1
|
De Lisle SP. Genotype × Environment interaction and the evolution of sexual dimorphism: adult nutritional environment mediates selection and expression of sex-specific genetic variance in Drosophila melanogaster. J Evol Biol 2024; 37:770-778. [PMID: 38668688 DOI: 10.1093/jeb/voae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/26/2024] [Accepted: 04/25/2024] [Indexed: 07/11/2024]
Abstract
Sexual conflict plays a key role in the dynamics of adaptive evolution in sexually reproducing populations, and theory suggests an important role for variance in resource acquisition in generating or masking sexual conflict over fitness and life history traits. Here, I used a quantitative genetic genotype × environment experiment in Drosophila melanogaster to test the theoretical prediction that variance in resource acquisition mediates variation in sex-specific component fitness. Holding larval conditions constant, I found that adult nutritional environments characterized by high protein content resulted in reduced survival of both sexes and lower male reproductive success compared to an environment of lower protein content. Despite reduced mean fitness of both sexes in high protein environments, I found a sex*treatment interaction for the relationship between resource acquisition and fitness; estimates of the adaptive landscape indicate males were furthest from their optimum resource acquisition level in high protein environments, and females were furthest in low protein environments. Expression of genetic variance in resource acquisition and survival was highest for each sex in the environment it was best adapted to, although the treatment effects on expression of genetic variance eroded in the path from resource acquisition to total fitness. Cross-sex genetic correlations were strongly positive for resource acquisition, survival, and total fitness and negative for mating success, although estimation error was high for all. These results demonstrate that environmental effects on resource acquisition can have predictable consequences for the expression of sex-specific genetic variance but also that these effects of resource acquisition can erode through life history.
Collapse
Affiliation(s)
- Stephen P De Lisle
- Department of Environmental and Life Science, Karlstad University, Universitetsgatan 2, Karlstad 651 88, Sweden
| |
Collapse
|
2
|
Meisel RP. Ecology and the evolution of sex chromosomes. J Evol Biol 2022; 35:1601-1618. [PMID: 35950939 DOI: 10.1111/jeb.14074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Sex chromosomes are common features of animal genomes, often carrying a sex determination gene responsible for initiating the development of sexually dimorphic traits. The specific chromosome that serves as the sex chromosome differs across taxa as a result of fusions between sex chromosomes and autosomes, along with sex chromosome turnover-autosomes becoming sex chromosomes and sex chromosomes 'reverting' back to autosomes. In addition, the types of genes on sex chromosomes frequently differ from the autosomes, and genes on sex chromosomes often evolve faster than autosomal genes. Sex-specific selection pressures, such as sexual antagonism and sexual selection, are hypothesized to be responsible for sex chromosome turnovers, the unique gene content of sex chromosomes and the accelerated evolutionary rates of genes on sex chromosomes. Sex-specific selection has pronounced effects on sex chromosomes because their sex-biased inheritance can tilt the balance of selection in favour of one sex. Despite the general consensus that sex-specific selection affects sex chromosome evolution, most population genetic models are agnostic as to the specific sources of these sex-specific selection pressures, and many of the details about the effects of sex-specific selection remain unresolved. Here, I review the evidence that ecological factors, including variable selection across heterogeneous environments and conflicts between sexual and natural selection, can be important determinants of sex-specific selection pressures that shape sex chromosome evolution. I also explain how studying the ecology of sex chromosome evolution can help us understand important and unresolved aspects of both sex chromosome evolution and sex-specific selection.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
3
|
Garlovsky MD, Holman L, Brooks AL, Novicic ZK, Snook RR. Experimental sexual selection affects the evolution of physiological and life-history traits. J Evol Biol 2022; 35:742-751. [PMID: 35384100 PMCID: PMC9322299 DOI: 10.1111/jeb.14003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022]
Abstract
Sexual selection and sexual conflict are expected to affect all aspects of the phenotype, not only traits that are directly involved in reproduction. Here, we show coordinated evolution of multiple physiological and life-history traits in response to long-term experimental manipulation of the mating system in populations of Drosophila pseudoobscura. Development time was extended under polyandry relative to monogamy in both sexes, potentially due to higher investment in traits linked to sexual selection and sexual conflict. Individuals (especially males) evolving under polyandry had higher metabolic rates and locomotor activity than those evolving under monogamy. Polyandry individuals also invested more in metabolites associated with increased endurance capacity and efficient energy metabolism and regulation, namely lipids and glycogen. Finally, polyandry males were less desiccation- and starvation resistant than monogamy males, suggesting trade-offs between resistance and sexually selected traits. Our results provide experimental evidence that mating systems can impose selection that influences the evolution of non-sexual phenotypes such as development, activity, metabolism and nutrient homeostasis.
