every particular molecular mechanism and signal transduction, which require further explorations into the potential links among the listed mechanisms. This provides novel insights into the understanding of SICD.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Miaomiao Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Peng Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Jiyu Tong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|