1
|
Gnanadesikan GE, Bray EE, Cook EN, Levy KM, Douglas LELC, Kennedy BS, Tecot SR, MacLean EL. Basal plasma oxytocin & fecal cortisol concentrations are highly heritable and associated with individual differences in behavior & cognition in dog puppies. Horm Behav 2024; 165:105612. [PMID: 39116461 DOI: 10.1016/j.yhbeh.2024.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Oxytocin and cortisol are hormones that can influence cognition and behavior, but the relationships between endogenous concentrations and individual differences in cognitive and behavioral phenotypes remain poorly understood. Across mammals, oxytocin has important roles in diverse social behaviors, and in dogs, it has been implicated in human-oriented behaviors such as social gaze and point-following. Cortisol, an end-product of the hypothalamic-pituitary-adrenal (HPA) axis, is often studied in relation to temperament and emotional reactivity, but it is also known to modulate executive functions. In this study, we measured basal fecal cortisol (n = 247) and plasma oxytocin (n = 249) in dog puppies from a pedigreed population (Canine Companions ®). We collected cognitive and behavioral data from these subjects (n = 247), including measures of human-oriented social cognition, memory, inhibitory control, perceptual discriminations, and temperament. Oxytocin concentrations were estimated to be very highly heritable (h2 = 0.90-0.99) and cortisol concentrations were estimated to be moderately-highly heritable (h2 = 0.43-0.47). Bayesian mixed models controlling for relatedness revealed that oxytocin concentrations were positively associated with spatial working memory and displayed a negative quadratic relationship with behavioral laterality, but no credible associations were seen for social measures. Cortisol concentrations exhibited a negative linear relationship with performance on an inhibitory control task and a negative quadratic relationship with bold behavioral reactions to a novel object. Collectively, our results suggest that individual differences in oxytocin and cortisol concentrations are under strong genetic control in dogs and are associated with phenotypic variation in aspects of temperament, behavioral laterality, and executive function.
Collapse
Affiliation(s)
- Gitanjali E Gnanadesikan
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA; Department of Anthropology, Emory University, Atlanta, GA 30322, USA.
| | - Emily E Bray
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Canine Companions for Independence, Santa Rosa, CA 95402, USA; College of Veterinary Medicine, University of Arizona, Tucson, AZ 85721, USA; Psychology Department, University of Arizona, Tucson, AZ 85721, USA
| | - Erica N Cook
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA
| | - Kerinne M Levy
- Canine Companions for Independence, Santa Rosa, CA 95402, USA
| | | | | | - Stacey R Tecot
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA
| | - Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA; College of Veterinary Medicine, University of Arizona, Tucson, AZ 85721, USA; Psychology Department, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Surkova EN, Savinetskaya LE, Khropov IS, Tchabovsky AV. Flexible males, reactive females: faecal glucocorticoid metabolites indicate increased stress in the colonist population, damping with time in males but not in females. J Comp Physiol B 2024; 194:545-554. [PMID: 38953915 DOI: 10.1007/s00360-024-01564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 07/04/2024]
Abstract
Individuals colonizing new areas at expanding ranges encounter numerous and unpredictable stressors. Exposure to unfamiliar environments suggests that colonists would differ in stress levels from residents living in familiar conditions. Few empirical studies tested this hypothesis and produced mixed results, and the role of stress regulation in colonization remains unclear. Studies relating stress levels to colonization mainly use a geographical analysis comparing established colonist populations with source populations. We used faecal glucocorticoid metabolites (FGMs) to assess both spatial and temporal dynamics of stress levels in an expanding population of midday gerbils (Meriones meridianus). We demonstrated that adult males and females had higher FGM levels in newly emerged colonies, compared with the source population, but differed in the pattern of FGM dynamics post-foundation. In males, FGM levels sharply decreased in the second year after colony establishment. In females, FGM levels did not change with time and remained high despite the decreasing environmental unpredictability, exhibiting among-individual variation. Increased stress levels of colonist males damping with time post-colonization suggest they are flexible in responding to immediate changes in environmental uncertainty. On the contrary, high and stable over generations stress levels uncoupled from the changes in the environmental uncertainty in female colonists imply that they carry a relatively constant phenotype associated with the reactive coping strategy favouring colonization. We link sex differences in consistency and plasticity in stress regulation during colonization to the sex-specific life-history strategies.
Collapse
Affiliation(s)
- Elena N Surkova
- Laboratory for Population Ecology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii pr, Moscow, Russia
| | - Ludmila E Savinetskaya
- Laboratory for Population Ecology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii pr, Moscow, Russia
| | - Ivan S Khropov
- Laboratory for Population Ecology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii pr, Moscow, Russia
| | - Andrey V Tchabovsky
- Laboratory for Population Ecology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii pr, Moscow, Russia.
| |
Collapse
|
3
|
Bryant AR, Gabor CR. Lack of glucocorticoid flexibility is indicative of wear-and-tear in Hyla versicolor tadpoles from agricultural environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124265. [PMID: 38821344 DOI: 10.1016/j.envpol.2024.124265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
In habitats where stressors are frequent or persistent, it can become increasingly difficult for wildlife to appropriately match their endocrine responses to these more challenging environments. The dynamic regulation of glucocorticoid (GC) hormones plays a crucial role in determining how well individuals cope with environmental changes. Amphibians exposed to agricultural stressors can dampen aspects of their GC profile (baseline, agitation, recovery, stress responsiveness, and negative feedback) to cope in these stressful environments, but this dampening can lead to reductions in an individual's reactive scope and a loss of endocrine flexibility. Organic agriculture could potentially limit some of these effects, however, little is known about how amphibians respond physiologically to organic agricultural environments. We compared GC profiles of Hyla versicolor tadpoles from three treatments: natural ponds (<5% agriculture within 500m), ponds near organic farms, and ponds near conventional farms. We hypothesized that tadpoles would cope with agricultural habitats by dampening stress responsiveness and exhibiting more efficient negative feedback and that the magnitude of these changes in response would differ based on agricultural method. We found that tadpoles from conventional and organic ponds were less likely to downregulate GCs via negative feedback after stressor exposure than tadpoles from natural ponds. For agricultural tadpoles that did downregulate GCs after the stressor, we found lower stress responsiveness and faster downregulation to baseline corticosterone than tadpoles from natural ponds. These results point to an accumulation of wear-and-tear, leading to an overall reduction in reactive scope and limited GC flexibility in our agricultural tadpoles. Regardless of agricultural method used, agricultural tadpoles exhibited the same patterns of GC response, indicating that current efforts to incentivize farmers to switch to organic farming methods may not be sufficient to address negative agricultural impacts on amphibians.
Collapse
Affiliation(s)
- Amanda R Bryant
- Department of Biology, Texas State University, San Marcos, TX, 78666, United States.
| | - Caitlin R Gabor
- Department of Biology, Texas State University, San Marcos, TX, 78666, United States
| |
Collapse
|
4
|
Taff CC, Baldan D, Mentesana L, Ouyang JQ, Vitousek MN, Hau M. Endocrine flexibility can facilitate or constrain the ability to cope with global change. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220502. [PMID: 38310929 PMCID: PMC10838644 DOI: 10.1098/rstb.2022.0502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/21/2023] [Indexed: 02/06/2024] Open
Abstract
Global climate change has increased average environmental temperatures world-wide, simultaneously intensifying temperature variability and extremes. Growing numbers of studies have documented phenological, behavioural and morphological responses to climate change in wild populations. As systemic signals, hormones can contribute to orchestrating many of these phenotypic changes. Yet little is known about whether mechanisms like hormonal flexibility (reversible changes in hormone concentrations) facilitate or limit the ability of individuals, populations and species to cope with a changing climate. In this perspective, we discuss different mechanisms by which hormonal flexibility, primarily in glucocorticoids, could promote versus hinder evolutionary adaptation to changing temperature regimes. We focus on temperature because it is a key gradient influenced by climate change, it is easy to quantify, and its links to hormones are well established. We argue that reaction norm studies that connect individual responses to population-level and species-wide patterns will be critical for making progress in this field. We also develop a case study on urban heat islands, where several key questions regarding hormonal flexibility and adaptation to climate change can be addressed. Understanding the mechanisms that allow animals to cope when conditions become more challenging will help in predicting which populations are vulnerable to ongoing climate change. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Conor C. Taff
- Laboratory Ornithology and Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Biology, Colby College, Waterville, ME 04901, USA
| | - Davide Baldan
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Lucia Mentesana
- Evolutionary Physiology, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
- Faculty of Sciences, Republic University, Montevideo, 11200, Uruguay
| | - Jenny Q. Ouyang
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Maren N. Vitousek
- Laboratory Ornithology and Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michaela Hau
- Evolutionary Physiology, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
- Department of Biology, University of Konstanz, Konstanz, 78467, Germany
| |
Collapse
|
5
|
Smit JAH, Vooijs R, Lindenburg P, Baugh AT, Halfwerk W. Noise and light pollution elicit endocrine responses in urban but not forest frogs. Horm Behav 2024; 157:105453. [PMID: 37979210 DOI: 10.1016/j.yhbeh.2023.105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Urban areas are characterised by the presence of sensory pollutants, such as anthropogenic noise and artificial light at night (ALAN). Animals can quickly adapt to novel environmental conditions by adjusting their behaviour, which is proximately regulated by endocrine systems. While endocrine responses to sensory pollution have been widely reported, this has not often been linked to changes in behaviour, hampering the understanding of adaptiveness of endocrine responses. Our aim was, therefore, to investigate the effects of urbanisation, specifically urban noise and light pollution, on hormone levels in male urban and forest túngara frogs (Engystomops pustulosus), a species with reported population divergence in behaviour in response to urbanisation. We quantified testosterone and corticosterone release rates in the field and in the lab before and after exposure to urban noise and/or light. We show that urban and forest frogs differ in their endocrine phenotypes under field as well as lab conditions. Moreover, in urban frogs exposure to urban noise and light led, respectively, to an increase in testosterone and decrease in corticosterone, whereas in forest frogs sensory pollutants did not elicit any endocrine response. Our results show that urbanisation, specifically noise and light pollution, can modulate hormone levels in urban and forest populations differentially. The observed endocrine responses are consistent with the observed behavioural changes in urban frogs, providing a proximate explanation for the presumably adaptive behavioural changes in response to urbanisation.
