1
|
Nowak AL, Saadat N, Sun J, Forsman AM, Liang X, Joyce C, Woo J, Engeland CG, Misra DP, Giurgescu C, Zhang W, Anderson CM. Preterm Birth in African American Women: A Multi-Omic Pilot Study in Early Pregnancy. Biol Res Nurs 2024:10998004241275049. [PMID: 39440846 DOI: 10.1177/10998004241275049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Preterm birth (PTB; <37 weeks completed gestation) is a devastating problem affecting over 13 million live births worldwide. In the U.S., African Americans experience significantly higher rates of PTB compared to non-Hispanic Whites. PTB disparities have been linked to social determinants of health (e.g., socioeconomic status, discrimination). However, the biological underpinnings related to these associations are unclear. DNA methylation (DNAm) is subject to environmental influences, and DNAm modifications are known to affect gene expression. Using a multi-omic approach, we examined differences in combined DNA methylation (DNAm) and messenger RNA (mRNA) transcriptomic data from 20 pregnant African American women (12 PTB; 8 term birth) early in pregnancy (8-18 weeks gestation). We found that the HLA-DQB2 gene was both differentially methylated (cg12296550; p = .02) and differentially expressed (p = .014; log2FC = 2.5) between women with PTB and term birth. Gene expression analysis showed HLA-DQB2 and HLA-DRB4 (p = .028; log2FC = -3.6) were the two most highly expressed genes. HLA-DQB2 expressed higher in PTB and HLA-DRB4 expressed higher in term birth. However, no genes remained significant (p < .05) after Bonferroni correction. HLA-DRB4 and AKR1C1 were identified as a potential biomarkers in dimensionality reduction models and are also important to immune function and allogenic breakdown. Altered gene expression may lead to inflammatory imbalances or allogenic intolerance resulting in PTB. This study provides proof-of-concept evidence for the feasibility and importance of future multi-omics studies with larger populations to further explore the genes and pathways identified here.
Collapse
Affiliation(s)
- Alexandra L Nowak
- Marcella Niehoff School of Nursing, Loyola University at Chicago, Maywood, IL, USA
| | - Nadia Saadat
- Department of Paediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| | - Anna M Forsman
- Department of Biology, Colby College, Waterville, ME, USA
| | - Xiaoyu Liang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Cara Joyce
- Biostatistics Core, Department of Medicine, Center for Translational Research and Education, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Jennifer Woo
- University of Texas at Arlington, Arlington, TX, USA
| | - Christopher G Engeland
- Biobehavioral Health, College of Health and Human Development, Ross and Carol Ness College of Nursing, The Pennsylvania State University, University Park, PA, USA
| | - Dawn P Misra
- Department of Epidemiology and Biostatistics, MSU College of Human Medicine, East Lansing, MI, USA
| | - Carmen Giurgescu
- Chatlos Foundation Endowed Chair in Nursing, University of Central Florida College of Nursing, Orlando, FL, USA
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| | - Cindy M Anderson
- Maternal Infant Health, Martha S. Pitzer Center for Women, Children and Youth, The Ohio State University College of Nursing, Columbus, OH, USA
| |
Collapse
|
2
|
Hamburg-Shields E, Mesiano S. The hormonal control of parturition. Physiol Rev 2024; 104:1121-1145. [PMID: 38329421 PMCID: PMC11380996 DOI: 10.1152/physrev.00019.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024] Open
Abstract
Parturition is a complex physiological process that must occur in a reliable manner and at an appropriate gestation stage to ensure a healthy newborn and mother. To this end, hormones that affect the function of the gravid uterus, especially progesterone (P4), 17β-estradiol (E2), oxytocin (OT), and prostaglandins (PGs), play pivotal roles. P4 via the nuclear P4 receptor (PR) promotes uterine quiescence and for most of pregnancy exerts a dominant block to labor. Loss of the P4 block to parturition in association with a gain in prolabor actions of E2 are key transitions in the hormonal cascade leading to parturition. P4 withdrawal can occur through various mechanisms depending on species and physiological context. Parturition in most species involves inflammation within the uterine tissues and especially at the maternal-fetal interface. Local PGs and other inflammatory mediators may initiate parturition by inducing P4 withdrawal. Withdrawal of the P4 block is coordinated with increased E2 actions to enhance uterotonic signals mediated by OT and PGs to promote uterine contractions, cervix softening, and membrane rupture, i.e., labor. This review examines recent advances in research to understand the hormonal control of parturition, with focus on the roles of P4, E2, PGs, OT, inflammatory cytokines, and placental peptide hormones together with evolutionary biology of and implications for clinical management of human parturition.
