1
|
Wang Z, Liu H. Roles of Lysine Methylation in Glucose and Lipid Metabolism: Functions, Regulatory Mechanisms, and Therapeutic Implications. Biomolecules 2024; 14:862. [PMID: 39062577 PMCID: PMC11274642 DOI: 10.3390/biom14070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Glucose and lipid metabolism are essential energy sources for the body. Dysregulation in these metabolic pathways is a significant risk factor for numerous acute and chronic diseases, including type 2 diabetes (T2DM), Alzheimer's disease (AD), obesity, and cancer. Post-translational modifications (PTMs), which regulate protein structure, localization, function, and activity, play a crucial role in managing cellular glucose and lipid metabolism. Among these PTMs, lysine methylation stands out as a key dynamic modification vital for the epigenetic regulation of gene transcription. Emerging evidence indicates that lysine methylation significantly impacts glucose and lipid metabolism by modifying key enzymes and proteins. This review summarizes the current understanding of lysine methylation's role and regulatory mechanisms in glucose and lipid metabolism. We highlight the involvement of methyltransferases (KMTs) and demethylases (KDMs) in generating abnormal methylation signals affecting these metabolic pathways. Additionally, we discuss the chemical biology and pharmacology of KMT and KDM inhibitors and targeted protein degraders, emphasizing their clinical implications for diseases such as diabetes, obesity, neurodegenerative disorders, and cancers. This review suggests that targeting lysine methylation in glucose and lipid metabolism could be an ideal therapeutic strategy for treating these diseases.
Collapse
Affiliation(s)
| | - Huadong Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China;
| |
Collapse
|
2
|
Han S, Jin X, Hu T, Chi F. LAPTM5 regulated by FOXP3 promotes the malignant phenotypes of breast cancer through activating the Wnt/β‑catenin pathway. Oncol Rep 2023; 49:60. [PMID: 36799186 PMCID: PMC9942259 DOI: 10.3892/or.2023.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/22/2022] [Indexed: 02/12/2023] Open
Abstract
Breast cancer remains the most common malignancy and the leading cause of cancer‑associated mortality in women worldwide. Lysosomal protein transmembrane 5 (LAPTM5), a lysosomal membrane protein, plays an important role in several human malignancies. However, the biological functions and mechanism of LAPTM5 in breast cancer remain unclear. In the present study, the potential tumor‑promoting effect of LAPTM5 was predicted by bioinformatics analysis. LAPTM5 was highly expressed in breast cancer clinical specimens. Moreover, in vitro studies demonstrated that cell proliferation, migration and invasion, as well as the process of epithelial‑mesenchymal transition (EMT) were promoted by LAPTM5 overexpression and were suppressed by LAPTM5 downregulation in vitro. The tumor‑promoting effects of LAPTM5 were also confirmed by xenograft tumor assay in vivo. It was found that the tumor‑promoting effects of LAPTM5 were partly dependent on the activation of the Wnt/β‑catenin signaling pathway. Furthermore, dual‑luciferase and chromatin immunoprecipitation assays verified that the transcription factor forkhead box protein 3 (FOXP3) directly bound to the promoter of LAPTM5 and negatively regulated its expression. Taken together, the present findings indicated that LAPTM5, negatively regulated by FOXP3, promoted the malignant phenotypes of breast cancer through activating the Wnt/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Sijia Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Xueying Jin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Tianyu Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Feng Chi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China,Correspondence to: Dr Feng Chi, Department of Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, Liaoning 110022, P.R. China, E-mail: and
| |
Collapse
|
3
|
Jin YM, Ye Y, Bao WQ, Tong Y, Ni SB, Liu JP, Zhao B. CACNA1B facilitates breast cancer cell growth and migration by regulating cyclin D1 and EMT: the implication of CACNA1B in breast cancer. J Recept Signal Transduct Res 2020; 42:1-8. [PMID: 33100116 DOI: 10.1080/10799893.2020.1837871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE This study mainly aimed to explore the influences of Calcium Voltage-Gated Channel Subunit Alpha1 B (CACNA1B) on the development of breast cancer and the related mechanism. MATERIALS AND METHODS The information of patients with breast cancer from TCGA database was used for analyses of CACNA1B expression and its prognostic value. Loss- and gain- of functions of CACNA1B were conducted in MCF7 and Bcap-37 cells, respectively. CCK-8, colony formation and transwell assays were applied for evaluating the cell viability and motility. Western blot was used for protein expression detection. RESULTS We revealed that highly expressed CACNA1B in breast cancer tissues was related to poor prognosis according to the data gained from TCGA database. The outcomes of functional assays showed that depletion of CACNA1B restrained MCF7 cell growth, invasion and migration and high-expression of CACNA1B fortified the growth, invasion and migration in Bcap-37 cells. Finally, we manifested that silencing CACNA1B obviously raised the protein expression level of E-cadherin and reduced the protein levels of Cyclin D1, N-cadherin and Snail in MCF7 cells, whilst, over-expression of CACNA1B reduced the level of E-cadherin and increased the expression of Cyclin D1, N-cadherin and Snail in Bcap-37 cells. CONCLUSIONS These results identified CACNA1B as a forwarder of the growth, invasion and migration in breast cancer cells.