Collapse
Affiliation(s)
- Judith A H Smit
- Amsterdam Institute for Life and Environment, Ecology and Evolution, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá.
| | - Riet Vooijs
- Amsterdam Institute for Life and Environment, Ecology and Evolution, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Peter Lindenburg
- Research Group Metabolomics, Leiden Centre for Applied Bioscience, University of Applied Sciences Leiden, the Netherlands
| | - Alexander T Baugh
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| | - Wouter Halfwerk
- Amsterdam Institute for Life and Environment, Ecology and Evolution, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Mutwill AM, Schielzeth H, Richter SH, Kaiser S, Sachser N. Conditional on the social environment? Roots of repeatability in hormone concentrations of male guinea pigs. Horm Behav 2023; 155:105423. [PMID: 37713739 DOI: 10.1016/j.yhbeh.2023.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023]
Abstract
Individual differences in behavioral and physiological traits among members of the same species are increasingly being recognized as important in animal research. On the group level, shaping of behavioral and hormonal phenotypes by environmental factors has been reported in different taxa. The extent to which the environment impacts behavior and hormones on the individual level, however, is rather unexplored. Hormonal phenotypes of guinea pigs can be shaped by the social environment on the group level: pair-housed and colony-housed males differ systematically in average testosterone and stressor-induced cortisol levels (i.e. cortisol responsiveness). The aim of the present study was to evaluate whether repeatability and individual variance components (i.e. between- and within-individual variation) of hormonal phenotypes also differ in different social environments. To test this, we determined baseline testosterone, baseline cortisol, and cortisol responsiveness after challenge in same-aged pair-housed and colony-housed guinea pig males over a period of four months. We found comparable repeatability for baseline cortisol and cortisol responsiveness in males from both social conditions. In contrast, baseline testosterone was repeatable only in males from colonies. Interestingly, this result was brought about by significantly larger between-individual variation of testosterone, that was not explained by differences in dominance rank. Individualized social niches differentiated under complex colony, but not pair housing, could be an explanation for this finding.
Collapse
Affiliation(s)
- Alexandra M Mutwill
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany.
| | - Holger Schielzeth
- Population Ecology Group, Institute of Ecology, Friedrich Schiller University, Dornburgerstr. 159, 07743 Jena, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| |
Collapse
|
7
|
Lind CM, Meyers RA, Moore IT, Agugliaro J, McPherson S, Farrell TM. Ophidiomycosis is associated with alterations in the acute glycemic and glucocorticoid stress response in a free-living snake species. Gen Comp Endocrinol 2023; 339:114295. [PMID: 37121405 DOI: 10.1016/j.ygcen.2023.114295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Emerging fungal pathogens are a direct threat to vertebrate biodiversity. Elucidating the mechanisms by which mycoses impact host fitness is an important step towards effective prediction and management of disease outcomes in populations. The vertebrate acute stress response is an adaptive mechanism that allows individuals to meet challenges to homeostasis and survival in dynamic environments. Disease may cause stress, and coping with fungal infections may require shifts in resource allocation that alter the ability of hosts to mount an acute response to other external stressors. We examined the glucocorticoid and glycemic response to acute capture stress in a population of free-living pygmy rattlesnakes, Sistrurus miliarius, afflicted with an emerging mycosis (ophidiomycosis) across seasons. In all combinations of disease status and season, acute capture stress resulted in a significant glucocorticoid and glycemic response. While disease was not associated with elevated baseline or stress-induced corticosterone (CORT), disease was associated with an increased glucocorticoid stress response (post-stress minus baseline) across seasons. Both baseline and stress-induced glucose were lower in snakes with ophidiomycosis compared to uninfected snakes. The relationship between glucose and pre- and post-stress CORT depended on infection status, and positive correlations were only observed in uninfected snakes. The variables which explained CORT and glucose levels were different. The pattern of CORT was highly seasonal (winter high - summer low) and negatively related to body condition. Glucose, on the other hand, did not vary seasonally or with body condition and was strongly related to sex (male high - female low). Our results highlight the fact that circulating CORT and glucose are sensitive to different intrinsic and extrinsic predictor variables and support the hypothesis that disease alters the acute physiological stress response. Whether the effects of ophidiomycosis on the acute stress response result in sublethal effects on fitness should be investigated in future studies.
Collapse
Affiliation(s)
- Craig M Lind
- Stockton University, 101 Vera King Farris Dr, Galloway, NJ 08205, United States.
| | - Riley A Meyers
- Virginia Tech, Dept. Biological Sciences, Blacksburg, VA 24061, United States
| | - Ignacio T Moore
- Virginia Tech, Dept. Biological Sciences, Blacksburg, VA 24061, United States
| | - Joseph Agugliaro
- Fairleigh Dickinson University, 285 Madison Avenue, Madison, NJ 07940, United States
| | - Samantha McPherson
- Stetson University, 421 N Woodland Blvd, DeLand, FL 32723, United States
| | - Terence M Farrell
- Stetson University, 421 N Woodland Blvd, DeLand, FL 32723, United States
| |
Collapse
|
8
|
Majer AD, Paitz RT, Tricola GM, Geduldig JE, Litwa HP, Farmer JL, Prevelige BR, McMahon EK, McNeely T, Sisson ZR, Frenz BJ, Ziur AD, Clay EJ, Eames BD, McCollum SE, Haussmann MF. The response to stressors in adulthood depends on the interaction between prenatal exposure to glucocorticoids and environmental context. Sci Rep 2023; 13:6180. [PMID: 37061562 PMCID: PMC10105737 DOI: 10.1038/s41598-023-33447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023] Open
Abstract
Maternal stress during reproduction can influence how offspring respond to stress later in life. Greater lifetime exposure to glucocorticoid hormones released during stress is linked to greater risks of behavioral disorders, disease susceptibility, and mortality. The immense variation in individual's stress responses is explained, in part, by prenatal glucocorticoid exposure. To explore the long-term effects of embryonic glucocorticoid exposure, we injected Japanese quail (Coturnix japonica) eggs with corticosterone. We characterized the endocrine stress response in offspring and measured experienced aggression at three different ages. We found that prenatal glucocorticoid exposure affected (1) the speed at which the stress response was terminated suggesting dysregulated negative feedback, (2) baseline corticosterone levels in a manner dependent on current environmental conditions with higher levels of experienced aggression associated with higher levels of baseline corticosterone, (3) the magnitude of an acute stress response based on baseline concentrations. We finish by proposing a framework that can be used to test these findings in future work. Overall, our findings suggest that the potential adaptive nature of prenatal glucocorticoid exposure is likely dependent on environmental context and may also be tempered by the negative effects of longer exposure to glucocorticoids each time an animal faces a stressor.
Collapse
Affiliation(s)
- Ariana D Majer
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Ryan T Paitz
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Gianna M Tricola
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Jack E Geduldig
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Hannah P Litwa
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Jenna L Farmer
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | | | - Elyse K McMahon
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Taylor McNeely
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Zach R Sisson
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Brian J Frenz
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Alexis D Ziur
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Emily J Clay
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Brad D Eames
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | | | - Mark F Haussmann
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA.
| |
Collapse
|
9
|
Vitousek MN, Dantzer B, Fuxjager MJ, Schlinger BA. Evolutionary behavioral endocrinology: Introduction to the special issue. Horm Behav 2023; 152:105356. [PMID: 37031556 DOI: 10.1016/j.yhbeh.2023.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Affiliation(s)
- Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, United States of America; Cornell Lab of Ornithology, Ithaca, NY 14850, United States of America
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States of America; Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, United States of America
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, United States of America; Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095, United States of America.
| |
Collapse
|
10
|
Siefferman L, Bentz AB, Rosvall KA. Decoupling pioneering traits from latitudinal patterns in a north American bird experiencing a southward range shift. J Anim Ecol 2023. [PMID: 36815243 DOI: 10.1111/1365-2656.13907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/12/2022] [Indexed: 02/24/2023]
Abstract
Ecogeographic rules describe spatial patterns in biological trait variation and shed light on the drivers of such variation. In animals, a consensus is emerging that 'pioneering' traits may facilitate range shifts via a set of bold, aggressive and stress-resilient traits. Many of these same traits are associated with more northern latitudes, and most range shifts in the northern hemisphere indicate northward movement. As a consequence, it is unclear whether pioneering traits are simply corollaries of existing latitudinal variation, or whether they override other well-trodden latitudinal patterning as a unique ecogeographic rule of phenotypic variation. The tree swallow Tachycineta bicolor is a songbird undergoing a southward range shift in the eastern United States, in direct opposition of the poleward movement seen in most other native species' range shifts. Because this organic range shift countervails the typical direction of movement, this case study provides for unique ecological insights on organisms and their ability to thrive in our changing world. We sampled female birds across seven populations, quantifying behavioural, physiological and morphological traits. We also used GIS and field data to quantify a core set of ecological factors with strong ties to these traits as well as female performance. Females at more southern expansion sites displayed higher maternal aggression, higher baseline corticosterone and more pronounced elevation of corticosterone following a standardized stressor, contrary to otherwise largely conserved latitudinal patterning in these traits. Microhabitat variation explained some quantitative phenotypic variation, but the expansion and historic ranges did not differ in openness, distance to water or breeding density. This countervailing range shift therefore suggests that pioneering traits are not simply corollaries of existing latitudinal variation, but rather, they may override other well-trodden latitudinal patterning as a unique ecogeographic rule of phenotypic variation.
