1
|
Heiman GA, Rispoli J, Seymour C, Leckman JF, King RA, Fernandez TV. Empiric Recurrence Risk Estimates for Chronic Tic Disorders: Implications for Genetic Counseling. Front Neurol 2020; 11:770. [PMID: 32849224 PMCID: PMC7432137 DOI: 10.3389/fneur.2020.00770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/22/2020] [Indexed: 01/18/2023] Open
Abstract
Background: Tourette disorder (TD) and other chronic tic disorders are neurodevelopmental/neuropsychiatric disorders characterized by motor and/or vocal tics. Family studies indicate that TD strongly aggregates within families and that other chronic tic disorders are biologically related such that studies typically combine them into any chronic tic disorder (CTD). Because of stigma, bullying, and comorbidity with other neuropsychiatric disorders, CTDs can severely impact the quality of life of individuals with these disorders. Objectives: The genetic architecture of CTDs is complex and heterogeneous, involving a myriad of genetic variants. Thus, providing familial recurrence risks is based on empirical recurrence risk estimates rather than genetic testing. Because empiric recurrence risks for CTDs have not been published, the purpose of this study is to calculate and report these recurrence risks estimates. Methods: Based on population prevalence and increased risk to different relatives from a large population-based family study, we calculated the empiric recurrent risk estimate for each relative type (full sibling, parents, offspring, all first-degree, and all second-degree). Results: The recurrence risk estimate for CTDs in first-degree relatives is 29.9% [95% confidence interval (CI) = 23.2-38.5%]. The risk is higher in males, 33.7% (95% CI = 26.2-43.3%), than females, 24.3% (95% CI = 18.9-31.3%). Conclusions: Given the complex, heterogeneous genetic architecture of CTDs, individuals concerned about recurrence risk should be referred to genetic counseling. Such counseling should include discussion of the derivation and limitations of these empiric recurrence risk estimates, including the upper and lower limits of the range of risk.
Collapse
Affiliation(s)
- Gary A. Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Jessica Rispoli
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Christine Seymour
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - James F. Leckman
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Robert A. King
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Thomas V. Fernandez
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
2
|
Mataix-Cols D, Hansen B, Mattheisen M, Karlsson EK, Addington AM, Boberg J, Djurfeldt DR, Halvorsen M, Lichtenstein P, Solem S, Lindblad-Toh K, Haavik J, Kvale G, Rück C, Crowley JJ. Nordic OCD & Related Disorders Consortium: Rationale, design, and methods. Am J Med Genet B Neuropsychiatr Genet 2020; 183:38-50. [PMID: 31424634 PMCID: PMC6898732 DOI: 10.1002/ajmg.b.32756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/19/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating psychiatric disorder, yet its etiology is unknown and treatment outcomes could be improved if biological targets could be identified. Unfortunately, genetic findings for OCD are lagging behind other psychiatric disorders. Thus, there is a pressing need to understand the causal mechanisms implicated in OCD in order to improve clinical outcomes and to reduce morbidity and societal costs. Specifically, there is a need for a large-scale, etiologically informative genetic study integrating genetic and environmental factors that presumably interact to cause the condition. The Nordic countries provide fertile ground for such a study, given their detailed population registers, national healthcare systems and active specialist clinics for OCD. We thus formed the Nordic OCD and Related Disorders Consortium (NORDiC, www.crowleylab.org/nordic), and with the support of NIMH and the Swedish Research Council, have begun to collect a large, richly phenotyped and genotyped sample of OCD cases. Our specific aims are geared toward answering a number of key questions regarding the biology, etiology, and treatment of OCD. This article describes and discusses the rationale, design, and methodology of NORDiC, including details on clinical measures and planned genomic analyses.
