1
|
Hudson CM, Cuenca Cambronero M, Moosmann M, Narwani A, Spaak P, Seehausen O, Matthews B. Environmentally independent selection for hybrids between divergent freshwater stickleback lineages in semi-natural ponds. J Evol Biol 2023; 36:1166-1184. [PMID: 37394735 DOI: 10.1111/jeb.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/03/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Hybridization following secondary contact of genetically divergent populations can influence the range expansion of invasive species, though specific outcomes depend on the environmental dependence of hybrid fitness. Here, using two genetically and ecologically divergent threespine stickleback lineages that differ in their history of freshwater colonization, we estimate fitness variation of parental lineages and hybrids in semi-natural freshwater ponds with contrasting histories of nutrient loading. In our experiment, we found that fish from the older freshwater lineage (Lake Geneva) and hybrids outperformed fish from the younger freshwater lineage (Lake Constance) in terms of both growth and survival, regardless of the environmental context of our ponds. Across all ponds, hybrids exhibited the highest survival. Although wild-caught adult populations differed in their functional and defence morphology, it is unclear which of these traits underlie the fitness differences observed among juveniles in our experiment. Overall, our work suggests that when hybrid fitness is insensitive to environmental conditions, as observed here, introgression may promote population expansion into unoccupied habitats and accelerate invasion success.
Collapse
Affiliation(s)
- Cameron Marshall Hudson
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Maria Cuenca Cambronero
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Aquatic Ecology Group, University of Vic, Central University of Catalonia, Vic, Spain
| | - Marvin Moosmann
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Anita Narwani
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Piet Spaak
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
| |
Collapse
|
2
|
Augustijnen H, Patsiou T, Lucek K. Secondary contact rather than coexistence-Erebia butterflies in the Alps. Evolution 2022; 76:2669-2686. [PMID: 36117267 PMCID: PMC9828779 DOI: 10.1111/evo.14615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/05/2022] [Accepted: 08/30/2022] [Indexed: 01/22/2023]
Abstract
Secondary contact zones are ideal systems to study the processes that govern the evolution of reproductive barriers, especially at advanced stages of the speciation process. An increase in reproductive isolation resulting from selection against maladaptive hybrids is thought to contribute to reproductive barrier buildup in secondary contact zones. Although such processes have been invoked for many systems, it remains unclear to which extent they influence contact zone dynamics in nature. Here, we study a very narrow contact zone between the butterfly species Erebia cassioides and Erebia tyndarus in the Swiss Alps. We quantified phenotypic traits related to wing shape and reproduction as well as ecology to compare the degree of intra- and interspecific differentiation. Even though only very few first-generation hybrids occur, we find no strong indications for current reinforcing selection, suggesting that if reinforcement occurred in our system, it likely operated in the past. Additionally, we show that both species differ less in their ecological niche at the contact zone than elsewhere, which could explain why coexistence between these butterflies may currently not be possible.
Collapse
Affiliation(s)
- Hannah Augustijnen
- Department of Environmental SciencesUniversity of BaselBaselCH‐4056Switzerland
| | - Theofania Patsiou
- Institute of Plant SciencesUniversity of BernBernCH‐3013Switzerland
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | - Kay Lucek
- Department of Environmental SciencesUniversity of BaselBaselCH‐4056Switzerland
| |
Collapse
|
3
|
Hudson CM, Ladd SN, Leal MC, Schubert CJ, Seehausen O, Matthews B. Fit and fatty freshwater fish: contrasting polyunsaturated fatty acid phenotypes between hybridizing stickleback lineages. OIKOS 2021. [DOI: 10.1111/oik.08558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Cameron M. Hudson
- Dept of Fish Ecology and Evolution, Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry Kastanienbaum Switzerland
- Aquatic Ecology and Evolution, Inst. of Ecology and Evolution, Univ. of Bern Bern Switzerland
| | - S. Nemiah Ladd
- Dept of Surface Waters – Research and Management, Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry Kastanienbaum Switzerland
- Ecosystem Physiology, Univ. of Freiburg Freiburg Germany
| | - Miguel C. Leal
- ECOMARE, CESAM – Center for Environmental and Marine Studies, Dept of Biology, Univ. of Aveiro, Campus Universitário de Santiago Aveiro Portugal
| | - Carsten J. Schubert
- Dept of Surface Waters – Research and Management, Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry Kastanienbaum Switzerland
| | - Ole Seehausen
- Dept of Fish Ecology and Evolution, Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry Kastanienbaum Switzerland
- Aquatic Ecology and Evolution, Inst. of Ecology and Evolution, Univ. of Bern Bern Switzerland
| | - Blake Matthews
- Dept of Fish Ecology and Evolution, Eawag, Swiss Federal Inst. of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry Kastanienbaum Switzerland
| |
Collapse
|
4
|
Chafin TK, Regmi B, Douglas MR, Edds DR, Wangchuk K, Dorji S, Norbu P, Norbu S, Changlu C, Khanal GP, Tshering S, Douglas ME. Parallel introgression, not recurrent emergence, explains apparent elevational ecotypes of polyploid Himalayan snowtrout. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210727. [PMID: 34729207 PMCID: PMC8548808 DOI: 10.1098/rsos.210727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The recurrence of similar evolutionary patterns within different habitats often reflects parallel selective pressures acting upon either standing or independently occurring genetic variation to produce a convergence of phenotypes. This interpretation (i.e. parallel divergences within adjacent streams) has been hypothesized for drainage-specific morphological 'ecotypes' observed in polyploid snowtrout (Cyprinidae: Schizothorax). However, parallel patterns of differential introgression during secondary contact are a viable alternative hypothesis. Here, we used ddRADseq (N = 35 319 de novo and N = 10 884 transcriptome-aligned SNPs), as derived from Nepali/Bhutanese samples (N = 48 each), to test these competing hypotheses. We first employed genome-wide allelic depths to derive appropriate ploidy models, then a Bayesian approach to yield genotypes statistically consistent under the inferred expectations. Elevational 'ecotypes' were consistent in geometric morphometric space, but with phylogenetic relationships at the drainage level, sustaining a hypothesis of independent emergence. However, partitioned analyses of phylogeny and admixture identified subsets of loci under selection that retained genealogical concordance with morphology, suggesting instead that apparent patterns of morphological/phylogenetic discordance are driven by widespread genomic homogenization. Here, admixture occurring in secondary contact effectively 'masks' previous isolation. Our results underscore two salient factors: (i) morphological adaptations are retained despite hybridization and (ii) the degree of admixture varies across tributaries, presumably concomitant with underlying environmental or anthropogenic factors.
