1
|
Pelosi JA, Sorojsrisom ES, Barbazuk WB, Sessa EB. Population genomics of the gametophyte-only fern Vittaria appalachiana provides insights into clonal plant evolution. THE NEW PHYTOLOGIST 2025. [PMID: 39902625 DOI: 10.1111/nph.20433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/11/2025] [Indexed: 02/05/2025]
Abstract
How asexually reproducing organisms maintain genetic diversity and adaptive potential is a long-standing question in evolutionary biology. Asexual lineages have historically been thought of as evolutionary dead ends, yet some exhibit remarkable persistence through time. The gametophyte-only fern Vittaria appalachiana is a clonal eukaryote, the focus of extensive study due to its peculiar habit and life history, and is an excellent system to explore the consequences of asexuality. Using reduced representation sequencing and life cycle simulations, we assess theoretical expectations for genomic consequences of long-term asexual reproduction and test hypotheses about its origin and demographic history. We show that V. appalachiana colonies are not patches of single genotypes but are mosaics of genetic diversity, and the accumulation of mutations in the absence of recombination plays an important role in driving this diversity. We identify increased genomic variation, excess heterozygosity, decreased population differentiation, and increased effective population size, all of which are consistent with the expectations for prolonged clonality. Our analyses support the hypothesis that the loss of sexual reproduction in V. appalachiana occurred during the Last Glacial Maximum. Our results from empirical and simulation-based analyses illuminate how an asexual eukaryote generates, retains, and partitions genomic diversity.
Collapse
Affiliation(s)
- Jessie A Pelosi
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Elissa S Sorojsrisom
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, 10027, USA
- Pfizer Plant Research Laboratory, New York Botanical Garden, Bronx, NY, 10458, USA
| | - William Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Emily B Sessa
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- William and Lynda Steere Herbarium, New York Botanical Garden, Bronx, NY, 10458, USA
| |
Collapse
|
2
|
Gibson AK, Mundim FM, Ramirez AL, Timper P. Do biological control agents adapt to local pest genotypes? A multiyear test across geographic scales. Evol Appl 2024; 17:e13682. [PMID: 38617827 PMCID: PMC11009426 DOI: 10.1111/eva.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 03/05/2024] [Indexed: 04/16/2024] Open
Abstract
Parasite local adaptation has been a major focus of (co)evolutionary research on host-parasite interactions. Studies of wild host-parasite systems frequently find that parasites paired with local, sympatric host genotypes perform better than parasites paired with allopatric host genotypes. In contrast, there are few such tests in biological control systems to establish whether biological control parasites commonly perform better on sympatric pest genotypes. This knowledge gap prevents the optimal design of biological control programs: strong local adaptation could argue for the use of sympatric parasites to achieve consistent pest control. To address this gap, we tested for local adaptation of the biological control bacterium Pasteuria penetrans to the root-knot nematode Meloidogyne arenaria, a global threat to a wide range of crops. We measured the probability and intensity of P. penetrans infection on sympatric and allopatric M. arenaria over the course of 4 years. Our design accounted for variation in adaptation across scales by conducting tests within and across fields, and we isolated the signature of parasite adaptation by comparing parasites collected over the course of the growing season. Our results are largely inconsistent with local adaptation of P. penetrans to M. arenaria: in 3 of 4 years, parasites performed similarly well in sympatric and allopatric combinations. In 1 year, however, infection probability was 28% higher for parasites paired with hosts from their sympatric plot, relative to parasites paired with hosts from other plots within the same field. These mixed results argue for population genetic data to characterize the scale of gene flow and genetic divergence in this system. Overall, our findings do not provide strong support for using P. penetrans from local fields to enhance biological control of Meloidogyne.
