1
|
Yang CH, Fagnocchi L, Apostle S, Wegert V, Casaní-Galdón S, Landgraf K, Panzeri I, Dror E, Heyne S, Wörpel T, Chandler DP, Lu D, Yang T, Gibbons E, Guerreiro R, Bras J, Thomasen M, Grunnet LG, Vaag AA, Gillberg L, Grundberg E, Conesa A, Körner A, Pospisilik JA. Independent phenotypic plasticity axes define distinct obesity sub-types. Nat Metab 2022; 4:1150-1165. [PMID: 36097183 PMCID: PMC9499872 DOI: 10.1038/s42255-022-00629-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/29/2022] [Indexed: 01/04/2023]
Abstract
Studies in genetically 'identical' individuals indicate that as much as 50% of complex trait variation cannot be traced to genetics or to the environment. The mechanisms that generate this 'unexplained' phenotypic variation (UPV) remain largely unknown. Here, we identify neuronatin (NNAT) as a conserved factor that buffers against UPV. We find that Nnat deficiency in isogenic mice triggers the emergence of a bi-stable polyphenism, where littermates emerge into adulthood either 'normal' or 'overgrown'. Mechanistically, this is mediated by an insulin-dependent overgrowth that arises from histone deacetylase (HDAC)-dependent β-cell hyperproliferation. A multi-dimensional analysis of monozygotic twin discordance reveals the existence of two patterns of human UPV, one of which (Type B) phenocopies the NNAT-buffered polyphenism identified in mice. Specifically, Type-B monozygotic co-twins exhibit coordinated increases in fat and lean mass across the body; decreased NNAT expression; increased HDAC-responsive gene signatures; and clinical outcomes linked to insulinemia. Critically, the Type-B UPV signature stratifies both childhood and adult cohorts into four metabolic states, including two phenotypically and molecularly distinct types of obesity.
Collapse
Affiliation(s)
- Chih-Hsiang Yang
- Van Andel Institute, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | - Vanessa Wegert
- Van Andel Institute, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Kathrin Landgraf
- Medical Faculty, University of Leipzig, University Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, Leipzig, Germany
| | - Ilaria Panzeri
- Van Andel Institute, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Erez Dror
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Steffen Heyne
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Roche Diagnostics Deutschland, Mannheim, Germany
| | - Till Wörpel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Di Lu
- Van Andel Institute, Grand Rapids, MI, USA
| | - Tao Yang
- Van Andel Institute, Grand Rapids, MI, USA
| | - Elizabeth Gibbons
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Martin Thomasen
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Louise G Grunnet
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Allan A Vaag
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Linn Gillberg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elin Grundberg
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, MO, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council (CSIC), Paterna, Valencia, Spain
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL, USA
| | - Antje Körner
- Medical Faculty, University of Leipzig, University Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - J Andrew Pospisilik
- Van Andel Institute, Grand Rapids, MI, USA.
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
2
|
Liu RK, Lin X, Wang Z, Greenbaum J, Qiu C, Zeng CP, Zhu YY, Shen J, Deng HW. Identification of novel functional CpG-SNPs associated with Type 2 diabetes and birth weight. Aging (Albany NY) 2021; 13:10619-10658. [PMID: 33835050 PMCID: PMC8064204 DOI: 10.18632/aging.202828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/04/2021] [Indexed: 12/18/2022]
Abstract
Genome-wide association studies (GWASs) have identified hundreds of genetic loci for type 2 diabetes (T2D) and birth weight (BW); however, a large proportion of the total trait heritability remains unexplained. The previous studies were generally focused on individual traits and largely failed to identify the majority of the variants that play key functional roles in the etiology of the disease. Here, we aim to identify novel functional loci for T2D, BW and the pleiotropic variants shared between them by performing a targeted conditional false discovery rate (cFDR) analysis that integrates two independent GWASs with summary statistics for T2D (n = 26,676 cases and 132,532 controls) and BW (n = 153,781) which entails greater statistical power than individual trait analyses. In this analysis, we considered CpG-SNPs, which are SNPs that may influence DNA methylation status, and are therefore considered to be functionally important. We identified 103 novel CpG-SNPs for T2D, 182 novel CpG-SNPs for BW (cFDR < 0.05), and 52 novel pleiotropic loci for both (conjunction cFDR [ccFDR] < 0.05). Among the identified novel CpG-SNPs, 33 were annotated as methylation quantitative trait loci (meQTLs) in whole blood, and 145 displayed at least some effects on meQTL, metabolic QTL (metaQTL), and/or expression QTL (eQTL). These findings may provide further insights into the shared biological mechanisms and functional genetic determinants that overlap between T2D and BW, thereby providing novel potential targets for treatment/intervention development.
