1
|
Alibardi L. Progressive modifications during evolution involving epigenetic changes have determined loss of regeneration mainly in terrestrial animals: A hypothesis. Dev Biol 2024; 515:169-177. [PMID: 39029569 DOI: 10.1016/j.ydbio.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
In order to address a biological explanation for the different regenerative abilities present among animals, a new evolutionary speculation is presented. It is hypothesized that epigenetic mechanisms have lowered or erased regeneration during the evolution of terrestrial invertebrates and vertebrates. The hypothesis indicates that a broad regeneration can only occur in marine or freshwater conditions, and that life on land does not allow for high regeneration. This is due to the physical, chemical and microbial conditions present in the terrestrial environment with respect to those of the aquatic environment. The present speculation provides examples of hypothetic evolutionary animal lineages that colonized the land, such as parasitic annelids, terrestrial mollusks, arthropods and amniotes. These are the animals where regeneration is limited or absent and their injuries are only repaired through limited healing or scarring. It is submitted that this loss derived from changes in the developmental gene pathways sustaining regeneration in the aquatic environment but that cannot be expressed on land. Once regeneration was erased in terrestrial species, re-adaptation to freshwater niches could not reactivate the previously altered gene pathways that determined regeneration. Therefore a broad regeneration was no longer possible or became limited and heteromorphic in the derived, extant animals. Only in few cases extensive healing abilities or regengrow, a healing process where regeneration overlaps with somatic growth, have evolved among arthropods and amniotes. The present paper is an extension of previous speculations trying to explain in biological terms the different regenerative abilities present among metazoans.
Collapse
|
2
|
Hundebøl BNRG, Rohde PD, Kristensen TN, Jensen RWM, Vosegaard T, Sørensen JG. Bugs on Drugs: Paracetamol Exposure Reveals Genotype-Specific Generational Effects on Life History Traits in Drosophila melanogaster. INSECTS 2024; 15:763. [PMID: 39452339 PMCID: PMC11509061 DOI: 10.3390/insects15100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Few investigations have been made to determine whether pharmaceutical drugs cause any generational effects. These effects can be divided into intergenerational and transgenerational effects. In insects, the F1 offspring of exposed individuals are considered to show intergenerational effects (as they have been exposed as germ cells or early embryos), while the F2 generation is fully non-exposed and considered to show transgenerational effects. Here, the common over-the-counter (OTC) drug, paracetamol, is investigated for genotype-specific responses and effects across generations on three life-history traits: fecundity, longevity, and spontaneous locomotor activity levels in the model species Drosophila melanogaster. Seven isofemale D. melanogaster lines were exposed to a high and intermediate dose of paracetamol determined by a dose-response curve. NMR investigations verified the long-term presence of paracetamol in the food substrate. Phenotypic effects of paracetamol ingestion were investigated on flies exposed to the drug and in their offspring and grand-offspring. The dose-response curve indicated genotype-specific responses to paracetamol. In the following experiment, all traits investigated displayed significant effects of paracetamol ingestion for at least one of the seven isofemale lines, and we detected strong genotype-specific responses to paracetamol. Fecundity tended to increase in individuals directly exposed to the drug whereas fecundity in the F2 generation was reduced (transgenerational). Longevity generally decreased in directly exposed individuals but tended to increase in F1 offspring (intergenerational). Paracetamol effects on spontaneous locomotor activity were primarily detected as transgenerational effects and were rarely seen in directly exposed individuals. However, across lines, no clear overall trend could be determined for any trait. The generational effects and marked genotype-specific response to paracetamol warrants further investigation of both genotype-specific responses and generational effects in general.
Collapse
Affiliation(s)
| | - Palle Duun Rohde
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg Ø, Denmark;
| | | | - Rune Wittendorff Mønster Jensen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark; (R.W.M.J.); (T.V.)
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark; (R.W.M.J.); (T.V.)
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
3
|
Baltazar‐Soares M, Balard A, Heckwolf M. Epigenetic Diversity and the Evolutionary Potential of Wild Populations. Evol Appl 2024; 17:e70011. [PMID: 39439434 PMCID: PMC11494020 DOI: 10.1111/eva.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Fast-paced selective pressures imposed by climate change and anthropogenic activities call for adaptive evolutionary responses to emerge at ecological timescales. However, the evolution and heritability of genomic variation underlie mechanistic constraints, which dictate a slower pace of adaptation exclusively relying on standing genetic variation and novel mutations. Environmentally responsive epigenetic mechanisms can allow acclimatisation and adaptive phenotypes to arise faster than DNA sequence-based mechanisms alone. Nevertheless, the knowledge gap between identifying epigenetic marks and effectively deeming them functional is still wide in a natural context and often outside the scope of model organisms. With this Special Issue, we aimed to narrow this gap by presenting a compilation of original research articles, reviews and opinions on the topic of epigenetics in wild populations. We contextualised this collection within the overarching topic of conservation biology, as we firmly propose that epigenetic research can significantly enhance the effectiveness of conservation measures. Contributions highlighted the putative role of epigenetic variation in the acclimatisation and adaptive potential of species and populations directly and indirectly affected by climatic shifts and anthropogenic actions. They further exemplified how epigenetic variation can be used as biomarkers for monitoring variations in physiology, phenology and behaviour. Lastly, reviews and perspective articles illustrated the past and present of epigenetic research in wild populations while suggesting future research avenues.
Collapse
Affiliation(s)
| | - Alice Balard
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Melanie J. Heckwolf
- Leibniz Centre for Tropical Marine ResearchBremenGermany
- Smithsonian Tropical Research InstituteGamboaPanama
| |
Collapse
|
4
|
Irish S, Sutter A, Pinzoni L, Sydney M, Travers L, Murray D, de Coriolis J, Immler S. Heatwave-Induced Paternal Effects Have Limited Adaptive Benefits in Offspring. Ecol Evol 2024; 14:e70399. [PMID: 39435435 PMCID: PMC11491414 DOI: 10.1002/ece3.70399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
As the threat of climate change and associated heatwaves grows, we need to understand how natural populations will respond. Inter-generational non-genetic inheritance may play a key role in rapid adaptation, but whether such mechanisms are truly adaptive and sufficient to protect wild populations is unclear. The contribution of paternal effects in particular is not fully understood, even though the male reproductive system may be highly sensitive to heatwaves. We used the zebrafish Danio rerio to investigate the effects of heatwaves on male fertility and assess potential adaptive benefits to their offspring in a number of large-scale heatwave experiments. Heatwave conditions had negative effects on male fertility by reducing gamete quality and fertilisation success, and we found indications of an adaptive effect on hatching in offspring produced by heatwave-exposed males. Our findings highlight the importance of including male and female fertility when determining species ability to cope with extreme conditions and suggest that parental effects provide limited adaptive benefits.
Collapse
Affiliation(s)
- Sara D. Irish
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Andreas Sutter
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Livia Pinzoni
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Mabel C. Sydney
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Laura Travers
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - David Murray
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | | | - Simone Immler
- School of Biological SciencesUniversity of East AngliaNorwichUK
| |
Collapse
|
5
|
Baduel P, Sammarco I, Barrett R, Coronado‐Zamora M, Crespel A, Díez‐Rodríguez B, Fox J, Galanti D, González J, Jueterbock A, Wootton E, Harney E. The evolutionary consequences of interactions between the epigenome, the genome and the environment. Evol Appl 2024; 17:e13730. [PMID: 39050763 PMCID: PMC11266121 DOI: 10.1111/eva.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/30/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024] Open
Abstract
The epigenome is the suite of interacting chemical marks and molecules that helps to shape patterns of development, phenotypic plasticity and gene regulation, in part due to its responsiveness to environmental stimuli. There is increasing interest in understanding the functional and evolutionary importance of this sensitivity under ecologically realistic conditions. Observations that epigenetic variation abounds in natural populations have prompted speculation that it may facilitate evolutionary responses to rapid environmental perturbations, such as those occurring under climate change. A frequent point of contention is whether epigenetic variants reflect genetic variation or are independent of it. The genome and epigenome often appear tightly linked and interdependent. While many epigenetic changes are genetically determined, the converse is also true, with DNA sequence changes influenced by the presence of epigenetic marks. Understanding how the epigenome, genome and environment interact with one another is therefore an essential step in explaining the broader evolutionary consequences of epigenomic variation. Drawing on results from experimental and comparative studies carried out in diverse plant and animal species, we synthesize our current understanding of how these factors interact to shape phenotypic variation in natural populations, with a focus on identifying similarities and differences between taxonomic groups. We describe the main components of the epigenome and how they vary within and between taxa. We review how variation in the epigenome interacts with genetic features and environmental determinants, with a focus on the role of transposable elements (TEs) in integrating the epigenome, genome and environment. And we look at recent studies investigating the functional and evolutionary consequences of these interactions. Although epigenetic differentiation in nature is likely often a result of drift or selection on stochastic epimutations, there is growing evidence that a significant fraction of it can be stably inherited and could therefore contribute to evolution independently of genetic change.
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'Ecole Normale SupérieurePSL University, CNRSParisFrance
| | - Iris Sammarco
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzechia
| | - Rowan Barrett
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | | | | | | | - Janay Fox
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | - Dario Galanti
- Institute of Evolution and Ecology (EvE)University of TuebingenTübingenGermany
| | | | - Alexander Jueterbock
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Eric Wootton
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | - Ewan Harney
- Institute of Evolutionary BiologyCSIC, UPFBarcelonaSpain
- School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
6
|
Kraft FLH, Crino OL, Adeniran-Obey SO, Moraney RA, Clayton DF, George JM, Buchanan KL. Parental developmental experience affects vocal learning in offspring. Sci Rep 2024; 14:13787. [PMID: 38877207 PMCID: PMC11178867 DOI: 10.1038/s41598-024-64520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Cultural and genetic inheritance combine to enable rapid changes in trait expression, but their relative importance in determining trait expression across generations is not clear. Birdsong is a socially learned cognitive trait that is subject to both cultural and genetic inheritance, as well as being affected by early developmental conditions. We sought to test whether early-life conditions in one generation can affect song acquisition in the next generation. We exposed one generation (F1) of nestlings to elevated corticosterone (CORT) levels, allowed them to breed freely as adults, and quantified their son's (F2) ability to copy the song of their social father. We also quantified the neurogenetic response to song playback through immediate early gene (IEG) expression in the auditory forebrain. F2 males with only one corticosterone-treated parent copied their social father's song less accurately than males with two control parents. Expression of ARC in caudomedial nidopallium (NCM) correlated with father-son song similarity, and patterns of expression levels of several IEGs in caudomedial mesopallium (CMM) in response to father song playback differed between control F2 sons and those with a CORT-treated father only. This is the first study to demonstrate that developmental conditions can affect social learning and neurogenetic responses in a subsequent generation.