Collapse
Affiliation(s)
| | - Fabiane M. Mundim
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of BiologyUtah State UniversityLoganUtahUSA
| | - Abbey L. Ramirez
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Patricia Timper
- United States Department of Agriculture Agricultural Research ServiceTiftonGeorgiaUSA
| |
Collapse
|
3
|
Freitas S, Parker DJ, Labédan M, Dumas Z, Schwander T. Evidence for cryptic sex in parthenogenetic stick insects of the genus Timema. Proc Biol Sci 2023; 290:20230404. [PMID: 37727092 PMCID: PMC10509586 DOI: 10.1098/rspb.2023.0404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Obligately parthenogenetic species are expected to be short lived since the lack of sex and recombination should translate into a slower adaptation rate and increased accumulation of deleterious alleles. Some, however, are thought to have been reproducing without males for millions of years. It is not clear how these old parthenogens can escape the predicted long-term costs of parthenogenesis, but an obvious explanation is cryptic sex. In this study, we screen for signatures of cryptic sex in eight populations of four parthenogenetic species of Timema stick insects, some estimated to be older than 1 Myr. Low genotype diversity, homozygosity of individuals and high linkage disequilibrium (LD) unaffected by marker distances support exclusively parthenogenetic reproduction in six populations. However, in two populations (namely, of the species Timema douglasi and T. monikensis) we find strong evidence for cryptic sex, most likely mediated by rare males. These populations had comparatively high genotype diversities, lower LD, and a clear LD decay with genetic distance. Rare sex in species that are otherwise largely parthenogenetic could help explain the unusual success of parthenogenesis in the Timema genus and raises the question whether episodes of rare sex are in fact the simplest explanation for the persistence of many old parthenogens in nature.
Collapse
Affiliation(s)
- Susana Freitas
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Darren J. Parker
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- School of Natural Sciences, Bangor University, Bangor, UK
| | - Marjorie Labédan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Zoé Dumas
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Ghosh A, Jangra S, Dietzgen RG, Yeh WB. Frontiers Approaches to the Diagnosis of Thrips (Thysanoptera): How Effective Are the Molecular and Electronic Detection Platforms? INSECTS 2021; 12:insects12100920. [PMID: 34680689 PMCID: PMC8540714 DOI: 10.3390/insects12100920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Thrips are important agricultural and forest pests. They cause damage by sucking plant sap and transmitting several plant viruses. Correct identification is the key for epidemiological studies and formulating appropriate management strategies. The application of molecular and electronic detection platforms has improved the morphological character-based diagnosis of thrips species. This article reviews research on molecular and automated identification of thrips species and discusses future research strategies for rapid and high throughput thrips diagnosis. Abstract Thrips are insect pests of economically important agricultural, horticultural, and forest crops. They cause damage by sucking plant sap and by transmitting several tospoviruses, ilarviruses, carmoviruses, sobemoviruses, and machlomoviruses. Accurate and timely identification is the key to successful management of thrips species. However, their small size, cryptic nature, presence of color and reproductive morphs, and intraspecies genetic variability make the identification of thrips species challenging. The use of molecular and electronic detection platforms has made thrips identification rapid, precise, sensitive, high throughput, and independent of developmental stages. Multi-locus phylogeny based on mitochondrial, nuclear, and other markers has resolved ambiguities in morphologically indistinguishable thrips species. Microsatellite, RFLP, RAPD, AFLP, and CAPS markers have helped to explain population structure, gene flow, and intraspecies heterogeneity. Recent techniques such as LAMP and RPA have been employed for sensitive and on-site identification of thrips. Artificial neural networks and high throughput diagnostics facilitate automated identification. This review also discusses the potential of pyrosequencing, microarrays, high throughput sequencing, and electronic sensors in delimiting thrips species.
Collapse
Affiliation(s)
- Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.G.); (S.J.)
| | - Sumit Jangra
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.G.); (S.J.)
| | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- Correspondence:
| | - Wen-Bin Yeh
- Department of Entomology, National Chung Hsing University, Taichung City 402, Taiwan;
| |
Collapse
|
5
|
Huylmans AK, Macon A, Hontoria F, Vicoso B. Transitions to asexuality and evolution of gene expression in Artemia brine shrimp. Proc Biol Sci 2021; 288:20211720. [PMID: 34547909 PMCID: PMC8456138 DOI: 10.1098/rspb.2021.1720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/31/2021] [Indexed: 11/12/2022] Open
Abstract
While sexual reproduction is widespread among many taxa, asexual lineages have repeatedly evolved from sexual ancestors. Despite extensive research on the evolution of sex, it is still unclear whether this switch represents a major transition requiring major molecular reorganization, and how convergent the changes involved are. In this study, we investigated the phylogenetic relationship and patterns of gene expression of sexual and asexual lineages of Eurasian Artemia brine shrimp, to assess how gene expression patterns are affected by the transition to asexuality. We find only a few genes that are consistently associated with the evolution of asexuality, suggesting that this shift may not require an extensive overhauling of the meiotic machinery. While genes with sex-biased expression have high rates of expression divergence within Eurasian Artemia, neither female- nor male-biased genes appear to show unusual evolutionary patterns after sexuality is lost, contrary to theoretical expectations.
