1
|
Escudero M, Marques A, Lucek K, Hipp AL. Genomic hotspots of chromosome rearrangements explain conserved synteny despite high rates of chromosome evolution in a holocentric lineage. Mol Ecol 2024; 33:e17086. [PMID: 37486041 PMCID: PMC11628656 DOI: 10.1111/mec.17086] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Holocentric organisms, unlike typical monocentric organisms, have kinetochore activity distributed along almost the whole length of the chromosome. Because of this, chromosome rearrangements through fission and fusion are more likely to become fixed in holocentric species, which may account for the extraordinary rates of chromosome evolution that many holocentric lineages exhibit. Long blocks of genome synteny have been reported in animals with holocentric chromosomes despite high rates of chromosome rearrangements. Nothing is known from plants, however, despite the fact that holocentricity appears to have played a key role in the diversification of one of the largest angiosperm genera, Carex (Cyperaceae). In the current study, we compared genomes of Carex species and a distantly related Cyperaceae species to characterize conserved and rearranged genome regions. Our analyses span divergence times ranging between 2 and 50 million years. We also compared a C. scoparia chromosome-level genome assembly with a linkage map of the same species to study rearrangements at a population level and suppression of recombination patterns. We found longer genome synteny blocks than expected under a null model of random rearrangement breakpoints, even between very distantly related species. We also found repetitive DNA to be non-randomly associated with holocentromeres and rearranged regions of the genome. The evidence of conserved synteny in sedges despite high rates of chromosome fission and fusion suggests that conserved genomic hotspots of chromosome evolution related to repetitive DNA shape the evolution of recombination, gene order and crossability in sedges. This finding may help explain why sedges are able to maintain species cohesion even in the face of high interspecific chromosome rearrangements.
Collapse
Affiliation(s)
- Marcial Escudero
- Department of Plant Biology and EcologyUniversity of SevilleSevillaSpain
| | - André Marques
- Department of Chromosome BiologyMax Planck Institute for Plant Breeding ResearchCologneGermany
| | - Kay Lucek
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | | |
Collapse
|
2
|
Jay P, Aubier TG, Joron M. The interplay of local adaptation and gene flow may lead to the formation of supergenes. Mol Ecol 2024; 33:e17297. [PMID: 38415327 DOI: 10.1111/mec.17297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
Supergenes are genetic architectures resulting in the segregation of alternative combinations of alleles underlying complex phenotypes. The co-segregation of alleles at linked loci is often facilitated by polymorphic chromosomal rearrangements suppressing recombination locally. Supergenes are involved in many complex polymorphisms, including sexual, colour or behavioural polymorphisms in numerous plants, fungi, mammals, fish, and insects. Despite a long history of empirical and theoretical research, the formation of supergenes remains poorly understood. Here, using a two-island population genetic model, we explore how gene flow and the evolution of overdominant chromosomal inversions may jointly lead to the formation of supergenes. We show that the evolution of inversions in differentiated populations, both under disruptive selection, leads to an increase in frequency of poorly adapted, immigrant haplotypes. Indeed, rare allelic combinations, such as immigrant haplotypes, are more frequently reshuffled by recombination than common allelic combinations, and therefore benefit from the recombination suppression generated by inversions. When an inversion capturing a locally adapted haplotype spreads but is associated with a fitness cost hampering its fixation (e.g. a recessive mutation load), the maintenance of a non-inverted haplotype in the population is enhanced; under certain conditions, the immigrant haplotype persists alongside the inverted local haplotype, while the standard local haplotype disappears. This establishes a stable, local polymorphism with two non-recombining haplotypes encoding alternative adaptive strategies, that is, a supergene. These results bring new light to the importance of local adaptation, overdominance, and gene flow in the formation of supergenes and inversion polymorphisms in general.
Collapse
Affiliation(s)
- Paul Jay
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Thomas G Aubier
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
3
|
Bitter MC, Greenblum S, Rajpurohit S, Bergland AO, Hemker JA, Betancourt NJ, Tilk S, Berardi S, Oken H, Schmidt P, Petrov DA. Pervasive fitness trade-offs revealed by rapid adaptation in large experimental populations of Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620721. [PMID: 39554054 PMCID: PMC11565731 DOI: 10.1101/2024.10.28.620721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Life-history trade-offs are an inherent feature of organismal biology that evolutionary theory posits play a key role in patterns of divergence within and between species. Efforts to quantify trade-offs are largely confined to phenotypic measurements and the identification of negative genetic-correlations among fitness-relevant traits. Here, we use time-series genomic data collected during experimental evolution in large, genetically diverse populations of Drosophila melanogaster to directly measure the manifestation of trade-offs in response to temporally fluctuating selection pressures on ecological timescales. Specifically, we quantify the genome-wide signal of antagonistic pleiotropy suggestive of trade-offs between reproduction and stress tolerance. We further identify a putative role of two cosmopolitan inversions in these trade-offs, and show that loci responding to selection during lab-based, reproduction selection exhibit signals of fluctuating selection in an outdoor mesocosm exposed to natural environmental conditions. Our results demonstrate the utility of time-series genomic data in revealing the presence and genomic architecture underlying fitness trade-offs, and add credence to models positing a role of generic life history trade-offs in the maintenance of variation in natural populations.
Collapse
Affiliation(s)
- M C Bitter
- Department of Biology, Stanford University, Stanford, CA, USA
| | - S Greenblum
- Department of Biology, Stanford University, Stanford, CA, USA
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - S Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Gujarat, India
| | - A O Bergland
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - J A Hemker
- Department of Biology, Stanford University, Stanford, CA, USA
| | - N J Betancourt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - S Tilk
- Department of Biology, Stanford University, Stanford, CA, USA
| | - S Berardi
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - H Oken
- Department of Biology, Stanford University, Stanford, CA, USA
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Gujarat, India
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - P Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - D A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
4
|
Tralamazza SM, Gluck-Thaler E, Feurtey A, Croll D. Copy number variation introduced by a massive mobile element facilitates global thermal adaptation in a fungal wheat pathogen. Nat Commun 2024; 15:5728. [PMID: 38977688 PMCID: PMC11231334 DOI: 10.1038/s41467-024-49913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
Copy number variation (CNV) can drive rapid evolution in changing environments. In microbial pathogens, such adaptation is a key factor underpinning epidemics and colonization of new niches. However, the genomic determinants of such adaptation remain poorly understood. Here, we systematically investigate CNVs in a large genome sequencing dataset spanning a worldwide collection of 1104 genomes from the major wheat pathogen Zymoseptoria tritici. We found overall strong purifying selection acting on most CNVs. Genomic defense mechanisms likely accelerated gene loss over episodes of continental colonization. Local adaptation along climatic gradients was likely facilitated by CNVs affecting secondary metabolite production and gene loss in general. One of the strongest loci for climatic adaptation is a highly conserved gene of the NAD-dependent Sirtuin family. The Sirtuin CNV locus localizes to an ~68-kb Starship mobile element unique to the species carrying genes highly expressed during plant infection. The element has likely lost the ability to transpose, demonstrating how the ongoing domestication of cargo-carrying selfish elements can contribute to selectable variation within populations. Our work highlights how standing variation in gene copy numbers at the global scale can be a major factor driving climatic and metabolic adaptation in microbial species.