Collapse
Affiliation(s)
- Yong-Mei Jin
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| | - Ying Ye
- Central Laboratory, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| | - Wen-Qing Bao
- Gallbladder Diseases Center, East Hospital of Tongji University, Shanghai, China
| | - Yang Tong
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| | - Shu-Bin Ni
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| | - Jian-Ping Liu
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| | - Bin Zhao
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai, P.R. China
| |
Collapse
|
4
|
Hwang ST, Yang MH, Baek SH, Um JY, Ahn KS. Genistin attenuates cellular growth and promotes apoptotic cell death breast cancer cells through modulation of ERalpha signaling pathway. Life Sci 2020; 263:118594. [PMID: 33075375 DOI: 10.1016/j.lfs.2020.118594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Estrogen receptor alpha (ERα) is a vital molecular target in ER-positive breast cancer. Genistin (GS) is one of isoflavones that can exert diverse pharmacological effects including that of anti-proliferation, anti-tumor angiogenesis, induce cell cycle arrest and apoptosis. Here, we examined the efficacy of GS as an anti-cancer agent against breast cancer cells. We observed that GS exhibited more cytotoxic activity against MCF-7 cells than MDA-MB-231cells. We found that GS caused negative regulation of ERα. It also effectively down-modulated ER nuclear translocation as well DNA binding activity in breast cancer cells. Moreover, GS effectively induced apoptosis and suppressed levels of oncogenic markers in MCF-7 cells. Interestingly, in ERα knocked-down MCF-7 cells, cell viability was found to be increased and the levels of cleaved PARP was abolished. We found completely contrasting results in ERα overexpressed MDA-MB-231 cells, where cell viability was decreased and expression level of apoptotic markers was enhanced. Our results demonstrate that GS can suppress ERα signaling and can be useful for prevention and therapy of ER-positive breast cancer.
Collapse
Affiliation(s)
- Sun Tae Hwang
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Min Hee Yang
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
5
|
Pattarachotanant N, Tencomnao T. Citrus hystrix Extracts Protect Human Neuronal Cells against High Glucose-Induced Senescence. Pharmaceuticals (Basel) 2020; 13:ph13100283. [PMID: 33007805 PMCID: PMC7600454 DOI: 10.3390/ph13100283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Citrus hystrix (CH) is a beneficial plant utilized in traditional folk medicine to relieve various health ailments. The antisenescent mechanisms of CH extracts were investigated using human neuroblastoma cells (SH-SY5Y). Phytochemical contents and antioxidant activities of CH extracts were analyzed using a gas chromatograph–mass spectrometer (GC-MS), 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay and 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) assay. Effects of CH extracts on high glucose-induced cytotoxicity, reactive oxygen species (ROS) generation, cell cycle arrest and cell cycle-associated proteins were assessed using a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium (MTT) assay, non-fluorescent 2′, 7′-dichloro-dihydrofluorescein diacetate (H2DCFDA) assay, flow cytometer and Western blot. The extracts protected neuronal senescence by inhibiting ROS generation. CH extracts induced cell cycle progression by releasing senescent cells from the G1 phase arrest. As the Western blot confirmed, the mechanism involved in cell cycle progression was associated with the downregulation of cyclin D1, phospho-cell division cycle 2 (pcdc2) and phospho-Retinoblastoma (pRb) proteins. Furthermore, the Western blot showed that extracts increased Surtuin 1 (SIRT1) expression by increasing the phosphorylation of Glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Collectively, CH extracts could protect high glucose-induced human neuronal senescence by inducing cell cycle progression and up-regulation of SIRT1, thus leading to the improvement of the neuronal cell functions.
