1
|
Jahan-Mihan A, Leftwich J, Berg K, Labyak C, Nodarse RR, Allen S, Griggs J. The Impact of Parental Preconception Nutrition, Body Weight, and Exercise Habits on Offspring Health Outcomes: A Narrative Review. Nutrients 2024; 16:4276. [PMID: 39770898 PMCID: PMC11678361 DOI: 10.3390/nu16244276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
An increasing number of studies highlight the critical role of both maternal and paternal nutrition and body weight before conception in shaping offspring health. Traditionally, research has focused on maternal factors, particularly in utero exposures, as key determinants of chronic disease development. However, emerging evidence underscores the significant influence of paternal preconception health on offspring metabolic outcomes. While maternal health remains vital, with preconception nutrition playing a pivotal role in fetal development, paternal obesity and poor nutrition are linked to increased risks of metabolic disorders, including type 2 diabetes and cardiovascular disease in children. This narrative review aims to synthesize recent findings on the effects of both maternal and paternal preconception health, emphasizing the need for integrated early interventions. The literature search utilized PubMed, UNF One Search, and Google Scholar, focusing on RCTs; cohort, retrospective, and animal studies; and systematic reviews, excluding non-English and non-peer-reviewed articles. The findings of this review indicate that paternal effects are mediated by epigenetic changes in sperm, such as DNA methylation and non-coding RNA, which influence gene expression in offspring. Nutrient imbalances during preconception in both parents can lead to low birth weight and increased metabolic disease risk, while deficiencies in folic acid, iron, iodine, and vitamin D are linked to developmental disorders. Additionally, maternal obesity elevates the risk of chronic diseases in children. Future research should prioritize human studies to explore the influence of parental nutrition, body weight, and lifestyle on offspring health, ensuring findings are applicable across diverse populations. By addressing both maternal and paternal factors, healthcare providers can better reduce the prevalence of metabolic syndrome and its associated risks in future generations.
Collapse
Affiliation(s)
- Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Jamisha Leftwich
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Kristin Berg
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Corinne Labyak
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Reniel R. Nodarse
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Sarah Allen
- Greenleaf Behavioral Health, 2209 Pineview Dr., Valdosta, GA 31602, USA;
| | | |
Collapse
|
2
|
Yi Y, Wu G. RNA-seq analysis of LPS-induced immune priming in silkworms (Bombyx mori) and the role of cytochrome P450 detoxification system in the process. Int J Biol Macromol 2024; 283:136551. [PMID: 39401638 DOI: 10.1016/j.ijbiomac.2024.136551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 12/18/2024]
Abstract
While immune priming has been identified in many invertebrates, the intricate mechanisms that drive this process in insects continue to be a subject of mystery. In this study, we exposed silkworm larvae to varying doses of lipopolysaccharide (LPS) to induce immune priming and assessed their survival upon challenge with Bacillus thuringiensis (Bt). Transcriptome analysis was performed to identify differentially expressed genes (DEGs) associated with immune priming. The role of CYP450 genes in this process was further explored using RNA interference (RNAi) to knockdown CYP9E2 and CYP6K1, followed by measurements of detoxification enzyme activities and reactive oxygen species (ROS) levels. We found that LPS exposure significantly increased silkworm survival rates upon Bt challenge, indicating the induction of immune priming. Transcriptome analysis revealed 549 DEGs, including a large number involved in detoxification, immunity, and metabolism, suggesting a complex regulatory network that encompasses immune responses and metabolic pathways. Functional enrichment and gene set enrichment analysis (GSEA) highlighted the activation of immune signaling pathways and the involvement of detoxification processes. Knockdown of CYP9E2 and CYP6K1 resulted in increased ROS levels, decreased detoxification enzyme activities, and reduced survival rates post-Bt challenge, implicating the critical role of these genes in immune priming and detoxification. Our findings demonstrate that LPS-induced immune priming in silkworms involves the upregulation of CYP450 genes, which play a critical role in detoxification and immune response modulation. The study provides insights into the molecular mechanisms of immune priming in insects and highlights the potential of CYP9E2 and CYP6K1 as targets for enhancing disease resistance and pest management in insects.
Collapse
Affiliation(s)
- Yunhong Yi
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Gongqing Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, PR China.
| |
Collapse
|
3
|
Li P, Zhang H, Tan A, Hu Z, Peng L, Hou Y. Spätzle Regulates Developmental and Immune Trade-Offs Induced by Bacillus thuringiensis Priming in Rhynchophorus ferrugineus. INSECTS 2024; 15:925. [PMID: 39769527 PMCID: PMC11677516 DOI: 10.3390/insects15120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
The red palm weevil (RPW) is an invasive pest that causes devastating damage to a variety of palm plants, which exhibit specific immune priming to Bacillus thuringiensis (Bt). However, immune priming in RPW may incur a high fitness cost, and its molecular signaling pathways have not yet been reported. Here, we investigated the effect of Bt priming on RPW development and subsequently analyzed the hormonal and immune-related molecular pathways influencing the fitness cost induced by Bt priming. Bt priming delayed the body weight gain of fifth-instar larvae and prolonged their developmental duration. Bt priming significantly reduced the 20-hydroxyecdysone (20E) content in RPW hemolymph, and the expression levels of the 20E biosynthesis-related genes SHADOW and SHADE were significantly downregulated. Furthermore, we analyzed Toll pathway genes influencing Bt priming and found that only Spätzle (SPZ) transcription was significantly activated under Bt priming. After silencing SPZ expression, the negative effects of Bt priming on development, SHADOW expression, and 20E synthesis were eliminated, thereby suggesting that SPZ is a key molecular signal mediating developmental and immune trade-offs induced by Bt priming. Our results elucidate the molecular cascade pathway of immune priming and provide new targets for improving the efficiency of RPW biological controls.