Collapse
Affiliation(s)
- Lynn Siefferman
- Department of Biology, Appalachian State University, Boone, North Carolina, USA
| | - Alexandra B Bentz
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | | |
Collapse
|
11
|
Palacios MG, Bronikowski AM, Amer A, Gangloff EJ. Transgenerational effects of maternal corticosterone across early life in a viviparous snake. Gen Comp Endocrinol 2023; 331:114162. [PMID: 36356645 DOI: 10.1016/j.ygcen.2022.114162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Glucocorticoids (GCs) are central mediators of vertebrate responses to intrinsic and extrinsic stimuli. Among the sources of variation in circulating GCs are transgenerational effects mediated by mothers. Here we studied potential maternal effects mediated by GCs on offspring phenotype in a live-bearing reptile, the western terrestrial garter snake (Thamnophis elegans). We evaluated the association between baseline corticosterone (CORT) levels during gestation (i.e., preparturition) in field-captured mothers and 1) reproductive success and offspring sex ratios, 2) birth phenotypic traits of offspring born under common-garden laboratory conditions, and 3) neonate (age 3 months) and juvenile (age 12 months) traits of offspring raised under two thermal regimes ('warm' and 'cool') during their first year of life. Reproductive success and offspring sex ratios were not associated with preparturition maternal CORT, but pregnant snakes with higher CORT levels gave birth to smaller, lighter offspring, which tended to grow faster to age three months. Neonate baseline CORT varied with preparturition maternal CORT in a sex-specific manner (positive trend for females, negative for males). Maternal CORT effects on offspring phenotype were no longer detectable in juveniles at age one year. Instead, juvenile phenotypes were most influenced by rearing environment, with offspring raised under the cool regime showing higher baseline CORT and slower growth than those raised under warmer conditions. Our findings support the notion that offspring phenotype might be continuously adjusted in response to environmental cues -both pre- and post-natal- and that the strength of maternal CORT effects declines as offspring develop and experience unique environmental challenges. Our results contribute to a growing literature on transgenerational effects of hormones and help to fill a gap in our knowledge of these effects in ectothermic amniotes.
Collapse
Affiliation(s)
- Maria G Palacios
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA; Centro Para el Estudio de Sistemas Marinos, CCT CONICET-CENPAT, Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina.
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA; Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Ali Amer
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| |
Collapse
|
12
|
Zimmer C, Taff CC, Ardia DR, Rosvall KA, Kallenberg C, Bentz AB, Taylor AR, Johnson LS, Vitousek MN. Gene expression in the female tree swallow brain is associated with inter- and intra-population variation in glucocorticoid levels. Horm Behav 2023; 147:105280. [PMID: 36403365 DOI: 10.1016/j.yhbeh.2022.105280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 10/12/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Studies of the evolutionary causes and consequences of variation in circulating glucocorticoids (GCs) have begun to reveal how they are shaped by selection. Yet the extent to which variation in circulating hormones reflects variation in other important regulators of the hypothalamic-pituitary-adrenal (HPA) axis, and whether these relationships vary among populations inhabiting different environments, remain poorly studied. Here, we compare gene expression in the brain of female tree swallows (Tachycineta bicolor) from populations that breed in environments that differ in their unpredictability. We find evidence of inter-population variation in the expression of glucocorticoid and mineralocorticoid receptors in the hypothalamus, with the highest gene expression in a population from an extreme environment, and lower expression in a population from a more consistent environment as well as in birds breeding at an environmentally variable high-altitude site that are part of a population that inhabits a mixture of high and low altitude habitats. Within some populations, variation in circulating GCs predicted differences in gene expression, particularly in the hypothalamus. However, some patterns were present in all populations, whereas others were not. These results are consistent with the idea that some combination of local adaptation and phenotypic plasticity may modify components of the HPA axis affecting stress resilience. Our results also underscore that a comprehensive understanding of the function and evolution of the stress response cannot be gained from measuring circulating hormones alone, and that future studies that apply a more explicitly evolutionary approach to important regulatory traits are likely to provide significant insights.
Collapse
Affiliation(s)
- Cedric Zimmer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, Université Sorbonne Paris Nord, UR 4443, 93430 Villetaneuse, France.
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Daniel R Ardia
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Christine Kallenberg
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alexandra B Bentz
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA; Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Audrey R Taylor
- Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - L Scott Johnson
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| |
Collapse
|
13
|
Grieneisen L, Blekhman R, Archie E. How longitudinal data can contribute to our understanding of host genetic effects on the gut microbiome. Gut Microbes 2023; 15:2178797. [PMID: 36794811 PMCID: PMC9980606 DOI: 10.1080/19490976.2023.2178797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
A key component of microbiome research is understanding the role of host genetic influence on gut microbial composition. However, it can be difficult to link host genetics with gut microbial composition because host genetic similarity and environmental similarity are often correlated. Longitudinal microbiome data can supplement our understanding of the relative role of genetic processes in the microbiome. These data can reveal environmentally contingent host genetic effects, both in terms of controlling for environmental differences and in comparing how genetic effects differ by environment. Here, we explore four research areas where longitudinal data could lend new insights into host genetic effects on the microbiome: microbial heritability, microbial plasticity, microbial stability, and host and microbiome population genetics. We conclude with a discussion of methodological considerations for future studies.
Collapse
Affiliation(s)
- Laura Grieneisen
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - Ran Blekhman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Elizabeth Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
14
|
Sinclair ECC, Martin PR, Bonier F. Among-species variation in hormone concentrations is associated with urban tolerance in birds. Proc Biol Sci 2022; 289:20221600. [PMID: 36448281 PMCID: PMC9709560 DOI: 10.1098/rspb.2022.1600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
As cities expand across the globe, understanding factors that underlie variation in urban tolerance is vital for predicting changes in patterns of biodiversity. Endocrine traits, like circulating hormone concentrations and regulation of endocrine responses, might contribute to variation in species' ability to cope with urban challenges. For example, variation in glucocorticoid and androgen concentrations has been linked to life-history and behavioural traits that are associated with urban tolerance. However, we lack an understanding of the degree to which evolved differences in endocrine traits predict variation in urban tolerance across species. We analysed 1391 estimates of circulating baseline corticosterone, stress-induced corticosterone, and testosterone concentrations paired with citizen-science-derived urban occurrence scores in a broad comparative analysis of endocrine phenotypes across 71 bird species that differ in their occurrence in urban habitats. Our results reveal context-dependent links between baseline corticosterone and urban tolerance, as well as testosterone and urban tolerance. Stress-induced corticosterone was not related to urban tolerance. These findings suggest that some endocrine phenotypes contribute to a species' tolerance of urban habitats, but also indicate that other aspects of the endocrine phenotype, such as the ability to appropriately attenuate responses to urban challenges, might be important for success in cities.
Collapse
Affiliation(s)
- Emma C. C. Sinclair
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Paul R. Martin
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Frances Bonier
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
15
|
Hau M, Deimel C, Moiron M. Great tits differ in glucocorticoid plasticity in response to spring temperature. Proc Biol Sci 2022; 289:20221235. [PMID: 36350212 PMCID: PMC9653245 DOI: 10.1098/rspb.2022.1235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/14/2022] [Indexed: 09/05/2023] Open
Abstract
Fluctuations in environmental temperature affect energy metabolism and stimulate the expression of reversible phenotypic plasticity in vertebrate behavioural and physiological traits. Changes in circulating concentrations of glucocorticoid hormones often underpin environmentally induced phenotypic plasticity. Ongoing climate change is predicted to increase fluctuations in environmental temperature globally, making it imperative to determine the standing phenotypic variation in glucocorticoid responses of free-living populations to evaluate their potential for coping via plastic or evolutionary changes. Using a reaction norm approach, we repeatedly sampled wild great tit (Parus major) individuals for circulating glucocorticoid concentrations during reproduction across five years to quantify individual variation in glucocorticoid plasticity along an environmental temperature gradient. As expected, baseline and stress-induced glucocorticoid concentrations increased with lower environmental temperatures at the population and within-individual level. Moreover, we provide unique evidence that individuals differ significantly in their plastic responses to the temperature gradient for both glucocorticoid traits, with some displaying greater plasticity than others. Average concentrations and degree of plasticity covaried for baseline glucocorticoids, indicating that these two reaction norm components are linked. Hence, individual variation in glucocorticoid plasticity in response to a key environmental factor exists in a wild vertebrate population, representing a crucial step to assess their potential to endure temperature fluctuations.
Collapse
Affiliation(s)
- Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen, Germany
- University of Konstanz, Konstanz, Germany
| | | | - Maria Moiron
- Institute of Avian Research, Wilhelmshaven, Germany
| |
Collapse
|
16
|
Rosvall KA. Evolutionary endocrinology and the problem of Darwin's tangled bank. Horm Behav 2022; 146:105246. [PMID: 36029721 DOI: 10.1016/j.yhbeh.2022.105246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/20/2022] [Accepted: 08/10/2022] [Indexed: 11/04/2022]
Abstract
Like Darwin's tangled bank of biodiversity, the endocrine mechanisms that give rise to phenotypic diversity also exhibit nearly endless forms. This tangled bank of mechanistic diversity can prove problematic as we seek general principles on the role of endocrine mechanisms in phenotypic evolution. A key unresolved question is therefore: to what degree are specific endocrine mechanisms re-used to bring about replicated phenotypic evolution? Related areas of inquiry are booming in molecular ecology, but behavioral traits are underrepresented in this literature. Here, I leverage the rich comparative tradition in evolutionary endocrinology to evaluate whether and how certain mechanisms may be repeated hotspots of behavioral evolutionary change. At one extreme, mechanisms may be parallel, such that evolution repeatedly uses the same gene or pathway to arrive at multiple independent (or, convergent) origins of a particular behavioral trait. At the other extreme, the building blocks of behavior may be unique, such that outwardly similar phenotypes are generated via lineage-specific mechanisms. This review synthesizes existing case studies, phylogenetic analyses, and experimental evolutionary research on mechanistic parallelism in animal behavior. These examples show that the endocrine building blocks of behavior have some elements of parallelism across replicated evolutionary events. However, support for parallelism is variable among studies, at least some of which relates to the level of complexity at which we consider sameness (i.e. pathway vs. gene level). Moving forward, we need continued experimentation and better testing of neutral models to understand whether, how - and critically, why - mechanism A is used in one lineage and mechanism B is used in another. We also need continued growth of large-scale comparative analyses, especially those that can evaluate which endocrine parameters are more or less likely to undergo parallel evolution alongside specific behavioral traits. These efforts will ultimately deepen understanding of how and why hormone-mediated behaviors are constructed the way that they are.