Collapse
Affiliation(s)
- Emily Hamburg-Shields
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio, United States
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio, United States
| |
Collapse
|
3
|
DeTomaso A, Kim H, Shauh J, Adulla A, Zigo S, Ghoul M, Presicce P, Kallapur SG, Goodman W, Tilburgs T, Way SS, Hackney D, Moore J, Mesiano S. Progesterone inactivation in decidual stromal cells: A mechanism for inflammation-induced parturition. Proc Natl Acad Sci U S A 2024; 121:e2400601121. [PMID: 38861608 PMCID: PMC11194587 DOI: 10.1073/pnas.2400601121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
The process of human parturition involves inflammation at the interface where fetal chorion trophoblast cells interact with maternal decidual stromal (DS) cells and maternal immune cells in the decidua (endometrium of pregnancy). This study tested the hypothesis that inflammation at the chorion-decidua interface (CDI) induces labor by negating the capacity for progesterone (P4) to block labor and that this is mediated by inactivation of P4 in DS cells by aldo-keto reductase family 1 member C1 (AKR1C1). In human, Rhesus macaque, and mouse CDI, AKR1C1 expression increased in association with term and preterm labor. In a human DS cell line and in explant cultures of term human fetal membranes containing the CDI, the prolabor inflammatory cytokine, interleukin-1ß (IL-1ß), and media conditioned by LPS-stimulated macrophages increased AKR1C1 expression and coordinately reduced nuclear P4 levels and P4 responsiveness. Loss of P4 responsiveness was overcome by inhibition of AKR1C1 activity, inhibition of AKR1C1 expression, and bypassing AKR1C1 activity with a P4 analog that is not metabolized by AKR1C1. Increased P4 activity in response to AKR1C1 inhibition was prevented by the P4 receptor antagonist RU486. Pharmacologic inhibition of AKR1C1 activity prevented parturition in a mouse model of inflammation-induced preterm parturition. The data suggest that inflammatory stimuli at the CDI drive labor by inducing AKR1C1-mediated P4 inactivation in DS cells and that inhibiting and/or bypassing of AKR1C1-mediated P4 inactivation is a plausible therapeutic strategy to mitigate the risk of inflammation-associated preterm birth.
Collapse
Affiliation(s)
- Angela DeTomaso
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Hyeyon Kim
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Jacqueline Shauh
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Anika Adulla
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Sarah Zigo
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Maya Ghoul
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Pietro Presicce
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Suhas G. Kallapur
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Wendy Goodman
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Tamara Tilburgs
- Cincinnati Children’s Hospital, Center for Inflammation and Tolerance, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229
| | - Sing-Sing Way
- Cincinnati Children’s Hospital, Center for Inflammation and Tolerance, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229
| | - David Hackney
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
- Department of Obstetrics and Gynecology, University Hospitals, Cleveland, OH44106
| | - John Moore
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH44106
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
- Department of Obstetrics and Gynecology, University Hospitals, Cleveland, OH44106
| |
Collapse
|
4
|
Bao J, Ma X, Kent LN, Wakle-Prabagaran M, McCarthy R, England SK. BKCa channels are involved in spontaneous and lipopolysaccharide-stimulated uterine contraction in late gestation mice†. Biol Reprod 2024; 110:798-807. [PMID: 38134962 PMCID: PMC11017124 DOI: 10.1093/biolre/ioad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
The large-conductance, voltage-gated, calcium (Ca2+)-activated potassium channel (BKCa) is one of the most abundant potassium channels in the myometrium. Previous work conducted by our group has identified a link between inflammation, BKCa channels and excitability of myometrial smooth muscle cells. Here, we investigate the role of BKCa channels in spontaneous and lipopolysaccharide (LPS)-stimulated uterine contraction to gain a better understanding of the relationship between the BKCa channel and uterine contraction in basal and inflammatory states. Uteri of C57BL/6 J mice on gestational day 18.5 (GD18.5) were obtained and either fixed in formalin or used immediately for tension recording or isolation of primary myocytes for patch-clamp. Paraffin sections were used for immunofluorescenctdetection of BKCa and Toll-like receptor (TLR4). For tension recordings, LPS was administered to determine its effect on uterine contractions. Paxilline, a BKCa inhibitor, was used to dissect the role of BKCa in uterine contraction in basal and inflammatory states. Finally, patch-clamp recordings were performed to investigate the relationship between LPS, the BKCa channel and membrane currents in mouse myometrial smooth muscle cells (mMSMCs). We confirmed the expression of BKCa and TLR4 in the myometrium of GD18.5 mice and found that inhibiting BKCa channels with paxilline suppressed both spontaneous and LPS-stimulated uterine contractions. Furthermore, application of BKCa inhibitors (paxilline or iberiotoxin) after LPS inhibited BKCa channel activity in mMSMCs. Moreover, pretreatment with BKCa inhibitor or the TLR4 inhibitor suppressed LPS-activated BKCa currents. Our study demonstrates that BKCa channels are involved in both basal and LPS-stimulated uterine contraction in pregnant mice.