Collapse
Affiliation(s)
- Pengju Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - He Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anran Tan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuolin Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (P.L.); (H.Z.); (A.T.); (Z.H.)
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Cime-Castillo J, Vargas V, Hernández-Tablas JM, Quezada-Ruiz E, Díaz G, Lanz-Mendoza H. The costs of transgenerational immune priming for homologous and heterologous infections with different serotypes of dengue virus in Aedes aegypti mosquitoes. Front Immunol 2023; 14:1286831. [PMID: 38170025 PMCID: PMC10760805 DOI: 10.3389/fimmu.2023.1286831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The immune system is a network of molecules, signaling pathways, transcription, and effector modulation that controls, mitigates, or eradicates agents that may affect the integrity of the host. In mosquitoes, the innate immune system is highly efficient at combating foreign organisms but has the capacity to tolerate vector-borne diseases. These implications lead to replication, dissemination, and ultimately the transmission of pathogenic organisms when feeding on a host. In recent years, it has been discovered that the innate immune response of mosquitoes can trigger an enhanced immunity response to the stimulus of a previously encountered pathogen. This phenomenon, called immune priming, is characterized by a molecular response that prevents the replication of viruses, parasites, or bacteria in the body. It has been documented that immune priming can be stimulated through homologous organisms or molecules, although it has also been documented that closely related pathogens can generate an enhanced immune response to a second stimulus with a related organism. However, the cost involved in this immune response has not been characterized through the transmission of the immunological experience from parents to offspring by transgenerational immune priming (TGIP) in mosquitoes. Here, we address the impact on the rates of oviposition, hatching, development, and immune response in Aedes aegypti mosquitoes, the mothers of which were stimulated with dengue virus serotypes 2 and/or 4, having found a cost of TGIP on the development time of the progeny of mothers with heterologous infections, with respect to mothers with homologous infections. Our results showed a significant effect on the sex ratio, with females being more abundant than males. We found a decrease in transcripts of the siRNA pathway in daughters of mothers who had been exposed to an immune challenge with DV. Our research demonstrates that there are costs and benefits associated with TGIP in Aedes aegypti mosquitoes exposed to DV. Specifically, priming results in a lower viral load in the offspring of mothers who have previously been infected with the virus. Although some results from tests of two dengue virus serotypes show similarities, such as the percentage of pupae emergence, there are differences in the percentage of adult emergence, indicating differences in TGIP costs even within the same virus with different serotypes. This finding has crucial implications in the context of dengue virus transmission in endemic areas where multiple serotypes circulate simultaneously.
Collapse
Affiliation(s)
- Jorge Cime-Castillo
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| | - Valeria Vargas
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
- Biomedical Research Institute, Universidad Nacional Autonoma de México, Ciudad de México, Mexico
| | - Juan Manuel Hernández-Tablas
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| | - Edgar Quezada-Ruiz
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| | - Grecia Díaz
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| | - Humberto Lanz-Mendoza
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| |
Collapse
|
5
|
Rutkowski NAJ, McNamara KB, Jones TM, Foo YZ. Trans-generational immune priming is not mediated by the sex of the parent primed: a meta-analysis of invertebrate data. Biol Rev Camb Philos Soc 2023; 98:1100-1117. [PMID: 36879482 DOI: 10.1111/brv.12946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Traditionally, only vertebrates were thought capable of acquired immune responses, such as the ability to transfer immunological experience vertically to their offspring (known as trans-generational immune priming, TGIP). Increasing evidence challenges this belief and it is now clear that invertebrates also have the ability to exhibit functionally equivalent TGIP. This has led to a surge in papers exploring invertebrate TGIP, with most focusing on the costs, benefits or factors that affect the evolution of this trait. Whilst many studies have found support for the phenomenon, not all studies do, and there is considerable variation in the strength of positive results. To address this, we conducted a meta-analysis to answer the question: what is the overall effect of TGIP in invertebrates? Then, to understand the specific factors that affect its presence and intensity, we conducted a moderator analysis. Our results corroborate that TGIP occurs in invertebrates (demonstrated by a large, positive effect size). The strength of the positive effect was related to if and how offspring were immune challenged (i.e. whether they were challenged with the same or different insult as their parents or not challenged at all). Interestingly, there was no effect of the ecology or life history of the species or the sex of the parent or the offspring primed, and responses were comparable across different immune elicitors. Our publication bias testing suggests that the literature may suffer from some level of positive-result bias. However, even after accounting for potential bias, our effect size remains positive. Publication bias testing can be influenced by diversity in the data set, which was considerable in our data, even after moderator analysis. It is therefore conceivable that differences among studies could be caused by other moderators that were unable to be included in our meta-analysis. Nonetheless, our results suggest that TGIP does occur in invertebrates, whilst providing some potential avenues to examine the factors that account for variation in effect sizes.