Collapse
Affiliation(s)
- Fanny-Linn H Kraft
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia.
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Ondi L Crino
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Raven A Moraney
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - David F Clayton
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Julia M George
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Katherine L Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
7
|
Balard A, Baltazar-Soares M, Eizaguirre C, Heckwolf MJ. An epigenetic toolbox for conservation biologists. Evol Appl 2024; 17:e13699. [PMID: 38832081 PMCID: PMC11146150 DOI: 10.1111/eva.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Ongoing climatic shifts and increasing anthropogenic pressures demand an efficient delineation of conservation units and accurate predictions of populations' resilience and adaptive potential. Molecular tools involving DNA sequencing are nowadays routinely used for these purposes. Yet, most of the existing tools focusing on sequence-level information have shortcomings in detecting signals of short-term ecological relevance. Epigenetic modifications carry valuable information to better link individuals, populations, and species to their environment. Here, we discuss a series of epigenetic monitoring tools that can be directly applied to various conservation contexts, complementing already existing molecular monitoring frameworks. Focusing on DNA sequence-based methods (e.g. DNA methylation, for which the applications are readily available), we demonstrate how (a) the identification of epi-biomarkers associated with age or infection can facilitate the determination of an individual's health status in wild populations; (b) whole epigenome analyses can identify signatures of selection linked to environmental conditions and facilitate estimating the adaptive potential of populations; and (c) epi-eDNA (epigenetic environmental DNA), an epigenetic-based conservation tool, presents a non-invasive sampling method to monitor biological information beyond the mere presence of individuals. Overall, our framework refines conservation strategies, ensuring a comprehensive understanding of species' adaptive potential and persistence on ecologically relevant timescales.
Collapse
Affiliation(s)
- Alice Balard
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | | | - Christophe Eizaguirre
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - Melanie J Heckwolf
- Department of Ecology Leibniz Centre for Tropical Marine Research Bremen Germany
| |
Collapse
|
8
|
Ren X, Zhao J, Hu J. Non-concordant epigenetic and transcriptional responses to acute thermal stress in western mosquitofish (Gambusia affinis). Mol Ecol 2024:e17332. [PMID: 38529738 DOI: 10.1111/mec.17332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Climate change is intensifying the frequency and severity of extreme temperatures. Understanding the molecular mechanisms underlying the ability to cope with acute thermal stress is key for predicting species' responses to extreme temperature events. While many studies have focused on the individual roles of gene expression, post-transcriptional processes and epigenetic modifications in response to acute thermal stress, the relative contribution of these molecular mechanisms remains unclear. The wide range of thermal limits of western mosquitofish (Gambusia affinis) provides an opportunity to explore this interplay. Here, we quantified changes in gene expression, alternative splicing, DNA methylation and microRNA (miRNA) expression in muscle tissue dissected from mosquitofish immediately after reaching high (CTmax) or low thermal limit (CTmin). Although the numbers of genes showing expression and splicing changes in response to acute temperature stress were small, we found a possibly larger and non-redundant role of splicing compared to gene expression, with more genes being differentially spliced (DSGs) than differentially expressed (DEGs), and little overlap between DSGs and DEGs. We also identified a small proportion of CpGs showing significant methylation change (i.e. differentially methylated cytosines, DMCs) in fish at thermal limits; however, there was no overlap between DEGs and genes annotated with DMCs in both CTmax and CTmin experiments. The weak interplay between epigenetic modifications and gene expression was further supported by our discoveries of no differentially expressed miRNAs. These findings provide novel insights into the relative role of different molecular mechanisms underlying immediate responses to extreme temperatures and demonstrate non-concordant responses of epigenetic and transcriptional mechanisms to acute temperature stress.
Collapse
Affiliation(s)
- Xingyue Ren
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Junjie Zhao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| |
Collapse
|
9
|
Jianfang W, Raza SHA, Pant SD, Juan Z, Prakash A, Abdelnour SA, Aloufi BH, Mahasneh ZMH, Amin AA, Shokrollahi B, Zan L. Exploring Epigenetic and Genetic Modulation in Animal Responses to Thermal Stress. Mol Biotechnol 2024:10.1007/s12033-024-01126-5. [PMID: 38528286 DOI: 10.1007/s12033-024-01126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
There is increasing evidence indicating that global temperatures are rising significantly, a phenomenon commonly referred to as 'global warming', which in turn is believed to be causing drastic changes to the global climate. Global warming (GW) directly impacts animal health, reproduction, production, and welfare, presenting several challenges to livestock enterprises. Thermal stress (TS) is one of the key consequences of GW, and all animal species, including livestock, have diverse physiological, epigenetic and genetic mechanisms to respond to TS. As a result, TS can significantly affect an animals' health, immune responsiveness, metabolic pathways etc. which can also influence the productivity, performance, and welfare of animals. Moreover, prolonged exposure to TS can lead to transgenerational and intergenerational changes that are mediated by epigenetic changes. For example, in several animal species, the effects of TS are encoded epigenetically during the animals' growth or productive stage, and these epigenetic changes can be transmitted intergenerationally. Such epigenetic changes can affect animal productivity by changing the phenotype so that it aligns with its ancestors' environment, irrespective of its immediate environment. Furthermore, epigenetic and genetic changes can also help protect cells from the adverse effects of TS by modulating the transcriptional status of heat-responsive genes in animals. This review focuses on the genetic and epigenetic modulation and regulation that occurs in TS conditions via HSPs, histone alterations and DNA methylation.
Collapse
Affiliation(s)
- Wang Jianfang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Sameer D Pant
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Zhao Juan
- College of Animal Science and Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, Chapel Hill, USA
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Bandar Hamad Aloufi
- Biology Department, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Zeinab M H Mahasneh
- Department of Animal Production, School of Agriculture, University of Jordan, Amman, Jordan
| | - Ahmed A Amin
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Borhan Shokrollahi
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang-gun, 25340, Republic of Korea
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Langford N, Fargeot L, Blanchet S. Spatial covariation between genetic and epigenetic diversity in wild plant and animal populations: a meta-analysis. J Exp Biol 2024; 227:jeb246009. [PMID: 38449323 DOI: 10.1242/jeb.246009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Epigenetic variation may be crucial in understanding the structure of wild populations, thereby aiding in their management and conservation. However, the relationship between epigenetic and genetic variation remains poorly understood, especially in wild populations. To address this, we conducted a meta-analysis of studies that examined the genetic and epigenetic structures of wild plant and animal populations. We aimed to determine whether epigenetic variation is spatially independent of genetic variation in the wild and to highlight the conditions under which epigenetic variation might be informative. We show a significant positive correlation between genetic and epigenetic pairwise differentiation, indicating that in wild populations, epigenetic diversity is closely linked to genetic differentiation. The correlation was weaker for population pairs that were weakly differentiated genetically, suggesting that in such cases, epigenetic marks might be independent of genetic marks. Additionally, we found that global levels of genetic and epigenetic differentiation were similar across plant and animal populations, except when populations were weakly differentiated genetically. In such cases, epigenetic differentiation was either higher or lower than genetic differentiation. Our results suggest that epigenetic information is particularly relevant in populations that have recently diverged genetically or are connected by gene flow. Future studies should consider the genetic structure of populations when inferring the role of epigenetic diversity in local adaptation in wild populations. Furthermore, there is a need to identify the factors that sustain the links between genetic and epigenetic diversity to improve our understanding of the interplay between these two forms of variation in wild populations.
Collapse
Affiliation(s)
- Nadia Langford
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS); Station d'Ecologie Théorique et Expérimentale, UAR 2029, F-09200 Moulis, France
| | - Laura Fargeot
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS); Station d'Ecologie Théorique et Expérimentale, UAR 2029, F-09200 Moulis, France
| | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS); Station d'Ecologie Théorique et Expérimentale, UAR 2029, F-09200 Moulis, France
| |
Collapse
|
11
|
Siller Wilks SJ, Heidinger BJ, Westneat DF, Solomon J, Rubenstein DR. The impact of parental and developmental stress on DNA methylation in the avian hypothalamic-pituitary-adrenal axis. Mol Ecol 2024; 33:e17291. [PMID: 38343177 DOI: 10.1111/mec.17291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis coordinates an organism's response to environmental stress. The responsiveness and sensitivity of an offspring's stress response may be shaped not only by stressors encountered in their early post-natal environment but also by stressors in their parent's environment. Yet, few studies have considered how stressors encountered in both of these early life environments may function together to impact the developing HPA axis. Here, we manipulated stressors in the parental and post-natal environments in a population of house sparrows (Passer domesticus) to assess their impact on changes in DNA methylation (and corresponding gene expression) in a suite of genes within the HPA axis. We found that nestlings that experienced early life stress across both life-history periods had higher DNA methylation in a critical HPA axis gene, the glucocorticoid receptor (NR3C1). In addition, we found that the life-history stage when stress was encountered impacted some genes (HSD11B1, NR3C1 and NR3C2) differently. We also found evidence for the mitigation of parental stress by post-natal stress (in HSD11B1 and NR3C2). Finally, by assessing DNA methylation in both the brain and blood, we were able to evaluate cross-tissue patterns. While some differentially methylated regions were tissue-specific, we found cross-tissue changes in NR3C2 and NR3C1, suggesting that blood is a suitable tissue for assessing DNA methylation as a biomarker of early life stress. Our results provide a crucial first step in understanding the mechanisms by which early life stress in different life-history periods contributes to changes in the epigenome of the HPA axis.
Collapse
Affiliation(s)
- Stefanie J Siller Wilks
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Britt J Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, North Dakota, USA
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Joseph Solomon
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Dustin R Rubenstein
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, New York, USA
| |
Collapse
|
12
|
Bernatchez L, Ferchaud AL, Berger CS, Venney CJ, Xuereb A. Genomics for monitoring and understanding species responses to global climate change. Nat Rev Genet 2024; 25:165-183. [PMID: 37863940 DOI: 10.1038/s41576-023-00657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/22/2023]
Abstract
All life forms across the globe are experiencing drastic changes in environmental conditions as a result of global climate change. These environmental changes are happening rapidly, incur substantial socioeconomic costs, pose threats to biodiversity and diminish a species' potential to adapt to future environments. Understanding and monitoring how organisms respond to human-driven climate change is therefore a major priority for the conservation of biodiversity in a rapidly changing environment. Recent developments in genomic, transcriptomic and epigenomic technologies are enabling unprecedented insights into the evolutionary processes and molecular bases of adaptation. This Review summarizes methods that apply and integrate omics tools to experimentally investigate, monitor and predict how species and communities in the wild cope with global climate change, which is by genetically adapting to new environmental conditions, through range shifts or through phenotypic plasticity. We identify advantages and limitations of each method and discuss future research avenues that would improve our understanding of species' evolutionary responses to global climate change, highlighting the need for holistic, multi-omics approaches to ecosystem monitoring during global climate change.