Collapse
Affiliation(s)
- Sabina Moser Tralamazza
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Emile Gluck-Thaler
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alice Feurtey
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Plant Pathology, D-USYS, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
5
|
Glaser-Schmitt A, Ramnarine TJS, Parsch J. Rapid evolutionary change, constraints and the maintenance of polymorphism in natural populations of Drosophila melanogaster. Mol Ecol 2024; 33:e17024. [PMID: 37222070 DOI: 10.1111/mec.17024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023]
Abstract
Allele frequencies can shift rapidly within natural populations. Under certain conditions, repeated rapid allele frequency shifts can lead to the long-term maintenance of polymorphism. In recent years, studies of the model insect Drosophila melanogaster have suggested that this phenomenon is more common than previously believed and is often driven by some form of balancing selection, such as temporally fluctuating or sexually antagonistic selection. Here we discuss some of the general insights into rapid evolutionary change revealed by large-scale population genomic studies, as well as the functional and mechanistic causes of rapid adaptation uncovered by single-gene studies. As an example of the latter, we consider a regulatory polymorphism of the D. melanogaster fezzik gene. Polymorphism at this site has been maintained at intermediate frequency over an extended period of time. Regular observations from a single population over a period of 7 years revealed significant differences in the frequency of the derived allele and its variance across collections between the sexes. These patterns are highly unlikely to arise from genetic drift alone or from the action of sexually antagonistic or temporally fluctuating selection individually. Instead, the joint action of sexually antagonistic and temporally fluctuating selection can best explain the observed rapid and repeated allele frequency shifts. Temporal studies such as those reviewed here further our understanding of how rapid changes in selection can lead to the long-term maintenance of polymorphism as well as improve our knowledge of the forces driving and limiting adaptation in nature.
Collapse
Affiliation(s)
- Amanda Glaser-Schmitt
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Timothy J S Ramnarine
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
6
|
Berdan EL, Barton NH, Butlin R, Charlesworth B, Faria R, Fragata I, Gilbert KJ, Jay P, Kapun M, Lotterhos KE, Mérot C, Durmaz Mitchell E, Pascual M, Peichel CL, Rafajlović M, Westram AM, Schaeffer SW, Johannesson K, Flatt T. How chromosomal inversions reorient the evolutionary process. J Evol Biol 2023; 36:1761-1782. [PMID: 37942504 DOI: 10.1111/jeb.14242] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.
Collapse
Affiliation(s)
- Emma L Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas H Barton
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Roger Butlin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Ecology and Evolutionary Biology, School of Bioscience, The University of Sheffield, Sheffield, UK
| | - Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rui Faria
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Inês Fragata
- CHANGE - Global Change and Sustainability Institute/Animal Biology Department, cE3c - Center for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | | | - Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Central Research Laboratories, Natural History Museum of Vienna, Vienna, Austria
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Claire Mérot
- UMR 6553 Ecobio, Université de Rennes, OSUR, CNRS, Rennes, France
| | - Esra Durmaz Mitchell
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anja M Westram
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Stephen W Schaeffer
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kerstin Johannesson
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
7
|
Kapun M, Mitchell ED, Kawecki TJ, Schmidt P, Flatt T. An Ancestral Balanced Inversion Polymorphism Confers Global Adaptation. Mol Biol Evol 2023; 40:msad118. [PMID: 37220650 PMCID: PMC10234209 DOI: 10.1093/molbev/msad118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Since the pioneering work of Dobzhansky in the 1930s and 1940s, many chromosomal inversions have been identified, but how they contribute to adaptation remains poorly understood. In Drosophila melanogaster, the widespread inversion polymorphism In(3R)Payne underpins latitudinal clines in fitness traits on multiple continents. Here, we use single-individual whole-genome sequencing, transcriptomics, and published sequencing data to study the population genomics of this inversion on four continents: in its ancestral African range and in derived populations in Europe, North America, and Australia. Our results confirm that this inversion originated in sub-Saharan Africa and subsequently became cosmopolitan; we observe marked monophyletic divergence of inverted and noninverted karyotypes, with some substructure among inverted chromosomes between continents. Despite divergent evolution of this inversion since its out-of-Africa migration, derived non-African populations exhibit similar patterns of long-range linkage disequilibrium between the inversion breakpoints and major peaks of divergence in its center, consistent with balancing selection and suggesting that the inversion harbors alleles that are maintained by selection on several continents. Using RNA-sequencing, we identify overlap between inversion-linked single-nucleotide polymorphisms and loci that are differentially expressed between inverted and noninverted chromosomes. Expression levels are higher for inverted chromosomes at low temperature, suggesting loss of buffering or compensatory plasticity and consistent with higher inversion frequency in warm climates. Our results suggest that this ancestrally tropical balanced polymorphism spread around the world and became latitudinally assorted along similar but independent climatic gradients, always being frequent in subtropical/tropical areas but rare or absent in temperate climates.