Collapse
Affiliation(s)
- Nicola-Anne J Rutkowski
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Kathryn B McNamara
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Therésa M Jones
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Yong Zhi Foo
- Centre for Evolutionary Biology & School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| |
Collapse
|
6
|
Rutkowski NAJ, Foo YZ, Jones TM, McNamara KB. Age, but not an immune challenge, triggers terminal investment in the Pacific field cricket, Teleogryllus oceanicus. Behav Ecol 2023; 34:468-479. [PMID: 37192922 PMCID: PMC10183208 DOI: 10.1093/beheco/arad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/22/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023] Open
Abstract
The terminal investment hypothesis proposes that, when individuals are faced with a threat to survival, they will increase investment in current reproduction. The level of the threat necessary to elicit terminal investment (the dynamic terminal investment threshold) may vary based on other factors that also influence future reproduction. Here, we tested whether there is an interactive effect of age and an immune challenge on the dynamic terminal investment threshold in the Pacific field cricket, Teleogryllus oceanicus. We measured the courtship call, mating attractiveness, ejaculate size, and offspring production of T. oceanicus males. We found only limited support for the dynamic terminal investment threshold: there was no consistent evidence of a positive interaction between male age and immune challenge intensity. However, we found evidence for age-related terminal investment: older males produced a larger spermatophore than younger males. Older males also had a slower calling rate compared to younger males, suggesting a potential trade-off between these two pre- and post-copulatory traits. As some, but not all, reproductive traits responded plastically to cues for terminal investment, our research highlights the importance of considering a broad range of pre-and post-copulatory traits when exploring the potential for terminal investment to occur.
Collapse
Affiliation(s)
- Nicola-Anne J Rutkowski
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, Victoria 3010, Australia
| | - Yong Zhi Foo
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia
| | - Therésa M Jones
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, Victoria 3010, Australia
| | - Kathryn B McNamara
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
Firman RC, André GI, Hadlow JH, Simmons LW. Intergenerational response to sperm competition risk in an invasive mammal. Proc Biol Sci 2023; 290:20222452. [PMID: 37122257 PMCID: PMC10130712 DOI: 10.1098/rspb.2022.2452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Studies of socially mediated phenotypic plasticity have demonstrated adaptive male responses to the 'competitive' environment. Despite this, whether variation in the paternal social environment also influences offspring reproductive potential in an intergenerational context has not yet been examined. Here, we studied the descendants of wild-caught house mice, a destructive pest species worldwide, to address this knowledge gap. We analysed traits that define a 'competitive' phenotype in the sons of males (sires) that had been exposed to either a high-male density (competitive) or high-female density (non-competitive) environment. We report disparate reproductive strategies among the sires: high-male density led to a phenotype geared for competition, while high-female density led to a phenotype that would facilitate elevated mating frequency. Moreover, we found that the competitive responses of sires persisted in the subsequent generation, with the sons of males reared under competition having elevated sperm quality. As all sons were reared under common-garden conditions, variation in their reproductive phenotypes could only have arisen via nongenetic inheritance. We discuss our results in relation to the adaptive advantage of preparing sons for sperm competition and suggest that intergenerational plasticity is a previously unconsidered aspect in invasive mammal fertility control.
Collapse
Affiliation(s)
- Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Gonçalo Igreja André
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Jessica H Hadlow
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
8
|
Morimoto J. Parental ecological history can differentially modulate parental age effects on offspring physiological traits in Drosophila. Curr Zool 2022; 68:391-399. [PMID: 36090145 PMCID: PMC9450179 DOI: 10.1093/cz/zoab081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Parents adjust their reproductive investment over their lifespan based on their condition, age, and social environment, creating the potential for inter-generational effects to differentially affect offspring physiology. To date, however, little is known about how social environments experienced by parents throughout development and adulthood influence the effect of parental age on the expression of life-history traits in the offspring. Here, I collected data on Drosophila melanogaster offspring traits (i.e., body weight, water content, and lipid reserves) from populations where either mothers, fathers both, or neither parents experienced different social environments during development (larval crowding) and adulthood. Parental treatment modulated parental age effects on offspring lipid reserves but did not influence parental age effects on offspring water content. Importantly, parents in social environments where all individuals were raised in uncrowded larval densities produced daughters and sons lighter than parental treatments which produced the heaviest offspring. The peak in offspring body weight was delayed relative to the peak in parental reproductive success, but more strongly so for daughters from parental treatments where some or all males in the parental social environments were raised in crowded larval densities (irrespective of their social context), suggesting a potential father-to-daughter effect. Overall, the findings of this study reveal that parental ecological history (here, developmental and adult social environments) can modulate the effects of parental age at reproduction on the expression of offspring traits.