Collapse
Affiliation(s)
- Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
- Parks Canada, Office of the Chief Ecosystem Scientist, Protected Areas Establishment, Quebec City, Quebec, Canada.
| | - Chloé Suzanne Berger
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Amanda Xuereb
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
13
|
Bogan SN, Yi SV. Potential Role of DNA Methylation as a Driver of Plastic Responses to the Environment Across Cells, Organisms, and Populations. Genome Biol Evol 2024; 16:evae022. [PMID: 38324384 PMCID: PMC10899001 DOI: 10.1093/gbe/evae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
14
|
Chen Y, Ni P, Fu R, Murphy KJ, Wyeth RC, Bishop CD, Huang X, Li S, Zhan A. (Epi)genomic adaptation driven by fine geographical scale environmental heterogeneity after recent biological invasions. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2772. [PMID: 36316814 DOI: 10.1002/eap.2772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Elucidating processes and mechanisms involved in rapid local adaptation to varied environments is a poorly understood but crucial component in management of invasive species. Recent studies have proposed that genetic and epigenetic variation could both contribute to ecological adaptation, yet it remains unclear on the interplay between these two components underpinning rapid adaptation in wild animal populations. To assess their respective contributions to local adaptation, we explored epigenomic and genomic responses to environmental heterogeneity in eight recently colonized ascidian (Ciona intestinalis) populations at a relatively fine geographical scale. Based on MethylRADseq data, we detected strong patterns of local environment-driven DNA methylation divergence among populations, significant epigenetic isolation by environment (IBE), and a large number of local environment-associated epigenetic loci. Meanwhile, multiple genetic analyses based on single nucleotide polymorphisms (SNPs) showed genomic footprints of divergent selection. In addition, for five genetically similar populations, we detected significant methylation divergence and local environment-driven methylation patterns, indicating the strong effects of local environments on epigenetic variation. From a functional perspective, a majority of functional genes, Gene Ontology (GO) terms, and biological pathways were largely specific to one of these two types of variation, suggesting partial independence between epigenetic and genetic adaptation. The methylation quantitative trait loci (mQTL) analysis showed that the genetic variation explained only 18.67% of methylation variation, further confirming the autonomous relationship between these two types of variation. Altogether, we highlight the complementary interplay of genetic and epigenetic variation involved in local adaptation, which may jointly promote populations' rapid adaptive capacity and successful invasions in different environments. The findings here provide valuable insights into interactions between invaders and local environments to allow invasive species to rapidly spread, thus contributing to better prediction of invasion success and development of management strategies.
Collapse
Affiliation(s)
- Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ping Ni
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ruiying Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Kieran J Murphy
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Russell C Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Cory D Bishop
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Capra E, Lazzari B, Milanesi M, Nogueira GP, Garcia JF, Utsunomiya YT, Ajmone-Marsan P, Stella A. Comparison between indicine and taurine cattle DNA methylation reveals epigenetic variation associated to differences in morphological adaptive traits. Epigenetics 2023; 18:2163363. [PMID: 36600398 PMCID: PMC9980582 DOI: 10.1080/15592294.2022.2163363] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Indicine and taurine subspecies present distinct morphological traits as a consequence of environmental adaptation and artificial selection. Although the two subspecies have been characterized and compared at genome-wide level and at specific loci, their epigenetic diversity has not yet been explored. In this work, Reduced Representation Bisulphite Sequencing (RRBS) profiling of the taurine Angus (A) and indicine Nellore (N) cattle breeds was applied to identify methylation differences between the two subspecies. Genotyping by sequencing (GBS) of the same animals was performed to detect single nucleotide polymorphisms (SNPs) at cytosines in CpG dinucleotides and remove them from the differential methylation analysis. A total of 660,845 methylated cytosines were identified within the CpG context (CpGs) across the 10 animals sequenced (5 N and 5 A). A total of 25,765 of these were differentially methylated (DMCs). Most DMCs clustered in CpG stretches nearby genes involved in cellular and anatomical structure morphogenesis. Also, sequences flanking DMC were enriched in SNPs compared to all other CpGs, either methylated or unmethylated in the two subspecies. Our data suggest a contribution of epigenetics to the regulation and divergence of anatomical morphogenesis in the two subspecies relevant for cattle evolution and sub-species differentiation and adaptation.
Collapse
Affiliation(s)
- E Capra
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| | - B Lazzari
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| | - M Milanesi
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil.,Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - G P Nogueira
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, Brazil
| | - J F Garcia
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Y T Utsunomiya
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, Brazil
| | - P Ajmone-Marsan
- Department of Animal Science, Food and Nutrition - DIANA, and Nutrigenomics and Proteomics Research Center - PRONUTRIGEN, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - A Stella
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| |
Collapse
|
16
|
de Carvalho CF, Slate J, Villoutreix R, Soria-Carrasco V, Riesch R, Feder JL, Gompert Z, Nosil P. DNA methylation differences between stick insect ecotypes. Mol Ecol 2023; 32:6809-6823. [PMID: 37864542 DOI: 10.1111/mec.17165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/23/2023]
Abstract
Epigenetic mechanisms, such as DNA methylation, can influence gene regulation and affect phenotypic variation, raising the possibility that they contribute to ecological adaptation. Beginning to address this issue requires high-resolution sequencing studies of natural populations to pinpoint epigenetic regions of potential ecological and evolutionary significance. However, such studies are still relatively uncommon, especially in insects, and are mainly restricted to a few model organisms. Here, we characterize patterns of DNA methylation for natural populations of Timema cristinae adapted to two host plant species (i.e. ecotypes). By integrating results from sequencing of whole transcriptomes, genomes and methylomes, we investigate whether environmental, host and genetic differences of these stick insects are associated with methylation levels of cytosine nucleotides in the CpG context. We report an overall genome-wide methylation level for T. cristinae of ~14%, with methylation being enriched in gene bodies and impoverished in repetitive elements. Genome-wide DNA methylation variation was strongly positively correlated with genetic distance (relatedness), but also exhibited significant host-plant effects. Using methylome-environment association analysis, we pinpointed specific genomic regions that are differentially methylated between ecotypes, with these regions being enriched for genes with functions in membrane processes. The observed association between methylation variation and genetic relatedness, and with the ecologically important variable of host plant, suggests a potential role for epigenetic modification in T. cristinae adaptation. To substantiate such adaptive significance, future studies could test whether methylation can be transmitted across generations and the extent to which it responds to experimental manipulation in field and laboratory studies.
Collapse
Affiliation(s)
| | - Jon Slate
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | | | - Rüdiger Riesch
- University of Montpellier, CEFE, CNRS, EPHE, IRD, Montpellier, France
- Department of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway University of London, Egham, UK
| | - Jeffrey L Feder
- Department of Biology, Notre Dame University, South Bend, Indiana, USA
| | | | - Patrik Nosil
- School of Biosciences, University of Sheffield, Sheffield, UK
- University of Montpellier, CEFE, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
17
|
Venney CJ, Anastasiadi D, Wellenreuther M, Bernatchez L. The Evolutionary Complexities of DNA Methylation in Animals: From Plasticity to Genetic Evolution. Genome Biol Evol 2023; 15:evad216. [PMID: 38015807 PMCID: PMC10701099 DOI: 10.1093/gbe/evad216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/22/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
The importance of DNA methylation in plastic responses to environmental change and evolutionary dynamics is increasingly recognized. Here, we provide a Perspective piece on the diverse roles of DNA methylation on broad evolutionary timescales, including (i) short-term transient acclimation, (ii) stable phenotypic evolution, and (iii) genomic evolution. We show that epigenetic responses vary along a continuum, ranging from short-term acclimatory responses in variable environments within a generation to long-term modifications in populations and species. DNA methylation thus unlocks additional potential for organisms to rapidly acclimate to their environment over short timeframes. If these changes affect fitness, they can circumvent the need for adaptive changes at the genome level. However, methylation has a complex reciprocal relationship with genetic variation as it can be genetically controlled, yet it can also induce point mutations and contribute to genomic evolution. When habitats remain constant over many generations, or populations are separated across habitats, initially plastic phenotypes can become hardwired through epigenetically facilitated mutagenesis. It remains unclear under what circumstances plasticity contributes to evolutionary outcomes, and when plastic changes will become permanently encoded into genotype. We highlight how studies investigating the evolution of epigenetic plasticity need to carefully consider how plasticity in methylation state could evolve among different evolutionary scenarios, the possible phenotypic outcomes, its effects on genomic evolution, and the proximate energetic and ultimate fitness costs of methylation. We argue that accumulating evidence suggests that DNA methylation can contribute toward evolution on various timescales, spanning a continuum from acclimatory plasticity to genomic evolution.