Collapse
Affiliation(s)
- Nattaporn Pattarachotanant
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Age-Related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Age-Related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-218-1533
| |
Collapse
|
6
|
Gu J, Zhang X, Yang Z, Wang N. Expression Of Cyclin D1 Protein Isoforms And Its Prognostic Significance In Cervical Cancer. Cancer Manag Res 2019; 11:9073-9083. [PMID: 31695498 PMCID: PMC6817344 DOI: 10.2147/cmar.s224026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022] Open
Abstract
Introduction Cyclin D1 had been associated with different clinical and pathological stages of cervical cancer; however, few studies had focused on its correlation with cervical cancer prognosis. Therefore, this study aimed to assess the expression of cyclin D1a and D1b in normal tissue, cervical cancer and cervical intraepithelial neoplasia and their effect on prognosis. Methods Expression of cyclin D1a and D1b was detected by immunohistochemical staining in 78 cases of primary cervical cancer, 40 cases of cervical intraepithelial neoplasia, and 40 cases of normal cervical tissue. Results No significant difference was observed in the expression of cyclin D1a between normal and cervical cancer tissues (P = 0.201); however, its expression was significantly higher in cervical cancer than in cervical intraepithelial neoplasia tissues (P = 0.000). Expression of cyclin D1b was higher in normal tissues than in cervical cancer tissues (P = 0.000). No significant difference was observed in the expression of cyclin D1a in cervical cancer tissues with respect to age, pathological type, clinical-stage, depth of tumor invasion, or presence of lymph node metastases (P = 0.111,0.119,0.539,0.084,0.539). COX survival analysis showed that lymph node metastasis might be an independent factor affecting postoperative recurrence (hazard risk [HR] = 0.240; 95% confidence interval [CI] = 0.968–30.156; P = 0.034). Discussion Cyclin D1a expression was associated with tumor tissue size and degree of differentiation. The expression of cyclin D1b in cervical cancer was associated with the presence of lymph node metastases. Cyclin D1a and D1b expression in cervical cancer tissue was significantly correlated. Cox survival analysis showed that the presence of lymph node metastases might serve as an independent factor affecting postoperative recurrence. The expression of cyclin D1a and D1b was not associated with cervical cancer prognosis. Conclusion Assessment of cyclin D1a and D1b expression in cervical cancer and cervical intraepithelial neoplasia revealed that cyclin D1 could not be used as a reference to assess cervical cancer patient prognosis.
Collapse
Affiliation(s)
- Jiahui Gu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Xinyu Zhang
- Department of Obstetrics and Gynecology, Daqing People's Hospital, Daqing, Heilongjiang Province 163711, People's Republic of China
| | - Zhuo Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Ning Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| |
Collapse
|
7
|
Wang L, Zhao L, Zhang L, Liu X, Hou X, Gao H, Yan H, Zhao F, Wang L. NTN1 Affects Porcine Intramuscular Fat Content by Affecting the Expression of Myogenic Regulatory Factors. Animals (Basel) 2019; 9:ani9090609. [PMID: 31461826 PMCID: PMC6770873 DOI: 10.3390/ani9090609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/12/2019] [Accepted: 08/17/2019] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Intramuscular fat (IMF) is a key meat quality trait in the pork industry. In this study, we validated the effect of the copy number of Netrin-1 (NTN1-CNV) on Netrin-1 (NTN1) protein expression and explored the possible affective mechanism of NTN1 on IMF. The results indicated that NTN1-CNV may affect the expression of NTN1 protein by its gene dose, and the expression of NTN1 may affect the proliferation and differentiation of muscle cells by the AMP-activated protein kinase (AMPK) pathway and finally influence the IMF content. Abstract Intramuscular fat (IMF) content is an important economic trait for pork quality. Our previous results regarding the genome-wide association between IMF content and copy number variations (CNVs) indicated that the CNV within Netrin-1(NTN1-CNV) was significantly associated with IMF. In order to validate the effect of NTN1-CNV, we detected the Netrin-1 (NTN1) gene dose and protein expression content in the longissimus dorsi of different IMF content pigs using Western blotting and investigated the expression of NTN1 RNA in different tissues using real-time quantitative polymerase chain reaction (qPCR). The knock-down of the NTN1 gene in C2C12 and 3T3-L1 cells and over-expression in C2C12 cells during the proliferation and differentiation stage were also investigated to explore the possible pathway of action of NTN1. The results showed that in individuals with IMF content differences, the gene dose of NTN1 and the expression of NTN1 protein were