Collapse
Affiliation(s)
- Kimberly A Rosvall
- Indiana University, Bloomington, USA; Department of Biology, USA; Center for the Integrative Study of Animal Behavior, USA.
| |
Collapse
|
17
|
Jimeno B, Zimmer C. Glucocorticoid receptor expression as an integrative measure to assess glucocorticoid plasticity and efficiency in evolutionary endocrinology: A perspective. Horm Behav 2022; 145:105240. [PMID: 35933849 DOI: 10.1016/j.yhbeh.2022.105240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Organisms have to cope with the changes that take place in their environment in order to keep their physical and psychological stability. In vertebrates, the hypothalamic-pituitary-adrenal (HPA) axis plays a key role in mediating phenotypic adjustments to environmental changes, primarily by regulating glucocorticoids (GCs). Although circulating GCs have widely been used as proxy for individual health and fitness, our understanding of HPA regulation is still very limited, especially in free-living animals. Circulating GCs only exert their actions when they are bound to receptors, and therefore, GC receptors play a pivotal role mediating HPA regulation and GC downstream phenotypic changes. Because under challenging conditions GC actions (as well as negative feedback activation) occur mainly through binding to low-affinity glucocorticoid receptors (GR), we propose that GR activity, and in particular GR expression, may play a crucial role in GC regulation and dynamics, and be ultimately related to organismal capacity to appropriately respond to environmental changes. Thus, we suggest that GR expression will provide more comprehensive information of GC variation and function. To support this idea, we compile previous evidence demonstrating the fundamental role of GR on GC responses and the fine-tuning of circulating GCs. We also make predictions about the phenotypic differences in GC responsiveness - and ultimately HPA regulation capacity - associated with differences in GR expression, focusing on GC plasticity and efficiency. Finally, we discuss current priorities and limitations of integrating measures of GR expression into evolutionary endocrinology and ecology studies, and propose further research directions towards the use of GR expression and the study of the mechanisms regulating GR activity to gather information on coping strategies and stress resilience. Our goals are to provide an integrative perspective that will prompt reconsideration on the ecological and physiological interpretation of current GC measurements, and motivate further research on the role of GR in tuning individual responses to dynamic environments.
Collapse
Affiliation(s)
- Blanca Jimeno
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Cedric Zimmer
- Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, Université Sorbonne Paris Nord, UR 4443, 93430 Villetaneuse, France; Global Health and Infectious Disease Research Center, University of South Florida, 33612 Tampa, FL, USA
| |
Collapse
|
18
|
Cox RM, Hale MD, Wittman TN, Robinson CD, Cox CL. Evolution of hormone-phenotype couplings and hormone-genome interactions. Horm Behav 2022; 144:105216. [PMID: 35777215 DOI: 10.1016/j.yhbeh.2022.105216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 12/22/2022]
Abstract
When selection favors a new relationship between a cue and a hormonally mediated response, adaptation can proceed by altering the hormonal signal that is produced or by altering the phenotypic response to the hormonal signal. The field of evolutionary endocrinology has made considerable progress toward understanding the evolution of hormonal signals, but we know much less about the evolution of hormone-phenotype couplings, particularly at the hormone-genome interface. We briefly review and classify the mechanisms through which these hormone-phenotype couplings likely evolve, using androgens and their receptors and genomic response elements to illustrate our view. We then present two empirical studies of hormone-phenotype couplings, one rooted in evolutionary quantitative genetics and another in comparative transcriptomics, each focused on the regulation of sexually dimorphic phenotypes by testosterone (T) in the brown anole lizard (Anolis sagrei). First, we illustrate the potential for hormone-phenotype couplings to evolve by showing that coloration of the dewlap (an ornament used in behavioral displays) exhibits significant heritability in its responsiveness to T, implying that anoles harbor genetic variance in the architecture of hormonal pleiotropy. Second, we combine T manipulations with analyses of the liver transcriptome to ask whether and how statistical methods for characterizing modules of co-expressed genes and in silico techniques for identifying androgen response elements (AREs) can improve our understanding of hormone-genome interactions. We conclude by emphasizing important avenues for future work at the hormone-genome interface, particularly those conducted in a comparative evolutionary framework.
Collapse
Affiliation(s)
- Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | - Matthew D Hale
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Tyler N Wittman
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | - Christian L Cox
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Biological Sciences, Florida International University, Miami, FL, USA
| |
Collapse
|
19
|
Vitousek MN, Houtz JL, Pipkin MA, Chang van Oordt DA, Hallinger KK, Uehling JJ, Zimmer C, Taff CC. Natural and experimental cold exposure in adulthood increase the sensitivity to future stressors in a free‐living songbird. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maren N. Vitousek
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Cornell Lab of Ornithology Ithaca NY USA
| | - Jennifer L. Houtz
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Cornell Lab of Ornithology Ithaca NY USA
| | - Monique A. Pipkin
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Cornell Lab of Ornithology Ithaca NY USA
| | - David A. Chang van Oordt
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Cornell Lab of Ornithology Ithaca NY USA
| | - Kelly K. Hallinger
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Cornell Lab of Ornithology Ithaca NY USA
- Department of Biology Albion College Albion MI USA
| | - Jennifer J. Uehling
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Cornell Lab of Ornithology Ithaca NY USA
| | - Cedric Zimmer
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Laboratoire d’Ethologie Expérimentale et Comparée, LEEC Université Sorbonne Paris Nord UR Villetaneuse France
| | - Conor C. Taff
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Cornell Lab of Ornithology Ithaca NY USA
| |
Collapse
|
20
|
Mentesana L, Hau M. Glucocorticoids in a warming world: Do they help birds to cope with high environmental temperatures? Horm Behav 2022; 142:105178. [PMID: 35561643 DOI: 10.1016/j.yhbeh.2022.105178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/09/2022] [Accepted: 04/16/2022] [Indexed: 11/04/2022]
Abstract
Climate change is threatening biodiversity world-wide. One of its most prominent manifestations are rising global temperatures and higher frequencies of heat waves. High environmental temperatures may be particularly challenging for endotherms, which expend considerable parts of their energy budget and water resources on thermoregulation. Thermoregulation involves phenotypic plasticity in behavioral and physiological traits. Information on causal mechanisms that support plastic thermoregulatory strategies is key to understand how environmental information is transmitted and whether they impose trade-offs or constraints that determine how endotherms cope with climate warming. In this review, we focus on glucocorticoids, metabolic hormones that orchestrate plastic responses to various environmental stimuli including temperature. To evaluate how they may mediate behavioral and physiological responses to high environmental temperatures, we 1) briefly review the major thermoregulatory strategies in birds; 2) summarize the functions of baseline and stress-induced glucocorticoid concentrations; 3) synthesize the current knowledge of the relationship between circulating glucocorticoids and high environmental temperatures in birds; 4) generate hypotheses for how glucocorticoids may support plastic thermoregulatory responses to high environmental temperatures that occur over different time-frames (i.e., acute, short- and longer-term); and 5) discuss open questions on how glucocorticoids, and their relationship with thermoregulation, may evolve. Throughout this review we highlight that our knowledge, particularly on free-living populations, is really limited and outline promising avenues for future research. As evolutionary endocrinologists we now need to step up and identify the costs, benefits, and evolution of glucocorticoid plasticity to elucidate how they may help birds cope with a warming world.
Collapse
Affiliation(s)
- Lucia Mentesana
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319 Seewiesen, Germany.
| | - Michaela Hau
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319 Seewiesen, Germany.
| |
Collapse
|
21
|
Midttun HLE, Øverli Ø, Tudorache C, Mayer I, Johansen IB. Non-invasive sampling of water-borne hormones demonstrates individual consistency of the cortisol response to stress in laboratory zebrafish (Danio rerio). Sci Rep 2022; 12:6278. [PMID: 35428763 PMCID: PMC9012867 DOI: 10.1038/s41598-022-10274-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Glucocorticoid (GC) stress hormones are well-known for their impact on phenotypic traits ranging from immune function to behaviour and cognition. For that reason, consistent aspects of an individual's physiological stress response (i.e. GC responsiveness) can predict major elements of life-history trajectory. Zebrafish (Danio rerio) emerge as a promising model to study such consistent trait correlations, including the development of individual stress coping styles, i.e. consistent associations between physiological and behavioral traits. However, consistency in GC responsiveness of this popular animal model remains to be confirmed. Such a study has so far been hampered by the small-bodied nature and insufficient blood volume of this species to provide repeated measurements of circulating GCs. Here, we adopted a technique that allows for repeated, non-invasive sampling of individual zebrafish by quantifying GCs from holding water. Our findings indicate consistency of the magnitude of post-stress GC production over several consecutive stress events in zebrafish. Moreover, water-borne GCs reflect individual variation in GC responsiveness with the strongest consistency seen in males.
Collapse
Affiliation(s)
- H L E Midttun
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Ø Øverli
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - C Tudorache
- Institute for Biology, Leiden University, Leiden, The Netherlands
| | - I Mayer
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - I B Johansen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
22
|
Grindstaff JL, Beaty LE, Ambardar M, Luttbeg B. Integrating theoretical and empirical approaches for a robust understanding of endocrine flexibility. J Exp Biol 2022; 225:274311. [PMID: 35258612 PMCID: PMC8987727 DOI: 10.1242/jeb.243408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is growing interest in studying hormones beyond single 'snapshot' measurements, as recognition that individual variation in the endocrine response to environmental change may underlie many rapid, coordinated phenotypic changes. Repeated measures of hormone levels in individuals provide additional insight into individual variation in endocrine flexibility - that is, how individuals modulate hormone levels in response to the environment. The ability to quickly and appropriately modify phenotype is predicted to be favored by selection, especially in unpredictable environments. The need for repeated samples from individuals can make empirical studies of endocrine flexibility logistically challenging, but methods based in mathematical modeling can provide insights that circumvent these challenges. Our Review introduces and defines endocrine flexibility, reviews existing studies, makes suggestions for future empirical work, and recommends mathematical modeling approaches to complement empirical work and significantly advance our understanding. Mathematical modeling is not yet widely employed in endocrinology, but can be used to identify innovative areas for future research and generate novel predictions for empirical testing.