Collapse
Affiliation(s)
- Ann Kathrin Huylmans
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Ariana Macon
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Francisco Hontoria
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|
6
|
Yuzon JD, Travadon R, Malar C M, Tripathy S, Rank N, Mehl HK, Rizzo DM, Cobb R, Small C, Tang T, McCown HE, Garbelotto M, Kasuga T. Asexual Evolution and Forest Conditions Drive Genetic Parallelism in Phytophthora ramorum. Microorganisms 2020; 8:E940. [PMID: 32580470 PMCID: PMC7357085 DOI: 10.3390/microorganisms8060940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 11/16/2022] Open
Abstract
It is commonly assumed that asexual lineages are short-lived evolutionarily, yet many asexual organisms can generate genetic and phenotypic variation, providing an avenue for further evolution. Previous work on the asexual plant pathogen Phytophthora ramorum NA1 revealed considerable genetic variation in the form of Structural Variants (SVs). To better understand how SVs arise and their significance to the California NA1 population, we studied the evolutionary histories of SVs and the forest conditions associated with their emergence. Ancestral state reconstruction suggests that SVs arose by somatic mutations among multiple independent lineages, rather than by recombination. We asked if this unusual phenomenon of parallel evolution between isolated populations is transmitted to extant lineages and found that SVs persist longer in a population if their genetic background had a lower mutation load. Genetic parallelism was also found in geographically distant demes where forest conditions such as host density, solar radiation, and temperature, were similar. Parallel SVs overlap with genes involved in pathogenicity such as RXLRs and have the potential to change the course of an epidemic. By combining genomics and environmental data, we identified an unexpected pattern of repeated evolution in an asexual population and identified environmental factors potentially driving this phenomenon.
Collapse
Affiliation(s)
- Jennifer David Yuzon
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Mathu Malar C
- CSIR Indian Institute of Chemical Biology, Kolkata 700032, India; (M.M.C.); (S.T.)
| | - Sucheta Tripathy
- CSIR Indian Institute of Chemical Biology, Kolkata 700032, India; (M.M.C.); (S.T.)
| | - Nathan Rank
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA;
| | - Heather K. Mehl
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - David M. Rizzo
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Richard Cobb
- Department of Natural Resources and Environmental Science, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
| | - Corinn Small
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Tiffany Tang
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Haley E. McCown
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Matteo Garbelotto
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA;
| | - Takao Kasuga
- Crops Pathology and Genetics Research Unit, USDA Agricultural Research Service, Davis, CA 95616, USA
| |
Collapse
|
7
|
White PS, Choi A, Pandey R, Menezes A, Penley M, Gibson AK, de Roode J, Morran L. Host heterogeneity mitigates virulence evolution. Biol Lett 2020; 16:20190744. [PMID: 31992149 PMCID: PMC7013476 DOI: 10.1098/rsbl.2019.0744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/19/2019] [Indexed: 01/21/2023] Open
Abstract
Parasites often infect genetically diverse host populations, and the evolutionary trajectories of parasite populations may be shaped by levels of host heterogeneity. Mixed genotype host populations, compared to homogeneous host populations, can reduce parasite prevalence and potentially reduce rates of parasite adaptation due to trade-offs associated with adapting to specific host genotypes. Here, we used experimental evolution to select for increased virulence in populations of the bacterial parasite Serratia marcescens exposed to either heterogeneous or homogeneous populations of Caenorhabditis elegans. We found that parasites exposed to heterogeneous host populations evolved significantly less virulence than parasites exposed to homogeneous host populations over several hundred bacterial generations. Thus, host heterogeneity impeded parasite adaptation to host populations. While we detected trade-offs in virulence evolution, parasite adaptation to two specific host genotypes also resulted in modestly increased virulence against the reciprocal host genotypes. These results suggest that parasite adaptation to heterogeneous host populations may be impeded by both trade-offs and a reduction in the efficacy of selection as different host genotypes exert different selective pressures on a parasite population.