Collapse
Affiliation(s)
- Clare J Venney
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, Québec, QC, Canada
| | - Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, Nelson, New Zealand
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, Nelson, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, Québec, QC, Canada
| |
Collapse
|
18
|
Turko AJ, Firth BL, Craig PM, Eliason EJ, Raby GD, Borowiec BG. Physiological differences between wild and captive animals: a century-old dilemma. J Exp Biol 2023; 226:jeb246037. [PMID: 38031957 DOI: 10.1242/jeb.246037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Laboratory-based research dominates the fields of comparative physiology and biomechanics. The power of lab work has long been recognized by experimental biologists. For example, in 1932, Georgy Gause published an influential paper in Journal of Experimental Biology describing a series of clever lab experiments that provided the first empirical test of competitive exclusion theory, laying the foundation for a field that remains active today. At the time, Gause wrestled with the dilemma of conducting experiments in the lab or the field, ultimately deciding that progress could be best achieved by taking advantage of the high level of control offered by lab experiments. However, physiological experiments often yield different, and even contradictory, results when conducted in lab versus field settings. This is especially concerning in the Anthropocene, as standard laboratory techniques are increasingly relied upon to predict how wild animals will respond to environmental disturbances to inform decisions in conservation and management. In this Commentary, we discuss several hypothesized mechanisms that could explain disparities between experimental biology in the lab and in the field. We propose strategies for understanding why these differences occur and how we can use these results to improve our understanding of the physiology of wild animals. Nearly a century beyond Gause's work, we still know remarkably little about what makes captive animals different from wild ones. Discovering these mechanisms should be an important goal for experimental biologists in the future.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Britney L Firth
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Goleta, CA 93117, USA
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, ON, Canada, K9L 0G2
| | - Brittney G Borowiec
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| |
Collapse
|
19
|
Somers DJ, Kushner DB, McKinnis AR, Mehmedovic D, Flame RS, Arnold TM. Epigenetic weapons in plant-herbivore interactions: Sulforaphane disrupts histone deacetylases, gene expression, and larval development in Spodoptera exigua while the specialist feeder Trichoplusia ni is largely resistant to these effects. PLoS One 2023; 18:e0293075. [PMID: 37856454 PMCID: PMC10586618 DOI: 10.1371/journal.pone.0293075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Cruciferous plants produce sulforaphane (SFN), an inhibitor of nuclear histone deacetylases (HDACs). In humans and other mammals, the consumption of SFN alters enzyme activities, DNA-histone binding, and gene expression within minutes. However, the ability of SFN to act as an HDAC inhibitor in nature, disrupting the epigenetic machinery of insects feeding on these plants, has not been explored. Here, we demonstrate that SFN consumed in the diet inhibits the activity of HDAC enzymes and slows the development of the generalist grazer Spodoptera exigua, in a dose-dependent fashion. After consuming SFN for seven days, the activities of HDAC enzymes in S. exigua were reduced by 50%. Similarly, larval mass was reduced by 50% and pupation was delayed by 2-5 days, with no additional mortality. Similar results were obtained when SFN was applied topically to eggs. RNA-seq analyses confirm that SFN altered the expression of thousands of genes in S. exigua. Genes associated with energy conversion pathways were significantly downregulated while those encoding for ribosomal proteins were dramatically upregulated in response to the consumption of SFN. In contrast, the co-evolved specialist feeder Trichoplusia ni was not negatively impacted by SFN, whether it was consumed in their diet at natural concentrations or applied topically to eggs. The activities of HDAC enzymes were not inhibited and development was not disrupted. In fact, SFN exposure sometimes accelerated T. ni development. RNA-seq analyses revealed that the consumption of SFN alters gene expression in T. ni in similar ways, but to a lesser degree, compared to S. exigua. This apparent resistance of T. ni can be overwhelmed by unnaturally high levels of SFN or by exposure to more powerful pharmaceutical HDAC inhibitors. These results demonstrate that dietary SFN interferes with the epigenetic machinery of insects, supporting the hypothesis that plant-derived HDAC inhibitors serve as "epigenetic weapons" against herbivores.
Collapse
Affiliation(s)
- Dana J. Somers
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - David B. Kushner
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - Alexandria R. McKinnis
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - Dzejlana Mehmedovic
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - Rachel S. Flame
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| | - Thomas M. Arnold
- Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle, PA United States of America
| |
Collapse
|
20
|
Mayne B, Berry O, Jarman S. Calibrating epigenetic clocks with training data error. Evol Appl 2023; 16:1496-1502. [PMID: 37622096 PMCID: PMC10445086 DOI: 10.1111/eva.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Animal age data are valuable for management of wildlife populations. Yet, for most species, there is no practical method for determining the age of unknown individuals. However, epigenetic clocks, a molecular-based method, are capable of age prediction by sampling specific tissue types and measuring DNA methylation levels at specific loci. Developing an epigenetic clock requires a large number of samples from animals of known ages. For most species, there are no individuals whose exact ages are known, making epigenetic clock calibration inaccurate or impossible. For many epigenetic clocks, calibration samples with inaccurate age estimates introduce a degree of error to epigenetic clock calibration. In this study, we investigated how much error in the training data set of an epigenetic clock can be tolerated before it resulted in an unacceptable increase in error for age prediction. Using four publicly available data sets, we artificially increased the training data age error by iterations of 1% and then tested the model against an independent set of known ages. A small effect size increase (Cohen's d >0.2) was detected when the error in age was higher than 22%. The effect size increased linearly with age error. This threshold was independent of sample size. Downstream applications for age data may have a more important role in deciding how much error can be tolerated for age prediction. If highly precise age estimates are required, then it may be futile to embark on the development of an epigenetic clock when there is no accurately aged calibration population to work with. However, for other problems, such as determining the relative age order of pairs of individuals, a lower-quality calibration data set may be adequate.
Collapse
Affiliation(s)
- Benjamin Mayne
- Environomics Future Science Platform, Indian Ocean Marine Research CentreCommonwealth Scientific and Industrial Research Organisation (CSIRO)CrawleyWestern AustraliaAustralia
| | - Oliver Berry
- Environomics Future Science Platform, Indian Ocean Marine Research CentreCommonwealth Scientific and Industrial Research Organisation (CSIRO)CrawleyWestern AustraliaAustralia
| | - Simon Jarman
- Curtin UniversityPerthWestern AustraliaAustralia
| |
Collapse
|
21
|
Bock DG, Liu J, Novikova P, Rieseberg LH. Long-read sequencing in ecology and evolution: Understanding how complex genetic and epigenetic variants shape biodiversity. Mol Ecol 2023; 32:1229-1235. [PMID: 36855925 DOI: 10.1111/mec.16884] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023]
Affiliation(s)
- Dan G Bock
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianquan Liu
- State Key Laboratory of Grassland and Agro-ecosystems, Institute of Innovation Ecology, School of Life Science and the Supercomputing Center, Lanzhou University, Lanzhou, China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Polina Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Loren H Rieseberg
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Mechanisms underlying thermal breadth differ by species in insects from adjacent but thermally distinct streams - A test of the climate variability hypothesis. J Therm Biol 2023; 112:103435. [PMID: 36796892 DOI: 10.1016/j.jtherbio.2022.103435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/02/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
The Climate Variability Hypothesis (CVH) predicts that ectotherms from thermally variable climates should have wider thermal tolerances than their counterparts living in stable climates. Although the CVH has been widely supported, the mechanisms underlying wider tolerance traits remain unclear. We test the CVH along with three mechanistic hypotheses that may explain how differences in tolerance limits arise: 1) Short-term Acclimation Hypothesis (mechanism: rapid, reversible plasticity), 2) Long-term Effects Hypothesis (mechanisms: developmental plasticity, epigenetics, maternal effects, or adaptation), and 3) Trade-off Hypothesis (mechanism: trade-off between short- and long-term responses). We tested these hypotheses by measuring CTMIN, CTMAX, and thermal breadths (CTMAX - CTMIN) of aquatic mayfly and stonefly nymphs from adjacent streams with distinctly different levels of thermal variation following acclimation to either cool, control, and warm conditions. In one stream, daily mean temperature varied by about 5 °C annually, whereas in the other, it varied by more than 25 °C. In support of the CVH, we found that mayfly and stonefly nymphs from the thermally variable stream had broader thermal tolerances than those from the thermally stable stream. However, support for the mechanistic hypotheses differed by species. Mayflies appear to rely on long-term strategies for maintaining broader thermal limits, whereas stoneflies achieve broader thermal limits via short-term plasticity. We found no support for the Trade-off Hypothesis.
Collapse
|
23
|
Venney CJ, Cayuela H, Rougeux C, Laporte M, Mérot C, Normandeau E, Leitwein M, Dorant Y, Præbel K, Kenchington E, Clément M, Sirois P, Bernatchez L. Genome-wide DNA methylation predicts environmentally driven life history variation in a marine fish. Evolution 2023; 77:186-198. [PMID: 36622671 DOI: 10.1093/evolut/qpac028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/21/2022] [Accepted: 11/16/2022] [Indexed: 01/10/2023]
Abstract
Epigenetic modifications are thought to be one of the molecular mechanisms involved in plastic adaptive responses to environmental variation. However, studies reporting associations between genome-wide epigenetic changes and habitat-specific variations in life history traits (e.g., lifespan, reproduction) are still scarce, likely due to the recent application of methylome resequencing methods to non-model species. In this study, we examined associations between whole genome DNA methylation and environmentally driven life history variation in 2 lineages of a marine fish, the capelin (Mallotus villosus), from North America and Europe. In both lineages, capelin harbor 2 contrasting life history tactics (demersal vs. beach-spawning). Performing whole genome and methylome sequencing, we showed that life history tactics are associated with epigenetic changes in both lineages, though the effect was stronger in European capelin. Genetic differentiation between the capelin harboring different life history tactics was negligible, but we found genome-wide methylation changes in both lineages. We identified 9,125 European and 199 North American differentially methylated regions (DMRs) due to life history. Gene ontology (GO) enrichment analysis for both lineages revealed an excess of terms related to neural function. Our results suggest that environmental variation causes important epigenetic changes that are associated with contrasting life history tactics in lineages with divergent genetic backgrounds, with variable importance of genetic variation in driving epigenetic variation. Our study emphasizes the potential role of genome-wide epigenetic variation in adaptation to environmental variation.