Collapse
Affiliation(s)
- Martin Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
- Natural History Museum Vienna, Zentrale Forschungslaboratorien, Vienna, Austria
| | - Esra Durmaz Mitchell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
8
|
Hoedjes KM, Kostic H, Keller L, Flatt T. Natural alleles at the Doa locus underpin evolutionary changes in Drosophila lifespan and fecundity. Proc Biol Sci 2022; 289:20221989. [PMID: 36350205 PMCID: PMC9653240 DOI: 10.1098/rspb.2022.1989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
'Evolve and resequence' (E&R) studies in Drosophila melanogaster have identified many candidate loci underlying the evolution of ageing and life history, but experiments that validate the effects of such candidates remain rare. In a recent E&R study we have identified several alleles of the LAMMER kinase Darkener of apricot (Doa) as candidates for evolutionary changes in lifespan and fecundity. Here, we use two complementary approaches to confirm a functional role of Doa in life-history evolution. First, we used transgenic RNAi to study the effects of Doa at the whole-gene level. Ubiquitous silencing of expression in adult flies reduced both lifespan and fecundity, indicating pleiotropic effects. Second, to characterize segregating variation at Doa, we examined four candidate single nucleotide polymorphisms (SNPs; Doa-1, -2, -3, -4) using a genetic association approach. Three candidate SNPs had effects that were qualitatively consistent with expectations based on our E&R study: Doa-2 pleiotropically affected both lifespan and late-life fecundity; Doa-1 affected lifespan (but not fecundity); and Doa-4 affected late-life fecundity (but not lifespan). Finally, the last candidate allele (Doa-3) also affected lifespan, but in the opposite direction from predicted.
Collapse
Affiliation(s)
- Katja M. Hoedjes
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hristina Kostic
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland,Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
9
|
Coughlan JM, Dagilis AJ, Serrato-Capuchina A, Elias H, Peede D, Isbell K, Castillo DM, Cooper BS, Matute DR. Patterns of Population Structure and Introgression Among Recently Differentiated Drosophila melanogaster Populations. Mol Biol Evol 2022; 39:msac223. [PMID: 36251862 PMCID: PMC9641974 DOI: 10.1093/molbev/msac223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite a century of genetic analysis, the evolutionary processes that have generated the patterns of exceptional genetic and phenotypic variation in the model organism Drosophila melanogaster remains poorly understood. In particular, how genetic variation is partitioned within its putative ancestral range in Southern Africa remains unresolved. Here, we study patterns of population genetic structure, admixture, and the spatial structuring of candidate incompatibility alleles across a global sample, including 223 new accessions, predominantly from remote regions in Southern Africa. We identify nine major ancestries, six that primarily occur in Africa and one that has not been previously described. We find evidence for both contemporary and historical admixture between ancestries, with admixture rates varying both within and between continents. For example, while previous work has highlighted an admixture zone between broadly defined African and European ancestries in the Caribbean and southeastern USA, we identify West African ancestry as the most likely African contributor. Moreover, loci showing the strongest signal of introgression between West Africa and the Caribbean/southeastern USA include several genes relating to neurological development and male courtship behavior, in line with previous work showing shared mating behaviors between these regions. Finally, while we hypothesized that potential incompatibility loci may contribute to population genetic structure across the range of D. melanogaster; these loci are, on average, not highly differentiated between ancestries. This work contributes to our understanding of the evolutionary history of a key model system, and provides insight into the partitioning of diversity across its range.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Andrius J Dagilis
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | | | - Hope Elias
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - David Peede
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Kristin Isbell
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Dean M Castillo
- Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Koch EL, Ravinet M, Westram AM, Johannesson K, Butlin RK. Genetic architecture of repeated phenotypic divergence in Littorina saxatilis ecotype evolution. Evolution 2022; 76:2332-2346. [PMID: 35994296 PMCID: PMC9826283 DOI: 10.1111/evo.14602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/24/2022] [Accepted: 07/23/2022] [Indexed: 01/22/2023]
Abstract
Chromosomal inversions have been shown to play a major role in a local adaptation by suppressing recombination between alternative arrangements and maintaining beneficial allele combinations. However, so far, their importance relative to the remaining genome remains largely unknown. Understanding the genetic architecture of adaptation requires better estimates of how loci of different effect sizes contribute to phenotypic variation. Here, we used three Swedish islands where the marine snail Littorina saxatilis has repeatedly evolved into two distinct ecotypes along a habitat transition. We estimated the contribution of inversion polymorphisms to phenotypic divergence while controlling for polygenic effects in the remaining genome using a quantitative genetics framework. We confirmed the importance of inversions but showed that contributions of loci outside inversions are of similar magnitude, with variable proportions dependent on the trait and the population. Some inversions showed consistent effects across all sites, whereas others exhibited site-specific effects, indicating that the genomic basis for replicated phenotypic divergence is only partly shared. The contributions of sexual dimorphism as well as environmental factors to phenotypic variation were significant but minor compared to inversions and polygenic background. Overall, this integrated approach provides insight into the multiple mechanisms contributing to parallel phenotypic divergence.
Collapse
Affiliation(s)
- Eva L. Koch
- School of BiosciencesUniversity of SheffieldSheffieldUK,Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Mark Ravinet
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Anja M. Westram
- Institute of Science and Technology Austria (ISTA)KlosterneuburgAustria,Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Kerstin Johannesson
- Marine Science, Tjärnö Marine LaboratoryUniversity of GothenburgGothenburgSweden
| | - Roger K. Butlin
- School of BiosciencesUniversity of SheffieldSheffieldUK,Marine Science, Tjärnö Marine LaboratoryUniversity of GothenburgGothenburgSweden
| |
Collapse
|
11
|
Kapun M, Nunez JCB, Bogaerts-Márquez M, Murga-Moreno J, Paris M, Outten J, Coronado-Zamora M, Tern C, Rota-Stabelli O, Guerreiro MPG, Casillas S, Orengo DJ, Puerma E, Kankare M, Ometto L, Loeschcke V, Onder BS, Abbott JK, Schaeffer SW, Rajpurohit S, Behrman EL, Schou MF, Merritt TJS, Lazzaro BP, Glaser-Schmitt A, Argyridou E, Staubach F, Wang Y, Tauber E, Serga SV, Fabian DK, Dyer KA, Wheat CW, Parsch J, Grath S, Veselinovic MS, Stamenkovic-Radak M, Jelic M, Buendía-Ruíz AJ, Gómez-Julián MJ, Espinosa-Jimenez ML, Gallardo-Jiménez FD, Patenkovic A, Eric K, Tanaskovic M, Ullastres A, Guio L, Merenciano M, Guirao-Rico S, Horváth V, Obbard DJ, Pasyukova E, Alatortsev VE, Vieira CP, Vieira J, Torres JR, Kozeretska I, Maistrenko OM, Montchamp-Moreau C, Mukha DV, Machado HE, Lamb K, Paulo T, Yusuf L, Barbadilla A, Petrov D, Schmidt P, Gonzalez J, Flatt T, Bergland AO. Drosophila Evolution over Space and Time (DEST): A New Population Genomics Resource. Mol Biol Evol 2021; 38:5782-5805. [PMID: 34469576 PMCID: PMC8662648 DOI: 10.1093/molbev/msab259] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in >20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This data set, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental metadata. A web-based genome browser and web portal provide easy access to the SNP data set. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan data set. Our resource will enable population geneticists to analyze spatiotemporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.