Collapse
Affiliation(s)
- P. Signe White
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
- Population Biology, Ecology, and Evolution Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Angela Choi
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Rishika Pandey
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
| | - Arthur Menezes
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - McKenna Penley
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Amanda K. Gibson
- Department of Biology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904, USA
| | - Jacobus de Roode
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Levi Morran
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Abstract
In diverse parasite taxa, from scale insects to root-knot nematodes, asexual lineages have exceptionally large host ranges, larger than those of their sexual relatives. Phylogenetic comparative studies of parasite taxa indicate that increases in host range and geographic range increase the probability of establishment of asexual lineages. At first pass, this convergence of traits appears counter-intuitive: intimate, antagonistic association with an enormous range of host taxa correlates with asexual reproduction, which should limit genetic variation within populations. Why would narrow host ranges favor sexual parasites and large host ranges favor asexual parasites? To take on this problem I link theory on ecological specialization to the two predominant hypotheses for the evolution of sex. I argue that both hypotheses predict a positive association between host range and the probability of invasion of asexual parasites, mediated either by variation in population size or in the strength of antagonistic coevolution. I also review hypotheses on colonization and the evolution of niche breadth in asexual lineages. I emphasize parasite taxa, with their diversity of reproductive modes and ecological strategies, as valuable assets in the hunt for solutions to the classic problems of the evolution of sex and geographic parthenogenesis.
Collapse
Affiliation(s)
- Amanda K Gibson
- Wissenschaftskolleg zu Berlin, Berlin, Germany.,Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
9
|
Leria L, Vila-Farré M, Solà E, Riutort M. Outstanding intraindividual genetic diversity in fissiparous planarians (Dugesia, Platyhelminthes) with facultative sex. BMC Evol Biol 2019; 19:130. [PMID: 31221097 PMCID: PMC6587288 DOI: 10.1186/s12862-019-1440-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/15/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Predicted genetic consequences of asexuality include high intraindividual genetic diversity (i.e., the Meselson effect) and accumulation of deleterious mutations (i.e., Muller's Ratchet), among others. These consequences have been largely studied in parthenogenetic organisms, but studies on fissiparous species are scarce. Differing from parthenogens, fissiparous organisms inherit part of the soma of the progenitor, including somatic mutations. Thus, in the long term, fissiparous reproduction may also result in genetic mosaicism, besides the presence of the Meselson effect and Muller's Ratchet. Dugesiidae planarians show outstanding regeneration capabilities, allowing them to naturally reproduce by fission, either strictly or combined with sex (facultative). Therefore, they are an ideal model to analyze the genetic footprint of fissiparous reproduction, both when it is alternated with sex and when it is the only mode of reproduction. RESULTS In the present study, we generate and analyze intraindividual cloned data of a nuclear and a mitochondrial gene of sexual, fissiparous and facultative wild populations of the species Dugesia subtentaculata. We find that most individuals, independently of their reproductive strategy, are mosaics. However, the intraindividual haplotype and nucleotide diversity of fissiparous and facultative individuals is significantly higher than in sexual individuals, with no signs of Muller's Ratchet. Finally, we also find that this high intraindividual genetic diversity of fissiparous and facultative individuals is composed by different combinations of ancestral and derived haplotypes of the species. CONCLUSIONS The intraindividual analyses of genetic diversity point out that fissiparous reproduction leaves a very special genetic footprint in individuals, characterized by mosaicism combined with the Meselson effect (named in the present study as the mosaic Meselson effect). Interestingly, the different intraindividual combinations of ancestral and derivate genetic diversity indicate that haplotypes generated during periods of fissiparous reproduction can be also transmitted to the progeny through sexual events, resulting in offspring showing a wide range of genetic diversity and putatively allowing purifying selection to act at both intraindividual and individual level. Further investigations, using Dugesia planarians as model organisms, would be of great value to delve into this new model of genetic evolution by the combination of fission and sex.