Collapse
Affiliation(s)
- Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Hugo Cayuela
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,University of Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Clément Rougeux
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Maëva Leitwein
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Yann Dorant
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Kim Præbel
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ellen Kenchington
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Marie Clément
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial University of Newfoundland, St. John's, NL, Canada.,Labrador Institute, Memorial University of Newfoundland, Happy Valley-Goose Bay, NL, Canada
| | - Pascal Sirois
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| |
Collapse
|
24
|
Zhao Y, Hu J, Wu J, Li Z. ChIP-seq profiling of H3K4me3 and H3K27me3 in an invasive insect, Bactrocera dorsalis. Front Genet 2023; 14:1108104. [PMID: 36911387 PMCID: PMC9996634 DOI: 10.3389/fgene.2023.1108104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: While it has been suggested that histone modifications can facilitate animal responses to rapidly changing environments, few studies have profiled whole-genome histone modification patterns in invasive species, leaving the regulatory landscape of histone modifications in invasive species unclear. Methods: Here, we screen genome-wide patterns of two important histone modifications, trimethylated Histone H3 Lysine 4 (H3K4me3) and trimethylated Histone H3 Lysine 27 (H3K27me3), in adult thorax muscles of a notorious invasive pest, the Oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), using Chromatin Immunoprecipitation with high-throughput sequencing (ChIP-seq). Results: We identified promoters featured by the occupancy of H3K4me3, H3K27me3 or bivalent histone modifications that were respectively annotated with unique genes key to muscle development and structure maintenance. In addition, we found H3K27me3 occupied the entire body of genes, where the average enrichment was almost constant. Transcriptomic analysis indicated that H3K4me3 is associated with active gene transcription, and H3K27me3 is mostly associated with transcriptional repression. Importantly, we identified genes and putative motifs modified by distinct histone modification patterns that may possibly regulate flight activity. Discussion: These findings provide the first evidence of histone modification signature in B. dorsalis, and will be useful for future studies of epigenetic signature in other invasive insect species.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiajiao Wu
- Technology Center of Guangzhou Customs, Guangzhou, China
| | - Zhihong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Hu J, Barrett RDH. The role of plastic and evolved DNA methylation in parallel adaptation of threespine stickleback (Gasterosteus aculeatus). Mol Ecol 2022; 32:1581-1591. [PMID: 36560898 DOI: 10.1111/mec.16832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Repeated phenotypic patterns among populations undergoing parallel evolution in similar environments provide support for the deterministic role of natural selection. Epigenetic modifications can mediate plastic and evolved phenotypic responses to environmental change and might make important contributions to parallel adaptation. While many studies have explored the genetic basis of repeated phenotypic divergence, the role of epigenetic processes during parallel adaptation remains unclear. The parallel evolution of freshwater ecotypes of threespine stickleback fish (Gasterosteus aculeatus) following colonization of thousands of lakes and streams from the ocean is a classic example of parallel phenotypic and genotypic adaptation. To investigate epigenetic modifications during parallel adaptation of threespine stickleback, we reanalysed three independent data sets that investigated DNA methylation variation between marine and freshwater ecotypes. Although we found widespread methylation differentiation between ecotypes, there was no significant tendency for CpG sites associated with repeated methylation differentiation across studies to be parallel versus nonparallel. To next investigate the role of plastic versus evolved changes in methylation during freshwater adaptation, we explored if CpG sites exhibiting methylation plasticity during salinity change were more likely to also show evolutionary divergence in methylation between ecotypes. The directions of divergence between ecotypes were generally in the opposite direction to those observed for plasticity when ecotypes were challenged with non-native salinity conditions, suggesting that most plastic responses are likely to be maladaptive during colonization of new environments. Finally, we found a greater number of CpG sites showing evolved changes when ancestral marine ecotypes are acclimated to freshwater environments, whereas plastic changes predominate when derived freshwater ecotypes transition back to their ancestral marine environments. These findings provide evidence for an epigenetic contribution to parallel adaptation and demonstrate the contrasting roles of plastic and evolved methylation differences during adaptation to new environments.
Collapse
Affiliation(s)
- Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Rowan D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Bonar M, Anderson SJ, Anderson CR, Wittemyer G, Northrup JM, Shafer ABA. Genomic correlates for migratory direction in a free-ranging cervid. Proc Biol Sci 2022; 289:20221969. [PMID: 36475444 PMCID: PMC9727677 DOI: 10.1098/rspb.2022.1969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Animal migrations are some of the most ubiquitous and one of the most threatened ecological processes globally. A wide range of migratory behaviours occur in nature, and this behaviour is not uniform among and within species, where even individuals in the same population can exhibit differences. While the environment largely drives migratory behaviour, it is necessary to understand the genetic mechanisms influencing migration to elucidate the potential of migratory species to cope with novel conditions and adapt to environmental change. In this study, we identified genes associated with a migratory trait by undertaking pooled genome-wide scans on a natural population of migrating mule deer. We identified genomic regions associated with variation in migratory direction, including FITM1, a gene linked to the formation of lipids, and DPPA3, a gene linked to epigenetic modifications of the maternal line. Such a genetic basis for a migratory trait contributes to the adaptive potential of the species and might affect the flexibility of individuals to change their behaviour in the face of changes in their environment.
Collapse
Affiliation(s)
- Maegwin Bonar
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2
| | - Spencer J. Anderson
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2
| | - Charles R. Anderson
- Mammals Research Section, Colorado Parks and Wildlife, Fort Collins, CO 80523, USA
| | - George Wittemyer
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph M. Northrup
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2,Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources & Forestry, Peterborough, Ontario, Canada K9J 3C7
| | - Aaron B. A. Shafer
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada K9L 0G2
| |
Collapse
|
27
|
Tompkins JD. Discovering DNA Methylation, the History and Future of the Writing on DNA. JOURNAL OF THE HISTORY OF BIOLOGY 2022; 55:865-887. [PMID: 36239862 PMCID: PMC9941238 DOI: 10.1007/s10739-022-09691-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation is a quintessential epigenetic mechanism. Widely considered a stable regulator of gene silencing, it represents a form of "molecular braille," chemically printed on DNA to regulate its structure and the expression of genetic information. However, there was a time when methyl groups simply existed in cells, mysteriously speckled across the cytosine building blocks of DNA. Why was the code of life chemically modified, apparently by "no accident of enzyme action" (Wyatt 1951)? If all cells in a body share the same genome sequence, how do they adopt unique functions and maintain stable developmental states? Do cells remember? In this historical perspective, I review epigenetic history and principles and the tools, key scientists, and concepts that brought us the synthesis and discovery of prokaryotic and eukaryotic methylated DNA. Drawing heavily on Gerard Wyatt's observation of asymmetric levels of methylated DNA across species, as well as to a pair of visionary 1975 DNA methylation papers, 5-methylcytosine is connected to DNA methylating enzymes in bacteria, the maintenance of stable cellular states over development, and to the regulation of gene expression through protein-DNA binding. These works have not only shaped our views on heritability and gene regulation but also remind us that core epigenetic concepts emerged from the intrinsic requirement for epigenetic mechanisms to exist. Driven by observations across prokaryotic and eukaryotic worlds, epigenetic systems function to access and interpret genetic information across all forms of life. Collectively, these works offer many guiding principles for our epigenetic understanding for today, and for the next generation of epigenetic inquiry in a postgenomics world.
Collapse
Affiliation(s)
- Joshua D Tompkins
- Arthur Riggs Diabetes Metabolism and Research Institute, City of Hope, 1500 E Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
28
|
Lundregan SL, Mäkinen H, Buer A, Holand H, Jensen H, Husby A. Infection by a helminth parasite is associated with changes in DNA methylation in the house sparrow. Ecol Evol 2022; 12:e9539. [PMID: 36447599 PMCID: PMC9702581 DOI: 10.1002/ece3.9539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Parasites can exert strong selective pressures on their hosts and influence the evolution of host immunity. While several studies have examined the genetic basis for parasite resistance, the role of epigenetics in the immune response to parasites is less understood. Yet, epigenetic modifications, such as changes in DNA methylation, may allow species to respond rapidly to parasite prevalence or virulence. To test the role of DNA methylation in relation to parasite infection, we examined genome-wide DNA methylation before and during infection by a parasitic nematode, Syngamus trachea, in a natural population of house sparrows (Passer domesticus) using reduced representation bisulfite sequencing (RRBS). We found that DNA methylation levels were slightly lower in infected house sparrows, and we identified candidate genes relating to the initial immune response, activation of innate and adaptive immunity, and mucus membrane functional integrity that were differentially methylated between infected and control birds. Subsequently, we used methylation-sensitive high-resolution melting (MS-HRM) analyses to verify the relationship between methylation proportion and S. trachea infection status at two candidate genes in a larger sample dataset. We found that methylation level at NR1D1, but not CLDN22, remained related to infection status and that juvenile recruitment probability was positively related to methylation level at NR1D1. This underscores the importance of performing follow-up studies on candidate genes. Our findings demonstrate that plasticity in the immune response to parasites can be epigenetically mediated and highlight the potential for epigenetic studies in natural populations to provide further mechanistic insight into host-parasite interactions.
Collapse
Affiliation(s)
- Sarah L. Lundregan
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Hannu Mäkinen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Amberly Buer
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Håkon Holand
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Arild Husby
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| |
Collapse
|
29
|
Hanson HE, Liebl AL. The Mutagenic Consequences of DNA Methylation within and across Generations. EPIGENOMES 2022; 6:33. [PMID: 36278679 PMCID: PMC9624357 DOI: 10.3390/epigenomes6040033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/28/2022] Open
Abstract
DNA methylation is an epigenetic modification with wide-ranging consequences across the life of an organism. This modification can be stable, persisting through development despite changing environmental conditions. However, in other contexts, DNA methylation can also be flexible, underlying organismal phenotypic plasticity. One underappreciated aspect of DNA methylation is that it is a potent mutagen; methylated cytosines mutate at a much faster rate than other genetic motifs. This mutagenic property of DNA methylation has been largely ignored in eco-evolutionary literature, despite its prevalence. Here, we explore how DNA methylation induced by environmental and other factors could promote mutation and lead to evolutionary change at a more rapid rate and in a more directed manner than through stochastic genetic mutations alone. We argue for future research on the evolutionary implications of DNA methylation driven mutations both within the lifetime of organisms, as well as across timescales.
Collapse
Affiliation(s)
- Haley E. Hanson
- Global and Planetary Health, University of South Florida, Tampa, FL 33620, USA
| | - Andrea L. Liebl
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
30
|
Podgorniak T, Dhanasiri A, Chen X, Ren X, Kuan PF, Fernandes J. Early fish domestication affects methylation of key genes involved in the rapid onset of the farmed phenotype. Epigenetics 2022; 17:1281-1298. [PMID: 35006036 PMCID: PMC9542679 DOI: 10.1080/15592294.2021.2017554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/02/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Animal domestication is a process of environmental modulation and artificial selection leading to permanent phenotypic modifications. Recent studies showed that phenotypic changes occur very early in domestication, i.e., within the first generation in captivity, which raises the hypothesis that epigenetic mechanisms may play a critical role on the early onset of the domestic phenotype. In this context, we applied reduced representation bisulphite sequencing to compare methylation profiles between wild Nile tilapia females and their offspring reared under farmed conditions. Approximately 700 differentially methylated CpG sites were found, many of them associated not only with genes involved in muscle growth, immunity, autophagy and diet response but also related to epigenetic mechanisms, such as RNA methylation and histone modifications. This bottom-up approach showed that the phenotypic traits often related to domestic animals (e.g., higher growth rate and different immune status) may be regulated epigenetically and prior to artificial selection on gene sequences. Moreover, it revealed the importance of diet in this process, as reflected by differential methylation patterns in genes critical to fat metabolism. Finally, our study highlighted that the TGF-β1 signalling pathway may regulate and be regulated by several differentially methylated CpG-associated genes. This could be an important and multifunctional component in promoting adaptation of fish to a domestic environment while modulating growth and immunity-related traits.