Collapse
Affiliation(s)
- Tyler K. Chafin
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder 80309, USA
| | - Binod Regmi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
- National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Marlis R. Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - David R. Edds
- Department of Biological Sciences, Emporia State University, Emporia, KS 66801, USA
| | - Karma Wangchuk
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Sonam Dorji
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Pema Norbu
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Sangay Norbu
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Changlu Changlu
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Gopal Prasad Khanal
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Singye Tshering
- National Research and Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture and Forests, Royal Government of Bhutan, Haa, Bhutan
| | - Michael E. Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
5
|
Paccard A, Hanson D, Stuart YE, von Hippel FA, Kalbe M, Klepaker T, Skúlason S, Kristjánsson BK, Bolnick DI, Hendry AP, Barrett RDH. Repeatability of Adaptive Radiation Depends on Spatial Scale: Regional Versus Global Replicates of Stickleback in Lake Versus Stream Habitats. J Hered 2021; 111:43-56. [PMID: 31690947 DOI: 10.1093/jhered/esz056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Abstract
The repeatability of adaptive radiation is expected to be scale-dependent, with determinism decreasing as greater spatial separation among "replicates" leads to their increased genetic and ecological independence. Threespine stickleback (Gasterosteus aculeatus) provide an opportunity to test whether this expectation holds for the early stages of adaptive radiation-their diversification in freshwater ecosystems has been replicated many times. To better understand the repeatability of that adaptive radiation, we examined the influence of geographic scale on levels of parallel evolution by quantifying phenotypic and genetic divergence between lake and stream stickleback pairs sampled at regional (Vancouver Island) and global (North America and Europe) scales. We measured phenotypes known to show lake-stream divergence and used reduced representation genome-wide sequencing to estimate genetic divergence. We assessed the scale dependence of parallel evolution by comparing effect sizes from multivariate models and also the direction and magnitude of lake-stream divergence vectors. At the phenotypic level, parallelism was greater at the regional than the global scale. At the genetic level, putative selected loci showed greater lake-stream parallelism at the regional than the global scale. Generally, the level of parallel evolution was low at both scales, except for some key univariate traits. Divergence vectors were often orthogonal, highlighting possible ecological and genetic constraints on parallel evolution at both scales. Overall, our results confirm that the repeatability of adaptive radiation decreases at increasing spatial scales. We suggest that greater environmental heterogeneity at larger scales imposes different selection regimes, thus generating lower repeatability of adaptive radiation at larger spatial scales.
Collapse
Affiliation(s)
- Antoine Paccard
- Redpath Museum and Department of Biology, McGill University, Montreal, Canada
| | - Dieta Hanson
- Redpath Museum and Department of Biology, McGill University, Montreal, Canada
| | - Yoel E Stuart
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| | - Frank A von Hippel
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ
| | - Martin Kalbe
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Tom Klepaker
- University of Bergen, Department of Biology, Bergen, Norway
| | - Skúli Skúlason
- Department of Aquaculture and Fish Biology, Hólar University College, Sauðárkrókur, Iceland
| | - Bjarni K Kristjánsson
- Department of Aquaculture and Fish Biology, Hólar University College, Sauðárkrókur, Iceland
| | - Daniel I Bolnick
- Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT
| | - Andrew P Hendry
- Redpath Museum and Department of Biology, McGill University, Montreal, Canada
| | - Rowan D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, Canada
| |
Collapse
|
6
|
Hudson CM, Lucek K, Marques DA, Alexander TJ, Moosmann M, Spaak P, Seehausen O, Matthews B. Threespine Stickleback in Lake Constance: The Ecology and Genomic Substrate of a Recent Invasion. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.611672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Invasive species can be powerful models for studying contemporary evolution in natural environments. As invading organisms often encounter new habitats during colonization, they will experience novel selection pressures. Threespine stickleback (Gasterosteus aculeatus complex) have recently colonized large parts of Switzerland and are invasive in Lake Constance. Introduced to several watersheds roughly 150 years ago, they spread across the Swiss Plateau (400–800 m a.s.l.), bringing three divergent hitherto allopatric lineages into secondary contact. As stickleback have colonized a variety of different habitat types during this recent range expansion, the Swiss system is a useful model for studying contemporary evolution with and without secondary contact. For example, in the Lake Constance region there has been rapid phenotypic and genetic divergence between a lake population and some stream populations. There is considerable phenotypic variation within the lake population, with individuals foraging in and occupying littoral, offshore pelagic, and profundal waters, the latter of which is a very unusual habitat for stickleback. Furthermore, adults from the lake population can reach up to three times the size of adults from the surrounding stream populations, and are large by comparison to populations globally. Here, we review the historical origins of the threespine stickleback in Switzerland, and the ecomorphological variation and genomic basis of its invasion in Lake Constance. We also outline the potential ecological impacts of this invasion, and highlight the interest for contemporary evolution studies.
Collapse
|
7
|
Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 2021; 590:438-444. [PMID: 33505029 PMCID: PMC7886653 DOI: 10.1038/s41586-020-03127-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
Long-term climate change and periodic environmental extremes threaten food and fuel security1 and global crop productivity2-4. Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience5, these approaches require sufficient knowledge of the genes that underlie productivity and adaptation6-knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate-gene-biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene-trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.