also significantly different, which indicated that NTN1-CNV may directly affect IMF by its coding protein. NTN1 had the highest expression in pig longissimus dorsi and backfat tissues, which indicates that NTN1 may play an important role in muscle and fat tissues. The in vitro validation assay indicated that NTN1 silencing could promote the proliferation and inhibit the differentiation of C2C12 cells, with no effect on 3T3-L1 cells. Additionally, NTN1 over-expression could inhibit the proliferation and promote the differentiation of C2C12 cells. Combined with previous research, we conclude that NTN1-CNV may affect IMF by its gene dose, and the expression of NTN1 may affect the proliferation and differentiation of muscle cells by the AMP-activated protein kinase (AMPK) pathway and finally influence the IMF.
Collapse
Affiliation(s)
- Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lingling Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xin Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinhua Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongmei Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hua Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Liu C, Yu H, Shen X, Qiao J, Wu X, Chang J, Zhu X, Wang J, Shen X. Prognostic significance and biological function of Lamina-associated polypeptide 2 in non-small-cell lung cancer. Onco Targets Ther 2019; 12:3817-3827. [PMID: 31190881 PMCID: PMC6529027 DOI: 10.2147/ott.s179870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 04/26/2019] [Indexed: 01/24/2023] Open
Abstract
Purpose: Lamina-associated polypeptide 2 (LAP2; encoded by TMPO), is a nuclear protein that may affect chromatin regulation and gene expression through dynamically binding to nuclear lamin. TMPO (LAP2) plays dual roles of either suppressing or promoting proliferation of cells, depending on the status of the cell. It has been reported that TMPO is up-regulated in various cancer types. However, its function in lung cancer has not been studied yet. Materials and methods: A series of clinical microarray datasets for lung cancer were investigated to demonstrate the expression of TMPO. The transcription of TMPO gene in human lung cancer was analyzed using Oncomine platform (www.oncomine.org) according to the standardized procedures described previously. Four separate datasets (Hou Lung, Okayama Lung, Beer Lung, and Garber Lung) were analyzed. Results: Here, we show that TMPO is over-expressed in lung cancer tissues, and that a high level of TMPO indicates a poor prognosis in lung cancer patients. Knockdown of TMPO in lung cancer cells inhibits cell proliferation and induces apoptosis. Also, down-regulation of TMPO leads to an impaired metastatic ability of tumor cells. A nude mice tumor model show that knockdown of TMPO suppresses tumor formation in vivo. Conclusion: Collectively, this study suggests TMPO as an oncogene and a novel prognostic gene in lung cancer.
Collapse
Affiliation(s)
- Chang Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Hui Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Xuxia Shen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
| | - Jie Qiao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Xianghua Wu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Jianhua Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Xunxia Zhu
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai 200040, People's Republic of China
| | - Jialei Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Xiaoyong Shen
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai 200040, People's Republic of China
| |
Collapse
|
9
|
Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang Y, Li X, Wu Z, Yang D, Zhou Y, Wang H, Liao Q, Wang W. Circular RNAs in Cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer 2019; 18:90. [PMID: 30999909 PMCID: PMC6471953 DOI: 10.1186/s12943-019-1002-6] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of RNA molecules with closed loops and high stability. CircRNAs are abundantly expressed in eukaryotic organisms and exhibit both location- and step-specificity. In recent years, circRNAs are attracting considerable research attention attributed to their possible contributions to gene regulation through a variety of actions, including sponging microRNAs, interacting with RNA-binding proteins, regulating transcription and splicing, and protein translation. Growing evidence has revealed that circRNAs play critical roles in the development and progression of diseases, especially in cancers. Without doubt, expanding our understanding of circRNAs will enrich knowledge of cancer and provide new opportunities for cancer therapy. In this review, we provide an overview of the characteristics, functions and functional mechanisms of circRNAs. In particular, we summarize current knowledge regarding the functions of circRNAs in the hallmarks, stemness, resistance of cancer, as well as the possibility of circRNAs as biomarkers in cancer.