Collapse
Affiliation(s)
- Tomasz Podgorniak
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Anusha Dhanasiri
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Xianquan Chen
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Xu Ren
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, NY, USA
| | - Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, NY, USA
| | - Jorge Fernandes
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
31
|
Turner WC, Périquet S, Goelst CE, Vera KB, Cameron EZ, Alexander KA, Belant JL, Cloete CC, du Preez P, Getz WM, Hetem RS, Kamath PL, Kasaona MK, Mackenzie M, Mendelsohn J, Mfune JK, Muntifering JR, Portas R, Scott HA, Strauss WM, Versfeld W, Wachter B, Wittemyer G, Kilian JW. Africa’s drylands in a changing world: Challenges for wildlife conservation under climate and land-use changes in the Greater Etosha Landscape. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Chapelle V, Silvestre F. Population Epigenetics: The Extent of DNA Methylation Variation in Wild Animal Populations. EPIGENOMES 2022; 6:31. [PMID: 36278677 PMCID: PMC9589984 DOI: 10.3390/epigenomes6040031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Population epigenetics explores the extent of epigenetic variation and its dynamics in natural populations encountering changing environmental conditions. In contrast to population genetics, the basic concepts of this field are still in their early stages, especially in animal populations. Epigenetic variation may play a crucial role in phenotypic plasticity and local adaptation as it can be affected by the environment, it is likely to have higher spontaneous mutation rate than nucleotide sequences do, and it may be inherited via non-mendelian processes. In this review, we aim to bring together natural animal population epigenetic studies to generate new insights into ecological epigenetics and its evolutionary implications. We first provide an overview of the extent of DNA methylation variation and its autonomy from genetic variation in wild animal population. Second, we discuss DNA methylation dynamics which create observed epigenetic population structures by including basic population genetics processes. Then, we highlight the relevance of DNA methylation variation as an evolutionary mechanism in the extended evolutionary synthesis. Finally, we suggest new research directions by highlighting gaps in the knowledge of the population epigenetics field. As for our results, DNA methylation diversity was found to reveal parameters that can be used to characterize natural animal populations. Some concepts of population genetics dynamics can be applied to explain the observed epigenetic structure in natural animal populations. The set of recent advancements in ecological epigenetics, especially in transgenerational epigenetic inheritance in wild animal population, might reshape the way ecologists generate predictive models of the capacity of organisms to adapt to changing environments.
Collapse
Affiliation(s)
- Valentine Chapelle
- Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth, and Environment, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | | |
Collapse
|
33
|
Planidin NP, de Carvalho CF, Feder JL, Gompert Z, Nosil P. Epigenetics and reproductive isolation: a commentary on Westram et al., 2022. J Evol Biol 2022; 35:1188-1194. [PMID: 36063158 PMCID: PMC9541925 DOI: 10.1111/jeb.14033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | | | - Patrik Nosil
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
34
|
Humanes A, Lachs L, Beauchamp EA, Bythell JC, Edwards AJ, Golbuu Y, Martinez HM, Palmowski P, Treumann A, van der Steeg E, van Hooidonk R, Guest JR. Within-population variability in coral heat tolerance indicates climate adaptation potential. Proc Biol Sci 2022; 289:20220872. [PMID: 36043280 PMCID: PMC9428547 DOI: 10.1098/rspb.2022.0872] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Coral reefs are facing unprecedented mass bleaching and mortality events due to marine heatwaves and climate change. To avoid extirpation, corals must adapt. Individual variation in heat tolerance and its heritability underpin the potential for coral adaptation. However, the magnitude of heat tolerance variability within coral populations is largely unresolved. We address this knowledge gap by exposing corals from a single reef to an experimental marine heatwave. We found that double the heat stress dosage was required to induce bleaching in the most-tolerant 10%, compared to the least-tolerant 10% of the population. By the end of the heat stress exposure, all of the least-tolerant corals were dead, whereas the most-tolerant remained alive. To contextualize the scale of this result over the coming century, we show that under an ambitious future emissions scenario, such differences in coral heat tolerance thresholds equate to up to 17 years delay until the onset of annual bleaching and mortality conditions. However, this delay is limited to only 10 years under a high emissions scenario. Our results show substantial variability in coral heat tolerance which suggests scope for natural or assisted evolution to limit the impacts of climate change in the short-term. For coral reefs to persist through the coming century, coral adaptation must keep pace with ocean warming, and ambitious emissions reductions must be realized.
Collapse
Affiliation(s)
- Adriana Humanes
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Liam Lachs
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elizabeth A Beauchamp
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John C Bythell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Alasdair J Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Helios M Martinez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paweł Palmowski
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Achim Treumann
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Eveline van der Steeg
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ruben van Hooidonk
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.,Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL 33149, USA
| | - James R Guest
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
35
|
Greenspoon PB, Spencer HG, M'Gonigle LK. Epigenetic induction may speed up or slow down speciation with gene flow. Evolution 2022; 76:1170-1182. [PMID: 35482931 PMCID: PMC9321097 DOI: 10.1111/evo.14494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/09/2022] [Indexed: 01/21/2023]
Abstract
Speciation is less likely to occur when there is gene flow between nascent species. Natural selection can oppose gene flow and promote speciation if there is variation in ecological conditions among the nascent species' locations. Previous theory on ecological speciation with gene flow has focused primarily on the role of genetic variation in ecological traits, largely neglecting the role of nongenetic inheritance or transgenerational plasticity. Here, we build and analyze models incorporating both genetic and epigenetic inheritance, the latter representing a form of nongenetic inheritance. We investigate the rate of speciation for a population that inhabits two patches connected by migration, and find that adaptively biased epigenetic induction can speed up or slow down speciation, depending on the form of the map from genotype and epigenotype to phenotype. While adaptively relevant epigenetic variation can speed up speciation by reducing the fitness of migrants and hybrids, it can also slow down speciation. This latter effect occurs when the epialleles are able to achieve adaptation faster than the genetic alleles, thereby weakening selection on the latter.
Collapse
|
36
|
Gao Y, Chen Y, Li S, Huang X, Hu J, Bock DG, MacIsaac HJ, Zhan A. Complementary genomic and epigenomic adaptation to environmental heterogeneity. Mol Ecol 2022; 31:3598-3612. [PMID: 35560847 DOI: 10.1111/mec.16500] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 12/01/2022]
Abstract
While adaptation is commonly thought to result from selection on DNA sequence-based variation, recent studies have highlighted an analogous epigenetic component as well. However, the relative roles of these mechanisms in facilitating population persistence under environmental heterogeneity remain unclear. To address the underlying genetic and epigenetic mechanisms and their relationship during environmental adaptation, we screened the genomes and epigenomes of nine global populations of a predominately sessile marine invasive tunicate, Botryllus schlosseri, using reduced-representation methods. We detected clear population differentiation at the genetic and epigenetic levels. Patterns of genetic and epigenetic structure were significantly influenced by local environmental variables. Among these variables, minimum annual sea surface temperature was identified as the top explanatory variable for both genetic and epigenetic variation. However, patterns of population structure driven by genetic and epigenetic variation were somewhat distinct, suggesting possible autonomy of epigenetic variation. We found both shared and specific genes and biological pathways among genetic and epigenetic loci associated with environmental factors, consistent with complementary and independent contributions of genetic and epigenetic variation to environmental adaptation in this system. Collectively, these mechanisms may facilitate population persistence under environmental change and sustain successful invasions across novel environments.
Collapse
Affiliation(s)
- Yangchun Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, 510260, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Dan G Bock
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Hugh J MacIsaac
- School of Ecology and Environmental Science, Yunnan University, Yunnan, 650091, China.,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
37
|
Mayne B, Mustin W, Baboolal V, Casella F, Ballorain K, Barret M, Vanderklift MA, Tucker AD, Korbie D, Jarman S, Berry O. Age prediction of green turtles with an epigenetic clock. Mol Ecol Resour 2022; 22:2275-2284. [DOI: 10.1111/1755-0998.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin Mayne
- Environomics Future Science Platform Indian Oceans Marine Research Centre Commonwealth Scientific and Industrial Research Organisation (CSIRO) Crawley Western Australia Australia
| | - Walter Mustin
- Cayman Turtle Conservation and Education Centre Grand Cayman KY1‐1301 Cayman Islands
| | - Vandanaa Baboolal
- Cayman Turtle Conservation and Education Centre Grand Cayman KY1‐1301 Cayman Islands
| | - Francesca Casella
- Cayman Turtle Conservation and Education Centre Grand Cayman KY1‐1301 Cayman Islands
| | - Katia Ballorain
- Centre d'Etude et de Découverte des Tortues Marines (CEDTM) 19 Cité des Frangipaniers 97424 Piton Saint‐Leu, La Réunion France
| | - Mathieu Barret
- Kélonia l’observatoire des tortues marines 46 Rue Général de Gaulle 97436 Saint‐Leu, La Réunion France
| | - Mathew A. Vanderklift
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere Crawley Western Australia Australia
| | - Anton D. Tucker
- Department of Biodiversity, Conservation and Attractions Marine Science Program Kensington Western Australia Australia
| | - Darren Korbie
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland Australia
| | - Simon Jarman
- School of Biological Sciences University of Western Australia 35 Stirling Highway Perth Western Australia Australia
| | - Oliver Berry
- Environomics Future Science Platform Indian Oceans Marine Research Centre Commonwealth Scientific and Industrial Research Organisation (CSIRO) Crawley Western Australia Australia
| |
Collapse
|
38
|
Garai ME, Roos T, Eggeling T, Ganswindt A, Pretorius Y, Henley M. Developing welfare parameters for African elephants (Loxodonta africana) in fenced reserves in South Africa. PLoS One 2022; 17:e0264931. [PMID: 35324916 PMCID: PMC8947097 DOI: 10.1371/journal.pone.0264931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
South Africa has many fenced reserves harbouring small to medium sized populations of African elephant (Loxodonta africana), most of which have been translocated. Elephants on fenced reserves may be exposed to various management interventions and practices (translocation, hunting, darting, high tourism impact, contraception programs, disruption due to infrastructure maintenance, etc.). These factors may impact the welfare of elephants. Poor elephant welfare may have serious consequences such as increased inter- and intra-species aggression that could result in fatalities. This is the first study to attempt to define behavioural and physiological welfare parameters for free-ranging elephants on small to medium sized reserves. The eight study sites incorporated reserves with different social structure combinations, elephant life-histories, reserve sizes, habitat, management, and tourism intensity. Data collection consisted of behavioural observations (10-minute videos) as well as faecal samples. By incorporating both behavioural and physiological (faecal glucocorticoid metabolite (fGCM) concentration) parameters, we aimed to investigate whether the two parameters showed similar trends. Five behavioural categories were identified (Arousal, Assessing, Ambivalent, Ambivalent/ Body care, and Frustrated behaviour), with various detailed behaviours demonstrated by the elephants that may indicate the influence of anthropogenic disturbance and possibly impact on animal welfare. The study showed significant differences between the selected detailed behaviours, behavioural categories and fGCM concentrations of elephants across the eight reserves. History seemed to be a decisive factor, as reserves with predominantly ex-captive elephants showed higher frequencies of certain behaviours as well as higher fGCM concentrations. Age, sex, reserve size and season were also found to contribute to our defined welfare indices and fGCM concentrations. This indicates that behavioural parameters, indicative of certain behavioural states, are valuable indicators of welfare, as supported by the physiological response of the elephants. The results also highlight the importance of taking multiple specified behaviours from a category into consideration when evaluating the welfare of elephants, to account for individual variation.