Collapse
Affiliation(s)
- Martin D Garlovsky
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Luke Holman
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Andrew L Brooks
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Zorana K Novicic
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Geeta Arun M, Chechi TS, Meena R, Bhosle SD, Srishti, Prasad NG. Investigating the interaction between inter-locus and intra-locus sexual conflict using hemiclonal analysis in Drosophila melanogaster. BMC Ecol Evol 2022; 22:38. [PMID: 35346023 PMCID: PMC8962633 DOI: 10.1186/s12862-022-01992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background Divergence in the evolutionary interests of males and females leads to sexual conflict. Traditionally, sexual conflict has been classified into two types: inter-locus sexual conflict (IeSC) and intra-locus sexual conflict (IaSC). IeSC is modeled as a conflict over outcomes of intersexual reproductive interactions mediated by loci that are sex-limited in their effects. IaSC is thought to be a product of selection acting in opposite directions in males and females on traits with a common underlying genetic basis. While in their canonical formalisms IaSC and IeSC are mutually exclusive, there is growing support for the idea that the two may interact. Empirical evidence for such interactions, however, is limited. Results Here, we investigated the interaction between IeSC and IaSC in Drosophila melanogaster. Using hemiclonal analysis, we sampled 39 hemigenomes from a laboratory-adapted population of D. melanogaster. We measured the contribution of each hemigenome to adult male and female fitness at three different intensities of IeSC, obtained by varying the operational sex ratio. Subsequently, we estimated the intensity of IaSC at each sex ratio by calculating the intersexual genetic correlation (rw,g,mf) for fitness and the proportion of sexually antagonistic fitness-variation. We found that the intersexual genetic correlation for fitness was positive at all three sex ratios. Additionally, at male biased and equal sex ratios the rw,g,mf was higher, and the proportion of sexually antagonistic fitness variation lower, relative to the female biased sex ratio, although this trend was not statistically significant. Conclusion Our results indicate a statistically non-significant trend suggesting that increasing the strength of IeSC ameliorates IaSC in the population. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01992-0.
Collapse
Affiliation(s)
- Manas Geeta Arun
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Tejinder Singh Chechi
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Rakesh Meena
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Shradha Dattaraya Bhosle
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, University Campus, Jaisigpura, Aurangabad, Maharashtra, 431004, India
| | - Srishti
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
5
|
Winkler L, Moiron M, Morrow EH, Janicke T. Stronger net selection on males across animals. eLife 2021; 10:e68316. [PMID: 34787569 PMCID: PMC8598160 DOI: 10.7554/elife.68316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/30/2021] [Indexed: 11/22/2022] Open
Abstract
Sexual selection is considered the major driver for the evolution of sex differences. However, the eco-evolutionary dynamics of sexual selection and their role for a population's adaptive potential to respond to environmental change have only recently been explored. Theory predicts that sexual selection promotes adaptation at a low demographic cost only if sexual selection is aligned with natural selection and if net selection is stronger on males compared to females. We used a comparative approach to show that net selection is indeed stronger in males and provide preliminary support that this sex bias is associated with sexual selection. Given that both sexes share the vast majority of their genes, our findings corroborate the notion that the genome is often confronted with a more stressful environment when expressed in males. Collectively, our study supports one of the long-standing key assumptions required for sexual selection to bolster adaptation, and sexual selection may therefore enable some species to track environmental change more efficiently.