Collapse
Affiliation(s)
| | - Lynne E Beaty
- School of Science, Penn State Erie - The Behrend College, Erie, PA 16563, USA
| | - Medhavi Ambardar
- Department of Biological Sciences, Fort Hays State University, Hays, KS 67601, USA
| | - Barney Luttbeg
- Department of Integrative Biology, Oklahoma State University, OK 74078, USA
| |
Collapse
|
23
|
Nagel R, Kaiser S, Stainfield C, Toscani C, Fox‐Clarke C, Paijmans AJ, Costa Castro C, Vendrami DLJ, Forcada J, Hoffman JI. Low heritability and high phenotypic plasticity of salivary cortisol in response to environmental heterogeneity in a wild pinniped. Ecol Evol 2022; 12:e8757. [PMID: 35356576 PMCID: PMC8956859 DOI: 10.1002/ece3.8757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
Individuals are unique in how they interact with and respond to their environment. Correspondingly, unpredictable challenges or environmental stressors often produce an individualized response of the hypothalamic-pituitary-adrenal (HPA) axis and its downstream effector cortisol. We used a fully crossed, repeated measures design to investigate the factors shaping individual variation in baseline cortisol in Antarctic fur seal pups and their mothers. Saliva samples were collected from focal individuals at two breeding colonies, one with low and the other with high density, during two consecutive years of contrasting food availability. Mothers and pups were sampled concurrently at birth and shortly before weaning, while pups were additionally sampled every 20 days. We found that heritability was low for baseline cortisol, while within-individual repeatability and among-individual variability were high. A substantial proportion of the variation in baseline cortisol could be explained in pups and mothers by a combination of intrinsic and extrinsic factors including sex, weight, day, season, and colony of birth. Our findings provide detailed insights into the individualization of endocrine phenotypes and their genetic and environmental drivers in a wild pinniped. Furthermore, the strong associations between cortisol and life history traits that we report in fur seals could have important implications for understanding the population dynamics of species impacted by environmental change.
Collapse
Affiliation(s)
- Rebecca Nagel
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
| | - Sylvia Kaiser
- Department of Behavioural BiologyUniversity of MünsterMünsterGermany
| | | | | | | | | | | | | | | | - Joseph I. Hoffman
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
- British Antarctic SurveyCambridgeUK
| |
Collapse
|
24
|
Jelena M, Anssi L, Katja R. Context dependent variation in corticosterone and phenotypic divergence of Rana arvalis populations along an acidification gradient. BMC Ecol Evol 2022; 22:11. [PMID: 35123416 PMCID: PMC8818180 DOI: 10.1186/s12862-022-01967-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Physiological processes, as immediate responses to the environment, are important mechanisms of phenotypic plasticity and can influence evolution at ecological time scales. In stressful environments, physiological stress responses of individuals are initiated and integrated via the release of hormones, such as corticosterone (CORT). In vertebrates, CORT influences energy metabolism and resource allocation to multiple fitness traits (e.g. growth and morphology) and can be an important mediator of rapid adaptation to environmental stress, such as acidification. The moor frog, Rana arvalis, shows adaptive divergence in larval life-histories and predator defense traits along an acidification gradient in Sweden. Here we take a first step to understanding the role of CORT in this adaptive divergence. We conducted a fully factorial laboratory experiment and reared tadpoles from three populations (one acidic, one neutral and one intermediate pH origin) in two pH treatments (Acid versus Neutral pH) from hatching to metamorphosis. We tested how the populations differ in tadpole CORT profiles and how CORT is associated with tadpole life-history and morphological traits. Results We found clear differences among the populations in CORT profiles across different developmental stages, but only weak effects of pH treatment on CORT. Tadpoles from the acid origin population had, on average, lower CORT levels than tadpoles from the neutral origin population, and the intermediate pH origin population had intermediate CORT levels. Overall, tadpoles with higher CORT levels developed faster and had shorter and shallower tails, as well as shallower tail muscles. Conclusions Our common garden results indicate among population divergence in CORT levels, likely reflecting acidification mediated divergent selection on tadpole physiology, concomitant to selection on larval life-histories and morphology. However, CORT levels were highly environmental context dependent. Jointly these results indicate a potential role for CORT as a mediator of multi-trait divergence along environmental stress gradients in natural populations. At the same time, the population level differences and high context dependency in CORT levels suggest that snapshot assessment of CORT in nature may not be reliable bioindicators of stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01967-1.
Collapse
Affiliation(s)
- Mausbach Jelena
- Department of Aquatic Ecology, Eawag, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland. .,Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland.
| | - Laurila Anssi
- Animal Ecology/Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Räsänen Katja
- Department of Aquatic Ecology, Eawag, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland. .,Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland. .,Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, 40014, Jyväskylä, Finland.
| |
Collapse
|
25
|
Medger K, Prins A, Lutermann H, Ganswindt A, Ganswindt SB, Bennett NC. Repeatability of daily profiles of baseline glucocorticoid metabolites measured in the urine and faeces of eastern rock sengis (Elephantulus myurus). Gen Comp Endocrinol 2021; 312:113857. [PMID: 34284023 DOI: 10.1016/j.ygcen.2021.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Repeatability of hormone concentrations is of great interest for studies investigating the evolution of hormonal traits. Particularly the repeatability of glucocorticoids (GCs) in response to a stressor is frequently investigated, but often only point (initial and/or response value), or single measures are used. A new method takes into account the entire individual hormone profile and generates an individual profile repeatability (PR) score. The method was developed for response profiles, but it may also be valuable for baseline values in species with diurnal changes in hormone concentrations. GCs are determined in a variety of matrices, and repeatability can vary considerably depending on the matrix. We investigated the repeatability of baseline GC metabolite (GCM) concentrations measured in urine (uGCM) and faeces (fGCM) of captive eastern rock sengis (Elephantulus myurus) using the more traditional linear mixed model approach and the PR method. GCMs were assessed over 24 h and measurements were repeated twice with two weeks between replicates. A diurnal rhythm in GCM concentrations associated with the activity period of the sengis was found in urine, but not in the faeces. Urinary GCM concentrations exhibited a moderate repeatability, whereas the repeatability of fGCM concentrations was low. Urinary GCM concentrations and their repeatability differed between the sexes; with higher concentrations and lower PR scores in females. No such sex differences were apparent for fGCM concentrations and the PR score was not able to characterise repeatability of fGCM concentrations, which were lacking a distinct profile. The PR score enabled a successful quantification of the repeatability of the diurnal uGCM profiles. Hormone profile, sex and sample matrix can affect hormonal traits considerably and the results may be obscured if these factors are not carefully considered.
Collapse
Affiliation(s)
- Katarina Medger
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - André Prins
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Heike Lutermann
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - André Ganswindt
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Stefanie B Ganswindt
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa; SARChI Chair of Mammal Behavioural Ecology and Physiology, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
26
|
Obomsawin AP, Mastromonaco GF, Leonard ML. Chronic noise exposure has context-dependent effects on stress physiology in nestling Tree Swallows (Tachycineta bicolor). Gen Comp Endocrinol 2021; 311:113834. [PMID: 34181934 DOI: 10.1016/j.ygcen.2021.113834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/11/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023]
Abstract
Anthropogenic noise is increasing in intensity and scope, resulting in changes to acoustic landscapes and largely negative effects on a range of species. In birds, noise can mask acoustic signals used in a variety of communication systems, including parent-offspring communication. As a result, nestling birds raised in noise may have challenges soliciting food from parents and avoiding detection by predators. Given that passerine nestlings are confined to a nest and therefore cannot escape these challenges, noise may also act as a chronic stressor during their development. Here, we raised Tree Swallow (Tachycineta bicolor) nestlings with or without continuous, white noise to test whether noise exposure affected baseline and stress-induced plasma, integrated feather corticosterone levels, and immune function. Stress physiology and immune function may also vary with the competitive environment during development, so we also examined whether noise effects varied with brood size and nestling mass. We found that overall, exposure to noise did not alter nestling stress physiology or immune function. However, light nestlings raised in noise exhibited lower baseline plasma and integrated feather corticosterone than heavy nestlings, suggesting alternative physiological responses to anthropogenic stimuli. Furthermore, light nestlings in larger broods had reduced PHA-induced immune responses compared to heavy nestlings, and PHA-induced immune responses were associated with higher levels of baseline plasma and feather CORT. Overall, our findings suggest that noise can alter the stress physiology of developing birds; however, these effects may depend on developmental conditions and the presence of other environmental stressors, such as competition for resources. Our findings may help to explain why populations are not uniformly affected by noise.
Collapse
Affiliation(s)
- Anik P Obomsawin
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | | | - Marty L Leonard
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
27
|
Taborsky B, English S, Fawcett TW, Kuijper B, Leimar O, McNamara JM, Ruuskanen S, Sandi C. Towards an Evolutionary Theory of Stress Responses. Trends Ecol Evol 2021; 36:39-48. [PMID: 33032863 DOI: 10.1016/j.tree.2020.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
All organisms have a stress response system to cope with environmental threats, yet its precise form varies hugely within and across individuals, populations, and species. While the physiological mechanisms are increasingly understood, how stress responses have evolved remains elusive. Here, we show that important insights can be gained from models that incorporate physiological mechanisms within an evolutionary optimality analysis (the 'evo-mecho' approach). Our approach reveals environmental predictability and physiological constraints as key factors shaping stress response evolution, generating testable predictions about variation across species and contexts. We call for an integrated research programme combining theory, experimental evolution, and comparative analysis to advance scientific understanding of how this core physiological system has evolved.