Collapse
Affiliation(s)
| | - Tenisha Roos
- Elephant Reintegration Trust, Port Alfred, South Africa
| | | | - André Ganswindt
- Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | | | - Michelle Henley
- Applied Behavioural Ecology and Environmental Research Unit, University of South Africa, Pretoria, South Africa
- Elephants Alive, Hoedspruit, Limpopo, South Africa
| |
Collapse
|
39
|
Fanter C, Madelaire C, Genereux DP, van Breukelen F, Levesque D, Hindle A. Epigenomics as a paradigm to understand the nuances of phenotypes. J Exp Biol 2022; 225:274619. [PMID: 35258621 DOI: 10.1242/jeb.243411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quantifying the relative importance of genomic and epigenomic modulators of phenotype is a focal challenge in comparative physiology, but progress is constrained by availability of data and analytic methods. Previous studies have linked physiological features to coding DNA sequence, regulatory DNA sequence, and epigenetic state, but few have disentangled their relative contributions or unambiguously distinguished causative effects ('drivers') from correlations. Progress has been limited by several factors, including the classical approach of treating continuous and fluid phenotypes as discrete and static across time and environment, and difficulty in considering the full diversity of mechanisms that can modulate phenotype, such as gene accessibility, transcription, mRNA processing and translation. We argue that attention to phenotype nuance, progressing to association with epigenetic marks and then causal analyses of the epigenetic mechanism, will enable clearer evaluation of the evolutionary path. This would underlie an essential paradigm shift, and power the search for links between genomic and epigenomic features and physiology. Here, we review the growing knowledge base of gene-regulatory mechanisms and describe their links to phenotype, proposing strategies to address widely recognized challenges.
Collapse
Affiliation(s)
- Cornelia Fanter
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Carla Madelaire
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Diane P Genereux
- Vertebrate Genome Biology, Broad Institute, Cambridge, MA 02142, USA
| | - Frank van Breukelen
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Danielle Levesque
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Allyson Hindle
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
40
|
Abstract
AbstractPhenotypic plasticity is an important mechanism that allows populations to adjust to changing environments. Early life experiences can have lasting impacts on how individuals respond to environmental variation later in life (i.e., individual reaction norms), altering the capacity for populations to respond to selection. Here, we incubated lizard embryos (Lampropholis delicata) at two fluctuating developmental temperatures (cold = 23 ºC + / − 3 ºC, hot = 29 ºC + / − 3 ºC, ncold = 26, nhot = 25) to understand how it affected metabolic plasticity to temperature later in life. We repeatedly measured individual reaction norms across six temperatures 10 times over ~ 3.5 months (nobs = 3,818) to estimate the repeatability of average metabolic rate (intercept) and thermal plasticity (slope). The intercept and the slope of the population-level reaction norm was not affected by developmental temperature. Repeatability of average metabolic rate was, on average, 10% lower in hot incubated lizards but stable across all temperatures. The slope of the thermal reaction norm was overall moderately repeatable (R = 0.44, 95% CI = 0.035 – 0.93) suggesting that individual metabolic rate changed consistently with short-term changes in temperature, although credible intervals were quite broad. Importantly, reaction norm repeatability did not depend on early developmental temperature. Identifying factors affecting among-individual variation in thermal plasticity will be increasingly more important for terrestrial ectotherms living in changing climate. Our work implies that thermal metabolic plasticity is robust to early developmental temperatures and has the capacity to evolve, despite there being less consistent variation in metabolic rate under hot environments.
Collapse
|
41
|
Budd AM, Robins JB, Whybird O, Jerry DR. Epigenetics underpins phenotypic plasticity of protandrous sex change in fish. Ecol Evol 2022; 12:e8730. [PMID: 35342607 PMCID: PMC8931711 DOI: 10.1002/ece3.8730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022] Open
Abstract
Phenotypic plasticity is an important driver of species resilience. Often mediated by epigenetic changes, phenotypic plasticity enables individual genotypes to express variable phenotypes in response to environmental change. Barramundi (Lates calcarifer) are a protandrous (male-first) sequential hermaphrodite that exhibits plasticity in length-at-sex change between geographic regions. This plasticity is likely to be mediated by changes in DNA methylation (DNAm), a well-studied epigenetic modification. To investigate the relationships between length, sex, and DNAm in a sequential hermaphrodite, here, we compare DNAm in four conserved vertebrate sex-determining genes in male and female barramundi of differing lengths from three geographic regions of northern Australia. Barramundi first mature as male and later sex change to female upon the attainment of a larger body size; however, a general pattern of increasing female-specific DNAm markers with increasing length was not observed. Significant differences in DNAm between males and females of similar lengths suggest that female-specific DNAm arises rapidly during sex change, rather than gradually with fish growth. The findings also reveal that region-specific differences in length-at-sex change are accompanied by differences in DNAm and are consistent with variability in remotely sensed sea temperature and salinity. Together, these findings provide the first in situ evidence for epigenetically and environmentally mediated sex change in a protandrous hermaphrodite and offer significant insight into the molecular and ecological processes governing the marked and unique plasticity of sex in fish.
Collapse
Affiliation(s)
- Alyssa M Budd
- Centre for Sustainable Tropical Fisheries and Aquaculture James Cook University Townsville Qld Australia
- Centre for Tropical Bioinformatics and Molecular Biology James Cook University Townsville Qld Australia
| | - Julie B Robins
- Ecosciences Precinct Department of Agriculture and Fisheries Brisbane Qld Australia
| | - Olivia Whybird
- Northern Fisheries Centre Department of Agriculture and Fisheries Cairns Qld Australia
| | - Dean R Jerry
- Centre for Sustainable Tropical Fisheries and Aquaculture James Cook University Townsville Qld Australia
- Tropical Futures Institute James Cook University Singapore City Singapore
| |
Collapse
|
42
|
Anastasiadi D, Venney CJ, Bernatchez L, Wellenreuther M. Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol Evol 2021; 36:1124-1140. [PMID: 34489118 DOI: 10.1016/j.tree.2021.08.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
Epigenetic inheritance is another piece of the puzzle of nongenetic inheritance, although the prevalence, sources, persistence, and phenotypic consequences of heritable epigenetic marks across taxa remain unclear. We systematically reviewed over 500 studies from the past 5 years to identify trends in the frequency of epigenetic inheritance due to differences in reproductive mode and germline development. Genetic, intrinsic (e.g., disease), and extrinsic (e.g., environmental) factors were identified as sources of epigenetic inheritance, with impacts on phenotype and adaptation depending on environmental predictability. Our review shows that multigenerational persistence of epigenomic patterns is common in both plants and animals, but also highlights many knowledge gaps that remain to be filled. We provide a framework to guide future studies towards understanding the generational persistence and eco-evolutionary significance of epigenomic patterns.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand
| | - Clare J Venney
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand.
| |
Collapse
|
43
|
Laskowski KL, Seebacher F, Habedank M, Meka J, Bierbach D. Two Locomotor Traits Show Different Patterns of Developmental Plasticity Between Closely Related Clonal and Sexual Fish. Front Physiol 2021; 12:740604. [PMID: 34712149 PMCID: PMC8546259 DOI: 10.3389/fphys.2021.740604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
The capacity to compensate for environmental change determines population persistence and biogeography. In ectothermic organisms, performance at different temperatures can be strongly affected by temperatures experienced during early development. Such developmental plasticity is mediated through epigenetic mechanisms that induce phenotypic changes within the animal's lifetime. However, epigenetic modifiers themselves are encoded by DNA so that developmental plasticity could itself be contingent on genetic diversity. In this study, we test the hypothesis that the capacity for developmental plasticity depends on a species' among-individual genetic diversity. To test this, we exploited a unique species complex that contains both the clonal, genetically identical Amazon molly (Poecilia formosa), and the sexual, genetically diverse Atlantic molly (Poecilia mexicana). We predicted that the greater among-individual genetic diversity in the Atlantic molly may increase their capacity for developmental plasticity. We raised both clonal and sexual mollies at either warm (28°C) or cool (22°C) temperatures and then measured locomotor capacity (critical sustained swimming performance) and unforced movement in an open field across a temperature gradient that simulated environmental conditions often experienced by these species in the wild. In the clonal Amazon molly, differences in the developmental environment led to a shift in the thermal performance curve of unforced movement patterns, but much less so in maximal locomotor capacity. In contrast, the sexual Atlantic mollies exhibited the opposite pattern: developmental plasticity was present in maximal locomotor capacity, but not in unforced movement. Thus our data show that developmental plasticity in clones and their sexual, genetically more diverse sister species is trait dependent. This points toward mechanistic differences in how genetic diversity mediates plastic responses exhibited in different traits.
Collapse
Affiliation(s)
- Kate L Laskowski
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Department of Evolution and Ecology, University of California, Davis, Davis, CA, United States
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, The University of Sydney, Sydney, NSW, Australia
| | - Marie Habedank
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Johannes Meka
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, Berlin, Germany.,Cluster of Excellence "Science of Intelligence," Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
44
|
Lemmen KD, Verhoeven KJF, Declerck SAJ. Experimental evidence of rapid heritable adaptation in the absence of initial standing genetic variation. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kimberley D. Lemmen
- Department of Aquatic Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Koen J. F. Verhoeven
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Steven A. J. Declerck
- Department of Aquatic Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Department of Biology Laboratory of Aquatic Ecology, Evolution and Conservation KULeuven Leuven Belgium
| |
Collapse
|
45
|
Crotti M, Yohannes E, Winfield IJ, Lyle AA, Adams CE, Elmer KR. Rapid adaptation through genomic and epigenomic responses following translocations in an endangered salmonid. Evol Appl 2021; 14:2470-2489. [PMID: 34745338 PMCID: PMC8549615 DOI: 10.1111/eva.13267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying the molecular mechanisms facilitating adaptation to new environments is a key question in evolutionary biology, especially in the face of current rapid and human-induced changes. Translocations have become an important tool for species conservation, but the attendant small population sizes and new ecological pressures might affect phenotypic and genotypic variation and trajectories dramatically and in unknown ways. In Scotland, the European whitefish (Coregonus lavaretus) is native to only two lakes and vulnerable to extirpation. Six new refuge populations were established over the last 30 years as a conservation measure. In this study, we examined whether there is a predictable ecological and evolutionary response of these fishes to translocation. We found eco-morphological differences, as functional traits relating to body shape differed between source and refuge populations. Dual isotopic analyses suggested some ecological release, with the diets in refuge populations being more diverse than in source populations. Analyses of up to 9117 genome-mapped SNPs showed that refuge populations had reduced genetic diversity and elevated inbreeding and relatedness relative to source populations, though genomic differentiation was low (F ST = 0.002-0.030). We identified 14 genomic SNPs that showed shared signals of a selective response to translocations, including some located near or within genes involved in the immune system, nervous system and hepatic functions. Analysis of up to 120,897 epigenomic loci identified a component of consistent differential methylation between source and refuge populations. We found that epigenomic variation and genomic variation were associated with morphological variation, but we were not able to infer an effect of population age because the patterns were also linked with the methodology of the translocations. These results show that conservation-driven translocations affect evolutionary potential by impacting eco-morphological, genomic and epigenomic components of diversity, shedding light on acclimation and adaptation process in these contexts.