Collapse
|
8
|
Quilodrán CS, Tsoupas A, Currat M. The Spatial Signature of Introgression After a Biological Invasion With Hybridization. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.569620] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The accumulation of genome-wide molecular data has emphasized the important role of hybridization in the evolution of many organisms, which may carry introgressed genomic segments resulting from past admixture events with other taxa. Despite a number of examples of hybridization occurring during biological invasions, the resulting spatial patterns of genomic introgression remain poorly understood. Preliminary simulation studies have suggested a heterogeneous spatial level of introgression for invasive taxa after range expansion. We investigated in detail the robustness of this pattern and its persistence over time for both invasive and local organisms. Using spatially explicit simulations, we explored the spatial distribution of introgression across the area of colonization of an invasive taxon hybridizing with a local taxon. The general pattern for neutral loci supported by our results is an increasing introgression of local genes into the invasive taxon with the increase in the distance from the source of the invasion and a decreasing introgression of invasive genes into the local taxon. However, we also show there is some variation in this general trend depending on the scenario investigated. Spatial heterogeneity of introgression within a given taxon is thus an expected neutral pattern in structured populations after a biological invasion with a low to moderate amount of hybridization. We further show that this pattern is consistent with published empirical observations. Using additional simulations, we argue that the spatial pattern of Neanderthal introgression in modern humans, which has been documented to be higher in Asia than in Europe, can be explained by a model of hybridization with Neanderthals in Eurasia during the range expansion of modern humans from Africa. Our results support the view that weak hybridization during range expansion may explain spatially heterogeneous introgression patterns without the need to invoke selection.
Collapse
|
9
|
Nie X, Wen T, Shao P, Tang B, Nuriman‐guli A, Yu Y, Du X, You C, Lin Z. High-density genetic variation maps reveal the correlation between asymmetric interspecific introgressions and improvement of agronomic traits in Upland and Pima cotton varieties developed in Xinjiang, China. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:677-689. [PMID: 32246786 PMCID: PMC7496985 DOI: 10.1111/tpj.14760] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/11/2020] [Accepted: 03/23/2020] [Indexed: 05/11/2023]
Abstract
The two new world tetraploid cottons, Gossypium hirsutum and Gossypium barbadense, are cultivated worldwide and are characterised by a high yield and superior fibre quality, respectively. Historical genetic introgression has been reported between them; however, the existence of introgression and its genetic effects on agronomic traits remain unclear with regard to independent breeding of G. hirsutum (Upland cotton) and G. barbadense (Pima cotton) elite cultivars. We collected 159 G. hirsutum and 70 G. barbadense cultivars developed in Xinjiang, China, along with 30 semi-wild accessions of G. hirsutum, to perform interspecific introgression tests, intraspecific selection analyses and genome-wide association studies (GWAS) with fibre quality and yield component traits in multiple environments. In total, we identified seven interspecific introgression events and 52 selective sweep loci in G. hirsutum, as well as 17 interspecific introgression events and 19 selective sweep loci in G. barbadense. Correlation tests between agronomic traits and introgressions showed that introgression loci were mutually beneficial for the improvement of fibre quality and yield traits in both species. In addition, the phenotypic effects of four interspecific introgression events could be detected by intraspecific GWAS, with Gb_INT13 significantly improving fibre yield in G. barbadense. The present study describes the landscape of genetic introgression and selection between the two species, and highlights the genetic effects of introgression among populations, which can be used for future improvement of fibre yield and quality in G. barbadense and G. hirsutum, respectively.
Collapse
Affiliation(s)
- Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang BingtuanAgricultural CollegeShihezi UniversityShiheziXinjiang832000China
| | - Tianwang Wen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070China
| | - Panxia Shao
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang BingtuanAgricultural CollegeShihezi UniversityShiheziXinjiang832000China
| | - Binghui Tang
- Cotton Research InstituteShihezi Academy of Agriculture ScienceShiheziXinjiang832000China
| | - Aini Nuriman‐guli
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang BingtuanAgricultural CollegeShihezi UniversityShiheziXinjiang832000China
| | - Yu Yu
- Cotton Research InstituteXinjiang Academy of Agriculture and Reclamation ScienceShiheziXinjiang832000China
| | - Xiongming Du
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agriculture ScienceAnyangHenan45500China
| | - Chunyuan You
- Cotton Research InstituteShihezi Academy of Agriculture ScienceShiheziXinjiang832000China
| | - Zhongxu Lin
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang BingtuanAgricultural CollegeShihezi UniversityShiheziXinjiang832000China
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070China
| |
Collapse
|
10
|
Marques DA, Lucek K, Sousa VC, Excoffier L, Seehausen O. Admixture between old lineages facilitated contemporary ecological speciation in Lake Constance stickleback. Nat Commun 2019; 10:4240. [PMID: 31534121 PMCID: PMC6751218 DOI: 10.1038/s41467-019-12182-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/27/2019] [Indexed: 01/25/2023] Open
Abstract
Ecological speciation can sometimes rapidly generate reproductively isolated populations coexisting in sympatry, but the origin of genetic variation permitting this is rarely known. We previously explored the genomics of very recent ecological speciation into lake and stream ecotypes in stickleback from Lake Constance. Here, we reconstruct the origin of alleles underlying ecological speciation by combining demographic modelling on genome-wide single nucleotide polymorphisms, phenotypic data and mitochondrial sequence data in the wider European biogeographical context. We find that parallel differentiation between lake and stream ecotypes across replicate lake-stream ecotones resulted from recent secondary contact and admixture between old East and West European lineages. Unexpectedly, West European alleles that introgressed across the hybrid zone at the western end of the lake, were recruited to genomic islands of differentiation between ecotypes at the eastern end of the lake. Our results highlight an overlooked outcome of secondary contact: ecological speciation facilitated by admixture variation. Ecological speciation can proceed rapidly, but the origin of genetic variation facilitating it has remained elusive. Here, the authors show that secondary contact and introgression between deeply diverged lineages of stickleback fish facilitated rapid ecological speciation into lake and stream ecotypes in Lake Constance.