Collapse
Affiliation(s)
- Juliano Morimoto
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| |
Collapse
|
9
|
Breiner DJ, Whalen MR, Worthington AM. The developmental high wire: Balancing resource investment in immunity and reproduction. Ecol Evol 2022; 12:e8774. [PMID: 35414895 PMCID: PMC8986548 DOI: 10.1002/ece3.8774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
The strategic allocation of resources into immunity poses a unique challenge for individuals, where infection at different stages of development may result in unique trade-offs with concurrent physiological processes or future fitness-enhancing traits. Here, we experimentally induced an immune challenge in female Gryllus firmus crickets to test whether illness at discrete life stages differentially impacts fitness. We injected heat-killed Serratia marcescens bacteria into antepenultimate juveniles, penultimate juveniles, sexually immature adults, and sexually mature adults, and then measured body growth, instar duration, mating rate, viability of stored sperm, egg production, oviposition rate, and egg viability. Immune activation significantly impacted reproductive traits, where females that were immune challenged as adults had decreased mating success and decreased egg viability compared to healthy individuals or females that were immune challenged as juveniles. Although there was no effect of an immune challenge on the other traits measured, the stress of handling resulted in reduced mass gain and smaller adult body size in females from the juvenile treatments, and females in the adult treatments suffered from reduced viability of sperm stored within their spermatheca. In summary, we found that an immune challenge does have negative impacts on reproduction, but also that even minor acute stressors can have significant impacts on fitness-enhancing traits. These findings highlight that the factors affecting fitness can be complex and at times unpredictable, and that the consequences of illness are specific to when during an individual's life an immune challenge is induced.
Collapse
Affiliation(s)
- Daniel J. Breiner
- Department of Biological SciencesCreighton UniversityOmahaNebraskaUSA
| | - Matthew R. Whalen
- Department of Biological SciencesCreighton UniversityOmahaNebraskaUSA
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | |
Collapse
|
10
|
Pham HT, Elgar MA, van Lieshout E, McNamara KB. Experimental immune challenges reduce the quality of male antennae and female pheromone output. Sci Rep 2022; 12:3578. [PMID: 35246550 PMCID: PMC8897396 DOI: 10.1038/s41598-022-07100-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Sexual signalling is a key feature of reproductive investment, yet the effects of immune system activation on investment into chemical signalling, and especially signal receiver traits such as antennae, are poorly understood. We explore how upregulation of juvenile immunity affects male antennal functional morphology and female pheromone attractiveness in the gumleaf skeletonizer moth, Uraba lugens. We injected final-instar larvae with a high or low dose of an immune elicitor or a control solution and measured male antennal morphological traits, gonad investment and female pheromone attractiveness. Immune activation affected male and female signalling investment: immune challenged males had a lower density of antennal sensilla, and the pheromone of immune-challenged females was less attractive to males than their unchallenged counterparts. Immune challenge affected female investment into ovary development but not in a linear, dose-dependent manner. While there was no effect of immune challenge on testes size, there was a trade-off between male pre- and post-copulatory investment: male antennal length was negatively correlated with testes size. Our study highlights the costs of elaborate antennae and pheromone production and demonstrates the capacity for honest signalling in species where the costs of pheromone production were presumed to be trivial.
Collapse
Affiliation(s)
- Hieu T Pham
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Entomology, Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Mark A Elgar
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Emile van Lieshout
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kathryn B McNamara
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
11
|
Limberger GM, Esteves KP, Halal LM, Nery LEM, da Fonseca DB. Chronic immune challenge is detrimental to female survival, feeding behavior, and reproduction in the field cricket Gryllus assimilis (Fabricius, 1775). J Comp Physiol B 2022; 192:423-434. [PMID: 35195757 DOI: 10.1007/s00360-022-01431-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 01/03/2023]
Abstract
Physiological trade-offs among expensive fitness-related traits, such as reproduction and immunity, are common in life histories of animals. An immune challenge can have different effects on female reproduction mediated by resource allocation and acquisition. In this study, employing a widely used method to challenge the insect immune system (nylon implant), we assessed the effects of mounting a chronic immune response simulating three successive immune assaults on survival and reproduction of mated females of Gryllus assimilis. We also verified feeding behavior following an implantation, which can be important in explaining trade-off dynamics in terms of energy acquisition. For this, three experimental groups were designed (Control, Sham, and Implant) with oviposition rates, egg morphometry, and nymph vigour observed over 3 weeks, at which ovarian mass and unlaid eggs were quantified from remaining individuals. The results showed that chronic implants were detrimental to female survival and reproduction throughout the experiments; Surgical Sham had no effect on survival compared to the control, but did on reproductive aspects such as oviposition rates and hatchling vigour. These negative effects on reproduction in Sham disappeared in the last experimental week, but still strong in the implanted females. Such immune challenge affected the feeding behavior of implanted females by reducing food consumption compared to control after infection, which is probably explained by illness-induced anorexia that takes place to maximize the immune system performance as a part of sickness behavior, exacerbating the adverse effects observed on reproduction (i.e., fewer and smaller eggs, and low vigour of nymphs) and survival.
Collapse
Affiliation(s)
- Guilherme Martins Limberger
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil.