Collapse
Affiliation(s)
| | - Maria Moiron
- CEFE, CNRS, Univ Montpellier, EPHE, IRDMontpellierFrance
| | - Edward H Morrow
- Department for Environmental and Life Sciences, Karlstad UniversityKarlstadSweden
| | - Tim Janicke
- Applied Zoology, Technical University DresdenDresdenGermany
- CEFE, CNRS, Univ Montpellier, EPHE, IRDMontpellierFrance
| |
Collapse
|
6
|
Janicke T, Chapuis E, Meconcelli S, Bonel N, Delahaie B, David P. Environmental effects on the genetic architecture of fitness components in a simultaneous hermaphrodite. J Anim Ecol 2021; 91:124-137. [PMID: 34652857 DOI: 10.1111/1365-2656.13607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/04/2021] [Indexed: 12/01/2022]
Abstract
Understanding how environmental change affects genetic variances and covariances of reproductive traits is key to formulate firm predictions on evolutionary responses. This is particularly true for sex-specific variance in reproductive success, which has been argued to affect how populations can adapt to environmental change. Our current knowledge on the impact of environmental stress on sex-specific genetic architecture of fitness components is still limited and restricted to separate-sexed organisms. However, hermaphroditism is widespread across animals and may entail interesting peculiarities with respect to genetic constraints imposed on the evolution of male and female reproduction. We explored how food restriction affects the genetic variance-covariance (G) matrix of body size and reproductive success of the simultaneously hermaphroditic freshwater snail Physa acuta. Our results provide strong evidence that the imposed environmental stress elevated the opportunity for selection in both sex functions. However, the G-matrix remained largely stable across the tested food treatments. Importantly, our results provide no support for cross-sex genetic correlations suggesting no strong evolutionary coupling of male and female reproductive traits. We discuss potential implications for the adaptation to changing environments and highlight the need for more quantitative genetic studies on male and female fitness components in simultaneous hermaphrodites.
Collapse
Affiliation(s)
- Tim Janicke
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.,Applied Zoology, Technical University Dresden, Dresden, Germany
| | - Elodie Chapuis
- MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Stefania Meconcelli
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.,Department of Life Sciences and Systems Biology, Università di Torino, Torino, Italy
| | - Nicolas Bonel
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.,Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Bahía Blanca, Argentina
| | - Boris Delahaie
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Patrice David
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| |
Collapse
|
7
|
Pointer MD, Gage MJG, Spurgin LG. Tribolium beetles as a model system in evolution and ecology. Heredity (Edinb) 2021; 126:869-883. [PMID: 33767370 PMCID: PMC8178323 DOI: 10.1038/s41437-021-00420-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 02/01/2023] Open
Abstract
Flour beetles of the genus Tribolium have been utilised as informative study systems for over a century and contributed to major advances across many fields. This review serves to highlight the significant historical contribution that Tribolium study systems have made to the fields of ecology and evolution, and to promote their use as contemporary research models. We review the broad range of studies employing Tribolium to make significant advances in ecology and evolution. We show that research using Tribolium beetles has contributed a substantial amount to evolutionary and ecological understanding, especially in the fields of population dynamics, reproduction and sexual selection, population and quantitative genetics, and behaviour, physiology and life history. We propose a number of future research opportunities using Tribolium, with particular focus on how their amenability to forward and reverse genetic manipulation may provide a valuable complement to other insect models.