Collapse
Affiliation(s)
- David A Marques
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland.,Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland
| | - Kay Lucek
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Vitor C Sousa
- Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Campo Grande 016, 1749-016, Lisbon, Portugal
| | - Laurent Excoffier
- Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland. .,Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland.
| |
Collapse
|
11
|
Prodöhl PA, Ferguson A, Bradley CR, Ade R, Roberts C, Keay EJ, Costa AR, Hynes R. Impacts of acidification on brown trout Salmo trutta populations and the contribution of stocking to population recovery and genetic diversity. JOURNAL OF FISH BIOLOGY 2019; 95:719-742. [PMID: 31111501 PMCID: PMC6852074 DOI: 10.1111/jfb.14054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/20/2019] [Indexed: 05/25/2023]
Abstract
Anthropogenic acidification in SW-Scotland, from the early 19th Century onwards, led to the extinction of several loch (lake) brown trout (Salmo trutta) populations and substantial reductions in numbers in many others. Higher altitude populations with no stocking influence, which are isolated above natural and artificial barriers and subjected to the greatest effect of acidification, exhibited the least intrapopulation genetic diversity (34% of the allelic richness of the populations accessible to anadromous S. trutta). These, however, were characterised by the greatest interpopulation divergence (highest pairwise DEST 0.61 and FST 0.53 in contemporary samples) based on 16 microsatellite loci and are among the most differentiated S. trutta populations in NW-Europe. Five lochs above impassable waterfalls, where S. trutta were thought to be extinct, are documented as having been stocked in the late 1980s or 1990s. All five lochs now support self-sustaining S. trutta populations; three as a direct result of restoration stocking and two adjoining lochs largely arising from a small remnant wild population in one, but with some stocking input. The genetically unique Loch Grannoch S. trutta, which has been shown to have a heritable increased tolerance to acid conditions, was successfully used as a donor stock to restore populations in two acidic lochs. Loch Fleet S. trutta, which were re-established from four separate donor sources in the late 1980s, showed differential contribution from these ancestors and a higher genetic diversity than all 17 natural loch populations examined in the area. Genetically distinct inlet and outlet spawning S. trutta populations were found in this loch. Three genetically distinct sympatric populations of S. trutta were identified in Loch Grannoch, most likely representing recruitment from the three main spawning rivers. A distinct genetic signature of Loch Leven S. trutta, the progenitor of many Scottish farm strains, facilitated detection of stocking with these strains. One artificially created loch was shown to have a population genetically very similar to Loch Leven S. trutta. In spite of recorded historical supplemental stocking with Loch Leven derived farm strains, much of the indigenous S. trutta genetic diversity in the area remains intact, aside from the effects of acidification induced bottlenecks. Overall genetic diversity and extant populations have been increased by allochthonous stocking.
Collapse
Affiliation(s)
- Paulo A. Prodöhl
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - Andrew Ferguson
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - Caroline R. Bradley
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - Robin Ade
- Dalry, Dumfries & GallowayScotlandUK
| | | | - E. J. Keay
- Marine Scotland, Freshwater Laboratory, FaskallyPitlochryUK
| | - Artur R. Costa
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - Rosaleen Hynes
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
12
|
Cassin-Sackett L, Callicrate TE, Fleischer RC. Parallel evolution of gene classes, but not genes: Evidence from Hawai'ian honeycreeper populations exposed to avian malaria. Mol Ecol 2018; 28:568-583. [PMID: 30298567 DOI: 10.1111/mec.14891] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 12/29/2022]
Abstract
Adaptation in nature is ubiquitous, yet characterizing its genomic basis is difficult because population demographics cause correlations with nonadaptive loci. Introduction events provide opportunities to observe adaptation over known spatial and temporal scales, facilitating the identification of genes involved in adaptation. The pathogen causing avian malaria, Plasmodium relictum, was introduced to Hawai'i in the 1930s and elicited extinctions and precipitous population declines in native honeycreepers. After a sharp initial population decline, the Hawai'i 'amakihi (Chlorodrepanis virens) has evolved tolerance to the parasite at low elevations where P. relictum exists, and can sustain infection without major fitness consequences. High-elevation, unexposed populations of 'amakihi display little to no tolerance. To explore the genomic basis of adaptation to P. relictum in low-elevation 'amakihi, we genotyped 125 'amakihi from the island of Hawai'i via hybridization capture to 40,000 oligonucleotide baits containing SNPs and used the reference 'amakihi genome to identify genes potentially under selection from malaria. We tested for outlier loci between low- and high-elevation population pairs and identified loci with signatures of selection within low-elevation populations. In some cases, genes commonly involved in the immune response (e.g., major histocompatibility complex) were associated with malaria presence in the population. We also detected several novel candidate loci that may be implicated in surviving malaria infection (e.g., beta-defensin, glycoproteins and interleukin-related genes). Our results suggest that rapid adaptation to pathogens may occur through changes in different immune genes, but in the same classes of genes, across populations.