| | | | - Lamia Marques Halal
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | - Luiz Eduardo Maia Nery
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | | |
Collapse
|
12
|
Simmons LW, Ng SH, Lovegrove M. Condition‐dependent seminal fluid gene expression and intergenerational paternal effects on ejaculate quality. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Leigh W. Simmons
- Centre for Evolutionary Biology School of Biological Sciences The University of Western Australia Crawley WA Australia
| | - Soon Hwee Ng
- Centre for Evolutionary Biology School of Biological Sciences The University of Western Australia Crawley WA Australia
| | - Maxine Lovegrove
- Centre for Evolutionary Biology School of Biological Sciences The University of Western Australia Crawley WA Australia
| |
Collapse
|
13
|
Moschilla JA, Tomkins JL, Simmons LW. Nongenetic inheritance of behavioural variability is context specific and sex specific. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joe A. Moschilla
- Centre for Evolutionary Biology School of Biological Sciences (M092) The University of Western Australia Crawley WA Australia
| | - Joseph L. Tomkins
- Centre for Evolutionary Biology School of Biological Sciences (M092) The University of Western Australia Crawley WA Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology School of Biological Sciences (M092) The University of Western Australia Crawley WA Australia
| |
Collapse
|
14
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
15
|
Roesel CL, Rosengaus RB, Smith W, Vollmer SV. Transcriptomics reveals specific molecular mechanisms underlying transgenerational immunity in Manduca sexta. Ecol Evol 2020; 10:11251-11261. [PMID: 33144962 PMCID: PMC7593158 DOI: 10.1002/ece3.6764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023] Open
Abstract
The traditional view of innate immunity in insects is that every exposure to a pathogen triggers an identical and appropriate immune response and that prior exposures to pathogens do not confer any protective (i.e., adaptive) effect against subsequent exposure to the same pathogen. This view has been challenged by experiments demonstrating that encounters with sublethal doses of a pathogen can prime the insect's immune system and, thus, have protective effects against future lethal doses. Immune priming has been reported across several insect species, including the red flour beetle, the honeycomb moth, the bumblebee, and the European honeybee, among others. Immune priming can also be transgenerational where the parent's pathogenic history influences the immune response of its offspring. Phenotypic evidence of transgenerational immune priming (TGIP) exists in the tobacco moth Manduca sexta where first-instar progeny of mothers injected with the bacterium Serratia marcescens exhibited a significant increase of in vivo bacterial clearance. To identify the gene expression changes underlying TGIP in M. sexta, we performed transcriptome-wide, transgenerational differential gene expression analysis on mothers and their offspring after mothers were exposed to S. marcescens. We are the first to perform transcriptome-wide analysis of the gene expression changes associated with TGIP in this ecologically relevant model organism. We show that maternal exposure to both heat-killed and live S. marcescens has strong and significant transgenerational impacts on gene expression patterns in their offspring, including upregulation of peptidoglycan recognition protein, toll-like receptor 9, and the antimicrobial peptide cecropin.
Collapse
Affiliation(s)
| | | | - Wendy Smith
- Marine Science CenterNortheastern UniversityNahantMAUSA
| | | |
Collapse
|
16
|
Khodamoradi K, Khosravizadeh Z, Amini-Khoei H, Hosseini SR, Dehpour AR, Hassanzadeh G. The effects of maternal separation stress experienced by parents on male reproductive potential in the next generation. Heliyon 2020; 6:e04807. [PMID: 33024852 PMCID: PMC7527646 DOI: 10.1016/j.heliyon.2020.e04807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/31/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
There is little information available about the effects of early-life parental stress on the reproductive potential of the next generation. The aim of this study is to examine the reproductive potential of male mice whose parents experienced maternal separation stress. In the present study, male first-generation offspring from parents were undergone of maternal separation (MS) were examined. Sperm characteristics, histological changes in testis, reactive oxygen species (ROS) production, expression of apoptotic and inflammatory genes and proteins were assessed. Findings showed that MS experienced by parents significantly decreased the morphology and viability of spermatozoa. Furthermore, significant changes in testicular tissue histology were observed. Increased production of ROS, decreased glutathione peroxidase (GPX) and adenosine triphosphate (ATP) concentrations, and affected the expression of genes and cytokines involved in inflammation. Finally, the mean percentage of caspase-1 and NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) positive cells was significantly higher in first-generation group. MS experienced by parents may negatively affect the reproduction of first generation offspring.
Collapse
Affiliation(s)
- Kajal Khodamoradi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Zahra Khosravizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Reza Hosseini
- Departent of Urology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Smithson M, Thorson JLM, Sadler-Riggleman I, Beck D, Skinner MK, Dybdahl M. Between-Generation Phenotypic and Epigenetic Stability in a Clonal Snail. Genome Biol Evol 2020; 12:1604-1615. [PMID: 32877512 PMCID: PMC7513791 DOI: 10.1093/gbe/evaa181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 12/25/2022] Open
Abstract
Epigenetic variation might play an important role in generating adaptive phenotypes by underpinning within-generation developmental plasticity, persistent parental effects of the environment (e.g., transgenerational plasticity), or heritable epigenetically based polymorphism. These adaptive mechanisms should be most critical in organisms where genetic sources of variation are limited. Using a clonally reproducing freshwater snail (Potamopyrgus antipodarum), we examined the stability of an adaptive phenotype (shell shape) and of DNA methylation between generations. First, we raised three generations of snails adapted to river currents in the lab without current. We showed that habitat-specific adaptive shell shape was relatively stable across three generations but shifted slightly over generations two and three toward a no-current lake phenotype. We also showed that DNA methylation specific to high-current environments was stable across one generation. This study provides the first evidence of stability of DNA methylation patterns across one generation in an asexual animal. Together, our observations are consistent with the hypothesis that adaptive shell shape variation is at least in part determined by transgenerational plasticity, and that DNA methylation provides a potential mechanism for stability of shell shape across one generation.
