1
|
Pomahač O, Méndez-Sánchez D, Čepička I. Bit by bit toward the diversity of metopids: Description of the genus Pidimetopus n. gen. (Ciliophora: Armophorea). J Eukaryot Microbiol 2024; 71:e13034. [PMID: 38822648 DOI: 10.1111/jeu.13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 06/03/2024]
Abstract
While metopids (Armophorea: Metopida) represent the most species-rich group of free-living anaerobic ciliates thriving in hypoxic environments, our understanding of their true diversity remains incomplete. Most metopid species are still characterized only morphologically. Particularly, the so-called IAC clade (named in the past after some of the taxa included, Idiometopus, Atopospira, and Clevelandellida), comprising free-living members as well as the endosymbiotic ones (order Clevelandellida), is in serious need of revision. In our study, we establish a new free-living genus in the IAC clade, Pidimetopus n. gen., with descriptions of two new species, P. nanus n. sp., and P. permonicus n. sp., using up-to-date molecular and morphologic methods. The genus is characterized by small cells (up to 75 μm long), not more than 10 adoral membranelles and eight somatic kineties, and usually, four long caudal cilia that can stiffen. In addition to morphologic and molecular characterizations, we also conducted a statistical morphotype analysis of the polymorphic species P. nanus n. sp. We discuss the relevance of the earlier morphologically described species Metopus minor as a putative collective taxon for several small metopids less than 50 μm long.
Collapse
Affiliation(s)
- Ondřej Pomahač
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daniel Méndez-Sánchez
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Roth L, Eviatar G, Schmidt LM, Bonomo M, Feldstein-Farkash T, Schubert P, Ziegler M, Al-Sawalmih A, Abdallah IS, Quod JP, Bronstein O. Mass mortality of diadematoid sea urchins in the Red Sea and Western Indian Ocean. Curr Biol 2024; 34:2693-2701.e4. [PMID: 38788707 DOI: 10.1016/j.cub.2024.04.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Sea urchins are primary herbivores on coral reefs, regulating algal biomass and facilitating coral settlement and growth.1,2,3,4,5,6,7,8,9,10,11,12 Recurring mass mortality events (MMEs) of Diadema species Gray, 1825 have been recorded globally,13,14,15,16,17,18,19,20,21,22,23 the most notorious and ecologically significant of which occurred in the Caribbean in 1983,14,17,19,20 contributing to the shift from coral to algal-dominated ecosystems.17,24,25 Recently, first evidence of Diadema setosum mass mortality was reported from the eastern Mediterranean Sea.23 Here, we report extensive mass mortalities of several diadematoid species inhabiting the Red Sea and Western Indian Ocean (WIO)26,27,28 including first evidence of mortalities in the genus Echinothrix Peters, 1853. Mortalities initiated in the Gulf of Aqaba on December 2022 and span the Red Sea, the Gulf of Oman, and the Western Indian Ocean (Réunion Island), with population declines reaching 100% at some sites. Infected individuals are characterized by spine loss and tissue necrosis, resulting in exposed skeletons (i.e., tests) and mortality. Molecular diagnostics of the 18S rRNA gene confirm the presence of a waterborne scuticociliate protozoan most closely related to Philaster apodigitiformis in infected specimens-identical to the pathogen found in the 2022 Caribbean mass mortality of Diadema antillarum.13,15,18 Collapse of these key benthic grazers in the Red Sea and Western Indian Ocean may lead to algal dominance over corals, threatening the stability of coral reefs on a regional scale.29,30,31,32 We issue a warning regarding the further expansion of mortalities and call for immediate monitoring and conservation efforts for these key ecological species.