Collapse
Affiliation(s)
- Loren Cassin-Sackett
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia.,Department of Integrative Biology, University of South Florida, Tampa, Florida
| | - Taylor E Callicrate
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia.,Species Conservation Toolkit Initiative, Department of Conservation Science, Chicago Zoological Society, Brookfield, Illinois
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia
| |
Collapse
|
13
|
Bassham S, Catchen J, Lescak E, von Hippel FA, Cresko WA. Repeated Selection of Alternatively Adapted Haplotypes Creates Sweeping Genomic Remodeling in Stickleback. Genetics 2018; 209:921-939. [PMID: 29794240 PMCID: PMC6028257 DOI: 10.1534/genetics.117.300610] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/21/2018] [Indexed: 01/06/2023] Open
Abstract
Heterogeneous genetic divergence can accumulate across the genome when populations adapt to different habitats while still exchanging alleles. How long does diversification take and how much of the genome is affected? When divergence occurs in parallel from standing genetic variation, how often are the same haplotypes involved? We explore these questions using restriction site-associated DNA sequencing genotyping data and show that broad-scale genomic repatterning, fueled by copious standing variation, can emerge in just dozens of generations in replicate natural populations of threespine stickleback fish (Gasterosteus aculeatus). After the catastrophic 1964 Alaskan earthquake, marine stickleback colonized newly created ponds on seismically uplifted islands. We find that freshwater fish in these young ponds differ from their marine ancestors across the same genomic segments previously shown to have diverged in much older lake populations. Outside of these core divergent regions the genome shows no population structure across the ocean-freshwater divide, consistent with strong local selection acting in alternative environments on stickleback populations still connected by significant gene flow. Reinforcing this inference, a majority of divergent haplotypes that are at high frequency in ponds are detectable in the sea, even across great geographic distances. Building upon previous population genomics work in this model species, our data suggest that a long history of divergent selection and gene flow among stickleback populations in oceanic and freshwater habitats has maintained polymorphisms of alternatively adapted DNA sequences that facilitate parallel evolution.
Collapse
Affiliation(s)
- Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| | - Julian Catchen
- Department of Animal Biology, University of Illinois at Urbana-Champaign, Illinois 61801
| | - Emily Lescak
- Department of Biological Sciences, University of Alaska Anchorage, Alaska 99508
- College of Fisheries and Ocean Science, University of Alaska Fairbanks, Alaska 99775
| | - Frank A von Hippel
- Department of Biological Sciences , Northern Arizona University, Flagstaff, Arizona 86011
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona 86011
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
14
|
Pfennig KS, Kelly AL, Pierce AA. Hybridization as a facilitator of species range expansion. Proc Biol Sci 2018; 283:rspb.2016.1329. [PMID: 27683368 DOI: 10.1098/rspb.2016.1329] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/01/2016] [Indexed: 01/02/2023] Open
Abstract
Explaining the evolution of species geographical ranges is fundamental to understanding how biodiversity is distributed and maintained. The solution to this classic problem in ecology and evolution remains elusive: we still do not fully know how species geographical ranges evolve and what factors fuel range expansions. Resolving this problem is now more crucial than ever with increasing biodiversity loss, global change and movement of species by humans. Here, we describe and evaluate the hypothesis that hybridization between species can contribute to species range expansion. We discuss how such a process can occur and the empirical data that are needed to test this hypothesis. We also examine how species can expand into new environments via hybridization with a resident species, and yet remain distinct species. Generally, hybridization may play an underappreciated role in influencing the evolution of species ranges. Whether-and to what extent-hybridization has such an effect requires further study across more diverse taxa.
Collapse
Affiliation(s)
- Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Audrey L Kelly
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Amanda A Pierce
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
15
|
Alexander TJ, Vonlanthen P, Seehausen O. Does eutrophication-driven evolution change aquatic ecosystems? Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0041. [PMID: 27920386 DOI: 10.1098/rstb.2016.0041] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 01/20/2023] Open
Abstract
Eutrophication increases primary production and changes the relative abundance, taxonomic composition and spatial distribution of primary producers within an aquatic ecosystem. The changes in composition and location of resources alter the distribution and flow of energy and biomass throughout the food web. Changes in productivity also alter the physico-chemical environment, which has further effects on the biota. Such ecological changes influence the direction and strength of natural and sexual selection experienced by populations. Besides altering selection, they can also erode the habitat gradients and/or behavioural mechanisms that maintain ecological separation and reproductive isolation among species. Consequently, eutrophication of lakes commonly results in reduced ecological specialization as well as genetic and phenotypic homogenization among lakes and among niches within lakes. We argue that the associated loss in functional diversity and niche differentiation may lead to decreased carrying capacity and lower resource-use efficiency by consumers. We show that in central European whitefish species radiations, the functional diversity affected by eutrophication-induced speciation reversal correlates with community-wide trophic transfer efficiency (fisheries yield per unit phosphorus). We take this as an example of how evolutionary dynamics driven by anthropogenic environmental change can have lasting effects on biodiversity and ecosystem functioning.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Timothy J Alexander
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland .,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Pascal Vonlanthen
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| |
Collapse
|
16
|
Hohmann N, Koch MA. An Arabidopsis introgression zone studied at high spatio-temporal resolution: interglacial and multiple genetic contact exemplified using whole nuclear and plastid genomes. BMC Genomics 2017; 18:810. [PMID: 29058582 PMCID: PMC5651623 DOI: 10.1186/s12864-017-4220-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Abstract
Background Gene flow between species, across ploidal levels, and even between evolutionary lineages is a common phenomenon in the genus Arabidopsis. However, apart from two genetically fully stabilized allotetraploid species that have been investigated in detail, the extent and temporal dynamics of hybridization are not well understood. An introgression zone, with tetraploid A. arenosa introgressing into A. lyrata subsp. petraea in the Eastern Austrian Forealps and subsequent expansion towards pannonical lowlands, was described previously based on morphological observations as well as molecular data using microsatellite and plastid DNA markers. Here we investigate the spatio-temporal context of this suture zone, making use of the potential of next-generation sequencing and whole-genome data. By utilizing a combination of nuclear and plastid genomic data, the extent, direction and temporal dynamics of gene flow are elucidated in detail and Late Pleistocene evolutionary processes are resolved. Results Analysis of nuclear genomic data significantly recognizes the clinal structure of the introgression zone, but also reveals that hybridization and introgression is more common and substantial than previously thought. Also tetraploid A. lyrata and A. arenosa subsp. borbasii from outside the previously defined suture zone show genomic signals of past introgression. A. lyrata is shown to serve usually as the maternal parent in these hybridizations, but one exception is identified from plastome-based phylogenetic reconstruction. Using plastid phylogenomics with secondary time calibration, the origin of A. lyrata and A. arenosa lineages is pre-dating the last three glaciation complexes (approx. 550,000 years ago). Hybridization and introgression followed during the last two glacial-interglacial periods (since approx. 300,000 years ago) with later secondary contact at the northern and southern border of the introgression zone during the Holocene. Conclusions Footprints of adaptive introgression in the Northeastern Forealps are older than expected and predate the Last Glaciation Maximum. This correlates well with high genetic diversity found within areas that served as refuge area multiple times. Our data also provide some first hints that early introgressed and presumably preadapted populations account for successful and rapid postglacial re-colonization and range expansion. Electronic supplementary material The online version of this article (doi: 10.1186/s12864-017-4220-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nora Hohmann
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany.,Present address: Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, CH-4056, Basel, Switzerland
| | - Marcus A Koch
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany.