Collapse
Affiliation(s)
- Michael D Pointer
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Matthew J G Gage
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
8
|
Kreider JJ, Pen I, Kramer BH. Antagonistic pleiotropy and the evolution of extraordinary lifespans in eusocial organisms. Evol Lett 2021; 5:178-186. [PMID: 34136267 PMCID: PMC8190452 DOI: 10.1002/evl3.230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
Queens of eusocial species live extraordinarily long compared to their workers. So far, it has been argued that these lifespan divergences are readily explained by the classical evolutionary theory of ageing. As workers predominantly perform risky tasks, such as foraging and nest defense, and queens stay in the well-protected nests, selection against harmful genetic mutations expressed in old age should be weaker in workers than in queens due to caste differences in extrinsic mortality risk, and thus, lead to the evolution of longer queen and shorter worker lifespans. However, these arguments have not been supported by formal models. Here, we present a model for the evolution of caste-specific ageing in social insects, based on Williams' antagonistic pleiotropy theory of ageing. In individual-based simulations, we assume that mutations with antagonistic fitness effects can act within castes, that is, mutations in early life are accompanied by an antagonistic effect acting in later life, or between castes, where antagonistic effects emerge due to caste antagonism or indirect genetic effects between castes. In monogynous social insect species with sterile workers, large lifespan divergences between castes evolved under all different scenarios of antagonistic effects, but regardless of the degree of caste-specific extrinsic mortality. Mutations with antagonistic fitness effects within castes reduced lifespans of both castes, while mutations with between-caste antagonistic effects decreased worker lifespans more than queen lifespans, and consequently increased lifespan divergences. Our results challenge the central explanatory role of extrinsic mortality for caste-specific ageing in eusocial organisms and suggest that antagonistic pleiotropy affects castes differently due to reproductive monopolization by queens, hence, reproductive division of labor. Finally, these findings provide new insights into the evolution of tissue-specific ageing in multicellular organisms in general.
Collapse
Affiliation(s)
- Jan J. Kreider
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenNijenborgh 7Groningen9747 AGThe Netherlands
| | - Ido Pen
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenNijenborgh 7Groningen9747 AGThe Netherlands
| | - Boris H. Kramer
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenNijenborgh 7Groningen9747 AGThe Netherlands
| |
Collapse
|
9
|
Cheng 成常德 C, Houle D. Predicting Multivariate Responses of Sexual Dimorphism to Direct and Indirect Selection. Am Nat 2020; 196:391-405. [PMID: 32970462 DOI: 10.1086/710353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractSexual dimorphism is often assumed to result from balancing the strength of antagonistic selection in favor of dimorphism against the degree of constraint imposed by the shared genome of the sexes, reflected in the B matrix of genetic intersexual covariances. To investigate the totality of forces shaping dimorphism, we reparameterized the Lande equation to predict changes in trait averages and trait differences between the sexes. As genetic constraints on the evolution of dimorphism in response to antagonistic selection become larger, dimorphism will tend to respond more rapidly to concordant selection (which favors the same direction of change in male and female traits) than to antagonistic selection. When we apply this theory to four empirical estimates of B in Drosophila melanogaster, the indirect responses of dimorphism to concordant selection are of comparable or larger magnitude than the direct responses of dimorphism to antagonistic selection in two suites of traits with typical levels of intersex correlation. Antagonistic selection is more important in two suites of traits where the intersex correlations are unusually low. This suggests that the evolution of sexual dimorphism may sometimes be dominated by concordant selection rather than antagonistic selection.
Collapse
|
10
|
García-Roa R, Garcia-Gonzalez F, Noble DWA, Carazo P. Temperature as a modulator of sexual selection. Biol Rev Camb Philos Soc 2020; 95:1607-1629. [PMID: 32691483 DOI: 10.1111/brv.12632] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022]
Abstract
A central question in ecology and evolution is to understand why sexual selection varies so much in strength across taxa; it has long been known that ecological factors are crucial to this. Temperature is a particularly salient abiotic ecological factor that modulates a wide range of physiological, morphological and behavioural traits, impacting individuals and populations at a global taxonomic scale. Furthermore, temperature exhibits substantial temporal variation (e.g. daily, seasonally and inter-seasonally), and hence for most species in the wild sexual selection will regularly unfold in a dynamic thermal environment. Unfortunately, studies have so far almost completely neglected the role of temperature as a modulator of sexual selection. Here, we outline the main pathways through which temperature can affect the intensity and form (i.e. mechanisms) of sexual selection, via: (i) direct effects on secondary sexual traits and preferences (i.e. trait variance, opportunity for selection and trait-fitness covariance), and (ii) indirect effects on key mating parameters, sex-specific reproductive costs/benefits, trade-offs, demography and correlated abiotic factors. Building upon this framework, we show that, by focusing exclusively on the first-order effects that environmental temperature has on traits linked with individual fitness and population viability, current global warming studies may be ignoring eco-evolutionary feedbacks mediated by sexual selection. Finally, we tested the general prediction that temperature modulates sexual selection by conducting a meta-analysis of available studies experimentally manipulating temperature and reporting effects on the variance of male/female reproductive success and/or traits under sexual selection. Our results show a clear association between temperature and sexual selection measures in both sexes. In short, we suggest that studying the feedback between temperature and sexual selection processes may be vital to developing a better understanding of variation in the strength of sexual selection in nature, and its consequences for population viability in response to environmental change (e.g. global warming).