Collapse
Affiliation(s)
- David Mataix-Cols
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Stockholm, Sweden
| | - Bjarne Hansen
- Haukeland University Hospital, OCD-team, Bergen, Norway,Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Manuel Mattheisen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany,Institute of Human Genetics, University of Bonn, Bonn, Germany,Center for Integrative Sequencing, iSEQ, Department of Biomedicine, Aarhus University, Denmark,Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Würzburg, Germany
| | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA,Program in Bioinformatics & Integrative Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anjené M. Addington
- Genomics Research Branch, National Institute of Mental Health in Bethesda, Bethesda, Maryland, USA
| | - Julia Boberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Stockholm, Sweden
| | - Diana R. Djurfeldt
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Stockholm, Sweden
| | - Matthew Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, NC, USA
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Stian Solem
- Haukeland University Hospital, OCD-team, Bergen, Norway,Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA,Science for Life Laboratory, IMBIM, Uppsala University, Uppsala, Sweden
| | | | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Gerd Kvale
- Haukeland University Hospital, OCD-team, Bergen, Norway,Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Christian Rück
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stockholm Health Care Services, Stockholm, Sweden
| | - James J. Crowley
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Genetics, University of North Carolina at Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
3
|
Waltes R, Freitag CM, Herlt T, Lempp T, Seitz C, Palmason H, Meyer J, Chiocchetti AG. Impact of autism-associated genetic variants in interaction with environmental factors on ADHD comorbidities: an exploratory pilot study. J Neural Transm (Vienna) 2019; 126:1679-1693. [PMID: 31707462 DOI: 10.1007/s00702-019-02101-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is determined by genetic and environmental factors, and shares genetic risk with ASD. Functional single-nucleotide polymorphisms of the metabotropic glutamatergic signaling pathway are reported to increase the risk for ASD. The aim of this pilot study was to explore the main effects of respective ASD variants as well as their interaction effects with well-replicated ADHD environmental risk factors on the risk for ADHD, ADHD symptom severities, and comorbidities. We included 318 children with ADHD, aged 5-13 years, and their parents (N = 164 trios, N = 113 duos, N = 41 singletons). Interaction of ASD risk variants CYFIP1-rs7170637, CYFIP1-rs3693, CAMK4-rs25925, and GRM1-rs6923492 with prenatal biological and lifetime psychosocial risk factors was explored in a subsample with complete environmental risk factors (N = 139 trios, N = 83 duos, two singletons) by transmission disequilibrium test and stepwise regression analyses. We identified nominally significant (alpha < 0.05) GxE interactions of acute life events with CYFIP1-rs3693 on ADHD diagnosis (p = 0.004; fdr = 0.096) but no significant association of any single marker. Further results suggest that the risk for comorbid disruptive disorders was significantly modulated by GxE interactions between familial risk factors and CAMK4-rs25925 (p = 0.001; fdr = 0.018) and prenatal alcohol exposure with CYFIP1-rs3693 (p = 0.003; fdr = 0.027); both findings survived correction for multiple testing (fdr value < 0.05). Nominal significant GxE interactions moderating the risk for anxiety disorders have also been identified, but did not pass multiple testing corrections. This pilot study suggests that common ASD variants of the glutamatergic system interact with prenatal and lifetime psychosocial risk factors influencing the risk for ADHD common comorbidities and thus warrants replication in larger samples.