| |
Collapse
|
17
|
Enciso-Romero J, Pardo-Díaz C, Martin SH, Arias CF, Linares M, McMillan WO, Jiggins CD, Salazar C. Evolution of novel mimicry rings facilitated by adaptive introgression in tropical butterflies. Mol Ecol 2017; 26:5160-5172. [PMID: 28777894 DOI: 10.1111/mec.14277] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 12/25/2022]
Abstract
Understanding the genetic basis of phenotypic variation and the mechanisms involved in the evolution of adaptive novelty, especially in adaptive radiations, is a major goal in evolutionary biology. Here, we used whole-genome sequence data to investigate the origin of the yellow hindwing bar in the Heliconius cydno radiation. We found modular variation associated with hindwing phenotype in two narrow noncoding regions upstream and downstream of the cortex gene, which was recently identified as a pigmentation pattern controller in multiple species of Heliconius. Genetic variation at each of these modules suggests an independent control of the dorsal and ventral hindwing patterning, with the upstream module associated with the ventral phenotype and the downstream module with the dorsal one. Furthermore, we detected introgression between H. cydno and its closely related species Heliconius melpomene in these modules, likely allowing both species to participate in novel mimicry rings. In sum, our findings support the role of regulatory modularity coupled with adaptive introgression as an elegant mechanism by which novel phenotypic combinations can evolve and fuel an adaptive radiation.
Collapse
Affiliation(s)
- Juan Enciso-Romero
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá D.C, Colombia
| | - Carolina Pardo-Díaz
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá D.C, Colombia
| | - Simon H Martin
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Carlos F Arias
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá D.C, Colombia.,Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
| | - Mauricio Linares
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá D.C, Colombia
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá D.C, Colombia
| |
Collapse
|
18
|
Stuart YE, Veen T, Weber JN, Hanson D, Ravinet M, Lohman BK, Thompson CJ, Tasneem T, Doggett A, Izen R, Ahmed N, Barrett RDH, Hendry AP, Peichel CL, Bolnick DI. Contrasting effects of environment and genetics generate a continuum of parallel evolution. Nat Ecol Evol 2017; 1:158. [DOI: 10.1038/s41559-017-0158] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 04/07/2017] [Indexed: 12/25/2022]
|
19
|
Salas-Leiva DE, Meerow AW, Calonje M, Francisco-Ortega J, Griffith MP, Nakamura K, Sánchez V, Knowles L, Knowles D. Shifting Quaternary migration patterns in the Bahamian archipelago: Evidence from the Zamia pumila complex at the northern limits of the Caribbean island biodiversity hotspot. AMERICAN JOURNAL OF BOTANY 2017; 104:757-771. [PMID: 28515078 DOI: 10.3732/ajb.1700054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
PREMISE OF THE STUDY The Bahamas archipelago is formed by young, tectonically stable carbonate banks that harbor direct geological evidence of global ice-volume changes. We sought to detect signatures of major changes on gene flow patterns and reconstruct the phylogeographic history of the monophyletic Zamia pumila complex across the Bahamas. METHODS Nuclear molecular markers with both high and low mutation rates were used to capture two different time scale signatures and test several gene flow and demographic hypotheses. KEY RESULTS Single-copy nuclear genes unveiled apparent ancestral admixture on Andros, suggesting a significant role of this island as main hub of diversity of the archipelago. We detected demographic and spatial expansion of the Zamia pumila complex on both paleo-provinces around the Piacenzian (Pliocene)/Gelasian (Pleistocene). Populations evidenced signatures of different migration models that have occurred at two different times. Populations on Long Island (Z. lucayana) may either represent a secondary colonization of the Bahamas by Zamia or a rapid and early-divergence event of at least one population on the Bahamas. CONCLUSIONS Despite changes in migration patterns with global climate, expected heterozygosity with both marker systems remains within the range reported for cycads, but with significant levels of increased inbreeding detected by the microsatellites. This finding is likely associated with reduced gene flow between and within paleo-provinces, accompanied by genetic drift, as rising seas enforced isolation. Our study highlights the importance of the maintenance of the predominant direction of genetic exchange and the role of overseas dispersion among the islands during climate oscillations.