Collapse
Affiliation(s)
- Roberto García-Roa
- Behaviour and Evolution, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, Paterna, Valencia, 46980, Spain
| | - Francisco Garcia-Gonzalez
- Doñana Biological Station, Spanish Research Council CSIC, c/Americo Vespucio, 26, Isla de la Cartuja, Sevilla, 41092, Spain.,Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Daniel W A Noble
- Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 2061, Australia
| | - Pau Carazo
- Behaviour and Evolution, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, Paterna, Valencia, 46980, Spain
| |
Collapse
|
11
|
Sztepanacz JL. Digest: Within and between sex covariances can enhance the response to climatic selection. Evolution 2019; 74:501-503. [PMID: 31808152 DOI: 10.1111/evo.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/05/2019] [Indexed: 11/27/2022]
Abstract
Do genetic covariances promote or impede rapid adaptation to changing environments? Hangartner et al. found that genetic covariances among traits and between sexes aligned with the inferred direction of selection along a latitudinal cline, suggesting that genetic covariances can augment the evolutionary response to climatic selection.
Collapse
|
12
|
Hangartner S, Lasne C, Sgrò CM, Connallon T, Monro K. Genetic covariances promote climatic adaptation in Australian
Drosophila
*. Evolution 2019; 74:326-337. [DOI: 10.1111/evo.13831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Sandra Hangartner
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
| | - Clementine Lasne
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
| | - Tim Connallon
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
| | - Keyne Monro
- School of Biological Sciences Monash University Building 18 Melbourne Victoria 3800 Australia
- Centre for Geometric Biology Monash University Melbourne Victoria 3800 Australia
| |
Collapse
|
13
|
Li XY, Holman L. Evolution of female choice under intralocus sexual conflict and genotype-by-environment interactions. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0425. [PMID: 30150223 DOI: 10.1098/rstb.2017.0425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 12/15/2022] Open
Abstract
In many species, females are hypothesized to obtain 'good genes' for their offspring by mating with males in good condition. However, female preferences might deplete genetic variance and make choice redundant. Additionally, high-condition males sometimes produce low-fitness offspring, for example because of environmental turnover and gene-by-environment interactions (GEIs) for fitness, or because fit males carry sexually antagonistic alleles causing them to produce unfit daughters. Here, we extend previous theory by investigating the evolution of female mate choice in a spatially explicit evolutionary simulation implementing both GEIs and intralocus sexual conflict (IASC), under sex-specific hard or soft selection. We show that IASC can weaken female preferences for high-condition males or even cause a preference for males in low condition, depending on the relative benefits of producing well-adapted sons versus daughters, which in turn depends on the relative hardness of selection on males and females. We discuss the relevance of our results to conservation genetics and empirical evolutionary biology.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
- Xiang-Yi Li
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Luke Holman
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
14
|
Connallon T, Débarre F, Li XY. Linking local adaptation with the evolution of sex differences. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0414. [PMID: 30150215 DOI: 10.1098/rstb.2017.0414] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 01/21/2023] Open
Abstract
Many conspicuous forms of evolutionary diversity occur within species. Two prominent examples include evolutionary divergence between populations differentially adapted to their local environments (local adaptation), and divergence between females and males in response to sex differences in selection (sexual dimorphism sensu lato). These two forms of diversity have inspired vibrant research programmes, yet these fields have largely developed in isolation from one another. Nevertheless, conceptual parallels between these research traditions are striking. Opportunities for local adaptation strike a balance between local selection, which promotes divergence, and gene flow-via dispersal and interbreeding between populations-which constrains it. Sex differences are similarly constrained by fundamental features of inheritance that mimic gene flow. Offspring of each sex inherit genes from same-sex and opposite-sex parents, leading to gene flow between each differentially selected half of the population, and raising the question of how sex differences arise and are maintained. This special issue synthesizes and extends emerging research at the interface between the research traditions of local adaptation and sex differences. Each field can promote understanding of the other, and interactions between local adaptation and sex differences can generate new empirical predictions about the evolutionary consequences of selection that varies across space, time, and between the sexes.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Florence Débarre