Collapse
Affiliation(s)
- Regina Waltes
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University, Deutschordenstr. 50, 60528, Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University, Deutschordenstr. 50, 60528, Frankfurt am Main, Germany
| | - Timo Herlt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University, Deutschordenstr. 50, 60528, Frankfurt am Main, Germany
| | - Thomas Lempp
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University, Deutschordenstr. 50, 60528, Frankfurt am Main, Germany
| | - Christiane Seitz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Saarland University Hospital, 66421, Homburg, Germany
| | - Haukur Palmason
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, 54290, Trier, Germany
| | - Jobst Meyer
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, 54290, Trier, Germany
| | - Andreas G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, JW Goethe University, Deutschordenstr. 50, 60528, Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Lindberg MA, Zeid D. Tests of the Attachment and Developmental Dynamic Systems Theory of Crime (ADDSTOC): Toward a Differential RDoC Diagnostic and Treatment Approach. INTERNATIONAL JOURNAL OF OFFENDER THERAPY AND COMPARATIVE CRIMINOLOGY 2018; 62:3746-3774. [PMID: 29303015 DOI: 10.1177/0306624x17750353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Attachment and Developmental Dynamic Systems Theory of Crime was tested on 206 male inmates. They completed measures tapping attachments, clinical issues, adverse childhood events, peer crime, and crime addictions. A significant path model was found, going from insecure parental attachments to adverse childhood events, and then on to the behavioral crime addiction and criminal peers scales. Peer crime was also predicted by insecure parent attachments and the crime addiction scale. Finally, the crime addiction, peer crime, and insecure parental attachment scales predicted frequencies of criminal behavior. The model also fit a sample of 239 female inmates. The notions of crime addiction, in this context of adverse events and insecure parental attachments, offered newer and more powerful explanations than previously offered by social learning theories on why some individuals are more likely to associate with peers engaging in criminal behavior, and also how these combine to predict degrees of criminal behavior. By moving beyond main effects models, it was found that a focus on systems of interactions was robust in theory and application. However, profile data from the Attachment and Clinical Issues Questionnaire showed that individual differences in Research Domain Criteria diagnoses are fundamental to treatment settings. Such approaches to reducing rates of recidivism and substance abuse should also enhance outcomes in many domains, including HIV prevention, costs to health care, and at the same time increase overall public safety.
Collapse
Affiliation(s)
| | - Dana Zeid
- 2 The Pennsylvania State University, University Park, USA
| |
Collapse
|
5
|
Xu MK, Gaysina D, Tsonaka R, Morin AJS, Croudace TJ, Barnett JH, Houwing-Duistermaat J, Richards M, Jones PB. Monoamine Oxidase A ( MAOA) Gene and Personality Traits from Late Adolescence through Early Adulthood: A Latent Variable Investigation. Front Psychol 2017; 8:1736. [PMID: 29075213 PMCID: PMC5641687 DOI: 10.3389/fpsyg.2017.01736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Very few molecular genetic studies of personality traits have used longitudinal phenotypic data, therefore molecular basis for developmental change and stability of personality remains to be explored. We examined the role of the monoamine oxidase A gene (MAOA) on extraversion and neuroticism from adolescence to adulthood, using modern latent variable methods. A sample of 1,160 male and 1,180 female participants with complete genotyping data was drawn from a British national birth cohort, the MRC National Survey of Health and Development (NSHD). The predictor variable was based on a latent variable representing genetic variations of the MAOA gene measured by three SNPs (rs3788862, rs5906957, and rs979606). Latent phenotype variables were constructed using psychometric methods to represent cross-sectional and longitudinal phenotypes of extraversion and neuroticism measured at ages 16 and 26. In males, the MAOA genetic latent variable (AAG) was associated with lower extraversion score at age 16 (β = −0.167; CI: −0.289, −0.045; p = 0.007, FDRp = 0.042), as well as greater increase in extraversion score from 16 to 26 years (β = 0.197; CI: 0.067, 0.328; p = 0.003, FDRp = 0.036). No genetic association was found for neuroticism after adjustment for multiple testing. Although, we did not find statistically significant associations after multiple testing correction in females, this result needs to be interpreted with caution due to issues related to x-inactivation in females. The latent variable method is an effective way of modeling phenotype- and genetic-based variances and may therefore improve the methodology of molecular genetic studies of complex psychological traits.