Collapse
Affiliation(s)
- Martin Kapun
- Department of Evolutionary Biology and Environmental Studies, University of
Zürich, Switzerland
- Department of Cell & Developmental Biology, Center of Anatomy and Cell
Biology, Medical University of Vienna, Vienna, Austria
| | - Joaquin C B Nunez
- Department of Biology, University of Virginia, Charlottesville,
VA, USA
| | | | - Jesús Murga-Moreno
- Department of Genetics and Microbiology, Universitat Autònoma de
Barcelona, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de
Barcelona, Barcelona, Spain
| | - Margot Paris
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Joseph Outten
- Department of Biology, University of Virginia, Charlottesville,
VA, USA
| | | | - Courtney Tern
- Department of Biology, University of Virginia, Charlottesville,
VA, USA
| | - Omar Rota-Stabelli
- Center Agriculture Food Environment, University of Trento, San Michele all'
Adige, Italy
| | | | - Sònia Casillas
- Department of Genetics and Microbiology, Universitat Autònoma de
Barcelona, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de
Barcelona, Barcelona, Spain
| | - Dorcas J Orengo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia,
Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de
Barcelona, Barcelona, Spain
| | - Eva Puerma
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia,
Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de
Barcelona, Barcelona, Spain
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of
Jyväskylä, Jyväskylä, Finland
| | - Lino Ometto
- Department of Biology and Biotechnology, University of Pavia,
Pavia, Italy
| | | | - Banu S Onder
- Department of Biology, Hacettepe University, Ankara, Turkey
| | | | - Stephen W Schaeffer
- Department of Biology, The Pennsylvania State University,
University Park, PA, USA
| | - Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia,
PA, USA
- Division of Biological and Life Sciences, School of Arts and Sciences,
Ahmedabad University, Ahmedabad, India
| | - Emily L Behrman
- Department of Biology, University of Pennsylvania, Philadelphia,
PA, USA
- Janelia Research Campus, Ashburn, VA, USA
| | - Mads F Schou
- Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Biology, Lund University, Lund, Sweden
| | - Thomas J S Merritt
- Department of Chemistry & Biochemistry, Laurentian
University, Sudbury, ON, Canada
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY,
USA
| | - Amanda Glaser-Schmitt
- Division of Evolutionary Biology, Faculty of Biology,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Eliza Argyridou
- Division of Evolutionary Biology, Faculty of Biology,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Fabian Staubach
- Department of Evolution and Ecology, University of Freiburg,
Freiburg, Germany
| | - Yun Wang
- Department of Evolution and Ecology, University of Freiburg,
Freiburg, Germany
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution,
University of Haifa, Haifa, Israel
| | - Svitlana V Serga
- Department of General and Medical Genetics, Taras Shevchenko National
University of Kyiv, Kyiv, Ukraine
- State Institution National Antarctic Scientific Center, Ministry of Education
and Science of Ukraine, Kyiv, Ukraine
| | - Daniel K Fabian
- Department of Genetics, University of Cambridge, Cambridge,
United Kingdom
| | - Kelly A Dyer
- Department of Genetics, University of Georgia, Athens, GA,
USA
| | | | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology,
Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | - Mihailo Jelic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | - Aleksandra Patenkovic
- Institute for Biological Research “Siniša Stanković”, National Institute of
Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Eric
- Institute for Biological Research “Siniša Stanković”, National Institute of
Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Tanaskovic
- Institute for Biological Research “Siniša Stanković”, National Institute of
Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Anna Ullastres
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Lain Guio
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Miriam Merenciano
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Sara Guirao-Rico
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Vivien Horváth
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Darren J Obbard
- Institute of Evolutionary Biology, University of Edinburgh,
Edinburgh, United Kingdom
| | - Elena Pasyukova
- Institute of Molecular Genetics of the National Research Centre “Kurchatov
Institute”, Moscow, Russia
| | - Vladimir E Alatortsev
- Institute of Molecular Genetics of the National Research Centre “Kurchatov
Institute”, Moscow, Russia
| | - Cristina P Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do
Porto, Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do
Porto, Porto, Portugal
| | | | - Iryna Kozeretska
- Department of General and Medical Genetics, Taras Shevchenko National
University of Kyiv, Kyiv, Ukraine
- State Institution National Antarctic Scientific Center, Ministry of Education
and Science of Ukraine, Kyiv, Ukraine
| | - Oleksandr M Maistrenko
- Department of General and Medical Genetics, Taras Shevchenko National
University of Kyiv, Kyiv, Ukraine
- Structural and Computational Biology Unit, European Molecular Biology
Laboratory, Heidelberg, Germany
| | | | - Dmitry V Mukha
- Vavilov Institute of General Genetics, Russian Academy of
Sciences, Moscow, Russia
| | - Heather E Machado
- Department of Biology, Stanford University, Stanford, CA,
USA
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Keric Lamb
- Department of Biology, University of Virginia, Charlottesville,
VA, USA
| | - Tânia Paulo
- Departamento de Biologia Animal, Instituto Gulbenkian de Ciência,
Oeiras, Portugal
| | - Leeban Yusuf
- Center for Biological Diversity, University of St. Andrews, St
Andrews, United Kingdom
| | - Antonio Barbadilla
- Department of Genetics and Microbiology, Universitat Autònoma de
Barcelona, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de
Barcelona, Barcelona, Spain
| | - Dmitri Petrov
- Department of Biology, Stanford University, Stanford, CA,
USA
| | - Paul Schmidt
- Department of Biology, The Pennsylvania State University,
University Park, PA, USA
| | - Josefa Gonzalez
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alan O Bergland
- Department of Biology, University of Virginia, Charlottesville,
VA, USA
| |
Collapse
|
12
|
Funk ER, Mason NA, Pálsson S, Albrecht T, Johnson JA, Taylor SA. A supergene underlies linked variation in color and morphology in a Holarctic songbird. Nat Commun 2021; 12:6833. [PMID: 34824228 PMCID: PMC8616904 DOI: 10.1038/s41467-021-27173-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
The genetic architecture of a phenotype can have considerable effects on the evolution of a trait or species. Characterizing genetic architecture provides insight into the complexity of a given phenotype and, potentially, the role of the phenotype in evolutionary processes like speciation. We use genome sequences to investigate the genetic basis of phenotypic variation in redpoll finches (Acanthis spp.). We demonstrate that variation in redpoll phenotype is broadly controlled by a ~55-Mb chromosomal inversion. Within this inversion, we find multiple candidate genes related to melanogenesis, carotenoid coloration, and bill shape, suggesting the inversion acts as a supergene controlling multiple linked traits. A latitudinal gradient in ecotype distribution suggests supergene driven variation in color and bill morphology are likely under environmental selection, maintaining supergene haplotypes as a balanced polymorphism. Our results provide a mechanism for the maintenance of ecotype variation in redpolls despite a genome largely homogenized by gene flow.