Collapse
Affiliation(s)
- Barbara Taborsky
- Behavioural Ecology Division, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Tim W Fawcett
- Centre for Research in Animal Behaviour (CRAB), University of Exeter, Exeter, UK
| | - Bram Kuijper
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK; Institute for Data Science and Artificial Intelligence, University of Exeter, Exeter, UK
| | - Olof Leimar
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | - Suvi Ruuskanen
- Department of Biology, University of Turku, Turku, Finland
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
28
|
Veitch JSM, Bowman J, Mastromonaco G, Schulte-Hostedde AI. Corticosterone response by Peromyscus mice to parasites, reproductive season, and age. Gen Comp Endocrinol 2021; 300:113640. [PMID: 33017585 DOI: 10.1016/j.ygcen.2020.113640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 01/15/2023]
Abstract
A common response to parasite infestations is increased production of glucocorticoid hormones that regulate immune function. We examined relationships between ectoparasite infestations and fecal corticosterone metabolites (FCM) in deer mice (Peromyscus maniculatus). Furthermore, we experimentally removed fleas to determine if reductions in ectoparasites affected FCM production. Individuals were assigned to control (no flea removal) or treatment (anti-flea application, physical combing) groups and individuals were recaptured to assess changes in FCM concentrations. There was a significant and negative effect of number of anti-flea treatment applications on FCM concentrations of deer mice. However, models including host biology traits and environmental predictors had a better model fit compared to models containing ectoparasite predictors. In particular, there was a significant relationship of deer mouse FCM with date and host age, where glucocorticoid production decreased towards the end of the breeding season and increased with age. Overall, adverse events associated with reproduction and age class, rather than ectoparasites, may be more important to variation in glucocorticoids of deer mice.
Collapse
Affiliation(s)
- Jasmine S M Veitch
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada. https://www.0000-0003-0010-3475
| | - Jeff Bowman
- Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section, 2140 East Bank Drive, DNA Building, Peterborough, ON K9L 0G2, Canada; Trent University, 1600 East Bank Drive, Peterborough, ON K9L 0G2, Canada
| | - Gabriela Mastromonaco
- Reproductive Sciences, Toronto Zoo, 361A Old Finch Avenue, Toronto, ON M1B 5K7, Canada
| | - Albrecht I Schulte-Hostedde
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada. https://www.0000-0001-7263-4764
| |
Collapse
|
29
|
Ruuskanen S, Hsu BY, Nord A. Endocrinology of thermoregulation in birds in a changing climate. Mol Cell Endocrinol 2021; 519:111088. [PMID: 33227349 DOI: 10.1016/j.mce.2020.111088] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
The ability to maintain a (relatively) stable body temperature in a wide range of thermal environments by use of endogenous heat production is a unique feature of endotherms such as birds. Endothermy is acquired and regulated via various endocrine and molecular pathways, and ultimately allows wide aerial, aquatic, and terrestrial distribution in variable environments. However, due to our changing climate, birds are faced with potential new challenges for thermoregulation, such as more frequent extreme weather events, lower predictability of climate, and increasing mean temperature. We provide an overview on thermoregulation in birds and its endocrine and molecular mechanisms, pinpointing gaps in current knowledge and recent developments, focusing especially on non-model species to understand the generality of, and variation in, mechanisms. We highlight plasticity of thermoregulation and underlying endocrine regulation, because thorough understanding of plasticity is key to predicting responses to changing environmental conditions. To this end, we discuss how changing climate is likely to affect avian thermoregulation and associated endocrine traits, and how the interplay between these physiological processes may play a role in facilitating or constraining adaptation to a changing climate. We conclude that while the general patterns of endocrine regulation of thermogenesis are quite well understood, at least in poultry, the molecular and endocrine mechanisms that regulate, e.g. mitochondrial function and plasticity of thermoregulation over different time scales (from transgenerational to daily variation), need to be unveiled. Plasticity may ameliorate climate change effects on thermoregulation to some extent, but the increased frequency of extreme weather events, and associated changes in resource availability, may be beyond the scope and/or speed for plastic responses. This could lead to selection for more tolerant phenotypes, if the underlying physiological traits harbour genetic and individual variation for selection to act on - a key question for future research.
Collapse
Affiliation(s)
| | - Bin-Yan Hsu
- Department of Biology, University of Turku, Finland
| | - Andreas Nord
- Lund University, Department of Biology, Section for Evolutionary Ecology, Ecology Building, Sölvegatan 37, SE-22362, Lund, Sweden
| |
Collapse
|
30
|
Class B, Brommer JE. Can dominance genetic variance be ignored in evolutionary quantitative genetic analyses of wild populations? Evolution 2020; 74:1540-1550. [PMID: 32510608 DOI: 10.1111/evo.14034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/06/2020] [Accepted: 05/30/2020] [Indexed: 12/21/2022]
Abstract
Accurately estimating genetic variance components is important for studying evolution in the wild. Empirical work on domesticated and wild outbred populations suggests that dominance genetic variance represents a substantial part of genetic variance, and theoretical work predicts that ignoring dominance can inflate estimates of additive genetic variance. Whether this issue is pervasive in natural systems is unknown, because we lack estimates of dominance variance in wild populations obtained in situ. Here, we estimate dominance and additive genetic variance, maternal variance, and other sources of nongenetic variance in eight traits measured in over 9000 wild nestlings linked through a genetically resolved pedigree. We find that dominance variance, when estimable, does not statistically differ from zero and represents a modest amount (2-36%) of genetic variance. Simulations show that (1) inferences of all variance components for an average trait are unbiased; (2) the power to detect dominance variance is low; (3) ignoring dominance can mildly inflate additive genetic variance and heritability estimates but such inflation becomes substantial when maternal effects are also ignored. These findings hence suggest that dominance is a small source of phenotypic variance in the wild and highlight the importance of proper model construction for accurately estimating evolutionary potential.
Collapse
Affiliation(s)
- Barbara Class
- Global Change Ecology Research Group, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia.,Department of Biology, University of Turku, University Hill, Turku, 20014, Finland
| | - Jon E Brommer
- Department of Biology, University of Turku, University Hill, Turku, 20014, Finland
| |
Collapse
|
31
|
Effects of predation risk on egg steroid profiles across multiple populations of threespine stickleback. Sci Rep 2020; 10:5239. [PMID: 32251316 PMCID: PMC7090078 DOI: 10.1038/s41598-020-61412-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/24/2020] [Indexed: 11/16/2022] Open
Abstract
Predation often has consistent effects on prey behavior and morphology, but whether the physiological mechanisms underlying these effects show similarly consistent patterns across different populations remains an open question. In vertebrates, predation risk activates the hypothalamic-pituitary-adrenal (HPA) axis, and there is growing evidence that activation of the maternal HPA axis can have intergenerational consequences via, for example, maternally-derived steroids in eggs. Here, we investigated how predation risk affects a suite of maternally-derived steroids in threespine stickleback eggs across nine Alaskan lakes that vary in whether predatory trout are absent, native, or have been stocked within the last 25 years. Using liquid chromatography coupled with mass spectroscopy (LC-MS/MS), we detected 20 steroids within unfertilized eggs. Factor analysis suggests that steroids covary within and across steroid classes (i.e. glucocorticoids, progestogens, sex steroids), emphasizing the modularity and interconnectedness of the endocrine response. Surprisingly, egg steroid profiles were not significantly associated with predator regime, although they were more variable when predators were absent compared to when predators were present, with either native or stocked trout. Despite being the most abundant steroid, cortisol was not consistently associated with predation regime. Thus, while predators can affect steroids in adults, including mothers, the link between maternal stress and embryonic development is more complex than a simple one-to-one relationship between the population-level predation risk experienced by mothers and the steroids mothers transfer to their eggs.
Collapse
|
32
|
Cox RM. Sex steroids as mediators of phenotypic integration, genetic correlations, and evolutionary transitions. Mol Cell Endocrinol 2020; 502:110668. [PMID: 31821857 DOI: 10.1016/j.mce.2019.110668] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
In recent decades, endocrinologists have increasingly adopted evolutionary methods and perspectives to characterize the evolution of the vertebrate endocrine system and leverage it as a model for developing and testing evolutionary theories. This review summarizes recent research on sex steroids (androgens and estrogens) to illustrate three ways in which a detailed understanding of the molecular and cellular architecture of hormonally mediated gene expression can enhance our understanding of general evolutionary principles. By virtue of their massively pleiotropic effects on the expression of genes and phenotypes, sex steroids and their receptors can (1) structure the patterns of phenotypic variance and covariance that are available to natural selection, (2) alter the underlying genetic correlations that determine a population's evolutionary response to selection, and (3) facilitate evolutionary transitions in fitness-related phenotypes via subtle regulatory shifts in underlying tissues and genes. These principles are illustrated by the author's research on testosterone and sexual dimorphism in lizards, and by recent examples drawn from other vertebrate systems. Mechanistically, these examples call attention to the importance of evolutionary changes in (1) androgen- and estrogen-mediated gene expression, (2) androgen and estrogen receptor expression, and (3) the distribution of androgen and estrogen response elements in target genes throughout the genome. A central theme to emerge from this review is that the rapidly increasing availability of genomic and transcriptomic data from non-model organisms places evolutionary endocrinologist in an excellent position to address the hormonal regulation of the key evolutionary interface between genes and phenotypes.
Collapse
Affiliation(s)
- Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
33
|
Vitousek MN, Taff CC, Ryan TA, Zimmer C. Stress Resilience and the Dynamic Regulation of Glucocorticoids. Integr Comp Biol 2019; 59:251-263. [PMID: 31168615 DOI: 10.1093/icb/icz087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vertebrates respond to a diversity of stressors by rapidly elevating glucocorticoid (GC) levels. The changes in physiology and behavior triggered by this response can be crucial for surviving a variety of challenges. Yet the same process that is invaluable in coping with immediate threats can also impose substantial damage over time. In addition to the pathological effects of long-term exposure to stress hormones, even relatively brief elevations can impair the expression of a variety of behaviors and physiological processes central to fitness, including sexual behavior, parental behavior, and immune function. Therefore, the ability to rapidly and effectively terminate the short-term response to stress may be fundamental to surviving and reproducing in dynamic environments. Here we review the evidence that variation in the ability to terminate the stress response through negative feedback is an important component of stress coping capacity. We suggest that coping capacity may also be influenced by variation in the dynamic regulation of GCs-specifically, the ability to rapidly turn on and off the stress response. Most tests of the fitness effects of these traits to date have focused on organisms experiencing severe or prolonged stressors. Here we use data collected from a long-term study of tree swallows (Tachycineta bicolor) to test whether variation in negative feedback, or other measures of GC regulation, predict components of fitness in non-chronically stressed populations. We find relatively consistent, but generally weak relationships between different fitness components and the strength of negative feedback. Reproductive success was highest in individuals that both mounted a robust stress response and had strong negative feedback. We did not see consistent evidence of a relationship between negative feedback and adult or nestling survival: negative feedback was retained in the best supported models of nestling and adult survival, but in two of three survival-related analyses the intercept-only model received only slightly less support. Both negative feedback and stress-induced GC levels-but not baseline GCs-were individually repeatable. These measures of GC activity did not consistently covary across ages and life history stages, indicating that they are independently regulated. Overall, the patterns seen here are consistent with the predictions that negative feedback-and the dynamic regulation of GCs-are important components of stress coping capacity, but that the fitness benefits of having strong negative feedback during the reproductive period are likely to manifest primarily in individuals exposed to chronic or repeated stressors.