Collapse
Affiliation(s)
- Dayana E Salas-Leiva
- International Center for Tropical Botany, Department of Biological Sciences, 11200 S.W. 8th Street, Florida International University, Miami, Florida 33199 USA
- USDA-ARS-SHRS, 13601 Old Cutler Road, Miami, Florida 33158 USA
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, Florida 33156 USA
| | - Alan W Meerow
- USDA-ARS-SHRS, 13601 Old Cutler Road, Miami, Florida 33158 USA
| | - Michael Calonje
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, Florida 33156 USA
| | - Javier Francisco-Ortega
- International Center for Tropical Botany, Department of Biological Sciences, 11200 S.W. 8th Street, Florida International University, Miami, Florida 33199 USA
- Kushlan Tropical Science Institute, 11935 Old Cutler Road, Fairchild Tropical Botanic Garden, Coral Gables, Florida 33156 USA
| | - M Patrick Griffith
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, Florida 33156 USA
| | - Kyoko Nakamura
- USDA-ARS-SHRS, 13601 Old Cutler Road, Miami, Florida 33158 USA
| | - Vanessa Sánchez
- USDA-ARS-SHRS, 13601 Old Cutler Road, Miami, Florida 33158 USA
| | - Lindy Knowles
- Bahamas National Trust, P. O. Box N-4105, Bay Street Business Centre, Bay Street, Nassau
| | - David Knowles
- The Bahamas, Bahamas National Trust, Abaco National Park, P.O. Box AB-20953, Marsh Harbour, Abaco, The Bahamas
| |
Collapse
|
20
|
Range expansion underlies historical introgressive hybridization in the Iberian hare. Sci Rep 2017; 7:40788. [PMID: 28120863 PMCID: PMC5264399 DOI: 10.1038/srep40788] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/09/2016] [Indexed: 12/27/2022] Open
Abstract
Introgressive hybridization is an important and widespread evolutionary process, but the relative roles of neutral demography and natural selection in promoting massive introgression are difficult to assess and an important matter of debate. Hares from the Iberian Peninsula provide an appropriate system to study this question. In its northern range, the Iberian hare, Lepus granatensis, shows a northwards gradient of increasing mitochondrial DNA (mtDNA) introgression from the arctic/boreal L. timidus, which it presumably replaced after the last glacial maximum. Here, we asked whether a south-north expansion wave of L. granatensis into L. timidus territory could underlie mtDNA introgression, and whether nuclear genes interacting with mitochondria (“mitonuc” genes) were affected. We extended previous RNA-sequencing and produced a comprehensive annotated transcriptome assembly for L. granatensis. We then genotyped 100 discovered nuclear SNPs in 317 specimens spanning the species range. The distribution of allele frequencies across populations suggests a northwards range expansion, particularly in the region of mtDNA introgression. We found no correlation between variants at 39 mitonuc genes and mtDNA introgression frequency. Whether the nuclear and mitochondrial genomes coevolved will need a thorough investigation of the hundreds of mitonuc genes, but range expansion and species replacement likely promoted massive mtDNA introgression.
Collapse
|
21
|
Lucek K. Cryptic invasion drives phenotypic changes in central European threespine stickleback. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0837-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Huang Y, Chain FJJ, Panchal M, Eizaguirre C, Kalbe M, Lenz TL, Samonte IE, Stoll M, Bornberg-Bauer E, Reusch TBH, Milinski M, Feulner PGD. Transcriptome profiling of immune tissues reveals habitat-specific gene expression between lake and river sticklebacks. Mol Ecol 2016; 25:943-58. [PMID: 26749022 PMCID: PMC4790908 DOI: 10.1111/mec.13520] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 11/18/2015] [Accepted: 12/10/2015] [Indexed: 12/16/2022]
Abstract
The observation of habitat-specific phenotypes suggests the action of natural selection. The three-spined stickleback (Gasterosteus aculeatus) has repeatedly colonized and adapted to diverse freshwater habitats across the northern hemisphere since the last glaciation, while giving rise to recurring phenotypes associated with specific habitats. Parapatric lake and river populations of sticklebacks harbour distinct parasite communities, a factor proposed to contribute to adaptive differentiation between these ecotypes. However, little is known about the transcriptional response to the distinct parasite pressure of those fish in a natural setting. Here, we sampled wild-caught sticklebacks across four geographical locations from lake and river habitats differing in their parasite load. We compared gene expression profiles between lake and river populations using 77 whole-transcriptome libraries from two immune-relevant tissues, the head kidney and the spleen. Differential expression analyses revealed 139 genes with habitat-specific expression patterns across the sampled population pairs. Among the 139 differentially expressed genes, eight are annotated with an immune function and 42 have been identified as differentially expressed in previous experimental studies in which fish have been immune challenged. Together, these findings reinforce the hypothesis that parasites contribute to adaptation of sticklebacks in lake and river habitats.
Collapse
Affiliation(s)
- Yun Huang
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Frédéric J J Chain
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Department of Biology, McGill University, Montreal, QC, Canada, H3A 1B1
| | - Mahesh Panchal
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Bioinformatics Infrastructures for Life Sciences (BILS), Uppsala Biomedicinska Centrum (BMC), Husargatan 3, 751 23, Uppsala, Sweden.,Institute of Medical Biochemistry and Microbiology, Uppsala Biomedicinska Centrum (BMC), Husargatan 3, 751 23, Uppsala, Sweden
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS, London, UK
| | - Martin Kalbe
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Tobias L Lenz
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Irene E Samonte
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology, Westfälische Wilhelms University, 48149, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Evolutionary Bioinformatics, Westfälische Wilhelms University, 48149, Münster, Germany
| | - Thorsten B H Reusch
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105, Kiel, Germany
| | - Manfred Milinski
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Philine G D Feulner
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047, Kastanienbaum, Switzerland
| |
Collapse
|
23
|
Roy D, Lucek K, Walter RP, Seehausen O. Hybrid 'superswarm' leads to rapid divergence and establishment of populations during a biological invasion. Mol Ecol 2015; 24:5394-411. [PMID: 26426979 DOI: 10.1111/mec.13405] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/09/2023]
Abstract
Understanding the genetic background of invading species can be crucial information clarifying why they become invasive. Intraspecific genetic admixture among lineages separated in the native ranges may promote the rate and extent of an invasion by substantially increasing standing genetic variation. Here, we examined the genetic relationships among threespine stickleback that recently colonized Switzerland. This invasion results from several distinct genetic lineages that colonized multiple locations and have since undergone range expansions, where they coexist and admix in parts of their range. Using 17 microsatellites genotyped for 634 individuals collected from 17 Swiss and two non-Swiss European sites, we reconstruct the invasion of stickleback and investigate the potential and extent of admixture and hybridization among the colonizing lineages from a population genetic perspective. Specifically, we test for an increase in standing genetic variation in populations where multiple lineages coexist. We find strong evidence of massive hybridization early on, followed by what appears to be recent increased genetic isolation and the formation of several new genetically distinguishable populations, consistent with a hybrid 'superswarm'. This massive hybridization and population formation event(s) occurred over approximately 140 years and likely fuelled the successful invasion of a diverse range of habitats. The implications are that multiple colonizations coupled with hybridization can lead to the formation of new stable genetic populations potentially kick-starting speciation and adaptive radiation over a very short timescale.