Collapse
Affiliation(s)
- Erik R Funk
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA.
| | - Nicholas A Mason
- Museum of Natural Science and Department of Biological Science, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Snæbjörn Pálsson
- Department of Life and Environmental Sciences, University of Iceland, Askja, Sturlugata 7, 101, Reykjavik, Iceland
| | - Tomáš Albrecht
- Department of Zoology, Charles University, Vinicna 7, CZ-12844, Prague, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Kvetna 8, CZ-60365, Brno, Czech Republic
| | | | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
13
|
Glaser-Schmitt A, Wittmann MJ, Ramnarine TJS, Parsch J. Sexual antagonism, temporally fluctuating selection, and variable dominance affect a regulatory polymorphism in Drosophila melanogaster. Mol Biol Evol 2021; 38:4891-4907. [PMID: 34289067 PMCID: PMC8557461 DOI: 10.1093/molbev/msab215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Understanding how genetic variation is maintained within species is a major goal of evolutionary genetics that can shed light on the preservation of biodiversity. Here, we examined the maintenance of a regulatory single-nucleotide polymorphism (SNP) of the X-linked Drosophila melanogaster gene fezzik. The derived variant at this site is at intermediate frequency in many worldwide populations but absent in populations from the ancestral species range in sub-Saharan Africa. We collected and genotyped wild-caught individuals from a single European population biannually over a period of 5 years, which revealed an overall difference in allele frequency between the sexes and a consistent change in allele frequency across seasons in females but not in males. Modeling based on the observed allele and genotype frequencies suggested that both sexually antagonistic and temporally fluctuating selection may help maintain variation at this site. The derived variant is predicted to be female-beneficial and mostly recessive; however, there was uncertainty surrounding our dominance estimates and long-term modeling projections suggest that it is more likely to be dominant. By examining gene expression phenotypes, we found that phenotypic dominance was variable and dependent upon developmental stage and genetic background, suggesting that dominance may be variable at this locus. We further determined that fezzik expression and genotype are associated with starvation resistance in a sex-dependent manner, suggesting a potential phenotypic target of selection. By characterizing the mechanisms of selection acting on this SNP, our results improve our understanding of how selection maintains genetic and phenotypic variation in natural populations.
Collapse
Affiliation(s)
- Amanda Glaser-Schmitt
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | | | - Timothy J S Ramnarine
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
14
|
Zivanovic G, Arenas C, Mestres F. Adaptation of Drosophila subobscura chromosomal inversions to climatic variables: the Balkan natural population of Avala. Genetica 2021; 149:155-169. [PMID: 34129131 DOI: 10.1007/s10709-021-00125-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022]
Abstract
The adaptive value of chromosomal inversions continues raising relevant questions in evolutionary biology. In many species of the Drosophila genus, different inversions have been recognized to be related to thermal adaptation, but it is necessary to determine to which specific climatic variables the inversions are adaptive. With this aim, the behavior of thermal adapted inversions of Drosophila subobscura regarding climatic variables was studied in the natural population of Avala (Serbia) during the 2014-2017 period. The results obtained were compared with those previously reported in the Font Groga (Barcelona, Spain) population, which presents different climatic and environmental conditions. In both populations, it was observed that most thermal adapted inversions were significantly associated with the first, second or both principal components, which were related with maximum, minimum and mean temperatures. Moreover, a significant increase over years (2004-2017) for the minimum temperature was detected. In parallel, a significant variation over time in Avala was only observed for the frequencies of 'warm' and 'non-thermal' adapted inversions of the U chromosome. However, stability in the chromosomal inversion polymorphism was observed for the 2014-2017 period which might result from the temporal span of the study and/or selective process acting on the population.
Collapse
Affiliation(s)
- Goran Zivanovic
- Department of Genetics, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Concepció Arenas
- Departament de Genètica, Microbiologia i Estadística, Secció d'Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Mestres
- Departament de Genètica, Microbiologia i Estadística, Secció de Genètica Biomèdica, Evolutiva i Desenvolupament - IRBio (Institut de Recerca per la Biodiversitat), Universitat de Barcelona, Barcelona, Spain.
- Departament de Genètica, Microbiologia i Estadística, Secció Genètica Biomèdica, Evolució i Desenvolupament, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| |
Collapse
|
15
|
Koch EL, Morales HE, Larsson J, Westram AM, Faria R, Lemmon AR, Lemmon EM, Johannesson K, Butlin RK. Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. Evol Lett 2021; 5:196-213. [PMID: 34136269 PMCID: PMC8190449 DOI: 10.1002/evl3.227] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/06/2021] [Accepted: 03/29/2021] [Indexed: 01/11/2023] Open
Abstract
Chromosomal inversions have long been recognized for their role in local adaptation. By suppressing recombination in heterozygous individuals, they can maintain coadapted gene complexes and protect them from homogenizing effects of gene flow. However, to fully understand their importance for local adaptation we need to know their influence on phenotypes under divergent selection. For this, the marine snail Littorina saxatilis provides an ideal study system. Divergent ecotypes adapted to wave action and crab predation occur in close proximity on intertidal shores with gene flow between them. Here, we used F2 individuals obtained from crosses between the ecotypes to test for associations between genomic regions and traits distinguishing the Crab‐/Wave‐adapted ecotypes including size, shape, shell thickness, and behavior. We show that most of these traits are influenced by two previously detected inversion regions that are divergent between ecotypes. We thus gain a better understanding of one important underlying mechanism responsible for the rapid and repeated formation of ecotypes: divergent selection acting on inversions. We also found that some inversions contributed to more than one trait suggesting that they may contain several loci involved in adaptation, consistent with the hypothesis that suppression of recombination within inversions facilitates differentiation in the presence of gene flow.