Collapse
Affiliation(s)
- Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.,Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.,Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Thomas A Ryan
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Cedric Zimmer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
34
|
Uehling JJ, Taff CC, Winkler DW, Vitousek MN. Developmental temperature predicts the adult response to stressors in a free‐living passerine. J Anim Ecol 2019; 89:842-854. [DOI: 10.1111/1365-2656.13137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/29/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Jennifer J. Uehling
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York
- Cornell Lab of Ornithology Ithaca New York
| | - Conor C. Taff
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York
- Cornell Lab of Ornithology Ithaca New York
| | - David W. Winkler
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York
- Cornell Lab of Ornithology Ithaca New York
- Cellular Tracking Technologies Rio Grande New Jersey
- Conservation Science Global West Cape May New Jersey
| | - Maren N. Vitousek
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York
- Cornell Lab of Ornithology Ithaca New York
| |
Collapse
|
35
|
Carbillet J, Rey B, Lavabre T, Chaval Y, Merlet J, Débias F, Régis C, Pardonnet S, Duhayer J, Gaillard JM, Hewison AJM, Lemaître JF, Pellerin M, Rannou B, Verheyden H, Gilot-Fromont E. The neutrophil to lymphocyte ratio indexes individual variation in the behavioural stress response of wild roe deer across fluctuating environmental conditions. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2755-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Béziers P, San-Jose LM, Almasi B, Jenni L, Roulin A. Baseline and stress-induced corticosterone levels are heritable and genetically correlated in a barn owl population. Heredity (Edinb) 2019; 123:337-348. [PMID: 30837668 PMCID: PMC6781159 DOI: 10.1038/s41437-019-0203-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/25/2019] [Accepted: 02/08/2019] [Indexed: 11/09/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is responsible for the regulation of corticosterone, a hormone that is essential in the mediation of energy allocation and physiological stress. As a continuous source of challenge and stress for organisms, the environment has promoted the evolution of physiological adaptations and led to a great variation in corticosterone profiles within or among individuals, populations and species. In order to evolve via natural selection, corticosterone levels do not only depend on the strength of selection exerted on them, but also on the extent to which the regulation of corticosterone is heritable. Nevertheless, the heritability of corticosterone profiles in wild populations is still poorly understood. In this study, we estimated the heritability of baseline and stress-induced corticosterone levels in barn owl (Tyto alba) nestlings from 8 years of data, using a multivariate animal model based on a behavioural pedigree. We found that baseline and stress-induced corticosterone levels are strongly genetically correlated (r = 0.68-0.80) and that the heritability of stress-induced corticosterone levels (h2 = 0.24-0.33) was moderate and similar to the heritability of baseline corticosterone levels (h2 = 0.19-0.30). These findings suggest that the regulation of stress-induced corticosterone and baseline levels evolves at a similar pace when selection acts with the same intensity on both traits and that contrary to previous studies, the evolution of baseline and stress-induced level is interdependent in barn owls, as they may be strongly genetically correlated.
Collapse
Affiliation(s)
- Paul Béziers
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Swiss Ornithological Institute, Sempach, Switzerland.
| | - Luis M San-Jose
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Lukas Jenni
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
37
|
Taff CC, Campagna L, Vitousek MN. Genome-wide variation in DNA methylation is associated with stress resilience and plumage brightness in a wild bird. Mol Ecol 2019; 28:3722-3737. [PMID: 31330076 DOI: 10.1111/mec.15186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
Individuals often differ in their ability to cope with challenging environmental and social conditions. Evidence from model systems suggests that patterns of DNA methylation are associated with variation in coping ability. These associations could arise directly if methylation plays a role in controlling the physiological response to stressors by, among other things, regulating the release of glucocorticoids in response to challenges. Alternatively, the association could arise indirectly if methylation and resilience have a common cause, such as early-life conditions. In either case, methylation might act as a biomarker for coping ability. At present, however, relatively little is known about whether variation in methylation is associated with organismal performance and resilience under natural conditions. We studied genome-wide patterns of DNA methylation in free-living female tree swallows (Tachycineta bicolor) using methylated DNA immunoprecipitation (MeDIP) and a tree swallow genome that was assembled for this study. We identified areas of the genome that were differentially methylated with respect to social signal expression (breast brightness) and physiological traits (ability to terminate the glucocorticoid stress response through negative feedback). We also asked whether methylation predicted resilience to a subsequent experimentally imposed challenge. Individuals with brighter breast plumage and higher stress resilience had lower methylation at differentially methylated regions across the genome. Thus, widespread differences in methylation predicted both social signal expression and the response to future challenges under natural conditions. These results have implications for predicting individual differences in resilience, and for understanding the mechanistic basis of resilience and its environmental and social mediators.
Collapse
Affiliation(s)
- Conor C Taff
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York.,Lab of Ornithology, Cornell University, Ithaca, New York
| | - Leonardo Campagna
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York.,Lab of Ornithology, Cornell University, Ithaca, New York
| | - Maren N Vitousek
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York.,Lab of Ornithology, Cornell University, Ithaca, New York
| |
Collapse
|
38
|
Guindre-Parker S, Mcadam AG, van Kesteren F, Palme R, Boonstra R, Boutin S, Lane JE, Dantzer B. Individual variation in phenotypic plasticity of the stress axis. Biol Lett 2019; 15:20190260. [PMID: 31337294 DOI: 10.1098/rsbl.2019.0260] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Phenotypic plasticity-one individual's capacity for phenotypic variation under different environments-is critical for organisms facing fluctuating conditions within their lifetime. North American red squirrels (Tamiasciurus hudsonicus) experience drastic among-year fluctuations in conspecific density. This shapes juvenile competition over vacant territories and overwinter survival. To help young cope with competition at high densities, mothers can increase offspring growth rates via a glucocorticoid-mediated maternal effect. However, this effect is only adaptive under high densities, and faster growth often comes at a cost to longevity. While red squirrels can adjust hormones in response to fluctuating density, the degree to which mothers differ in glucocorticoid plasticity across changing densities remains unknown. Findings from our reaction norm approach revealed significant individual variation not only in a female red squirrel's mean endocrine phenotype but also in endocrine plasticity in response to changes in local density. Future work on proximate and ultimate drivers of variation in endocrine plasticity and maternal effects is needed, particularly in free-living animals experiencing fluctuating environments.
Collapse
Affiliation(s)
- Sarah Guindre-Parker
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.,Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew G Mcadam
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
39
|
Vitousek MN, Johnson MA, Downs CJ, Miller ET, Martin LB, Francis CD, Donald JW, Fuxjager MJ, Goymann W, Hau M, Husak JF, Kircher BK, Knapp R, Schoenle LA, Williams TD. Macroevolutionary Patterning in Glucocorticoids Suggests Different Selective Pressures Shape Baseline and Stress-Induced Levels. Am Nat 2019; 193:866-880. [DOI: 10.1086/703112] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
40
|
Pegan TM, Winkler DW, Haussmann MF, Vitousek MN. Brief Increases in Corticosterone Affect Morphology, Stress Responses, and Telomere Length but Not Postfledging Movements in a Wild Songbird. Physiol Biochem Zool 2019; 92:274-285. [DOI: 10.1086/702827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Houslay TM, Earley RL, Young AJ, Wilson AJ. Habituation and individual variation in the endocrine stress response in the Trinidadian guppy (Poecilia reticulata). Gen Comp Endocrinol 2019; 270:113-122. [PMID: 30339807 PMCID: PMC6300406 DOI: 10.1016/j.ygcen.2018.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/06/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022]
Abstract
The vertebrate stress response enables individuals to react to and cope with environmental challenges. A crucial aspect of the stress response is the elevation of circulating glucocorticoids. However, continued activation of the stress response under repeated exposure to stressors can be damaging to fitness. Under certain circumstances it may therefore be adaptive to habituate to repeated exposures to a particular stressor by reducing the magnitude of any associated release of glucocorticoids. Here, we investigate whether Trinidadian guppies (Poecilia reticulata) habituate to repeated exposure to a mild stressor, using a waterborne hormone sampling approach that has previously been shown to elicit a stress response in small fish. We also test for individual variation in the extent of habituation to this stressor. Concentrating on freely circulating cortisol, we found that the first exposure to the assay induced high cortisol release rates but that guppies tended to habituate quickly to subsequent exposures. There were consistent differences among individuals in their average cortisol release rate (after accounting for effects of variables such as body size) over repeated exposures. Our analyses did not find evidence of individual differences in habituation rate, although limitations in statistical power could account for this finding. We repeated the analysis for free 11-ketotestosterone, which can also respond to stressors, but found no obvious habituation pattern and no among-individual variation. We also present data on conjugated forms of both hormones, which were repeatable but did not show the expected time-lagged habituation effect. We discuss consistent individual differences around the general pattern of habituation in the flexible stress response, and highlight the potential for individual variation in habituation to facilitate selection against the deleterious effects of chronic stress.