Collapse
Affiliation(s)
- Man K Xu
- Faculty of Psychology and Educational Sciences, Welten Institute, Open University of the Netherlands, Heerlen, Netherlands.,Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre, Leiden, Netherlands.,Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.,Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Darya Gaysina
- EDGE Lab, School of Psychology, University of Sussex, Brighton, United Kingdom
| | - Roula Tsonaka
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre, Leiden, Netherlands
| | - Alexandre J S Morin
- Substantive-Methodological Synergy Research Laboratory, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Tim J Croudace
- School of Nursing and Health Sciences, University of Dundee, Dundee, United Kingdom
| | | | | | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, London, United Kingdom
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
6
|
Smith LE, Smith DK, Blume JD, Siew ED, Billings FT. Latent variable modeling improves AKI risk factor identification and AKI prediction compared to traditional methods. BMC Nephrol 2017; 18:55. [PMID: 28178929 PMCID: PMC5299779 DOI: 10.1186/s12882-017-0465-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/30/2017] [Indexed: 01/27/2023] Open
Abstract
Background Acute kidney injury (AKI) is diagnosed based on postoperative serum creatinine change, but AKI models have not consistently performed well, in part due to the omission of clinically important but practically unmeasurable variables that affect creatinine. We hypothesized that a latent variable mixture model of postoperative serum creatinine change would partially account for these unmeasured factors and therefore increase power to identify risk factors of AKI and improve predictive accuracy. Methods We constructed a two-component latent variable mixture model and a linear model using data from a prospective, 653-subject randomized clinical trial of AKI following cardiac surgery (NCT00791648) and included established AKI risk factors and covariates known to affect serum creatinine. We compared model fit, discrimination, power to detect AKI risk factors, and ability to predict AKI between the latent variable mixture model and the linear model. Results The latent variable mixture model demonstrated superior fit (likelihood ratio of 6.68 × 1071) and enhanced discrimination (permutation test of Spearman’s correlation coefficients, p < 0.001) compared to the linear model. The latent variable mixture model was 94% (−13 to 1132%) more powerful (median [range]) at identifying risk factors than the linear model, and demonstrated increased ability to predict change in serum creatinine (relative mean square error reduction of 6.8%). Conclusions A latent variable mixture model better fit a clinical cohort of cardiac surgery patients than a linear model, thus providing better assessment of the associations between risk factors of AKI and serum creatinine change and more accurate prediction of AKI. Incorporation of latent variable mixture modeling into AKI research will allow clinicians and investigators to account for clinically meaningful patient heterogeneity resulting from unmeasured variables, and therefore provide improved ability to examine risk factors, measure mechanisms and mediators of kidney injury, and more accurately predict AKI in clinical cohorts. Electronic supplementary material The online version of this article (doi:10.1186/s12882-017-0465-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Loren E Smith
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 21st Avenue South, Nashville, TN, 37205, USA
| | - Derek K Smith
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey D Blume
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edward D Siew
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease and Integrated Program for AKI Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frederic T Billings
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 21st Avenue South, Nashville, TN, 37205, USA. .,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Adachi PJC, Willoughby T. The Longitudinal Association Between Competitive Video Game Play and Aggression Among Adolescents and Young Adults. Child Dev 2016; 87:1877-1892. [PMID: 27346428 DOI: 10.1111/cdev.12556] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The longitudinal association between competitive video game play and aggression among young adults and adolescents was examined. Young adults (N = 1,132; Mage = 19 years) were surveyed annually over 4 years about their video game play and aggression, and data from a 4-year longitudinal study of adolescents (N = 1,492; Mage = 13 years) was reanalyzed. The results demonstrated a longitudinal association between competitive video game play and aggressive behavior among both age groups. In addition, competitive video game play predicted higher levels of aggressive affect over time, which, in turn, predicted higher levels of aggressive behavior over time, suggesting that aggressive affect was a mechanism of this link. These findings highlight the importance of investigating competitive elements of video game play that may predict aggression over time.