Collapse
Affiliation(s)
- Mark Smithson
- School of Biological Sciences, Center for Reproductive Biology, Washington State University
| | - Jennifer L M Thorson
- School of Biological Sciences, Center for Reproductive Biology, Washington State University
| | | | - Daniel Beck
- School of Biological Sciences, Center for Reproductive Biology, Washington State University
| | - Michael K Skinner
- School of Biological Sciences, Center for Reproductive Biology, Washington State University
| | - Mark Dybdahl
- School of Biological Sciences, Center for Reproductive Biology, Washington State University
| |
Collapse
|
18
|
Durrant J, Green MP, Jones TM. Dim artificial light at night reduces the cellular immune response of the black field cricket, Teleogryllus commodus. INSECT SCIENCE 2020; 27:571-582. [PMID: 30720239 PMCID: PMC7277038 DOI: 10.1111/1744-7917.12665] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/16/2019] [Accepted: 01/27/2019] [Indexed: 05/04/2023]
Abstract
A functioning immune system is crucial for protection against disease and illness, yet increasing evidence suggests that species living in urban areas could be suffering from immune suppression, due to the presence of artificial light at night (ALAN). This study examined the effects of ecologically relevant levels of ALAN on three key measures of immune function (haemocyte concentration, lytic activity, and phenoloxidase activity) using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. We reared crickets under an ecologically relevant daily light-cycle consisting of 12 hr bright daylight (2600 lx) followed by either 12 h darkness (0 lx) or dim environmentally relevant ALAN (1, 10, 100 lx), and then assessed immune function at multiple time points throughout adult life using haemolymph samples. We found that the presence of ALAN had a clear negative effect on haemocytes, while the effects on lytic activity and phenoloxidase activity were more complex or largely unaffected by ALAN. Furthermore, the effects of lifelong exposure to ALAN of 1 lx were comparable to those of 10 and 100 lx. Our data suggest that the effects of ALAN could be large and widespread, and such reductions in the core immune response of individuals will likely have greater consequences for fitness and survival under more malign conditions, such as those of the natural environment.
Collapse
Affiliation(s)
- Joanna Durrant
- The School of BioSciences, Faculty of ScienceUniversity of MelbourneVictoria3010Australia
| | - Mark P. Green
- The School of BioSciences, Faculty of ScienceUniversity of MelbourneVictoria3010Australia
| | - Therésa M. Jones
- The School of BioSciences, Faculty of ScienceUniversity of MelbourneVictoria3010Australia
| |
Collapse
|
19
|
Ben-Ami F, Orlic C, Regoes RR. Disentangling non-specific and specific transgenerational immune priming components in host-parasite interactions. Proc Biol Sci 2020; 287:20192386. [PMID: 32075526 PMCID: PMC7031663 DOI: 10.1098/rspb.2019.2386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Exposure to a pathogen primes many organisms to respond faster or more efficiently to subsequent exposures. Such priming can be non-specific or specific, and has been found to extend across generations. Disentangling and quantifying specific and non-specific effects is essential for understanding the genetic epidemiology of a system. By combining a large infection experiment and mathematical modelling, we disentangle different transgenerational effects in the crustacean model Daphnia magna exposed to different strains of the bacterial parasite Pasteuria ramosa. In the experiment, we exposed hosts to a high dose of one of three parasite strains, and subsequently challenged their offspring with multiple doses of the same (homologous) or a different (heterologous) strain. We find that exposure of Daphnia to Pasteuria decreases the susceptibility of their offspring by approximately 50%. This transgenerational protection is not larger for homologous than for heterologous parasite challenges. Methodologically, our work represents an important contribution not only to the analysis of immune priming in ecological systems but also to the experimental assessment of vaccines. We present, for the first time, an inference framework to investigate specific and non-specific effects of immune priming on the susceptibility distribution of hosts—effects that are central to understanding immunity and the effect of vaccines.
Collapse
Affiliation(s)
- Frida Ben-Ami
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Christian Orlic
- Zoologisches Institut, Evolutionsbiologie, Universität Basel, Vesalgasse 1, Basel 4051, Switzerland
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
20
|
Tetreau G, Dhinaut J, Gourbal B, Moret Y. Trans-generational Immune Priming in Invertebrates: Current Knowledge and Future Prospects. Front Immunol 2019; 10:1938. [PMID: 31475001 PMCID: PMC6703094 DOI: 10.3389/fimmu.2019.01938] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/30/2019] [Indexed: 01/15/2023] Open
Abstract
Trans-generational immune priming (TGIP) refers to the transfer of the parental immunological experience to its progeny. This may result in offspring protection from repeated encounters with pathogens that persist across generations. Although extensively studied in vertebrates for over a century, this phenomenon has only been identified 20 years ago in invertebrates. Since then, invertebrate TGIP has been the focus of an increasing interest, with half of studies published during the last few years. TGIP has now been tested in several invertebrate systems using various experimental approaches and measures to study it at both functional and evolutionary levels. However, drawing an overall picture of TGIP from available studies still appears to be a difficult task. Here, we provide a comprehensive review of TGIP in invertebrates with the objective of confronting all the data generated to date to highlight the main features and mechanisms identified in the context of its ecology and evolution. To this purpose, we describe all the articles reporting experimental investigation of TGIP in invertebrates and propose a critical analysis of the experimental procedures performed to study this phenomenon. We then investigate the outcome of TGIP in the offspring and its ecological and evolutionary relevance before reviewing the potential molecular mechanisms identified to date. In the light of this review, we build hypothetical scenarios of the mechanisms through which TGIP might be achieved and propose guidelines for future investigations.