Collapse
Affiliation(s)
- T M Houslay
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall TR10 9FE, UK.
| | - R L Earley
- Department of Biological Sciences, University of Alabama, Biology Building 211-213, Box 870344, Tuscaloosa, AL 35487, USA.
| | - A J Young
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall TR10 9FE, UK.
| | - A J Wilson
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall TR10 9FE, UK.
| |
Collapse
|
42
|
Virgin EE, Rosvall KA. Endocrine-immune signaling as a predictor of survival: A prospective study in developing songbird chicks. Gen Comp Endocrinol 2018; 267:193-201. [PMID: 30099034 DOI: 10.1016/j.ygcen.2018.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/18/2018] [Accepted: 08/04/2018] [Indexed: 12/18/2022]
Abstract
Immune function varies with an animal's endocrine physiology and energy reserves, as well as its abiotic and biotic environment. This context-dependency is thought to relate to adaptive trade-off resolution that varies from one context to the next; however, it is less clear how state- and environmentally-dependent differences in endocrine-immune signaling relate to survival in natural populations. We begin to address this question in a prospective study on a free-living passerine bird, the tree swallow (Tachycineta bicolor), by capitalizing upon naturally-occurring variation in ectoparasitism in 12-day old chicks. We measured body mass, hematological gene expression of the pro-inflammatory cytokine interleukin-6 (IL-6) as well as corticosterone (CORT) secretion at baseline and in response to 30 min of handling. We found that chicks with ectoparasites had smaller body mass and higher levels of IL-6 gene expression at this critical stage of post-natal growth and development. Mass and IL-6 were positively correlated, but only among parasitized chicks, suggesting that larger chicks mount stronger immune responses when necessary, i.e. in the presence of ectoparasites that are known to induce inflammation. IL-6 mRNA expression was negatively correlated with stress-induced CORT levels, suggesting that this proxy of inflammation may be co-regulated with or coordinated by glucocorticoids. More importantly, these endocrine-immune parameters predicted survival to fledging, which was positively associated with IL-6 mRNA abundance and, to a lesser degree, CORT reactivity. These results suggest a link between endocrine-immune interactions and performance in nature, and as a consequence, they shed light on the potentially adaptive, context-dependent interplay between body mass, immunity, and endocrine physiology during development.
Collapse
Affiliation(s)
- Emily E Virgin
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior (CISAB), Indiana University, Bloomington, IN 47405, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior (CISAB), Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
43
|
Vitousek MN, Johnson MA, Husak JF. Illuminating Endocrine Evolution: The Power and Potential of Large-Scale Comparative Analyses. Integr Comp Biol 2018; 58:712-719. [DOI: 10.1093/icb/icy098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Michele A Johnson
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, 2115 Summit Avenue, St. Paul, MN 55105, USA
| |
Collapse
|
44
|
Vitousek MN, Taff CC, Ardia DR, Stedman JM, Zimmer C, Salzman TC, Winkler DW. The lingering impact of stress: brief acute glucocorticoid exposure has sustained, dose-dependent effects on reproduction. Proc Biol Sci 2018; 285:20180722. [PMID: 30051820 PMCID: PMC6053934 DOI: 10.1098/rspb.2018.0722] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/14/2018] [Indexed: 01/01/2023] Open
Abstract
Acutely stressful experiences can have profound and persistent effects on phenotype. Across taxa, individuals differ remarkably in their susceptibility to stress. However, the mechanistic causes of enduring stress effects, and of individual differences in stress susceptibility, are poorly understood. Here, we tested whether brief, acute increases in glucocorticoid hormones have persistent effects on phenotype, and whether effects differ according to the magnitude or duration of elevation. We used a novel method to non-invasively manipulate hormone levels on short time scales: the application of corticosterone gel to a model egg secured in the nest. Free-living female tree swallows (Tachycineta bicolor) exposed to several brief corticosterone increases during incubation showed dose-dependent differences in behaviour throughout the reproductive period. Birds receiving treatments that simulated higher or longer acute stress responses later provisioned larger broods at lower rates; the resulting offspring were smaller in size. Treatment did not influence female body condition, oxidative stress, reproductive success or inter-annual survival, but exposed females maintained higher baseline corticosterone after treatments ceased. Overall, these results indicate that brief, acute elevations in glucocorticoids in adulthood can have long-term consequences. Furthermore, individuals that mount a greater or longer acute stress response may be more likely to experience lingering effects of stress.
Collapse
Affiliation(s)
- Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Daniel R Ardia
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604, USA
| | - Jocelyn M Stedman
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Cedric Zimmer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Timothy C Salzman
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - David W Winkler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| |
Collapse
|
45
|
Miles MC, Vitousek MN, Husak JF, Johnson MA, Martin LB, Taff CC, Zimmer C, Lovern MB, Fuxjager MJ. Standing Variation and the Capacity for Change: Are Endocrine Phenotypes More Variable Than Other Traits? Integr Comp Biol 2018; 58:751-762. [DOI: 10.1093/icb/icy062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Meredith C Miles
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA
| | - Michele A Johnson
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Lynn B Martin
- Department of Global Health, University of South Florida, Tampa, FL 33620, USA
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Cedric Zimmer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Matthew B Lovern
- Department of Zoology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Matthew J Fuxjager
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
46
|
Guindre-Parker S. The Evolutionary Endocrinology of Circulating Glucocorticoids in Free-Living Vertebrates: Recent Advances and Future Directions across Scales of Study. Integr Comp Biol 2018; 58:814-825. [DOI: 10.1093/icb/icy048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Sarah Guindre-Parker
- Department of Integrative Biology, University of Guelph, Summerlee Science Complex, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
47
|
Vitousek MN, Johnson MA, Donald JW, Francis CD, Fuxjager MJ, Goymann W, Hau M, Husak JF, Kircher BK, Knapp R, Martin LB, Miller ET, Schoenle LA, Uehling JJ, Williams TD. HormoneBase, a population-level database of steroid hormone levels across vertebrates. Sci Data 2018; 5:180097. [PMID: 29786693 PMCID: PMC5963335 DOI: 10.1038/sdata.2018.97] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/29/2018] [Indexed: 12/30/2022] Open
Abstract
Hormones are central regulators of organismal function and flexibility that mediate a diversity of phenotypic traits from early development through senescence. Yet despite these important roles, basic questions about how and why hormone systems vary within and across species remain unanswered. Here we describe HormoneBase, a database of circulating steroid hormone levels and their variation across vertebrates. This database aims to provide all available data on the mean, variation, and range of plasma glucocorticoids (both baseline and stress-induced) and androgens in free-living and un-manipulated adult vertebrates. HormoneBase (www.HormoneBase.org) currently includes >6,580 entries from 476 species, reported in 648 publications from 1967 to 2015, and unpublished datasets. Entries are associated with data on the species and population, sex, year and month of study, geographic coordinates, life history stage, method and latency of hormone sampling, and analysis technique. This novel resource could be used for analyses of the function and evolution of hormone systems, and the relationships between hormonal variation and a variety of processes including phenotypic variation, fitness, and species distributions.
Collapse
Affiliation(s)
- Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michele A Johnson
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Jeremy W Donald
- Coates Library, Trinity University, San Antonio, TX 78212, USA
| | - Clinton D Francis
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Matthew J Fuxjager
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | - Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen 82319, Germany
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA
| | - Bonnie K Kircher
- Department of Biology, University of Florida, Gainesville, FL 32608, USA
| | - Rosemary Knapp
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Lynn B Martin
- Department of Global Health, University of South Florida, Tampa, FL 33620, USA
| | | | - Laura A Schoenle
- Department of Global Health, University of South Florida, Tampa, FL 33620, USA
| | - Jennifer J Uehling
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
48
|
Taff CC, Schoenle LA, Vitousek MN. The repeatability of glucocorticoids: A review and meta-analysis. Gen Comp Endocrinol 2018; 260:136-145. [PMID: 29355531 DOI: 10.1016/j.ygcen.2018.01.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/27/2017] [Accepted: 01/11/2018] [Indexed: 12/17/2022]
Abstract
Glucocorticoids are highly conserved hormones that mediate a suite of responses to changing conditions in vertebrates. Recent work has focused on understanding how selection operates on glucocorticoid secretion in natural populations. Because heritability is rarely estimated and difficult to measure in the wild, many studies report within-individual repeatability as an estimate of stable between individual differences in glucocorticoid secretion. We conducted a systematic review and meta-analysis on estimates of within-individual glucocorticoid repeatability to elucidate general patterns of repeatability, and to test for relationships between covariates and estimates of repeatability. To this end, we collected 203 estimates of within-individual glucocorticoid repeatability drawn from 71 separate studies and 55 species. Overall, we found moderate levels of repeatability (0.29). We also found that repeatability varied by sample type. Long-term measures (e.g., fecal and feather samples) and acute stress-induced plasma glucocorticoids had higher repeatability (long-term: 0.44, stress-induced: 0.38), than baseline glucocorticoid levels (0.18). Repeatability also decreased with increasing time between repeated sampling events. Despite significant overall repeatability, there was substantial heterogeneity in estimates from different studies, suggesting that repeatability of glucocorticoid secretion varies substantially across systems and conditions. We discuss the implications of our results for understanding selection on glucocorticoid traits and suggest that continuing work should focus on evaluating the repeatability of within-individual glucocorticoid reaction norms.
Collapse
Affiliation(s)
- Conor C Taff
- Lab of Ornithology and Department of Ecology & Evolutionary Biology, Cornell University, United States.
| | | | - Maren N Vitousek
- Lab of Ornithology and Department of Ecology & Evolutionary Biology, Cornell University, United States
| |
Collapse
|
49
|
Vitousek MN, Taff CC, Hallinger KK, Zimmer C, Winkler DW. Hormones and Fitness: Evidence for Trade-Offs in Glucocorticoid Regulation Across Contexts. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Henschen AE, Whittingham LA, Dunn PO. Male stress response is related to ornamentation but not resistance to oxidative stress in a warbler. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Amberleigh E. Henschen
- Behavioral and Molecular Ecology GroupDepartment of Biological SciencesUniversity of Wisconsin‐Milwaukee Milwaukee WI USA
| | - Linda A. Whittingham
- Behavioral and Molecular Ecology GroupDepartment of Biological SciencesUniversity of Wisconsin‐Milwaukee Milwaukee WI USA
| | - Peter O. Dunn
- Behavioral and Molecular Ecology GroupDepartment of Biological SciencesUniversity of Wisconsin‐Milwaukee Milwaukee WI USA
| |
Collapse
|