Collapse
Affiliation(s)
- Eva L Koch
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom
| | - Hernán E Morales
- Evolutionary Genetics Section Globe Institute University of Copenhagen Copenhagen Denmark.,Department of Marine Sciences University of Gothenburg Strömstad 45296 Sweden
| | - Jenny Larsson
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom
| | - Anja M Westram
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom.,IST Austria Klosterneuburg Austria
| | - Rui Faria
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom.,CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
| | - Alan R Lemmon
- Department of Scientific Computing Florida State University Tallahassee Florida FL 32306-4120
| | - E Moriarty Lemmon
- Department of Biological Science Florida State University Tallahassee Florida FL 32306-4295
| | - Kerstin Johannesson
- Department of Marine Sciences University of Gothenburg Strömstad 45296 Sweden
| | - Roger K Butlin
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom.,Department of Marine Sciences University of Gothenburg Strömstad 45296 Sweden
| |
Collapse
|
16
|
Göktay M, Fulgione A, Hancock AM. A New Catalog of Structural Variants in 1,301 A. thaliana Lines from Africa, Eurasia, and North America Reveals a Signature of Balancing Selection at Defense Response Genes. Mol Biol Evol 2021; 38:1498-1511. [PMID: 33247723 PMCID: PMC8042739 DOI: 10.1093/molbev/msaa309] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genomic variation in the model plant Arabidopsis thaliana has been extensively used to understand evolutionary processes in natural populations, mainly focusing on single-nucleotide polymorphisms. Conversely, structural variation has been largely ignored in spite of its potential to dramatically affect phenotype. Here, we identify 155,440 indels and structural variants ranging in size from 1 bp to 10 kb, including presence/absence variants (PAVs), inversions, and tandem duplications in 1,301 A. thaliana natural accessions from Morocco, Madeira, Europe, Asia, and North America. We show evidence for strong purifying selection on PAVs in genes, in particular for housekeeping genes and homeobox genes, and we find that PAVs are concentrated in defense-related genes (R-genes, secondary metabolites) and F-box genes. This implies the presence of a "core" genome underlying basic cellular processes and a "flexible" genome that includes genes that may be important in spatially or temporally varying selection. Further, we find an excess of intermediate frequency PAVs in defense response genes in nearly all populations studied, consistent with a history of balancing selection on this class of genes. Finally, we find that PAVs in genes involved in the cold requirement for flowering (vernalization) and drought response are strongly associated with temperature at the sites of origin.
Collapse
Affiliation(s)
- Mehmet Göktay
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Fulgione
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela M Hancock
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
17
|
Sarikaya DP, Cridland J, Tarakji A, Sheehy H, Davis S, Kochummen A, Hatmaker R, Khan N, Chiu J, Begun DJ. Phenotypic coupling of sleep and starvation resistance evolves in D. melanogaster. BMC Evol Biol 2020; 20:126. [PMID: 32962630 PMCID: PMC7507639 DOI: 10.1186/s12862-020-01691-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/13/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND One hypothesis for the function of sleep is that it serves as a mechanism to conserve energy. Recent studies have suggested that increased sleep can be an adaptive mechanism to improve survival under food deprivation in Drosophila melanogaster. To test the generality of this hypothesis, we compared sleep and its plastic response to starvation in a temperate and tropical population of Drosophila melanogaster. RESULTS We found that flies from the temperate population were more starvation resistant, and hypothesized that they would engage in behaviors that are considered to conserve energy, including increased sleep and reduced movement. Surprisingly, temperate flies slept less and moved more when they were awake compared to tropical flies, both under fed and starved conditions, therefore sleep did not correlate with population-level differences in starvation resistance. In contrast, total sleep and percent change in sleep when starved were strongly positively correlated with starvation resistance within the tropical population, but not within the temperate population. Thus, we observe unexpectedly complex relationships between starvation and sleep that vary both within and across populations. These observations falsify the simple hypothesis of a straightforward relationship between sleep and energy conservation. We also tested the hypothesis that starvation is correlated with metabolic phenotypes by investigating stored lipid and carbohydrate levels, and found that stored metabolites partially contributed towards variation starvation resistance. CONCLUSIONS Our findings demonstrate that the function of sleep under starvation can rapidly evolve on short timescales and raise new questions about the physiological correlates of sleep and the extent to which variation in sleep is shaped by natural selection.
Collapse
Affiliation(s)
- Didem P Sarikaya
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA.
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, USA.
| | - Julie Cridland
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Adam Tarakji
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Hayley Sheehy
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Sophia Davis
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Ashley Kochummen
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Ryan Hatmaker
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Nossin Khan
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| | - Joanna Chiu
- Department of Nematology and Entomology, University of California Davis, Davis, California, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California Davis, Davis, California, USA
| |
Collapse
|
18
|
Kapun M, Barrón MG, Staubach F, Obbard DJ, Wiberg RAW, Vieira J, Goubert C, Rota-Stabelli O, Kankare M, Bogaerts-Márquez M, Haudry A, Waidele L, Kozeretska I, Pasyukova EG, Loeschcke V, Pascual M, Vieira CP, Serga S, Montchamp-Moreau C, Abbott J, Gibert P, Porcelli D, Posnien N, Sánchez-Gracia A, Grath S, Sucena É, Bergland AO, Guerreiro MPG, Onder BS, Argyridou E, Guio L, Schou MF, Deplancke B, Vieira C, Ritchie MG, Zwaan BJ, Tauber E, Orengo DJ, Puerma E, Aguadé M, Schmidt P, Parsch J, Betancourt AJ, Flatt T, González J. Genomic Analysis of European Drosophila melanogaster Populations Reveals Longitudinal Structure, Continent-Wide Selection, and Previously Unknown DNA Viruses. Mol Biol Evol 2020; 37:2661-2678. [PMID: 32413142 PMCID: PMC7475034 DOI: 10.1093/molbev/msaa120] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterize variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.