Collapse
Affiliation(s)
- Lachan Roth
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences in Eilat, Eilat 8810302, Israel
| | - Gal Eviatar
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences in Eilat, Eilat 8810302, Israel
| | - Lisa-Maria Schmidt
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69978, Israel; The Inter-University Institute for Marine Sciences in Eilat, Eilat 8810302, Israel
| | - Mai Bonomo
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Patrick Schubert
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Ali Al-Sawalmih
- Marine Science Station, University of Jordan, Aqaba 77110, Jordan
| | | | - Jean-Pascal Quod
- Arvam, Technopole de la Réunion, le Kub, 6 rue Albert Lougnon, 97438 Réunion Island, France
| | - Omri Bronstein
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
3
|
Bourland W, Pomahač O, Čepička I. Redescription and molecular phylogeny of the freshwater metopid, Castula strelkowi (Jankowski, 1964) from the Czech Republic and synonymization of Pileometopus with Castula. Protist 2024; 175:126034. [PMID: 38569353 DOI: 10.1016/j.protis.2024.126034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The relationships of the mainly free living, obligately anaerobic ciliated protists belonging to order Metopida continue to be clarified and now comprise three families: Metopidae, Tropidoatractidae, and Apometopidae. The most species-rich genus of the Metopidae, Metopus has undergone considerable subdivision into new genera in recent years as more taxa are characterized by modern morphologic and molecular methods. The genus, Castula, was established to accommodate setae-bearing species previously assigned to Metopus: C. setosa and C. fusca, and one new species, C. flexibilis. Another new species, C. specialis, has been added since. Here we redescribe another species previously included in Metopus, using morphologic and molecular methods, and transfer it to Castula as C. strelkowi n. comb. (original combination Metopus strelkowi). We also reassess the monotypic genus, Pileometopus, which nests within the strongly supported Castula clade in 18S rRNA gene trees and conclude that it represents a morphologically divergent species of Castula.
Collapse
Affiliation(s)
- William Bourland
- Department of Zoology, Faculty of Science, Charles University, Vinična 7, 128 00 Prague, Czech Republic.
| | - Ondřej Pomahač
- Department of Zoology, Faculty of Science, Charles University, Vinična 7, 128 00 Prague, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Vinična 7, 128 00 Prague, Czech Republic
| |
Collapse
|
4
|
Feng X, Méndez-Sánchez D, Zhuang W, Li R, Pomahač O, Čepička I, Rotterová J, Hu X. Morphology, morphogenesis, and molecular characterization of Castula specialis sp. nov. (Ciliophora, Armophorea, Metopida). J Eukaryot Microbiol 2024; 71:e13014. [PMID: 38018748 DOI: 10.1111/jeu.13014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/13/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
The morphology, morphogenesis, and molecular phylogeny of a new metopid ciliate, Castula specialis sp. nov., comprising three strains from geographically distant (China, Mexico, Czech Republic) anoxic freshwater habitats, were studied based on microscopic observation of live and protargol-stained specimens as well as SSU rRNA gene sequence data. The new species is characterized as follows: size in vivo 105-220 × 25-70 μm, body oblong to elongated ellipsoidal and asymmetrical; preoral dome distinctly projecting beyond the body; 32-46 adoral membranelles; 31-52 somatic kineties; and 4-7 setae. This study brings the first morphogenetic investigation of a member of the genus Castula. The morphogenesis of the type population (China) of the new species proceeds as in Metopus spp. comprising drastic changes in body shape and a pleurotelokinetal stomatogenesis; however, the main difference is the origin of the opisthe's paroral membrane that derives from all perizonal rows and some adjacent dome kineties. Phylogenetically, the genus Castula is paraphyletic.
Collapse
Affiliation(s)
- Xiaochen Feng
- College of Fisheries, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Daniel Méndez-Sánchez
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Wenbao Zhuang
- College of Fisheries, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Ran Li
- College of Fisheries, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Ondřej Pomahač
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Johana Rotterová
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Xiaozhong Hu
- College of Fisheries, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Zhuang W, Feng X, Li R, Al-Farraj SA, Hu X. Morphogenesis of an anaerobic ciliate Heterometopus palaeformis (Kahl, 1927) Foissner, 2016 (Ciliophora, Armophorea) with notes on its morphological and molecular characterization. Protist 2024; 175:126007. [PMID: 38141417 DOI: 10.1016/j.protis.2023.126007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
The morphology, morphogenesis, and molecular phylogeny of Heterometopus palaeformis (Kahl, 1927) Foissner, 2016 were studied using microscopical observations on live and protargol-stained specimens as well SSU rRNA gene sequencing. The morphogenetic data for the genus are presented for the first time. Compared to other metopids, the morphogenesis of H. palaeformis is distinct since its (1) perizonal stripe rows 4 and 5 are involved in the formation of the opisthe's adoral polykinetids; (2) perizonal stripe rows 3-5 and two adjacent preoral dome kineties contribute to most of the opisthe's paroral membrane while perizonal stripe rows 1 and 2 contribute very little; (3) four kinety rows are formed to the left of the opisthe's adoral zone of polykinetids. The Chinese population resembles the original and neotype populations well in terms of general morphology - characterized by a life size of 55-120 × 10-20 μm, an elongate ellipsoidal body with a hardly spiralized flat preoral dome, about 18 somatic kineties and 20 adoral polykinetids. The SSU rDNA sequence of the present population exhibits a disparity of 1.33%-2.22% divergence from sequences of other populations. Nevertheless, phylogenetic analysis reveals that populations of H. palaeformis form a separate, stable cluster within the paraphyletic Metopidae clade.