Collapse
Affiliation(s)
- Laia Leria
- Department de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, and Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia Spain
| | - Miquel Vila-Farré
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Eduard Solà
- Department de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, and Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia Spain
| | - Marta Riutort
- Department de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, and Institut de Recerca de la Biodiversitat (IRBio), Barcelona, Catalonia Spain
| |
Collapse
|
10
|
Paczesniak D, Klappert K, Kopp K, Neiman M, Seppälä K, Lively CM, Jokela J. Parasite resistance predicts fitness better than fecundity in a natural population of the freshwater snail
Potamopyrgus antipodarum. Evolution 2019; 73:1634-1646. [DOI: 10.1111/evo.13768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Dorota Paczesniak
- Department of Aquatic Ecology Swiss Federal Institute of Aquatic Science and Technology (EAWAG) Dübendorf Switzerland
- Institute of Integrative Biology ETH‐Zürich Zürich Switzerland
- Global Institute for Food Security University of Saskatchewan Saskatoon Canada
| | - Kirsten Klappert
- Department of Aquatic Ecology Swiss Federal Institute of Aquatic Science and Technology (EAWAG) Dübendorf Switzerland
- Institute of Integrative Biology ETH‐Zürich Zürich Switzerland
| | - Kirstin Kopp
- Department of Aquatic Ecology Swiss Federal Institute of Aquatic Science and Technology (EAWAG) Dübendorf Switzerland
- Institute of Integrative Biology ETH‐Zürich Zürich Switzerland
- Velux Stiftung Zürich Switzerland
| | - Maurine Neiman
- Department of Biology University of Iowa Iowa City Iowa 52245
| | - Katri Seppälä
- Department of Aquatic Ecology Swiss Federal Institute of Aquatic Science and Technology (EAWAG) Dübendorf Switzerland
- Institute of Integrative Biology ETH‐Zürich Zürich Switzerland
| | - Curtis M. Lively
- Department of Biology Indiana University Bloomington Indiana 47405
| | - Jukka Jokela
- Department of Aquatic Ecology Swiss Federal Institute of Aquatic Science and Technology (EAWAG) Dübendorf Switzerland
- Institute of Integrative Biology ETH‐Zürich Zürich Switzerland
| |
Collapse
|
11
|
Baulieu F, Knee W, Nowell V, Schwarzfeld M, Lindo Z, Behan-Pelletier VM, Lumley L, Young MR, Smith I, Proctor HC, Mironov SV, Galloway TD, Walter DE, Lindquist EE. Acari of Canada. Zookeys 2019; 819:77-168. [PMID: 30713436 PMCID: PMC6355733 DOI: 10.3897/zookeys.819.28307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/27/2018] [Indexed: 11/29/2022] Open
Abstract
Summaries of taxonomic knowledge are provided for all acarine groups in Canada, accompanied by references to relevant publications, changes in classification at the family level since 1979, and notes on biology relevant to estimating their diversity. Nearly 3000 described species from 269 families are recorded in the country, representing a 56% increase from the 1917 species reported by Lindquist et al. (1979). An additional 42 families are known from Canada only from material identified to family- or genus-level. Of the total 311 families known in Canada, 69 are newly recorded since 1979, excluding apparent new records due solely to classification changes. This substantial progress is most evident in Oribatida and Hydrachnidia, for which many regional checklists and family-level revisions have been published. Except for recent taxonomic leaps in a few other groups, particularly of symbiotic mites (Astigmata: feather mites; Mesostigmata: Rhinonyssidae), knowledge remains limited for most other taxa, for which most species records are unpublished and may require verification. Taxonomic revisions are greatly needed for a large majority of families in Canada. Based in part on species recorded in adjacent areas of the USA and on hosts known to be present here, we conservatively estimate that nearly 10,000 species of mites occur in Canada, but the actual number could be 15,000 or more. This means that at least 70% of Canada's mite fauna is yet unrecorded. Much work also remains to match existing molecular data with species names, as less than 10% of the ~7500 Barcode Index Numbers for Canadian mites in the Barcode of Life Database are associated with named species. Understudied hosts and terrestrial and aquatic habitats require investigation across Canada to uncover new species and to clarify geographic and ecological distributions of known species.