Collapse
Affiliation(s)
- Min Su
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of the Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yuhang Xiao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410001, People's Republic of China
| | - Junliang Ma
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yanyan Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Tian
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yuqin Zhang
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410001, People's Republic of China
| | - Xu Li
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zhining Wu
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Desong Yang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yong Zhou
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China. .,Department of the Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| | - Wenxiang Wang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China. .,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
10
|
Imsnc761 and DDX6 synergistically suppress cell proliferation and promote apoptosis via p53 in testicular embryonal carcinoma cells. Biosci Rep 2018; 38:BSR20180271. [PMID: 29769412 PMCID: PMC6028756 DOI: 10.1042/bsr20180271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 12/25/2022] Open
Abstract
Intermediate-sized non-coding RNAs (imsncRNAs) have been shown to play important regulatory roles in the development of several eukaryotic organisms. In the present research, we selected imsncRNA 761 (imsnc761) as a research target. Expression analyses in a previous study showed that imsnc761 was down-regulated in maturation-arrested testis tissues as compared with the level in normal controls. In the present study, we found that imsnc761 could interact with DEAD-box helicase 6 (DDX6) to induce NTERA-2 (NT2 (testicular embryonal carcinoma cell)) cell apoptosis and proliferation inhibition via the p53 pathway. This interaction between imsnc761 and DDX6 also inhibited mitochondrial function and specific gene transcription and translation. To facilitate further research, we used label-free quantitation method to analyze the associated differences in Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways and biological processes. This confirmed the changes in several specific pathways, which matched our molecular experimental results.
Collapse
|
11
|
Mohamed WA, Schaalan MF. Antidiabetic efficacy of lactoferrin in type 2 diabetic pediatrics; controlling impact on PPAR-γ, SIRT-1, and TLR4 downstream signaling pathway. Diabetol Metab Syndr 2018; 10:89. [PMID: 30534206 PMCID: PMC6280363 DOI: 10.1186/s13098-018-0390-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022] Open
Abstract
The current study aims to investigate the antidiabetic efficacy of camel milk-derived lactoferrin and potential involvement of PPAR-γ and SIRT-1 via TLR-4/NFκB signaling pathway in obese diabetic pediatric population. Sixty young obese patients with type 2 diabetes were selected from the Pediatric Endocrine Metabolic Unit, Cairo University and were randomly divided among two age and sex-matched groups so as to receive either standard therapy without lactoferrin in one arm or to be treated with oral lactoferrin capsules (250 mg/day, p.o) for 3 months in the other arm. Both groups were compared to 50 control healthy volunteers. Measurements of HbA1c, lipid profile, antioxidant capacity (SOD, Nrf2), proinflammatory interleukins; (IL-1β, IL-6, IL-18), Cyclin D-1, lipocalin-2, and PPAR-γ expression levels were done at the beginning and 3 months after daily consumption of lactoferrin. The mechanistic involvement of TLR4-SIRT-1-NFκB signaling cascade was also investigated. The antidiabetic efficacy of lactoferrin was confirmed by significant improvement of the baseline levels of HbA1c, BMI and lipid profile of the obese pediatric cohort, which is evidenced by increased PPAR-γ and SIRT-1 expression. Moreover, the anti-inflammatory effect was evident by the significant decrease in serum levels of IL-1β, IL-6, IL-18, TNF-α, lipocalin 2 in type 2 diabetic post-treatment group, which corresponded by decreased NFκB downstream signaling indicators. The antioxidant efficacy was evident by stimulated SOD levels and NrF2 expression; compared with the pre-treatment group (all at P ≤ 0.001). The consumption of high concentrations of lactoferrin explains its hypoglycemic efficacy and counts for its insulin-sensitizing, anti-inflammatory and immunomodulatory effects via TLR4-NFκB-SIRT-1 signaling cascade. Recommendations on regular intake of lactoferrin could ensure better glycemic control, compared to conventional antidiabetics alone.