Collapse
Affiliation(s)
- Martin Kapun
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Maite G Barrón
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Fabian Staubach
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Darren J Obbard
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - R Axel W Wiberg
- The European Drosophila Population Genomics Consortium (DrosEU)
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St Andrews, Scotland
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Jorge Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Clément Goubert
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Omar Rota-Stabelli
- The European Drosophila Population Genomics Consortium (DrosEU)
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’ Adige, Italy
| | - Maaria Kankare
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - María Bogaerts-Márquez
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Annabelle Haudry
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Lena Waidele
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Iryna Kozeretska
- The European Drosophila Population Genomics Consortium (DrosEU)
- General and Medical Genetics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- State Institution National Antarctic Scientific Center of Ministry of Education and Science of Ukraine, Kyiv, Ukraine
| | - Elena G Pasyukova
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratory of Genome Variation, Institute of Molecular Genetics of RAS, Moscow, Russia
| | - Volker Loeschcke
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Bioscience—Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| | - Marta Pascual
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Cristina P Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Svitlana Serga
- The European Drosophila Population Genomics Consortium (DrosEU)
- General and Medical Genetics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Catherine Montchamp-Moreau
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Jessica Abbott
- The European Drosophila Population Genomics Consortium (DrosEU)
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Patricia Gibert
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Damiano Porcelli
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Animal and Plant Sciences, Sheffield, United Kingdom
| | - Nico Posnien
- The European Drosophila Population Genomics Consortium (DrosEU)
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Universität Göttingen, Göttingen, Germany
| | - Alejandro Sánchez-Gracia
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sonja Grath
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Élio Sucena
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Alan O Bergland
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Maria Pilar Garcia Guerreiro
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Banu Sebnem Onder
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Eliza Argyridou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Lain Guio
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Mads Fristrup Schou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Bioscience—Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Bart Deplancke
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Bio-engineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Cristina Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Michael G Ritchie
- The European Drosophila Population Genomics Consortium (DrosEU)
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St Andrews, Scotland
| | - Bas J Zwaan
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Eran Tauber
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Dorcas J Orengo
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Eva Puerma
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Aguadé
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Paul Schmidt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - John Parsch
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Andrea J Betancourt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolution, Ecology, and Behaviour, University of Liverpool, Liverpool, United Kingdom
| | - Thomas Flatt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Josefa González
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
19
|
Reis M, Wiegleb G, Claude J, Lata R, Horchler B, Ha NT, Reimer C, Vieira CP, Vieira J, Posnien N. Multiple loci linked to inversions are associated with eye size variation in species of the Drosophila virilis phylad. Sci Rep 2020; 10:12832. [PMID: 32732947 PMCID: PMC7393161 DOI: 10.1038/s41598-020-69719-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/14/2020] [Indexed: 11/26/2022] Open
Abstract
The size and shape of organs is tightly controlled to achieve optimal function. Natural morphological variations often represent functional adaptations to an ever-changing environment. For instance, variation in head morphology is pervasive in insects and the underlying molecular basis is starting to be revealed in the Drosophila genus for species of the melanogaster group. However, it remains unclear whether similar diversifications are governed by similar or different molecular mechanisms over longer timescales. To address this issue, we used species of the virilis phylad because they have been diverging from D. melanogaster for at least 40 million years. Our comprehensive morphological survey revealed remarkable differences in eye size and head shape among these species with D. novamexicana having the smallest eyes and southern D. americana populations having the largest eyes. We show that the genetic architecture underlying eye size variation is complex with multiple associated genetic variants located on most chromosomes. Our genome wide association study (GWAS) strongly suggests that some of the putative causative variants are associated with the presence of inversions. Indeed, northern populations of D. americana share derived inversions with D. novamexicana and they show smaller eyes compared to southern ones. Intriguingly, we observed a significant enrichment of genes involved in eye development on the 4th chromosome after intersecting chromosomal regions associated with phenotypic differences with those showing high differentiation among D. americana populations. We propose that variants associated with chromosomal inversions contribute to both intra- and interspecific variation in eye size among species of the virilis phylad.