Collapse
Affiliation(s)
- Frédéric Baulieu
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada Agriculture and Agri-Food Canada Ottawa Canada
| | - Wayne Knee
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada Agriculture and Agri-Food Canada Ottawa Canada
| | - Victoria Nowell
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada Agriculture and Agri-Food Canada Ottawa Canada
| | - Marla Schwarzfeld
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada Agriculture and Agri-Food Canada Ottawa Canada
| | - Zoë Lindo
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada Western University London Canada
| | - Valerie M Behan-Pelletier
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada Agriculture and Agri-Food Canada Ottawa Canada
| | - Lisa Lumley
- Royal Alberta Museum, Edmonton, Alberta, T5J 0G2, Canada Royal Alberta Museum Edmonton Canada
| | - Monica R Young
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada University of Guelph Guelph Canada
| | - Ian Smith
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada Agriculture and Agri-Food Canada Ottawa Canada
| | - Heather C Proctor
- Department of Biological Sciences,University of Alberta, Edmonton,Alberta, T6G 2E9, Canada University of Alberta Edmonton Canada
| | - Sergei V Mironov
- Department of Parasitology, Zoological Institute of the Russian Academy of Sciences, Universitetskaya embankment 1, Saint Petersburg 199034, Russia Zoological Institute of the Russian Academy of Sciences St. Petersburg Russia
| | - Terry D Galloway
- Department of Entomology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada University of Manitoba Winnipeg Canada
| | - David E Walter
- University of Sunshine Coast, Sippy Downs, 4556, Queensland, Australia University of Sunshine Coast Queensland Australia
- Queensland Museum, South Brisbane, 4101, Queensland, Australia Queensland Museum South Brisbane Australia
| | - Evert E Lindquist
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada Agriculture and Agri-Food Canada Ottawa Canada
| |
Collapse
|
12
|
Abstract
A major current molecular evolution challenge is to link comparative genomic patterns to species' biology and ecology. Breeding systems are pivotal because they affect many population genetic processes and thus genome evolution. We review theoretical predictions and empirical evidence about molecular evolutionary processes under three distinct breeding systems-outcrossing, selfing, and asexuality. Breeding systems may have a profound impact on genome evolution, including molecular evolutionary rates, base composition, genomic conflict, and possibly genome size. We present and discuss the similarities and differences between the effects of selfing and clonality. In reverse, comparative and population genomic data and approaches help revisiting old questions on the long-term evolution of breeding systems.
Collapse
Affiliation(s)
- Sylvain Glémin
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France
| | - Clémentine M François
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France
| | - Nicolas Galtier
- Institut des Sciences de l'Evolution, UMR5554, Université Montpellier II, Montpellier, France.
| |
Collapse
|
13
|
van der Kooi CJ, Ghali K, Amptmeijer D, Schwander T. Niche differentiation among clones in asexual grass thrips. J Evol Biol 2018; 32:126-130. [PMID: 30339293 PMCID: PMC7379302 DOI: 10.1111/jeb.13393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 01/16/2023]
Abstract
Many asexual animal populations comprise a mixture of genetically different lineages, but to what degree this genetic diversity leads to ecological differences remains often unknown. Here, we test whether genetically different clonal lineages of Aptinothrips grass thrips differ in performance on a range of plants used as hosts in natural populations. We find a clear clone‐by‐plant species interactive effect on reproductive output, meaning that clonal lineages perform differently on different plant species and thus are characterized by disparate ecological niches. This implies that local clonal diversities can be driven and maintained by frequency‐dependent selection and that resource heterogeneity can generate diverse clone assemblies.
Collapse
Affiliation(s)
| | - Karim Ghali
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - David Amptmeijer
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Ma WJ, Schwander T. Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis. J Evol Biol 2017; 30:868-888. [PMID: 28299861 DOI: 10.1111/jeb.13069] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/05/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
Abstract
Female-producing parthenogenesis can be induced by endosymbionts that increase their transmission by manipulating host reproduction. Our literature survey indicates that such endosymbiont-induced parthenogenesis is known or suspected in 124 host species from seven different arthropod taxa, with Wolbachia as the most frequent endosymbiont (in 56-75% of host species). Most host species (81%, 100 out of 124) are characterized by haplo-diploid sex determination, but a strong ascertainment bias likely underestimates the frequency of endosymbiont-induced parthenogenesis in hosts with other sex determination systems. In at least one taxon, hymenopterans, endosymbionts are a significant driver of transitions from sexual to parthenogenetic reproduction, with one-third of lineages being parthenogenetic as a consequence of endosymbiont infection. Endosymbiont-induced parthenogenesis appears to facilitate the maintenance of reproductive polymorphism: at least 50% of species comprise both sexual (uninfected) and parthenogenetic (infected) strains. These strains feature distribution differences similar to the ones documented for lineages with genetically determined parthenogenesis, with endosymbiont-induced parthenogens occurring at higher latitudes than their sexual relatives. Finally, although gamete duplication is often considered as the main mechanism for endosymbiont-induced parthenogenesis, it underlies parthenogenesis in only half of the host species studied thus far. We point out caveats in the methods used to test for endosymbiont-induced parthenogenesis and suggest specific approaches that allow for firm conclusions about the involvement of endosymbionts in the origin of parthenogenesis.