Collapse
Affiliation(s)
- Junjie Bao
- Preterm Birth Prevention and Treatment Research Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaofeng Ma
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsey N Kent
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Monali Wakle-Prabagaran
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ronald McCarthy
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Paul M, Barreda AP, Gregson A, Kahl R, King M, Hussein WM, Walker FR, Smith R, Zakar T, Paul JW. Regulation of 20α-Hydroxysteroid Dehydrogenase Expression in Term Pregnant Human Myometrium Ex Vivo. Reprod Sci 2024; 31:150-161. [PMID: 37648943 PMCID: PMC10784398 DOI: 10.1007/s43032-023-01333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Metabolic inactivation of progesterone within uterine myocytes by 20α-hydroxysteroid dehydrogenase (20α-HSD) has been postulated as a mechanism contributing to functional progesterone withdrawal at term. In humans, 20α-HSD is encoded by the gene AKR1C1. Myometrial AKR1C1 mRNA abundance has been reported to increase significantly during labor at term. In spontaneous preterm labor, however, we previously found no increase in AKR1C1 mRNA level in the myometrium except for preterm labor associated with clinical chorioamnionitis. This suggests that increased 20α-HSD activity is a mechanism through which inflammation drives progesterone withdrawal in preterm labor. In this study, we have determined the effects of various treatments of therapeutic relevance on AKR1C1 expression in pregnant human myometrium in an ex vivo culture system. AKR1C1 expression increased spontaneously during 48 h culture (p < 0.0001), consistent with the myometrium transitioning to a labor-like phenotype ex vivo, as reported previously. Serum supplementation, prostaglandin F2α, phorbol myristate acetate, and mechanical stretch had no effect on the culture-induced increase, whereas progesterone (p = 0.0058) and cAMP (p = 0.0202) further upregulated AKR1C1 expression. In contrast, culture-induced upregulation of AKR1C1 expression was dose-dependently repressed by three histone/protein deacetylase inhibitors: trichostatin A at 5 (p = 0.0172) and 25 µM (p = 0.0115); suberoylanilide hydroxamic acid at 0.5 (p = 0.0070), 1 (p = 0.0045), 2.5 (p = 0.0181), 5 (p = 0.0066) and 25 µM (p = 0.0014); and suberoyl bis-hydroxamic acid at 5 (p = 0.0480) and 25 µM (p = 0.0238). We propose the inhibition of histone/protein deacetylation helps to maintain the anti-inflammatory, pro-quiescence signaling of progesterone in pregnant human myometrium by blocking its metabolic inactivation. Histone deacetylase inhibitors may represent a class of agents that preserve or restore the progesterone sensitivity of the pregnant uterus.
Collapse
Affiliation(s)
- Marina Paul
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Centre for Rehab Innovations, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Anna Paredes Barreda
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, New Lambton Heights, NSW, 2305, Australia
| | - Amy Gregson
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, New Lambton Heights, NSW, 2305, Australia
| | - Richard Kahl
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, New Lambton Heights, NSW, 2305, Australia
| | - Madeline King
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, New Lambton Heights, NSW, 2305, Australia
| | - Waleed M Hussein
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, St. Lucia, QLD, 4072, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Centre for Rehab Innovations, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Roger Smith
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, New Lambton Heights, NSW, 2305, Australia
- John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Tamas Zakar
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Program, New Lambton Heights, NSW, 2305, Australia
- John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Jonathan W Paul
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Mothers and Babies Research Program, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
6
|
Shynlova O, Nadeem L, Lye S. Progesterone control of myometrial contractility. J Steroid Biochem Mol Biol 2023; 234:106397. [PMID: 37683774 DOI: 10.1016/j.jsbmb.2023.106397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
During pregnancy, the primary function of the uterus is to be quiescent and not contract, which allows the growing fetus to develop and mature. A uterine muscle layer, myometrium, is composed of smooth muscle cells (SMCs). Before the onset of labor contractions, the uterine SMCs experience a complex biochemical and molecular transformation involving the expression of contraction-associated proteins. Labor is initiated when genes in SMCs are activated in response to a combination of hormonal, inflammatory and mechanical signals. In this review, we provide an overview of molecular mechanisms regulating the process of parturition in humans, focusing on the hormonal control of the myometrium, particularly the steroid hormone progesterone. The primary reason for discussing the regulation of myometrial contractility by progesterone is the importance of the clinical problem of preterm birth. It is thought that the hormonal mechanisms regulating premature uterine contractions represent an untimely triggering of the normal events occurring during term parturition. Yet, our knowledge of the complex and redundant hormonal pathways controlling uterine contractile activity leading to delivery of the neonate remains incomplete. Finally, we introduce recent animal studies using a novel class of drugs, Selective Progesterone Receptor Modulators, targeting progesterone signaling to prevent premature myometrial contractions.
