2
|
Ladhani SN, Fernandes S, Garg M, Borrow R, de Lusignan S, Bolton-Maggs PHB. Prevention and treatment of infection in patients with an absent or hypofunctional spleen: A British Society for Haematology guideline. Br J Haematol 2024; 204:1672-1686. [PMID: 38600782 DOI: 10.1111/bjh.19361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 04/12/2024]
Abstract
Guidelines for the prevention and treatment of infection in patients with an absent or dysfunctional spleen were published by the British Committee for Standards in Haematology in 1996 and updated in 2002 and 2011. With advances in vaccinations and changes in patterns of infection, the guidelines required updating. Key aspects included in this guideline are the identification of patients at risk of infection, patient education and information and immunisation schedules. This guideline does not address the non-infective complications of splenectomy or functional hyposplenism (FH). This replaces previous guidelines and significantly revises the recommendations related to immunisation. Patients at risk include those who have undergone surgical removal of the spleen, including partial splenectomy and splenic embolisation, and those with medical conditions that predispose to FH. Immunisations should include those against Streptococcus pneumoniae (pneumococcus), Neisseria meningitidis (meningococcus) and influenza. Haemophilus influenzae type b (Hib) is part of the infant immunisation schedule and is no longer required for older hyposplenic patients. Treatment of suspected or proven infections should be based on local protocols and consider relevant anti-microbial resistance patterns. The education of patients and their medical practitioners is essential, particularly in relation to the risk of serious infection and its prevention. Further research is required to establish the effectiveness of vaccinations in hyposplenic patients; infective episodes should be regularly audited. There is no single group ideally placed to conduct audits into complications arising from hyposplenism, highlighting a need for a national registry, as has proved very successful in Australia or alternatively, the establishment of appropriate multidisciplinary networks.
Collapse
Affiliation(s)
- Shamez N Ladhani
- Centre for Neonatal and Paediatric Infections (CNPI), St. George's University of London, London, UK
- Immunisation and Countermeasures Division, UK Health Security Agency Colindale, London, UK
| | - Savio Fernandes
- Department of Haematology, Dudley Group Foundation NHS Trust, Russell's Hall Hospital, Dudley, UK
| | - Mamta Garg
- Leicester Royal Infirmary, Leicester, UK
| | - Ray Borrow
- Vaccine Evaluation Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| | - Simon de Lusignan
- Nuffield Department of Primary Care Health Sciences, Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC), University of Oxford, Oxford, UK
| | | |
Collapse
|
3
|
Kassianos G, Barasheed O, Abbing-Karahagopian V, Khalaf M, Ozturk S, Banzhoff A, Badur S. Meningococcal B Immunisation in Adults and Potential Broader Immunisation Strategies: A Narrative Review. Infect Dis Ther 2023; 12:2193-2219. [PMID: 37428339 PMCID: PMC10581987 DOI: 10.1007/s40121-023-00836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Recombinant vaccines against invasive meningococcal disease due to Neisseria meningitidis serogroup B (MenB) have shown substantial impact in reducing MenB disease in targeted populations. 4CMenB targets four key N. meningitidis protein antigens; human factor H binding protein (fHbp), Neisserial heparin binding antigen (NHBA), Neisseria adhesin A (NadA) and the porin A protein (PorA P1.4), with one or more of these expressed by most pathogenic MenB strains, while MenB-FHbp targets two distinct fHbp variants. While many countries recommend MenB immunisation in adults considered at high risk due to underlying medical conditions or immunosuppression, there are no recommendations for routine use in the general adult population. We reviewed the burden of MenB in adults, where, while incidence rates remain low (and far lower than in young children < 5 years of age at greatest risk), a substantial proportion of MenB cases (20% or more) is now observed in the adult population; evident in Europe, Australia, and in the United States. We also reviewed immunogenicity data in adults from clinical studies conducted during MenB vaccine development and subsequent post-licensure studies. A 2-dose schedule of 4CMenB generates hSBA titres ≥ 1:4 towards all four key vaccine target antigens in up to 98-100% of subjects. For MenB-FHbp, a ≥ fourfold rise in hSBA titres against the four primary representative test strains was observed in 70-95% of recipients following a 3-dose schedule. While this suggests potential benefits for MenB immunisation if used in adult populations, data are limited (especially for adults > 50 years) and key aspects relating to duration of protection remain unclear. Although a broader adult MenB immunisation policy could provide greater protection of the adult population, additional data are required to support policy decision-making.
Collapse
Affiliation(s)
- George Kassianos
- Royal College of General Practitioners, London, UK
- The British Global and Travel Health Association, London, UK
| | | | | | | | | | | | | |
Collapse
|
4
|
Qian C, Yang Y, Xu Q, Wang Z, Chen J, Chi X, Yu M, Gao F, Xu Y, Lu Y, Sun H, Shen J, Wang D, Zhou L, Li T, Wang Y, Zheng Q, Yu H, Zhang J, Gu Y, Xia N, Li S. Characterization of an Escherichia coli-derived triple-type chimeric vaccine against human papillomavirus types 39, 68 and 70. NPJ Vaccines 2022; 7:134. [PMID: 36316367 PMCID: PMC9622684 DOI: 10.1038/s41541-022-00557-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 10/13/2022] [Indexed: 11/22/2022] Open
Abstract
In vaccinology, a potent immunogen has two prerequisite attributes-antigenicity and immunogenicity. We have rational designed a triple-type HPV vaccine against HPV58, -33 and -52 covered in Gardasil 9 based on the sequence homology and similar surface loop structure of L1 protein, which is related to cross-type antigenicity. Here, we design another triple-type vaccine against non-vaccine types HPV39, -68 and -70 by immunogenicity optimization considering type specific immunodominant epitopes located in separate region for different types. First, we optimized the expression of wild-type HPV39, -68 and -70 L1-only virus-like particles (VLPs) in E. coli through N-terminal truncation of HPV L1 proteins and non-fusion soluble expression. Second, based on genetic relationships and an L1 homologous loop-swapping rationale, we constructed several triple-type chimeric VLPs for HPV39, -68 and -70, and obtained the lead candidate named H39-68FG-70DE by the immunogenicity optimization using reactivity profile of a panel type-specific monoclonal antibodies. Through comprehensive characterization using various biochemical, VLP-based analyses and immune assays, we show that H39-68FG-70DE assumes similar particulate properties as that of its parental VLPs, along with comparable neutralization immunogenicity for all three HPV types. Overall, this study shows the promise and translatability of an HPV39/68/70 triple-type vaccine, and the possibility of expanding the type-coverage of current HPV vaccines. Our study further expanded the essential criteria on the rational design of a cross-type vaccine, i.e. separate sites with inter-type similar sequence and structure as well as type-specific immunodominant epitope to be clustered together.
Collapse
Affiliation(s)
- Ciying Qian
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Yurou Yang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Qin Xu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Zhiping Wang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Jie Chen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Xin Chi
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Miao Yu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Fei Gao
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Yujie Xu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Yihan Lu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Hui Sun
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Jingjia Shen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Daning Wang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Lizhi Zhou
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Tingting Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Yingbin Wang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Qingbing Zheng
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Hai Yu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Jun Zhang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Ying Gu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Ningshao Xia
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| | - Shaowei Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102 China ,grid.12955.3a0000 0001 2264 7233National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102 China
| |
Collapse
|