Collapse
Affiliation(s)
- Guillaume Tetreau
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Julien Dhinaut
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Benjamin Gourbal
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
21
|
Simmons LW, Lovegrove M. Nongenetic paternal effects via seminal fluid. Evol Lett 2019; 3:403-411. [PMID: 31388449 PMCID: PMC6675144 DOI: 10.1002/evl3.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/11/2019] [Indexed: 11/08/2022] Open
Abstract
Mounting evidence suggests that nongenetic paternal effects on offspring may be widespread among animal taxa, but the mechanisms underlying this form of nongenetic inheritance are not yet fully understood. Here, we show that seminal fluids underlie paternal effects on early offspring survival in an insect, the cricket Teleogryllus oceanicus, and quantify the contribution of this paternal effect to the inheritance of this important fitness trait. We used castrated males within a full-sib half-sib experimental design to show that seminal fluid donors were responsible for variation in the survival of developing embryos to hatching, and in their subsequent survival to adulthood. Increased expression of two seminal fluid protein genes, previously found to be positively associated with sperm quality, was found to be negatively associated with embryo survival. These nongenetic paternal effects hold important implications for the evolution of adaptive maternal responses to sperm competition, and more broadly for the interpretation of sire effects from classic quantitative genetic breeding designs.
Collapse
Affiliation(s)
- Leigh W. Simmons
- Centre for Evolutionary BiologySchool of Biological SciencesThe University of Western AustraliaCrawley6009Australia
| | - Maxine Lovegrove
- Centre for Evolutionary BiologySchool of Biological SciencesThe University of Western AustraliaCrawley6009Australia
| |
Collapse
|
22
|
Lafont M, Goncalves P, Guo X, Montagnani C, Raftos D, Green T. Transgenerational plasticity and antiviral immunity in the Pacific oyster (Crassostrea gigas) against Ostreid herpesvirus 1 (OsHV-1). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:17-25. [PMID: 30278186 DOI: 10.1016/j.dci.2018.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/03/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The oyster's immune system is capable of adapting upon exposure to a pathogen-associated molecular pattern (PAMP) to have an enhanced secondary response against the same type of pathogen. This has been demonstrated using poly(I:C) to elicit an antiviral response in the Pacific oyster (Crassostrea gigas) against Ostreid herpesvirus (OsHV-1). Improved survival following exposure to poly(I:C) has been found in later life stages (within-generational immune priming) and in the next generation (transgenerational immune priming). The mechanism that the oyster uses to transfer immunity to the next generation is unknown. Here we show that oyster larvae have higher survival to OsHV-1 when their mothers, but not their fathers, are exposed to poly(I:C) prior to spawning. RNA-seq provided no evidence to suggest that parental exposure to poly(I:C) reconfigures antiviral gene expression in unchallenged larvae. We conclude that the improved survival of larvae might occur via maternal provisioning of antiviral compounds in the eggs.
Collapse
Affiliation(s)
- Maxime Lafont
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, France
| | - Priscila Goncalves
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; Macquarie University, Department of Biological Sciences, Sydney, Australia
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Rutgers University, Port Norris, NJ, USA
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, France
| | - David Raftos
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; Macquarie University, Department of Biological Sciences, Sydney, Australia
| | - Timothy Green
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; Macquarie University, Department of Biological Sciences, Sydney, Australia.
| |
Collapse
|
23
|
Pigeault R, Garnier R, Rivero A, Gandon S. Evolution of transgenerational immunity in invertebrates. Proc Biol Sci 2016; 283:rspb.2016.1136. [PMID: 27683366 DOI: 10.1098/rspb.2016.1136] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/06/2016] [Indexed: 11/12/2022] Open
Abstract
Over a decade ago, the discovery of transgenerational immunity in invertebrates shifted existing paradigms on the lack of sophistication of their immune system. Nonetheless, the prevalence of this trait and the ecological factors driving its evolution in invertebrates remain poorly understood. Here, we develop a theoretical host-parasite model and predict that long lifespan and low dispersal should promote the evolution of transgenerational immunity. We also predict that in species that produce both philopatric and dispersing individuals, it may pay to have a plastic allocation strategy with a higher transgenerational immunity investment in philopatric offspring because they are more likely to encounter locally adapted pathogens. We review all experimental studies published to date, comprising 21 invertebrate species in nine different orders, and we show that, as expected, longevity and dispersal correlate with the transfer of immunity to offspring. The validity of our prediction regarding the plasticity of investment in transgenerational immunity remains to be tested in invertebrates, but also in vertebrate species. We discuss the implications of our work for the study of the evolution of immunity, and we suggest further avenues of research to expand our knowledge of the impact of transgenerational immune protection in host-parasite interactions.