Collapse
Affiliation(s)
- Rui-Ke Liu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Department of Endocrinology and Metabolism, SSL Central Hospital of Dongguan City, Dongguan 523326, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Zun Wang
- Xiangya Nursing School, Central South University, Changsha 410013, China
| | - Jonathan Greenbaum
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Chuan Qiu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Chun-Ping Zeng
- Department of Endocrinology and metabolism, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510330, China
| | - Yong-Yao Zhu
- Department of Endocrinology and Metabolism, SSL Central Hospital of Dongguan City, Dongguan 523326, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Hong-Wen Deng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- School of Basic Medical Sciences, Central South University, Changsha 410000, China
| |
Collapse
|
3
|
Trojanowski BM, Salem HH, Neubauer H, Simon E, Wagner M, Dorajoo R, Boehm BO, Labriola L, Wirth T, Baumann B. Elevated β-cell stress levels promote severe diabetes development in mice with MODY4. J Endocrinol 2020; 244:323-337. [PMID: 31682591 PMCID: PMC6933809 DOI: 10.1530/joe-19-0208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022]
Abstract
Maturity-onset diabetes of the young (MODY) is a group of monogenetic forms of diabetes mellitus caused by mutations in genes regulating β-cell development and function. MODY represents a heterogeneous group of non-insulin-dependent diabetes arising in childhood or adult life. Interestingly, clinical heterogeneity in MODY patients like variable disease onset and severity is observed even among individual family members sharing the same mutation, an issue that is not well understood. As high blood glucose levels are a well-known factor promoting β-cell stress and ultimately leading to cell death, we asked whether additional β-cell stress might account for the occurrence of disease heterogeneity in mice carrying a MODY4 mutation. In order to challenge β-cells, we established a MODY4 animal model based on Pdx1 (pancreatic and duodenal homeobox 1) haploinsufficiency, which allows conditional modulation of cell stress by genetic inhibition of the stress-responsive IKK/NF-κB signalling pathway. While Pdx1+/- mice were found glucose intolerant without progressing to diabetes, additional challenge of β-cell function by IKK/NF-κB inhibition promoted rapid diabetes development showing hyperglycaemia, hypoinsulinemia and loss of β-cell mass. Disease pathogenesis was characterized by deregulation of genes controlling β-cell homeostasis and function. Importantly, restoration of normal IKK/NF-κB signalling reverted the diabetic phenotype including normalization of glycaemia and β-cell mass. Our findings implicate that the avoidance of additional β-cell stress can delay a detrimental disease progression in MODY4 diabetes. Remarkably, an already present diabetic phenotype can be reversed when β-cell stress is normalized.