- CNRS, UMR 7241 Centre Interdisciplinaire de Recherche en Biologie (CIRB), Collège de France, Paris, France
| | - Xiang-Yi Li
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
15
|
Martinossi‐Allibert I, Thilliez E, Arnqvist G, Berger D. Sexual selection, environmental robustness, and evolutionary demography of maladapted populations: A test using experimental evolution in seed beetles. Evol Appl 2019; 12:1371-1384. [PMID: 31417621 PMCID: PMC6691221 DOI: 10.1111/eva.12758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/19/2018] [Accepted: 12/09/2018] [Indexed: 01/01/2023] Open
Abstract
Whether sexual selection impedes or aids adaptation has become an outstanding question in times of rapid environmental change and parallels the debate about how the evolution of individual traits impacts on population dynamics. The net effect of sexual selection on population viability results from a balance between genetic benefits of "good-genes" effects and costs of sexual conflict. Depending on how these facets of sexual selection are affected under environmental change, extinction of maladapted populations could be either avoided or accelerated. Here, we evolved seed beetles under three alternative mating regimes to disentangle the contributions of sexual selection, fecundity selection, and male-female coevolution to individual reproductive success and population fitness. We compared these contributions between the ancestral environment and two stressful environments (elevated temperature and a host plant shift). We found evidence that sexual selection on males had positive genetic effects on female fitness components across environments, supporting good-genes sexual selection. Interestingly, however, when males evolved under sexual selection with fecundity selection removed, they became more robust to both temperature and host plant stress compared to their conspecific females and males from the other evolution regimes that applied fecundity selection. We quantified the population-level consequences of this sex-specific adaptation and found evidence that the cost of sociosexual interactions in terms of reduced offspring production was higher in the regime applying only sexual selection to males. Moreover, the cost tended to be more pronounced at the elevated temperature to which males from the regime were more robust compared to their conspecific females. These results illustrate the tension between individual-level adaptation and population-level viability in sexually reproducing species and suggest that the relative efficacies of sexual selection and fecundity selection can cause inherent sex differences in environmental robustness that may impact demography of maladapted populations.
Collapse
Affiliation(s)
| | - Emma Thilliez
- Department of Ecology and Genetics, Animal EcologyUppsala UniversityUppsalaSweden
| | - Göran Arnqvist
- Department of Ecology and Genetics, Animal EcologyUppsala UniversityUppsalaSweden
| | - David Berger
- Department of Ecology and Genetics, Animal EcologyUppsala UniversityUppsalaSweden
| |
Collapse
|
16
|
Sztepanacz JL, Houle D. Cross‐sex genetic covariances limit the evolvability of wing‐shape within and among species of
Drosophila. Evolution 2019; 73:1617-1633. [DOI: 10.1111/evo.13788] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/29/2019] [Indexed: 01/02/2023]
Affiliation(s)
| | - David Houle
- Department of Biology Florida State University Tallahassee Florida 32306
| |
Collapse
|
17
|
Cally JG, Stuart-Fox D, Holman L. Meta-analytic evidence that sexual selection improves population fitness. Nat Commun 2019; 10:2017. [PMID: 31043615 PMCID: PMC6494874 DOI: 10.1038/s41467-019-10074-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/16/2019] [Indexed: 01/12/2023] Open
Abstract
Sexual selection has manifold ecological and evolutionary consequences, making its net effect on population fitness difficult to predict. A powerful empirical test is to experimentally manipulate sexual selection and then determine how population fitness evolves. Here, we synthesise 459 effect sizes from 65 experimental evolution studies using meta-analysis. We find that sexual selection on males tends to elevate the mean and reduce the variance for many fitness traits, especially in females and in populations evolving under stressful conditions. Sexual selection had weaker effects on direct measures of population fitness such as extinction rate and proportion of viable offspring, relative to traits that are less closely linked to population fitness. Overall, we conclude that the beneficial population-level consequences of sexual selection typically outweigh the harmful ones and that the effects of sexual selection can differ between sexes and environments. We discuss the implications of these results for conservation and evolutionary biology. Sexual selection has the potential to either increase or decrease absolute fitness. Here, Cally et al. perform a meta-analysis of 65 experimental evolution studies and find that sexual selection on males tends to increase fitness, especially in females evolving under stressful conditions.