Collapse
Affiliation(s)
- Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada; Department of Physiology, University of Toronto, M5S 1A1, Canada; Department of Obstetrics & Gynecology, University of Toronto, M5S 1A1, Canada.
| | - Lubna Nadeem
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Stephen Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada; Department of Physiology, University of Toronto, M5S 1A1, Canada; Department of Obstetrics & Gynecology, University of Toronto, M5S 1A1, Canada
| |
Collapse
|
7
|
Peña-Garcia PE, Morales-Ortiz J, Marrero-Palanco J, Virgillio A, Finette BA, Washington AV, Bonney EA. Decreased level of TREM like Transcript 1 (TLT-1) is associated with prematurity and promotes the in-utero inflammatory response to maternal lipopolysaccharide (LPS) exposure. Am J Reprod Immunol 2023; 90:e13772. [PMID: 37766406 PMCID: PMC10575570 DOI: 10.1111/aji.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
PROBLEM The occurrence of preterm birth is associated with multiple factors including bleeding, infection and inflammation. Platelets are mediators of hemostasis and can modulate inflammation through interactions with leukocytes. TREM like Transcript 1 (TLT-1) is a type 1 single Ig domain receptor on activated platelets. In adults, it plays a protective role by dampening the inflammatory response and facilitating platelet aggregation at sites of vascular injury. TLT-1 is expressed in human placenta and found in cord blood. We thus hypothesized that TLT-1 deficiency is associated with prematurity and fetal inflammation. METHOD OF STUDY To test this hypothesis, we examined cord blood levels of soluble TLT-1 (sTLT) in premature and term infants and compared the inflammatory response in C57BL/6 (WT) and TLT-1-/- (treml1-/- , KO) mice given intraperitoneal LPS mid-gestation RESULTS: The preterm infant cord blood level of sTLT was significantly lower than that found at term. On exposure to LPS, histology of KO (as compared to WT) placenta and decidua showed increased hemorrhage, and KO decidual RNA expression of IL-10 was significantly lower. KO fetal interface tissues (placenta, membranes, amniotic fluid) over time showed increased expression of inflammatory cytokines such as IL-6, IFN-γ, and TNF, but not MCP-1. However, fetal organs showed similar levels. CONCLUSION There is a potential association between insufficient TLT-1 expression and increased fetal inflammatory responses in the setting of prematurity. The data support further study of TLT-1 in the mechanistic link between bleeding, inflammation and preterm birth, and perhaps as a biomarker in human pregnancy.
Collapse
Affiliation(s)
- Paola E. Peña-Garcia
- University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
- University of Vermont, Larner College of Medicine Department of Obstetrics Gynecology and Reproductive Sciences
| | | | | | - Ariana Virgillio
- University of Vermont, Larner College of Medicine Department of Obstetrics Gynecology and Reproductive Sciences
| | - Barry A. Finette
- University of Vermont, Larner College of Medicine, Department of Pediatrics and
| | | | - Elizabeth A. Bonney
- University of Vermont, Larner College of Medicine Department of Obstetrics Gynecology and Reproductive Sciences
| |
Collapse
|
8
|
Phung J, Wang C, Reeders J, Zakar T, Paul JW, Tyagi S, Pennell CE, Smith R. Preterm labor with and without chorioamnionitis is associated with activation of myometrial inflammatory networks: a comprehensive transcriptomic analysis. Am J Obstet Gynecol 2023; 228:330.e1-330.e18. [PMID: 36002050 DOI: 10.1016/j.ajog.2022.08.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The onset of preterm labor is associated with inflammation. Previous studies suggested that this is distinct from the inflammation observed during term labor. Our previous work on 44 genes differentially expressed in myometria in term labor demonstrated a different pattern of gene expression from that observed in preterm laboring and nonlaboring myometria. We found increased expression of inflammatory genes in preterm labor associated with chorioamnionitis, but in the absence of chorioamnionitis observed no difference in gene expression in preterm myometria regardless of laboring status, suggesting that preterm labor is associated with different myometrial genes or signals originating from outside the myometrium. Given that a small subset of genes were assessed, this study aimed to use RNA sequencing and bioinformatics to assess the myometrial transcriptome during preterm labor in the presence and absence of chorioamnionitis. OBJECTIVE This study aimed to comprehensively determine protein-coding transcriptomic differences between preterm nonlaboring and preterm laboring myometria with and without chorioamnionitis. STUDY DESIGN Myometria were collected at cesarean delivery from preterm patients not in labor (n=16) and preterm patients in labor with chorioamnionitis (n=8) or without chorioamnionitis (n=6). Extracted RNA from myometrial tissue was prepared and sequenced using Illumina NovaSeq. Gene expression was quantified by mapping the sequence reads to the human reference genome (hg38). Differential gene expression analysis, gene set enrichment analysis, and weighted gene coexpression network analysis were used to comprehensively interrogate transcriptomic differences and their associated biology. RESULTS Differential gene expression analysis comparing preterm patients in labor with chorioamnionitis with preterm patients not in labor identified 931 differentially expressed genes, whereas comparing preterm patients in labor without chorioamnionitis with preterm patients not in labor identified no statistically significant gene expression changes. In contrast, gene set enrichment analysis and weighted gene coexpression network analysis demonstrated that preterm labor with and without chorioamnionitis was associated with enrichment of pathways involved in activation of the innate immune system and inflammation, and activation of G protein-coupled receptors. Key genes identified included chemotactic CYP4F3, CXCL8, DOCK2, and IRF1 in preterm labor with chorioamnionitis and CYP4F3, FCAR, CHUK, and IL13RA2 in preterm labor without chorioamnionitis. There was marked overlap in the pathways enriched in both preterm labor subtypes. CONCLUSION Differential gene expression analysis demonstrated that myometria from preterm patients in labor without chorioamnionitis and preterm patients not in labor were transcriptionally similar, whereas the presence of chorioamnionitis was associated with marked gene changes. In contrast, comprehensive bioinformatic analysis indicated that preterm labor with or without chorioamnionitis was associated with innate immune activation. All causes of preterm labor were associated with activation of the innate immune system, but this was more marked in the presence of chorioamnionitis. These data suggest that anti-inflammatory therapy may be relevant in managing preterm labor of all etiologies.