Collapse
Affiliation(s)
- Wenbao Zhuang
- College of Fisheries, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiaochen Feng
- College of Fisheries, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Ran Li
- College of Fisheries, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Saleh A Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xiaozhong Hu
- College of Fisheries, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
Li R, Zhuang W, Feng X, Hines HN, Hu X. First redescription and molecular phylogeny of Trimyema claviforme Kahl, 1933 with the description of a Chinese population of Plagiopyla nasuta Stein, 1860 (Ciliophora, Plagiopylea). Eur J Protistol 2023; 90:126003. [PMID: 37453202 DOI: 10.1016/j.ejop.2023.126003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/18/2023]
Abstract
Ciliates belonging to the class Plagiopylea are obligate anaerobes that are often neglected due to their cryptic lifestyles, difficulty of observation, and overall under-sampling. Here, we investigate two species, namely Trimyema claviforme Kahl, 1933 and Plagiopyla nasuta Stein, 1860, collected in China from marine and freshwater anaerobic sediments, respectively. A complete morphological dataset, together with SSU rRNA gene sequence data were obtained and used to diagnose the species. No molecular sequencing had ever been performed on Trimyema claviforme, with its ciliature also previously unknown. Based on these novel data presented here, the ciliate is characterized by a claviform cell shape, with a size of 35-45 × 10-20 μm in vivo, 28-39 longitudinal somatic ciliary rows forming five ciliary girdles (four complete girdles and a shorter one), two dikinetids left to anterior end of oral kinety 1, and an epaulet. A Chinese population of the well-known ciliate P. nasuta was investigated, and morphological comparisons revealed phenotypic stability of the species. The phylogenetic analyses supported previous findings about the monophyly of the families Trimyemidae and Plagiopylidae, with Trimyema claviforme branching off early in the genus Trimyema. The Chinese population of P. nasuta clusters together with two other populations with full support corroborating their conspecificity.
Collapse
Affiliation(s)
- Ran Li
- College of Fisheries, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Wenbao Zhuang
- College of Fisheries, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiaochen Feng
- College of Fisheries, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Hunter N Hines
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida 34946, USA
| | - Xiaozhong Hu
- College of Fisheries, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
7
|
Li J, Li S, Su H, Yu M, Xu J, Yi Z. Comprehensive phylogenomic analyses reveal that order Armophorida is most closely related to class Armophorea (Protista, Ciliophora). Mol Phylogenet Evol 2023; 182:107737. [PMID: 36841269 DOI: 10.1016/j.ympev.2023.107737] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
Ciliate species within the class Armophorea are widely distributed in various anaerobic environments, hence they are of great interest to researchers studying evolution and adaptation of eukaryotes to extreme habitats. However, phylogenetic relationships within the class remain largely elusive, most especially assignment of the order Armophorida and classification within the family Metopidae. In this study, we newly sequenced transcriptomes and the SSU rDNA of five armophorean species, Sulfonecta cf. uniserialis (order Armophorida), Nyctotheroides sp. (order Clevelandellida), and Metopus major, M. paraes, and Brachonella contorta (order Metopida). Comprehensive phylogenomic analyses revealed that Armophorea was most closely related to Muranotrichea and Parablepharismea. Our results indicate that the order Armophorida either belongs to Armophorea or represents a new class within APM (Armophorea-Parablepharismea-Muranotrichea). Analyses combining ecological niches and molecular trees showed that APM species might descend from an anaerobic free-living ciliate species. Existing molecular phylogenomic/phylogenetic and morphological evidence indicate that the family Metopidae is non-monophyletic and should be further classified with inclusion of additional lines of evidences. Our results provide new insights into the long-debated relationships within Armophorea.