Collapse
Affiliation(s)
- Justin G Cally
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Luke Holman
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
18
|
Connallon T, Matthews G. Cross-sex genetic correlations for fitness and fitness components: Connecting theoretical predictions to empirical patterns. Evol Lett 2019; 3:254-262. [PMID: 31171981 PMCID: PMC6546386 DOI: 10.1002/evl3.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2019] [Accepted: 04/07/2019] [Indexed: 11/18/2022] Open
Abstract
Sex differences in morphology, physiology, development, and behavior are widespread, yet the sexes inherit nearly identical genomes, causing most traits to exhibit strong and positive cross‐sex genetic correlations. In contrast to most other traits, estimates of cross‐sex genetic correlations for fitness and fitness components (rW fm ) are generally low and occasionally negative, implying that a substantial fraction of standing genetic variation for fitness might be sexually antagonistic (i.e., alleles benefitting one sex harm the other). Nevertheless, while low values of rW fm are often regarded as consequences of sexually antagonistic selection, it remains unclear exactly how selection and variation in quantitative traits interact to determine the sign and magnitude of rW fm , making it difficult to relate empirical estimates of cross‐sex genetic correlations to the evolutionary processes that might shape them. We present simple univariate and multivariate quantitative genetic models that explicitly link patterns of sex‐specific selection and trait genetic variation to the cross‐sex genetic correlation for fitness. We show that rW fm provides an unreliable signal of sexually antagonistic selection for two reasons. First, rW fm is constrained to be less than the cross‐sex genetic correlation for traits affecting fitness, regardless of the nature of selection on the traits. Second, sexually antagonistic selection is an insufficient condition for generating negative cross‐sex genetic correlations for fitness. Instead, negative fitness correlations between the sexes (rW fm <0) can only emerge when selection is sexually antagonistic and the strength of directional selection on each sex is strong relative to the amount of shared additive genetic variation in female and male traits. These results imply that empirical tests of sexual antagonism that are based on estimates of rW fm will be conservative and underestimate its true scope. In light of these theoretical results, we revisit current data on rW fm and sex‐specific selection and find that they are consistent with the theory.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, and Centre for Geometric Biology Monash University Clayton Victoria 3800 Australia
| | - Genevieve Matthews
- School of Biological Sciences, and Centre for Geometric Biology Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
19
|
Fox RJ, Fromhage L, Jennions MD. Sexual selection, phenotypic plasticity and female reproductive output. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180184. [PMID: 30966965 PMCID: PMC6365872 DOI: 10.1098/rstb.2018.0184] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2018] [Indexed: 01/17/2023] Open
Abstract
In a rapidly changing environment, does sexual selection on males elevate a population's reproductive output? If so, does phenotypic plasticity enhance or diminish any such effect? We outline two routes by which sexual selection can influence the reproductive output of a population: a genetic correlation between male sexual competitiveness and female lifetime reproductive success; and direct effects of males on females' breeding success. We then discuss how phenotypic plasticity of sexually selected male traits and/or female responses (e.g. plasticity in mate choice), as the environment changes, might influence how sexual selection affects a population's reproductive output. Two key points emerge. First, condition-dependent expression of male sexual traits makes it likely that sexual selection increases female fitness if reproductively successful males disproportionately transfer genes that are under natural selection in both sexes, such as genes for foraging efficiency. Condition-dependence is a form of phenotypic plasticity if some of the variation in net resource acquisition and assimilation is attributable to the environment rather than solely genetic in origin. Second, the optimal allocation of resources into different condition-dependent traits depends on their marginal fitness gains. As male condition improves, this can therefore increase or, though rarely highlighted, actually decrease the expression of sexually selected traits. It is therefore crucial to understand how condition determines male allocation of resources to different sexually selected traits that vary in their immediate effects on female reproductive output (e.g. ornaments versus coercive behaviour). In addition, changes in the distribution of condition among males as the environment shifts could reduce phenotypic variance in certain male traits, thereby reducing the strength of sexual selection imposed by females. Studies of adaptive evolution under rapid environmental change should consider the possibility that phenotypic plasticity of sexually selected male traits, even if it elevates male fitness, could have a negative effect on female reproductive output, thereby increasing the risk of population extinction. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Rebecca J. Fox