Collapse
Affiliation(s)
- Jason Phung
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, Australia; Mothers and Babies Research Centre, School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, Australia.
| | - Carol Wang
- Mothers and Babies Research Centre, School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, Australia
| | - Jocelyn Reeders
- Department of Anatomical Pathology, John Hunter Hospital, Newcastle, Australia
| | - Tamas Zakar
- Mothers and Babies Research Centre, School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, Australia
| | - Jonathan W Paul
- Mothers and Babies Research Centre, School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, Australia
| | - Sonika Tyagi
- Central Clinical School, Monash University, Clayton, Australia
| | - Craig E Pennell
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, Australia; Mothers and Babies Research Centre, School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, Australia
| | - Roger Smith
- Mothers and Babies Research Centre, School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, Australia
| |
Collapse
|
9
|
Paul M, Zakar T, Phung J, Gregson A, Barreda AP, Butler TA, Walker FR, Pennell C, Smith R, Paul JW. 20α-Hydroxysteroid Dehydrogenase Expression in the Human Myometrium at Term and Preterm Birth: Relationships to Fetal Sex and Maternal Body Mass Index. Reprod Sci 2023:10.1007/s43032-023-01183-2. [PMID: 36765000 DOI: 10.1007/s43032-023-01183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023]
Abstract
The mechanism by which human labor is initiated in the presence of elevated circulating progesterone levels remains unknown. Recent evidence indicates that the progesterone-metabolizing enzyme, 20α-hydroxysteroid dehydrogenase (20α-HSD), encoded by the gene AKR1C1, may contribute to functional progesterone withdrawal. We found that AKR1C1 expression significantly increased with labor onset in term myometrium, but not in preterm myometrium. Among preterm laboring deliveries, clinically diagnosed chorioamnionitis was associated with significantly elevated AKR1C1 expression. AKR1C1 expression positively correlated with BMI before labor and negatively correlated with BMI during labor. Analysis by fetal sex showed that AKR1C1 expression was significantly higher in women who delivered male babies compared to women who delivered female babies at term, but not preterm. Further, in pregnancies where the fetus was female, AKR1C1 expression positively correlated with the mother's age and BMI at the time of delivery. In conclusion, the increase in myometrial AKR1C1 expression with term labor is consistent with 20α-HSD playing a role in local progesterone metabolism to promote birth. Interestingly, this role appears to be specific to term pregnancies where the fetus is male. Upregulated AKR1C1 expression in the myometrium at preterm in-labor with clinical chorioamnionitis suggests that increased 20α-HSD activity is a mechanism through which inflammation drives progesterone withdrawal in preterm labor. The link between AKR1C1 expression and maternal BMI may provide insight into why maternal obesity is often associated with dysfunctional labor. Higher myometrial AKR1C1 expression in male pregnancies may indicate fetal sex-related differences in the mechanisms that precipitate labor onset at term.
Collapse
Affiliation(s)
- Marina Paul
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Centre for Rehab Innovations, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tamas Zakar
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Centre, New Lambton Heights, NSW, 2305, Australia
- John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Jason Phung
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Centre, New Lambton Heights, NSW, 2305, Australia
- John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Amy Gregson
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Centre, New Lambton Heights, NSW, 2305, Australia
| | - Anna Paredes Barreda
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Centre, New Lambton Heights, NSW, 2305, Australia
| | - Trent A Butler
- John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Centre for Rehab Innovations, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Craig Pennell
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Centre, New Lambton Heights, NSW, 2305, Australia
- John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Roger Smith
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia
- Mothers and Babies Research Centre, New Lambton Heights, NSW, 2305, Australia
- John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Jonathan W Paul
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Mothers and Babies Research Centre, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
10
|
Mesiano S. Progesterone withdrawal and parturition. J Steroid Biochem Mol Biol 2022; 224:106177. [PMID: 36096351 DOI: 10.1016/j.jsbmb.2022.106177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
The steroid hormone progesterone (P4), acting via the nuclear P4 receptors (PRs) in uterine cells, is essential for the establishment and maintenance of pregnancy. P4/PR signaling maintains pregnancy by promoting uterine quiescence and blocking the contractions of labor. Withdrawal of the P4/PR block to labor induces parturition. The success of pregnancy requires the timely birth of a mature neonate to a healthy mother, and to this end, the mechanism by which the P4/PR block is withdrawn, and how that process is physiologically controlled is critical. This review examines current understanding of cell and molecular biology of P4/PR withdrawal in the control of parturition.