Collapse
|
8
|
Developmental psychopathology in an era of molecular genetics and neuroimaging: A developmental neurogenetics approach. Dev Psychopathol 2016; 27:587-613. [PMID: 25997774 DOI: 10.1017/s0954579415000188] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The emerging field of neurogenetics seeks to model the complex pathways from gene to brain to behavior. This field has focused on imaging genetics techniques that examine how variability in common genetic polymorphisms predict differences in brain structure and function. These studies are informed by other complimentary techniques (e.g., animal models and multimodal imaging) and have recently begun to incorporate the environment through examination of Imaging Gene × Environment interactions. Though neurogenetics has the potential to inform our understanding of the development of psychopathology, there has been little integration between principles of neurogenetics and developmental psychopathology. The paper describes a neurogenetics and Imaging Gene × Environment approach and how these approaches have been usefully applied to the study of psychopathology. Six tenets of developmental psychopathology (the structure of phenotypes, the importance of exploring mechanisms, the conditional nature of risk, the complexity of multilevel pathways, the role of development, and the importance of who is studied) are identified, and how these principles can further neurogenetics applications to understanding the development of psychopathology is discussed. A major issue of this piece is how neurogenetics and current imaging and molecular genetics approaches can be incorporated into developmental psychopathology perspectives with a goal of providing models for better understanding pathways from among genes, environments, the brain, and behavior.
Collapse
|
9
|
Hohmann S, Adamo N, Lahey BB, Faraone SV, Banaschewski T. Genetics in child and adolescent psychiatry: methodological advances and conceptual issues. Eur Child Adolesc Psychiatry 2015; 24:619-34. [PMID: 25850999 DOI: 10.1007/s00787-015-0702-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
Discovering the genetic basis of early-onset psychiatric disorders has been the aim of intensive research during the last decade. We will first selectively summarize results of genetic research in child and adolescent psychiatry by using examples from different disorders and discuss methodological issues, emerging questions and future directions. In the second part of this review, we will focus on how to link genetic causes of disorders with physiological pathways, discuss the impact of genetic findings on diagnostic systems, prevention and therapeutic interventions. Finally we will highlight some ethical aspects connected to genetic research in child and adolescent psychiatry. Advances in molecular genetic methods have led to insights into the genetic architecture of psychiatric disorders, but not yet provided definite pathways to pathophysiology. If replicated, promising findings from genetic studies might in some cases lead to personalized treatments. On the one hand, knowledge of the genetic basis of disorders may influence diagnostic categories. On the other hand, models also suggest studying the genetic architecture of psychiatric disorders across diagnoses and clinical groups.
Collapse
Affiliation(s)
- Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | | | | | | | | |
Collapse
|
10
|
Robertson MM. A personal 35 year perspective on Gilles de la Tourette syndrome: assessment, investigations, and management. Lancet Psychiatry 2015; 2:88-104. [PMID: 26359615 DOI: 10.1016/s2215-0366(14)00133-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/09/2014] [Indexed: 01/17/2023]
Abstract
After having examined the definition, clinical phenomenology, comorbidity, psychopathology, and phenotypes in the first paper of this Series, here I discuss the assessment, including neuropsychology, and the effects of Gilles de la Tourette syndrome with studies showing that the quality of life of patients with Tourette's syndrome is reduced and that there is a substantial burden on the family. In this paper, I review my local and collaborative studies investigating causal factors (including genetic vulnerability, prenatal and perinatal difficulties, and neuro-immunological factors). I also present my studies on neuro-imaging, electro-encephalograms, and other special investigations, which are helpful in their own right or to exclude other conditions. Finally, I also review our studies on treatment including medications, transcranial magnetic stimulation, biofeedback, target-specific botulinum toxin injections, biofeedback and, in severe refractory adults, psychosurgery and deep brain stimulation. This Review summarises and highlights selected main findings from my clinic (initially The National Hospital for Neurology and Neurosurgery Queen Square and University College London, UK, and, subsequently, at St George's Hospital, London, UK), and several collaborations since 1980. As in Part 1 of this Series, I address the main controversies in the fields and the research of other groups, and I make suggestions for future research.
Collapse
Affiliation(s)
- Mary M Robertson
- Department of Neurology, Tourette Clinic, Atkinson Morley Wing, St Georges Hospital, London University College London, London; Division of Psychiatry, Faculty of Brain Sciences, University College London, London, UK; Department of Psychiatry, University of Cape Town, South Africa.
| |
Collapse
|