Collapse
Affiliation(s)
- R Pigeault
- MIVEGEC (UMR CNRS 5290), Montpellier, France
| | - R Garnier
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - A Rivero
- MIVEGEC (UMR CNRS 5290), Montpellier, France
| | - S Gandon
- CEFE (UMR CNRS 5175), Montpellier, France
| |
Collapse
|
24
|
Milutinović B, Kurtz J. Immune memory in invertebrates. Semin Immunol 2016; 28:328-42. [PMID: 27402055 DOI: 10.1016/j.smim.2016.05.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022]
Abstract
Evidence for innate immune memory (or 'priming') in invertebrates has been accumulating over the last years. We here provide an in-depth review of the current state of evidence for immune memory in invertebrates, and in particular take a phylogenetic viewpoint. Invertebrates are a very heterogeneous group of animals and accordingly, evidence for the phenomenon of immune memory as well as the hypothesized molecular underpinnings differ largely for the diverse invertebrate taxa. The majority of research currently focuses on Arthropods, while evidence from many other groups of invertebrates is fragmentary or even lacking. We here concentrate on immune memory that is induced by pathogenic challenges, but also extent our view to a non-pathogenic context, i.e. allograft rejection, which can also show forms of memory and can inform us about general principles of specific self-nonself recognition. We discuss definitions of immune memory and a number of relevant aspects such as the type of antigens used, the route of exposure, and the kinetics of reactions following priming.
Collapse
Affiliation(s)
- Barbara Milutinović
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany.
| |
Collapse
|
25
|
Trauer-Kizilelma U, Hilker M. Impact of transgenerational immune priming on the defence of insect eggs against parasitism. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:126-33. [PMID: 25790896 DOI: 10.1016/j.dci.2015.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 05/28/2023]
Abstract
Insects are known to prime the immune state of their offspring. However, although the beginning of insect life, the egg stage, is often greatly endangered by parasitism, no knowledge is available regarding whether transgenerational immune priming improves the immune responses of insect eggs to actual parasitoid attacks. Our study revealed suppression of the development of parasitoids in transgenerationally immune-primed Manduca sexta eggs and reduced emergence rates of parasitoids from these eggs. The higher defence efficiency of immune-primed M. sexta eggs against parasitoids was in agreement with the increased antibacterial activity and phenoloxidase activity of these eggs in response to parasitism compared to the eggs of control parents. Our study showed that immunochallenged insect parents could enable their offspring already in the egg stage to defend more efficiently against parasitic invaders. We discuss whether M. sexta benefits from transgenerational immune priming of eggs by limiting the population growth of egg parasitoids.
Collapse
Affiliation(s)
- Ute Trauer-Kizilelma
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, Berlin 12163, Germany
| | - Monika Hilker
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, Berlin 12163, Germany.
| |
Collapse
|
26
|
Nystrand M, Dowling DK. Transgenerational interactions involving parental age and immune status affect female reproductive success in Drosophila melanogaster. Proc Biol Sci 2015; 281:20141242. [PMID: 25253454 DOI: 10.1098/rspb.2014.1242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It is well established that the parental phenotype can influence offspring phenotypic expression, independent of the effects of the offspring's own genotype. Nonetheless, the evolutionary implications of such parental effects remain unclear, partly because previous studies have generally overlooked the potential for interactions between parental sources of non-genetic variance to influence patterns of offspring phenotypic expression. We tested for such interactions, subjecting male and female Drosophila melanogaster of two different age classes to an immune activation challenge or a control treatment. Flies were then crossed in all age and immune status combinations, and the reproductive success of their immune- and control-treated daughters measured. We found that daughters produced by two younger parents exhibited reduced reproductive success relative to those of other parental age combinations. Furthermore, immune-challenged daughters exhibited higher reproductive success when produced by immune-challenged relative to control-treated mothers, a pattern consistent with transgenerational immune priming. Finally, a complex interplay between paternal age and parental immune statuses influenced daughter's reproductive success. These findings demonstrate the dynamic nature of age- and immune-mediated parental effects, traceable to both parents, and regulated by interactions between parents and between parents and offspring.
Collapse
Affiliation(s)
- M Nystrand
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - D K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
27
|
Vantaux A, Dabiré KR, Cohuet A, Lefèvre T. A heavy legacy: offspring of malaria-infected mosquitoes show reduced disease resistance. Malar J 2014; 13:442. [PMID: 25412797 PMCID: PMC4255934 DOI: 10.1186/1475-2875-13-442] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/05/2014] [Indexed: 12/28/2022] Open
Abstract
Background Trans-generational effects of immune stimulation may have either adaptive (trans-generational immune priming) or non-adaptive (fitness costs) effects on offspring ability to fight pathogens. Methods Anopheles coluzzii and its natural malaria parasite Plasmodium falciparum were used to test how maternal parasite infection affected offspring resistance to the same parasite species. Results Daughters of exposed mothers had similar qualitative resistance, as measured by their ability to prevent infection, relative to those of control mothers. However, maternal disease exposure altered offspring quantitative resistance, measured as the ability to limit parasite development, with mosquitoes of infected mothers suffering slightly increased parasite intensity compared to controls. In addition, quantitative resistance was minimal in offspring of highly infected mothers, and in offspring issued from eggs produced during the early infection phase. Conclusions Plasmodium falciparum infection in An. coluzzii can have trans-generational costs, lowering quantitative resistance in offspring of infected mothers. Malaria-exposed mosquitoes might heavily invest in immune defences and thereby produce lower quality offspring that are poorly resistant. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-442) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amélie Vantaux
- UMR MIVEGEC (IRD 224 - CNRS 5290 - UM1 - UM2), 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|