Collapse
Affiliation(s)
- Sam Mesiano
- William H Weir MD Professor of Reproductive Biology, Department of Reproductive Biology Case, Western Reserve University, USA; Department of Obstetrics and Gynecology, University Hospitals of Cleveland, 11100 Euclid Ave, Cleveland, OH 44106, USA.
| |
Collapse
|
11
|
Vidal MS, Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: Involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne) 2022; 13:1015622. [PMID: 36313741 PMCID: PMC9606232 DOI: 10.3389/fendo.2022.1015622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Survivors of preterm birth struggle with multitudes of disabilities due to improper in utero programming of various tissues and organ systems contributing to adult-onset diseases at a very early stage of their lives. Therefore, the persistent rates of low birth weight (birth weight < 2,500 grams), as well as rates of neonatal and maternal morbidities and mortalities, need to be addressed. Active research throughout the years has provided us with multiple theories regarding the risk factors, initiators, biomarkers, and clinical manifestations of spontaneous preterm birth. Fetal organs, like the placenta and fetal membranes, and maternal tissues and organs, like the decidua, myometrium, and cervix, have all been shown to uniquely respond to specific exogenous or endogenous risk factors. These uniquely contribute to dynamic changes at the molecular and cellular levels to effect preterm labor pathways leading to delivery. Multiple intervention targets in these different tissues and organs have been successfully tested in preclinical trials to reduce the individual impacts on promoting preterm birth. However, these preclinical trial data have not been effectively translated into developing biomarkers of high-risk individuals for an early diagnosis of the disease. This becomes more evident when examining the current global rate of preterm birth, which remains staggeringly high despite years of research. We postulate that studying each tissue and organ in silos, as how the majority of research has been conducted in the past years, is unlikely to address the network interaction between various systems leading to a synchronized activity during either term or preterm labor and delivery. To address current limitations, this review proposes an integrated approach to studying various tissues and organs involved in the maintenance of normal pregnancy, promotion of normal parturition, and more importantly, contributions towards preterm birth. We also stress the need for biological models that allows for concomitant observation and analysis of interactions, rather than focusing on these tissues and organ in silos.
Collapse
Affiliation(s)
- Manuel S. Vidal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ryan C. V. Lintao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mary Elise L. Severino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
12
|
Lu JW, Lei WJ, Ling LJ, Wang LY, Lin YK, Zhang F, Li MD, Pan F, Wang WS, Sun K. Cortisol Stimulates Local Progesterone Withdrawal Through Induction of AKR1C1 in Human Amnion Fibroblasts at Parturition. Endocrinology 2022; 163:6681118. [PMID: 36048433 DOI: 10.1210/endocr/bqac148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 11/19/2022]
Abstract
Fetal membrane activation is seen as being one of the crucial triggering components of human parturition. Increased prostaglandin E2 (PGE2) production, a common mediator of labor onset in virtually all species, is recognized as one of the landmark events of membrane activation. Fetal membranes are also equipped with a high capacity of cortisol regeneration by 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), and the cortisol regenerated potently induces PGE2 synthesis, an effect normally suppressed by progesterone during gestation. There is no precipitous decline of progesterone synthesis in human parturition. It is intriguing how this suppression is lifted in parturition. Here, we investigated this issue by using human amnion tissue and primary amnion fibroblasts which synthesize the most PGE2 in the fetal membranes. Results showed that the expression of 11β-HSD1 and aldo-keto reductase family 1 member C1 (AKR1C1), a progesterone-inactivating enzyme, increased in parallel in human amnion tissue with gestational age toward the end of gestation and at parturition. Cortisol induced AKR1C1 expression via the transcription factor CCAAT enhancer binding protein δ (C/EBPδ) in amnion fibroblasts. Inhibition of AKR1C1 not only blocked progesterone catabolism induced by cortisol, but also enhanced the suppression of cortisol-induced cyclooxygenase-2 (COX-2) expression by progesterone in amnion fibroblasts. In conclusion, our results indicate that cortisol regenerated in the fetal membranes triggers local progesterone withdrawal through enhancement of AKR1C1-mediated progesterone catabolism in amnion fibroblasts, so that the suppression of progesterone on the induction of COX-2 expression and PGE2 synthesis by cortisol can be lifted for parturition.