Collapse
Affiliation(s)
- W-J Ma
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - T Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Tilquin A, Kokko H. What does the geography of parthenogenesis teach us about sex? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150538. [PMID: 27619701 PMCID: PMC5031622 DOI: 10.1098/rstb.2015.0538] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2016] [Indexed: 11/12/2022] Open
Abstract
Theory predicts that sexual reproduction is difficult to maintain if asexuality is an option, yet sex is very common. To understand why, it is important to pay attention to repeatably occurring conditions that favour transitions to, or persistence of, asexuality. Geographic parthenogenesis is a term that has been applied to describe a large variety of patterns where sexual and related asexual forms differ in their geographic distribution. Often asexuality is stated to occur in a habitat that is, in some sense, marginal, but the interpretation differs across studies: parthenogens might not only predominate near the margin of the sexuals' distribution, but might also extend far beyond the sexual range; they may be disproportionately found in newly colonizable areas (e.g. areas previously glaciated), or in habitats where abiotic selection pressures are relatively stronger than biotic ones (e.g. cold, dry). Here, we review the various patterns proposed in the literature, the hypotheses put forward to explain them, and the assumptions they rely on. Surprisingly, few mathematical models consider geographic parthenogenesis as their focal question, but all models for the evolution of sex could be evaluated in this framework if the (often ecological) causal factors vary predictably with geography. We also recommend broadening the taxa studied beyond the traditional favourites.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Anaïs Tilquin
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland Centre of Excellence in Biological Interactions, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland Centre of Excellence in Biological Interactions, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
16
|
Lavanchy G, Strehler M, Llanos Roman MN, Lessard-Therrien M, Humbert JY, Dumas Z, Jalvingh K, Ghali K, Fontcuberta García-Cuenca A, Zijlstra B, Arlettaz R, Schwander T. Habitat heterogeneity favors asexual reproduction in natural populations of grassthrips. Evolution 2016; 70:1780-90. [PMID: 27346066 PMCID: PMC5129508 DOI: 10.1111/evo.12990] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/23/2016] [Accepted: 06/05/2016] [Indexed: 01/23/2023]
Abstract
Explaining the overwhelming success of sex among eukaryotes is difficult given the obvious costs of sex relative to asexuality. Different studies have shown that sex can provide benefits in spatially heterogeneous environments under specific conditions, but whether spatial heterogeneity commonly contributes to the maintenance of sex in natural populations remains unknown. We experimentally manipulated habitat heterogeneity for sexual and asexual thrips lineages in natural populations and under seminatural mesocosm conditions by varying the number of hostplants available to these herbivorous insects. Asexual lineages rapidly replaced the sexual ones, independently of the level of habitat heterogeneity in mesocosms. In natural populations, the success of sexual thrips decreased with increasing habitat heterogeneity, with sexual thrips apparently only persisting in certain types of hostplant communities. Our results illustrate how genetic diversity-based mechanisms can favor asexuality instead of sex when sexual lineages co-occur with genetically variable asexual lineages.
Collapse
Affiliation(s)
- Guillaume Lavanchy
- Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne, Switzerland.
| | - Marie Strehler
- Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne, Switzerland
| | - Maria Noemi Llanos Roman
- Graduate School-Doctoral program in Biomedical Sciences, National University of Trujillo, Trujillo, Peru
| | - Malie Lessard-Therrien
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse, Bern, Switzerland
| | - Jean-Yves Humbert
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse, Bern, Switzerland
| | - Zoé Dumas
- Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne, Switzerland
| | - Kirsten Jalvingh
- Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne, Switzerland
| | - Karim Ghali
- Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne, Switzerland
| | | | - Bart Zijlstra
- Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne, Switzerland
| | - Raphaël Arlettaz
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse, Bern, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne, Switzerland
| |
Collapse
|