Collapse
Affiliation(s)
- Micael Reis
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Gordon Wiegleb
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.,International Max Planck Research School for Genome Science, Am Fassberg 11, 37077, Göttingen, Germany
| | - Julien Claude
- Institut Des Sciences de l'Evolution de Montpellier, CNRS/UM2/IRD, 2 Place Eugène Bataillon, cc64, 34095, Montpellier Cedex 5, France
| | - Rodrigo Lata
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Britta Horchler
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Ngoc-Thuy Ha
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Christian Reimer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Cristina P Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Nico Posnien
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
20
|
Conservation of gene architecture and domains amidst sequence divergence in the hsrω lncRNA gene across the Drosophila genus: an in silico analysis. J Genet 2020. [DOI: 10.1007/s12041-020-01218-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Tüzün N, De Block M, Stoks R. Live fast, die old: oxidative stress as a potential mediator of an unexpected life‐history evolution. OIKOS 2020. [DOI: 10.1111/oik.07183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, Univ. of Leuven Deberiotstraat 32 BE‐3000 Leuven Belgium
| | - Marjan De Block
- Evolutionary Stress Ecology and Ecotoxicology, Univ. of Leuven Deberiotstraat 32 BE‐3000 Leuven Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, Univ. of Leuven Deberiotstraat 32 BE‐3000 Leuven Belgium
| |
Collapse
|
22
|
Flatt T. Life-History Evolution and the Genetics of Fitness Components in Drosophila melanogaster. Genetics 2020; 214:3-48. [PMID: 31907300 PMCID: PMC6944413 DOI: 10.1534/genetics.119.300160] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Life-history traits or "fitness components"-such as age and size at maturity, fecundity and fertility, age-specific rates of survival, and life span-are the major phenotypic determinants of Darwinian fitness. Analyzing the evolution and genetics of these phenotypic targets of selection is central to our understanding of adaptation. Due to its simple and rapid life cycle, cosmopolitan distribution, ease of maintenance in the laboratory, well-understood evolutionary genetics, and its versatile genetic toolbox, the "vinegar fly" Drosophila melanogaster is one of the most powerful, experimentally tractable model systems for studying "life-history evolution." Here, I review what has been learned about the evolution and genetics of life-history variation in D. melanogaster by drawing on numerous sources spanning population and quantitative genetics, genomics, experimental evolution, evolutionary ecology, and physiology. This body of work has contributed greatly to our knowledge of several fundamental problems in evolutionary biology, including the amount and maintenance of genetic variation, the evolution of body size, clines and climate adaptation, the evolution of senescence, phenotypic plasticity, the nature of life-history trade-offs, and so forth. While major progress has been made, important facets of these and other questions remain open, and the D. melanogaster system will undoubtedly continue to deliver key insights into central issues of life-history evolution and the genetics of adaptation.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Biology, University of Fribourg, CH-1700, Switzerland
| |
Collapse
|
23
|
Durmaz E, Rajpurohit S, Betancourt N, Fabian DK, Kapun M, Schmidt P, Flatt T. A clinal polymorphism in the insulin signaling transcription factor foxo contributes to life-history adaptation in Drosophila. Evolution 2019; 73:1774-1792. [PMID: 31111462 PMCID: PMC6771989 DOI: 10.1111/evo.13759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
A fundamental aim of adaptation genomics is to identify polymorphisms that underpin variation in fitness traits. In Drosophila melanogaster, latitudinal life-history clines exist on multiple continents and make an excellent system for dissecting the genetics of adaptation. We have previously identified numerous clinal single-nucleotide polymorphism in insulin/insulin-like growth factor signaling (IIS), a pathway known from mutant studies to affect life history. However, the effects of natural variants in this pathway remain poorly understood. Here we investigate how two clinal alternative alleles at foxo, a transcriptional effector of IIS, affect fitness components (viability, size, starvation resistance, fat content). We assessed this polymorphism from the North American cline by reconstituting outbred populations, fixed for either the low- or high-latitude allele, from inbred DGRP lines. Because diet and temperature modulate IIS, we phenotyped alleles across two temperatures (18°C, 25°C) and two diets differing in sugar source and content. Consistent with clinal expectations, the high-latitude allele conferred larger body size and reduced wing loading. Alleles also differed in starvation resistance and expression of insulin-like receptor, a transcriptional target of FOXO. Allelic reaction norms were mostly parallel, with few GxE interactions. Together, our results suggest that variation in IIS makes a major contribution to clinal life-history adaptation.
Collapse
Affiliation(s)
- Esra Durmaz
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Subhash Rajpurohit
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
- Division of Biological and Life SciencesAhmedabad UniversityAhmedabadIndia
| | - Nicolas Betancourt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
| | - Daniel K. Fabian
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome Campus, HinxtonCambridgeUnited Kingdom
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
- Vienna Graduate School of Population, GeneticsViennaAustria
| | - Martin Kapun
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Paul Schmidt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
| | - Thomas Flatt
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
24
|
Seefeldt L, Ebert D. Temperature- versus precipitation-limitation shape local temperature tolerance in a Holarctic freshwater crustacean. Proc Biol Sci 2019; 286:20190929. [PMID: 31337313 PMCID: PMC6661336 DOI: 10.1098/rspb.2019.0929] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Species with wide geographical distributions are often adapted locally to the prevailing temperatures. To understand how they respond to ongoing climatic change, we must appreciate the interplay between temperature, seasonality and the organism's life cycle. The temperature experienced by many organisms results from an often-overlooked combination of climate and phenology. Summer-active (high latitude) populations are expected to adapt to local summer temperatures, but this is not expected for populations that outlive the summer in their dormant stage (low latitude, precipitation-limited). We recorded reproduction and survival in genotypes from 123 Holarctic populations of Daphnia magna during a multi-generation thermal ramp experiment. Genotypes from summer-active populations showed a positive relationship between heat tolerance and local summer temperature, whereas winter-active populations did not. These findings are consistent with the hypothesis that D. magna adapts to the local temperatures the animals experience during their planktonic phase. We conclude that predicting local temperature adaptation, in particular in the light of climate change, needs to consider the phenology of geographically wide-ranging species.
Collapse
Affiliation(s)
- Leonie Seefeldt
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| |
Collapse
|
25
|
Lasne C, Van Heerwaarden B, Sgrò CM, Connallon T. Quantifying the relative contributions of the X chromosome, autosomes, and mitochondrial genome to local adaptation. Evolution 2018; 73:262-277. [PMID: 30417348 DOI: 10.1111/evo.13647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
During local adaptation with gene flow, some regions of the genome are inherently more responsive to selection than others. Recent theory predicts that X-linked genes should disproportionately contribute to local adaptation relative to other genomic regions, yet this prediction remains to be tested. We carried out a multigeneration crossing scheme, using two cline-end populations of Drosophila melanogaster, to estimate the relative contributions of the X chromosome, autosomes, and mitochondrial genome to divergence in four traits involved in local adaptation (wing size, resistance to heat, desiccation, and starvation stresses). We found that the mitochondrial genome and autosomes contributed significantly to clinal divergence in three of the four traits. In contrast, the X made no significant contribution to divergence in these traits. Given the small size of the mitochondrial genome, our results indicate that it plays a surprisingly large role in clinal adaptation. In contrast, the X, which represents roughly 20% of the Drosophila genome, contributes negligibly-a pattern that conflicts with theoretical predictions. These patterns reinforce recent work implying a central role of mitochondria in climatic adaptation, and suggest that different genomic regions may play fundamentally different roles in processes of divergence with gene flow.
Collapse
Affiliation(s)
- Clementine Lasne
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | | | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
26
|
Kapun M, Flatt T. The adaptive significance of chromosomal inversion polymorphisms inDrosophila melanogaster. Mol Ecol 2018; 28:1263-1282. [DOI: 10.1111/mec.14871] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/01/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Martin Kapun
- Department of BiologyUniversity of Fribourg Fribourg Switzerland
| | - Thomas Flatt
- Department of BiologyUniversity of Fribourg Fribourg Switzerland
| |
Collapse
|