Collapse
Affiliation(s)
- Denis Roy
- Centre for Ecology, Evolution & Biogeochemistry, EAWAG Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6074, Kastanienbaum, Switzerland
| | - Kay Lucek
- Centre for Ecology, Evolution & Biogeochemistry, EAWAG Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6074, Kastanienbaum, Switzerland.,Institute for Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Ryan P Walter
- Department of Biological Science, California State University Fullerton, Fullerton, CA, 92831, USA
| | - Ole Seehausen
- Centre for Ecology, Evolution & Biogeochemistry, EAWAG Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6074, Kastanienbaum, Switzerland.,Institute for Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| |
Collapse
|
24
|
Karvonen A, Lucek K, Marques DA, Seehausen O. Divergent Macroparasite Infections in Parapatric Swiss Lake-Stream Pairs of Threespine Stickleback (Gasterosteus aculeatus). PLoS One 2015; 10:e0130579. [PMID: 26086778 PMCID: PMC4472517 DOI: 10.1371/journal.pone.0130579] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/21/2015] [Indexed: 11/18/2022] Open
Abstract
Spatial heterogeneity in diversity and intensity of parasitism is a typical feature of most host-parasite interactions, but understanding of the evolutionary implications of such variation is limited. One possible outcome of infection heterogeneities is parasite-mediated divergent selection between host populations, ecotypes or species which may facilitate the process of ecological speciation. However, very few studies have described infections in population-pairs along the speciation continuum from low to moderate or high degree of genetic differentiation that would address the possibility of parasite-mediated divergent selection in the early stages of the speciation process. Here we provide an example of divergent parasitism in freshwater fish ecotypes by examining macroparasite infections in threespine stickleback (Gasterosteus aculeatus) of four Swiss lake systems each harbouring parapatric lake-stream ecotype pairs. We demonstrate significant differences in infections within and between the pairs that are driven particularly by the parasite taxa transmitted to fish from benthic invertebrates. The magnitude of the differences tended to correlate positively with the extent of neutral genetic differentiation between the parapatric lake and stream populations of stickleback, whereas no such correlation was found among allopatric populations from similar or contrasting habitats. This suggests that genetic differentiation is unrelated to the magnitude of parasite infection contrasts when gene flow is constrained by geographical barriers while in the absence of physical barriers, genetic differentiation and the magnitude of differences in infections tend to be positively correlated.
Collapse
Affiliation(s)
- Anssi Karvonen
- University of Jyväskylä, Department of Biological and Environmental Science, FI-40014 University of Jyväskylä, Jyväskylä, Finland
- * E-mail:
| | - Kay Lucek
- Eawag, Centre of Ecology, Evolution and Biogeochemistry, Department of Fish Ecology and Evolution, Kastanienbaum, Switzerland
- Division of Aquatic Ecology & Macroevolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - David A. Marques
- Eawag, Centre of Ecology, Evolution and Biogeochemistry, Department of Fish Ecology and Evolution, Kastanienbaum, Switzerland
- Division of Aquatic Ecology & Macroevolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Ole Seehausen
- Eawag, Centre of Ecology, Evolution and Biogeochemistry, Department of Fish Ecology and Evolution, Kastanienbaum, Switzerland
- Division of Aquatic Ecology & Macroevolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Distinctive insular forms of threespine stickleback (Gasterosteus aculeatus) from western Mediterranean islands. CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0742-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Sánchez AP, Pardo-Diaz C, Enciso-Romero J, Muñoz A, Jiggins CD, Salazar C, Linares M. An introgressed wing pattern acts as a mating cue. Evolution 2015; 69:1619-1629. [PMID: 25930106 DOI: 10.1111/evo.12679] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/24/2015] [Indexed: 02/03/2023]
Abstract
Heliconius butterflies provide good examples of both homoploid hybrid speciation and ecological speciation. In particular, examples of adaptive introgression have been detected among the subspecies of Heliconius timareta, which acquired red color pattern elements from H. melpomene. We tested whether the introgression of red wing pattern elements into H. timareta florencia might also be associated with incipient reproductive isolation (RI) from its close relative, H. timareta subsp. nov., found in the eastern Andes. No choice experiments show a 50% reduction in mating between females of H. t. subsp. nov. and males of H .t. florencia, but not in the reciprocal direction. In choice experiments using wing models, males of H. timareta subsp. nov. approach and court red phenotypes less than their own, whereas males of H. t. florencia prefer models with a red phenotype. Intrinsic postzygotic isolation was not detected in crosses between these H. timareta races. These results suggest that a color pattern trait gained by introgression is triggering RI between H. timareta subsp. nov. and H. t. florencia.
Collapse
Affiliation(s)
- Angela P Sánchez
- Departamento de Ciencias Naturales, Universidad Central, Carrera 5 No. 21 - 38, Bogotá D.C., Colombia
| | - Carolina Pardo-Diaz
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Carrera. 24 No. 63C-69, Bogotá D.C., 111221, Colombia
| | - Juan Enciso-Romero
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Carrera. 24 No. 63C-69, Bogotá D.C., 111221, Colombia
| | - Astrid Muñoz
- Departamento de Ciencias Básicas, Universidad de la Salle, Carrera 2 No. 10 - 70, Bogotá D.C., Colombia
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Carrera. 24 No. 63C-69, Bogotá D.C., 111221, Colombia
| | - Mauricio Linares
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Carrera. 24 No. 63C-69, Bogotá D.C., 111221, Colombia
| |
Collapse
|