Collapse
Affiliation(s)
| | - Heba H Salem
- Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Heike Neubauer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Eric Simon
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Martin Wagner
- Division of Endocrinology, Diabetes and Metabolism, Ulm University Medical Centre, Ulm University, Ulm, Germany
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Bernhard O Boehm
- Lee Kong Chiang School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imperial College London, London, UK
| | - Leticia Labriola
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Thomas Wirth
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
- Correspondence should be addressed to B Baumann:
| |
Collapse
|
4
|
Nazari Z, Shahryari A, Ghafari S, Nabiuni M, Golalipour MJ. In Utero Exposure to Gestational Diabetes Alters DNA Methylation and Gene Expression of CDKN2A/B in Langerhans Islets of Rat Offspring. CELL JOURNAL 2019; 22:203-211. [PMID: 31721535 PMCID: PMC6874789 DOI: 10.22074/cellj.2020.6699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/09/2019] [Indexed: 12/14/2022]
Abstract
Objective DNA methylation, a major epigenetic reprogramming mechanism, contributes to the increased prevalence of type 2 diabetes mellitus (T2DM). Based on genome-wide association studies, polymorphisms in CDKN2A/B are associated with T2DM. Our previous studies showed that gestational diabetes mellitus (GDM) causes apoptosis in β-cells, leading to a reduction in their number in pancreatic tissue of GDM-exposed adult rat offspring. The aim of this study was to examine the impact of intrauterine exposure to GDM on DNA methylation, mRNA transcription, as well as protein expression of these factors in the pancreatic islets of Wistar rat offspring. Our hypothesis was that the morphological changes seen in our previous study might have been caused by aberrant methylation and expression of CDKN2A/B. Materials and Methods In this experimental study, we delineated DNA methylation patterns, mRNA transcription and protein expression level of CDKN2A/B in the pancreatic islets of 15-week-old rat offspring of streptozotocin-induced GDM dams. We performed bisulfite sequencing to determine the DNA methylation patterns of CpGs in candidate promoter regions of CDKN2A/B. Furthermore, we compared the levels of mRNA transcripts as well as the cell cycle inhibitory proteins P15 and P16 in two groups by qPCR and western blotting, respectively. Results Our results demonstrated that hypomethylation of CpG sites in the vicinity of CDKN2A and CDKN2B genes is positively related to increased levels of CDKN2A/B mRNA and protein in islets of Langerhans in the GDM offspring. The average percentage of CDKN2A promoter methylation was significantly lower in GDM group compared to the controls (P<0.01). Conclusion We postulate that GDM is likely to exert its adverse effects on pancreatic β-cells of offspring through hypomethylation of the CDKN2A/B promoter. Abnormal methylation of these genes may have a link with β-cell dysfunction and diabetes. These data potentially lead to a novel approach to the treatment of T2DM.
Collapse
Affiliation(s)
- Zahra Nazari
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Alireza Shahryari
- Stem Cell Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Soraya Ghafari
- Congenital Malformations Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Nabiuni
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Jafar Golalipour
- Congenital Malformations Research Center, Golestan University of Medical Sciences, Gorgan, Iran. Electronic Address:
| |
Collapse
|
5
|
Dziewulska A, Dobosz AM, Dobrzyn A. High-Throughput Approaches onto Uncover (Epi)Genomic Architecture of Type 2 Diabetes. Genes (Basel) 2018; 9:E374. [PMID: 30050001 PMCID: PMC6115814 DOI: 10.3390/genes9080374] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes (T2D) is a complex disorder that is caused by a combination of genetic, epigenetic, and environmental factors. High-throughput approaches have opened a new avenue toward a better understanding of the molecular bases of T2D. A genome-wide association studies (GWASs) identified a group of the most common susceptibility genes for T2D (i.e., TCF7L2, PPARG, KCNJ1, HNF1A, PTPN1, and CDKAL1) and illuminated novel disease-causing pathways. Next-generation sequencing (NGS)-based techniques have shed light on rare-coding genetic variants that account for an appreciable fraction of T2D heritability (KCNQ1 and ADRA2A) and population risk of T2D (SLC16A11, TPCN2, PAM, and CCND2). Moreover, single-cell sequencing of human pancreatic islets identified gene signatures that are exclusive to α-cells (GCG, IRX2, and IGFBP2) and β-cells (INS, ADCYAP1, INS-IGF2, and MAFA). Ongoing epigenome-wide association studies (EWASs) have progressively defined links between epigenetic markers and the transcriptional activity of T2D target genes. Differentially methylated regions were found in TCF7L2, THADA, KCNQ1, TXNIP, SOCS3, SREBF1, and KLF14 loci that are related to T2D. Additionally, chromatin state maps in pancreatic islets were provided and several non-coding RNAs (ncRNA) that are key to T2D pathogenesis were identified (i.e., miR-375). The present review summarizes major progress that has been made in mapping the (epi)genomic landscape of T2D within the last few years.
Collapse
Affiliation(s)
- Anna Dziewulska
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland.
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland.
| | - Agnieszka Dobrzyn
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland.
| |
Collapse
|