Collapse
Affiliation(s)
- Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Li-Jun Ling
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| | - Lu-Yao Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| | - Yi-Kai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| |
Collapse
|
13
|
Progesterone Receptor Signaling in the Uterus Is Essential for Pregnancy Success. Cells 2022; 11:cells11091474. [PMID: 35563781 PMCID: PMC9104461 DOI: 10.3390/cells11091474] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022] Open
Abstract
The uterus plays an essential role in the reproductive health of women and controls critical processes such as embryo implantation, placental development, parturition, and menstruation. Progesterone receptor (PR) regulates key aspects of the reproductive function of several mammalian species by directing the transcriptional program in response to progesterone (P4). P4/PR signaling controls endometrial receptivity and decidualization during early pregnancy and is critical for the establishment and outcome of a successful pregnancy. PR is also essential throughout gestation and during labor, and it exerts critical roles in the myometrium, mainly by the specialized function of its two isoforms, progesterone receptor A (PR-A) and progesterone receptor B (PR-B), which display distinct and separate roles as regulators of transcription. This review summarizes recent studies related to the roles of PR function in the decidua and myometrial tissues. We discuss how PR acquired key features in placental mammals that resulted in a highly specialized and dynamic role in the decidua. We also summarize recent literature that evaluates the myometrial PR-A/PR-B ratio at parturition and discuss the efficacy of current treatment options for preterm birth.
Collapse
|
14
|
Shynlova O, Nadeem L, Dorogin A, Mesiano S, Lye SJ. The selective progesterone receptor modulator-promegestone-delays term parturition and prevents systemic inflammation-mediated preterm birth in mice. Am J Obstet Gynecol 2022; 226:249.e1-249.e21. [PMID: 34418351 DOI: 10.1016/j.ajog.2021.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Progesterone, acting via its nuclear receptors called progesterone receptors, promotes myometrial relaxation during pregnancy, and suspension of this activity triggers labor. We previously found that 20α-hydroxysteroid dehydrogenase causes a local withdrawal of progesterone in the term and preterm myometrium by converting the progesterone into an inactive form before it accesses the progesterone receptors. OBJECTIVE We hypothesized that a selective progesterone receptor modulator called promegestone, which is not metabolized by 20α-hydroxysteroid dehydrogenase, would sustain progesterone receptor signaling and prevent/delay term labor and preterm labor in mice. STUDY DESIGN In the term labor mouse model, promegestone (0.2 mg/dam) or a vehicle were administered subcutaneously in timed-pregnant CD-1 mice at gestational days 15, 16, and 17 (term gestational days, 19.5). In the inflammation preterm labor model, pregnant mice received promegestone or a vehicle on gestational days 15, 16, and 17, which was 24 hours before, immediately before, and 24 hours after systemic bacterial endotoxin (50 μg intraperitoneal; lipopolysaccharide group) or vehicle (saline) administration. The maternal and fetal tissues were collected on gestational day 16 6 hours after lipopolysaccharide±promegestone injection and at term gestational day 18.75. The protein levels of 10 cytokines were measured by multiplex immunoassay in maternal plasma and amniotic fluid. Myometrial, decidual, and placental messenger RNA levels of multiple cytokines and procontractile proteins were evaluated by real-time polymerase chain reaction and confirmed by immunoblotting. RESULTS Promegestone prevented term labor and maintained mice pregnancy postterm >24 hours. The litter size and fetal weights were not different from the controls. Promegestone prevented systemic bacterial-endotoxin-induced preterm labor in 100% of the mice, blocked uterine contractions, significantly inhibited all systemic inflammation-induced myometrial cytokines, and partially inhibited decidual and placental inflammation. Promegestone did not prevent bacterial-endotoxin-induced fetal toxicity. CONCLUSION Promegestone a selective progesterone receptor modulator that binds progesterone receptors with high affinity and is not metabolized by 20α-hydroxysteroid dehydrogenase could completely suppress term parturition and systemic bacterial-endotoxin-induced preterm birth in mice. We suggest that such selective progesterone receptor modulators may represent a potential therapeutic approach to the prevention of preterm labor in women at high risk of preterm birth.
Collapse
Affiliation(s)
- Oksana Shynlova
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada.