Collapse
Affiliation(s)
- Marco Crotti
- Institute of BiodiversityAnimal Health & Comparative MedicineCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | - Elizabeth Yohannes
- Limnological InstituteUniversity of KonstanzKonstanzGermany
- Present address:
Max‐Planck Institute of Animal BehaviorAm Obstberg 1D‐78315RadolfzellGermany
- Present address:
University of KonstanzKonstanzGermany
| | - Ian J. Winfield
- Lake Ecosystems GroupUK Centre for Ecology & HydrologyLancaster Environment CentreBailrigg, LancasterUK
| | - Alex A. Lyle
- Scottish Centre for Ecology and the Natural EnvironmentUniversity of GlasgowRowardennanUK
| | - Colin E. Adams
- Institute of BiodiversityAnimal Health & Comparative MedicineCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
- Scottish Centre for Ecology and the Natural EnvironmentUniversity of GlasgowRowardennanUK
| | - Kathryn R. Elmer
- Institute of BiodiversityAnimal Health & Comparative MedicineCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
46
|
Carneiro VC, Lyko F. Rapid Epigenetic Adaptation in Animals and Its Role in Invasiveness. Integr Comp Biol 2021; 60:267-274. [PMID: 32333755 PMCID: PMC7526798 DOI: 10.1093/icb/icaa023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Invasive species represent a serious ecological threat for many ecosystems worldwide and provide a unique opportunity to investigate rapid adaptation and evolution. Genetic variation allows populations of organisms to be both robust and adaptable to different environmental conditions over evolutionary timeframes. In contrast, invasive animals can rapidly adapt to new environments, with minimal genetic diversity. Thus, the extent to which environmental effects can trigger epigenetic responses is particularly interesting for understanding the role of epigenetics in rapid adaptation. In this review, we provide a brief overview of the different epigenetic mechanisms that control gene expression, and emphasize the importance of epigenetics for environmental adaptation. We also discuss recent publications that provide important examples for the role of epigenetic mechanisms in environmental adaptation. Furthermore, we present an overview of the current knowledge about epigenetic modulation as an adaptive strategy for invasive species. A particularly interesting example is provided by the marbled crayfish, a novel, monoclonal freshwater crayfish species that has colonized diverse habitats within a few years. Finally, we address important limitations of current approaches and highlight the potential importance of less well-known mechanisms for non-genetic organismal adaptation.
Collapse
Affiliation(s)
- Vitor Coutinho Carneiro
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| |
Collapse
|
47
|
Turner WC, Kamath PL, van Heerden H, Huang YH, Barandongo ZR, Bruce SA, Kausrud K. The roles of environmental variation and parasite survival in virulence-transmission relationships. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210088. [PMID: 34109041 PMCID: PMC8170194 DOI: 10.1098/rsos.210088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Disease outbreaks are a consequence of interactions among the three components of a host-parasite system: the infectious agent, the host and the environment. While virulence and transmission are widely investigated, most studies of parasite life-history trade-offs are conducted with theoretical models or tractable experimental systems where transmission is standardized and the environment controlled. Yet, biotic and abiotic environmental factors can strongly affect disease dynamics, and ultimately, host-parasite coevolution. Here, we review research on how environmental context alters virulence-transmission relationships, focusing on the off-host portion of the parasite life cycle, and how variation in parasite survival affects the evolution of virulence and transmission. We review three inter-related 'approaches' that have dominated the study of the evolution of virulence and transmission for different host-parasite systems: (i) evolutionary trade-off theory, (ii) parasite local adaptation and (iii) parasite phylodynamics. These approaches consider the role of the environment in virulence and transmission evolution from different angles, which entail different advantages and potential biases. We suggest improvements to how to investigate virulence-transmission relationships, through conceptual and methodological developments and taking environmental context into consideration. By combining developments in life-history evolution, phylogenetics, adaptive dynamics and comparative genomics, we can improve our understanding of virulence-transmission relationships across a diversity of host-parasite systems that have eluded experimental study of parasite life history.
Collapse
Affiliation(s)
- Wendy C. Turner
- US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Henriette van Heerden
- Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Yen-Hua Huang
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zoe R. Barandongo
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer A. Bruce
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Kyrre Kausrud
- Section for Epidemiology, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway
| |
Collapse
|
48
|
Venney CJ, Sutherland BJG, Beacham TD, Heath DD. Population differences in Chinook salmon ( Oncorhynchus tshawytscha) DNA methylation: Genetic drift and environmental factors. Ecol Evol 2021; 11:6846-6861. [PMID: 34141260 PMCID: PMC8207424 DOI: 10.1002/ece3.7531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Local adaptation and phenotypic differences among populations have been reported in many species, though most studies focus on either neutral or adaptive genetic differentiation. With the discovery of DNA methylation, questions have arisen about its contribution to individual variation in and among natural populations. Previous studies have identified differences in methylation among populations of organisms, although most to date have been in plants and model animal species. Here we obtained eyed eggs from eight populations of Chinook salmon (Oncorhynchus tshawytscha) and assayed DNA methylation at 23 genes involved in development, immune function, stress response, and metabolism using a gene-targeted PCR-based assay for next-generation sequencing. Evidence for population differences in methylation was found at eight out of 23 gene loci after controlling for developmental timing in each individual. However, we found no correlation between freshwater environmental parameters and methylation variation among populations at those eight genes. A weak correlation was identified between pairwise DNA methylation dissimilarity among populations and pairwise F ST based on 15 microsatellite loci, indicating weak effects of genetic drift or geographic distance on methylation. The weak correlation was primarily driven by two genes, GTIIBS and Nkef. However, single-gene Mantel tests comparing methylation and pairwise F ST were not significant after Bonferroni correction. Thus, population differences in DNA methylation are more likely related to unmeasured oceanic environmental conditions, local adaptation, and/or genetic drift. DNA methylation is an additional mechanism that contributes to among population variation, with potential influences on organism phenotype, adaptive potential, and population resilience.
Collapse
Affiliation(s)
- Clare J. Venney
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorONCanada
| | | | - Terry D. Beacham
- Fisheries and Oceans CanadaPacific Biological StationNanaimoBCCanada
| | - Daniel D. Heath
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorONCanada
- Department of Integrative BiologyUniversity of WindsorWindsorONCanada
| |
Collapse
|
49
|
Stenger PL, Ky CL, Reisser CMO, Cosseau C, Grunau C, Mege M, Planes S, Vidal-Dupiol J. Environmentally Driven Color Variation in the Pearl Oyster Pinctada margaritifera var. cumingii (Linnaeus, 1758) Is Associated With Differential Methylation of CpGs in Pigment- and Biomineralization-Related Genes. Front Genet 2021; 12:630290. [PMID: 33815466 PMCID: PMC8018223 DOI: 10.3389/fgene.2021.630290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/19/2021] [Indexed: 11/15/2022] Open
Abstract
Today, it is common knowledge that environmental factors can change the color of many animals. Studies have shown that the molecular mechanisms underlying such modifications could involve epigenetic factors. Since 2013, the pearl oyster Pinctada margaritifera var. cumingii has become a biological model for questions on color expression and variation in Mollusca. A previous study reported color plasticity in response to water depth variation, specifically a general darkening of the nacre color at greater depth. However, the molecular mechanisms behind this plasticity are still unknown. In this paper, we investigate the possible implication of epigenetic factors controlling shell color variation through a depth variation experiment associated with a DNA methylation study performed at the whole genome level with a constant genetic background. Our results revealed six genes presenting differentially methylated CpGs in response to the environmental change, among which four are linked to pigmentation processes or regulations (GART, ABCC1, MAPKAP1, and GRL101), especially those leading to darker phenotypes. Interestingly, the genes perlucin and MGAT1, both involved in the biomineralization process (deposition of aragonite and calcite crystals), also showed differential methylation, suggesting that a possible difference in the physical/spatial organization of the crystals could cause darkening (iridescence or transparency modification of the biomineral). These findings are of great interest for the pearl production industry, since wholly black pearls and their opposite, the palest pearls, command a higher value on several markets. They also open the route of epigenetic improvement as a new means for pearl production improvement.
Collapse
Affiliation(s)
- Pierre-Louis Stenger
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| | - Chin-Long Ky
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| | - Céline M. O. Reisser
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Céline Cosseau
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Perpignan, France
| | - Christoph Grunau
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Perpignan, France
| | - Mickaël Mege
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IFREMER, PDG-RBE-SGMM-LGPMM, La Tremblade, France
| | - Serge Planes
- EPHE-UPVD-CNRS, USR 3278 CRIOBE, Labex Corail, PSL Research University, Université de Perpignan, Perpignan, France
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
50
|
Understanding breast cancer heterogeneity through non-genetic heterogeneity. Breast Cancer 2021; 28:777-791. [PMID: 33723745 DOI: 10.1007/s12282-021-01237-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/04/2021] [Indexed: 01/01/2023]
Abstract
Intricacy in treatment and diagnosis of breast cancer has been an obstacle due to genotype and phenotype heterogeneity. Understanding of non-genetic heterogeneity mechanisms along with considering role of genetic heterogeneity may fill the gaps in landscape painting of heterogeneity. The main factors contribute to non-genetic heterogeneity including: transcriptional pulsing/bursting or discontinuous transcriptions, stochastic partitioning of components at cell division and various signal transduction from tumor ecosystem. Throughout this review, we desired to provide a conceptual framework focused on non-genetic heterogeneity, which has been intended to offer insight into prediction, diagnosis and treatment of breast cancer.
Collapse
|