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Lutz Fromhage
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, Jyvaskyla 40014, Finland
| | - Michael D. Jennions
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
20
|
Arbuthnott D, Whitlock MC. Environmental stress does not increase the mean strength of selection. J Evol Biol 2018; 31:1599-1606. [PMID: 29978525 DOI: 10.1111/jeb.13351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/06/2018] [Accepted: 06/23/2018] [Indexed: 11/28/2022]
Abstract
A common intuition among evolutionary biologists and ecologists is that environmental stress will increase the strength of selection against deleterious alleles and among alternate genotypes. However, the strength of selection is determined by the relative fitness differences among genotypes, and there is no theoretical reason why these differences should be exaggerated as mean fitness decreases. We update a recent review of the empirical results pertaining to environmental stress and the strength of selection and find that there is no overall trend towards increased selection under stress, in agreement with other recent analyses of existing data. The majority of past studies measure the strength of selection by quantifying the decrease in fitness imposed by single or multiple mutations in different environments. However, selection rarely acts on one locus independently, and the strength of selection will be determined by variation across the whole genome. We used 20 inbred lines of Drosophila melanogaster to make repeated fitness measurements of the same genotypes in four different environments. This framework allowed us to determine the variation in fitness attributable to genotype across stressful environments and to calculate the opportunity for selection among these genotypes in each stress. Although we found significant decreases in mean fitness in our stressful environments, we did not find any significant differences in the strength of selection among any of the four measured environments. Therefore, in agreement with our updated review, we find no evidence for the oft-cited verbal model that stress increases the strength of selection.
Collapse
Affiliation(s)
- Devin Arbuthnott
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Michael C Whitlock
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Lasne C, Hangartner SB, Connallon T, Sgrò CM. Cross‐sex genetic correlations and the evolution of sex‐specific local adaptation: Insights from classical trait clines in
Drosophila melanogaster. Evolution 2018; 72:1317-1327. [DOI: 10.1111/evo.13494] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/03/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Clémentine Lasne
- School of Biological Sciences Monash University Clayton Victoria 3800 Australia
| | | | - Tim Connallon
- School of Biological Sciences Monash University Clayton Victoria 3800 Australia
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
22
|
Martinossi-Allibert I, Savković U, Đorđević M, Arnqvist G, Stojković B, Berger D. The consequences of sexual selection in well-adapted and maladapted populations of bean beetles†. Evolution 2018; 72:518-530. [DOI: 10.1111/evo.13412] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/24/2017] [Accepted: 12/03/2017] [Indexed: 12/12/2022]
Affiliation(s)
| | - Uroš Savković
- Department of Evolutionary Biology; Institute for Biological Research “Siniša Stanković; ” University of Belgrade; Bulevar despota Stefana 142 Belgrade 11060 Serbia
| | - Mirko Đorđević
- Department of Evolutionary Biology; Institute for Biological Research “Siniša Stanković; ” University of Belgrade; Bulevar despota Stefana 142 Belgrade 11060 Serbia
| | - Göran Arnqvist
- Department of Ecology and Genetics, Evolutionary Biology Centre; Uppsala University; Sweden
| | - Biljana Stojković
- Department of Evolutionary Biology; Institute for Biological Research “Siniša Stanković; ” University of Belgrade; Bulevar despota Stefana 142 Belgrade 11060 Serbia
- Institute of Zoology, Faculty of Biology; University of Belgrade; Studentskitrg 16 Belgrade 11000 Serbia
| | - David Berger
- Department of Ecology and Genetics, Evolutionary Biology Centre; Uppsala University; Sweden
| |
Collapse
|