| | - Lubna Nadeem
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anna Dorogin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Nuclear Receptors in Pregnancy and Outcomes: Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:3-19. [DOI: 10.1007/978-3-031-11836-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Boros-Rausch A, Shynlova O, Lye SJ. A Broad-Spectrum Chemokine Inhibitor Blocks Inflammation-Induced Myometrial Myocyte-Macrophage Crosstalk and Myometrial Contraction. Cells 2021; 11:cells11010128. [PMID: 35011690 PMCID: PMC8750067 DOI: 10.3390/cells11010128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
Prophylactic administration of the broad-spectrum chemokine inhibitor (BSCI) FX125L has been shown to suppress uterine contraction, prevent preterm birth (PTB) induced by Group B Streptococcus in nonhuman primates, and inhibit uterine cytokine/chemokine expression in a murine model of bacterial endotoxin (LPS)-induced PTB. This study aimed to determine the mechanism(s) of BSCI action on human myometrial smooth muscle cells. We hypothesized that BSCI prevents infection-induced contraction of uterine myocytes by inhibiting the secretion of pro-inflammatory cytokines, the expression of contraction-associated proteins and disruption of myocyte interaction with tissue macrophages. Myometrial biopsies and peripheral blood were collected from women at term (not in labour) undergoing an elective caesarean section. Myocytes were isolated and treated with LPS with/out BSCI; conditioned media was collected; cytokine secretion was analyzed by ELISA; and protein expression was detected by immunoblotting and immunocytochemistry. Functional gap junction formation was assessed by parachute assay. Collagen lattices were used to examine myocyte contraction with/out blood-derived macrophages and BSCI. We found that BSCI inhibited (1) LPS-induced activation of transcription factor NF-kB; (2) secretion of chemokines (MCP-1/CCL2 and IL-8/CXCL8); (3) Connexin43-mediated intercellular connectivity, thereby preventing myocyte–macrophage crosstalk; and (4) myocyte contraction. BSCI represents novel therapeutics for prevention of inflammation-induced PTB in women.
Collapse
Affiliation(s)
- Adam Boros-Rausch
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Suite 6-1017, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (S.J.L.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Suite 6-1017, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (S.J.L.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence: ; Tel.: +1-416-586-4800 (ext. 5635); Fax: +1-416-586-5116
| | - Stephen James Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Suite 6-1017, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (S.J.L.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
17
|
Overview of human 20 alpha-hydroxysteroid dehydrogenase (AKR1C1): Functions, regulation, and structural insights of inhibitors. Chem Biol Interact 2021; 351:109746. [PMID: 34780792 DOI: 10.1016/j.cbi.2021.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
Human aldo-keto reductase family 1C1 (AKR1C1) is an important enzyme involved in human hormone metabolism, which is mainly responsible for the metabolism of progesterone in the human body. AKR1C1 is highly expressed and has an important relationship with the occurrence and development of various diseases, especially some cancers related to hormone metabolism. Nowadays, many inhibitors against AKR1C1 have been discovered, including some synthetic compounds and natural products, which have certain inhibitory activity against AKR1C1 at the target level. Here we briefly reviewed the physiological and pathological functions of AKR1C1 and the relationship with the disease, and then summarized the development of AKR1C1 inhibitors, elucidated the interaction between inhibitors and AKR1C1 through molecular docking results and existing co-crystal structures. Finally, we discussed the design ideals of selective AKR1C1 inhibitors from the perspective of AKR1C1 structure, discussed the prospects of AKR1C1 in the treatment of human diseases in terms of biomarkers, pre-receptor regulation and single nucleotide polymorphisms, aiming to provide new ideas for drug research targeting AKR1C1.
Collapse
|
18
|
Nadeem L, Balendran R, Dorogin A, Mesiano S, Shynlova O, Lye SJ. Pro-inflammatory signals induce 20α-HSD expression in myometrial cells: A key mechanism for local progesterone withdrawal. J Cell Mol Med 2021; 25:6773-6785. [PMID: 34114342 PMCID: PMC8278114 DOI: 10.1111/jcmm.16681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/03/2023] Open
Abstract
Metabolism of progesterone (P4) by the enzyme 20α hydroxysteroid dehydrogenase (20α‐HSD) in myometrial cells is postulated to be a mechanism for P4 withdrawal, which occurs concomitant to uterine inflammation (physiologic or infection‐induced) and associated activation of transcription factors: NF‐кB and AP‐1, common to term and preterm labour. We found that 20α‐HSD protein is significantly increased in human myometrium during term labour, and in mouse uterus during term and preterm labour. Treatment of human myometrial cells with the pro‐inflammatory mediators, lipopolysaccharide (LPS, mimicking infection) and 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA, mimicking inflammation), induced 20α‐HSD gene expression and increased 20α‐HSD protein abundance. LPS treatment decreased P4 release into the culture medium and resulted in up‐regulation of GJA1 in the hTERT‐HM cells. The NF‐кB /AP‐1 transcription factors mediated effects of LPS and TPA on 20α‐HSD gene transcription. Both pro‐inflammatory stimuli induced 20α‐HSD promoter activity in LPS/TPA‐treated cells which was significantly attenuated by inhibition of NF‐кB (JSH: 20 µM) or AP‐1 signalling (T5224: 10 µM). Deletion of NF‐кB consensus sites abrogated LPS‐mediated promoter induction, while removal of AP‐1 sites reversed the TPA‐mediated induction of 20α‐HSD promoter. We conclude that inflammatory stimuli (physiologic or pathologic) that activate NF‐кB or AP‐1 induce 20α‐HSD transcription and subsequent local P4 withdrawal resulting in up‐regulation of GJA1 and activation of myometrium that precedes labour.
Collapse
Affiliation(s)
- Lubna Nadeem
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rathesh Balendran
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Anna Dorogin
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada
| | - Stephen J Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|