Collapse
Affiliation(s)
- Waleed A. Mohamed
- Department of Chemistry, Kasr El Aini Teaching Hospitals, Cairo University, Cairo, Egypt
| | - Mona F. Schaalan
- Department of Clinical Pharmacy and Pharmacy Practice, Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
12
|
HCRP1 downregulation confers poor prognosis and induces chemoresistance through regulation of EGFR-AKT pathway in human gastric cancer. Virchows Arch 2017; 471:743-751. [PMID: 28963677 DOI: 10.1007/s00428-017-2237-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/31/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022]
Abstract
The current study aims to investigate the biological roles and clinical significance of HCRP1 in human gastric cancer. The expression pattern of HCRP1 in gastric cancer tissue and adjacent non-cancerous tissue was detected by immunohistochemistry. HCRP1 downregulation was found in 57 of 137 human gastric cancer samples and correlated with advanced TNM stage, positive nodal status, and relapse. Log-rank test showed that HCRP1 downregulation also correlated with poor overall survival and reduced relapse-free survival. In addition, we found that HCRP1 overexpression inhibited proliferation, colony formation, and invasion in HGC-27 cells. On the other hand, HCRP1 depletion by small interfering RNA promoted proliferation, colony formation, and invasion in SGC-7901 cells. We also treated gastric cancer cells with cisplatin. MTT and Annexin V/PI analysis were carried out to examine change of chemoresistance. We found that HCRP1 overexpression sensitized HGC-27 cells to cisplatin while its depletion reduced sensitivity in SGC-7901 cells. Moreover, we found that HCRP1 overexpression negatively regulated cyclin D1, MMP-2, p-EGFR, p-ERK, and p-AKT. HCRP1 depletion showed the opposite effects. In conclusion, our results suggest that HCRP1 downregulation might serve as an indicator for poor prognosis in gastric cancer patients. HCRP1 reduces drug resistance through regulation of EGFR-AKT signaling.
Collapse
|
13
|
Liu L, Zhou XM, Yang FF, Miao Y, Yin Y, Hu XJ, Hou G, Wang QY, Kang J. TRIM22 confers poor prognosis and promotes epithelial-mesenchymal transition through regulation of AKT/GSK3β/β-catenin signaling in non-small cell lung cancer. Oncotarget 2017; 8:62069-62080. [PMID: 28977927 PMCID: PMC5617487 DOI: 10.18632/oncotarget.18911] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/23/2017] [Indexed: 01/21/2023] Open
Abstract
Expression pattern and biological roles of TRIM22 remains unknown in most human cancers. The present study aims to discover its clinical significance and function in human non-small cell lung cancer (NSCLC). Immunohistochemistry was used to examine TRIM22 expression in 126 cases of NSCLC specimens. TRIM22 protein was upregulated in 70/126 (55.6%) non-small cell lung cancer tissues compared with normal lung tissue. TRIM22 overexpression was associated with advanced TNM stage, positive nodal metastasis and poor prognosis. Plasmid and siRNA transfection were performed in lung cancer cell lines. TRIM22 overexpression promoted proliferation, colony formation and invasion in A549 cells. While its depletion exhibited the opposite effects in H1299 cell line. TRIM22 overexpression promoted cell cycle progression through regulation of cyclin D1, cyclin E and p27. TRIM22 also changed the expression of epithelial to mesenchymal transition (EMT) markers including E-cadherin N-cadherin, Vimentin and Snail. Furthermore, TRIM22 activated PI3K/AKT/GSK3β/β-catenin oncogenic signaling pathways. Treatment with PI3K inhibitor LY294002 and β-catenin siRNA blocked the effects of TRIM22 on EMT in TRIM22-overexpressing cells. In conclusion,TRIM22 serves as an important oncoprotein and a promoter of cell proliferation and invasion through AKT/ GSK3β/β-catenin induced EMT in NSCLC.
Collapse
Affiliation(s)
- Li Liu
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiao-Ming Zhou
- Department of Respiratory Medicine, The Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Fang-Fei Yang
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Miao
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | - Yan Yin
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xue-Jun Hu
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Gang Hou
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Qiu-Yue Wang
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jian Kang
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|