Collapse
Affiliation(s)
- Jia Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Song Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Hua Su
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Minjie Yu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiahui Xu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
8
|
Méndez-Sánchez D, Pomahač O, Rotterová J, Bourland WA, Čepička I. Morphology and phylogenetic position of three anaerobic ciliates from the classes Odontostomatea and Muranotrichea (Ciliophora). J Eukaryot Microbiol 2023; 70:e12965. [PMID: 36727275 DOI: 10.1111/jeu.12965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/17/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
The diversity of the classes Odontostomatea and Muranotrichea, which contain solely obligate anaerobes, is poorly understood. We studied two populations of Mylestoma sp., one of Saprodinium dentatum (Odontostomatea), two of Muranothrix felix sp. nov., and one of Muranothrix sp. (Muranotrichea) employing live observation, protargol impregnation, scanning electron microscopy, and 18S rRNA gene sequencing. Conspecificity of Mylestoma sp., described here, with a previously described species of this genus cannot be excluded since no species have been studied with modern methods. Phylogenetically, the genus Mylestoma is closely related to the odontostomatid Discomorphella pedroeneasi, although the phylogenetic position of class Odontostomatea itself remains unresolved. The newly described muranotrichean species, Muranothrix felix sp. nov., is morphologically similar to M. gubernata but can be distinguished by its fewer macronuclear nodules and fewer adoral membranelles; moreover, it is clearly distinguished from M. gubernata by its 18S rRNA gene sequence. Another population, designated here as Muranothrix sp., most likely represents a separate species.
Collapse
Affiliation(s)
- Daniel Méndez-Sánchez
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Pomahač
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Johana Rotterová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - William A Bourland
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
9
|
Obert T, Zhang T, Rurik I, Vďačný P. First molecular evidence of hybridization in endosymbiotic ciliates (Protista, Ciliophora). Front Microbiol 2022; 13:1067315. [PMID: 36569075 PMCID: PMC9772525 DOI: 10.3389/fmicb.2022.1067315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Hybridization is an important evolutionary process that can fuel diversification via formation of hybrid species or can lead to fusion of previously separated lineages by forming highly diverse species complexes. We provide here the first molecular evidence of hybridization in wild populations of ciliates, a highly diverse group of free-living and symbiotic eukaryotic microbes. The impact of hybridization was studied on the model of Plagiotoma, an obligate endosymbiont of the digestive tube of earthworms, using split decomposition analyses and species networks, 2D modeling of the nuclear rRNA molecules and compensatory base change analyses as well as multidimensional morphometrics. Gene flow slowed down and eventually hampered the diversification of Lumbricus-dwelling plagiotomids, which collapsed into a single highly variable biological entity, the P. lumbrici complex. Disruption of the species boundaries was suggested also by the continuum of morphological variability in the phenotypic space. On the other hand, hybridization conspicuously increased diversity in the nuclear rDNA cistron and somewhat weakened the host structural specificity of the P. lumbrici complex, whose members colonize a variety of phylogenetically closely related anecic and epigeic earthworms. By contrast, another recorded species, P. aporrectodeae sp. n., showed no signs of introgression, no variability in the rDNA cistron, and very high host specificity. These contrasting eco-evolutionary patterns indicate that hybridization might decrease the alpha-diversity by dissolving species boundaries, weaken the structural host specificity by broadening ecological amplitudes, and increase the nuclear rDNA variability by overcoming concerted evolution within the P. lumbrici species complex.
Collapse
Affiliation(s)
| | | | | | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
10
|
Chen Z, Li J, Salas-Leiva DE, Chen M, Chen S, Li S, Wu Y, Yi Z. Group-specific functional patterns of mitochondrion-related organelles shed light on their multiple transitions from mitochondria in ciliated protists. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:609-623. [PMID: 37078085 PMCID: PMC10077286 DOI: 10.1007/s42995-022-00147-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/23/2022] [Indexed: 05/03/2023]
Abstract
Adaptations of ciliates to hypoxic environments have arisen independently several times. Studies on mitochondrion-related organelle (MRO) metabolisms from distinct anaerobic ciliate groups provide evidence for understanding the transitions from mitochondria to MROs within eukaryotes. To deepen our knowledge about the evolutionary patterns of ciliate anaerobiosis, mass-culture and single-cell transcriptomes of two anaerobic species, Metopus laminarius (class Armophorea) and Plagiopyla cf. narasimhamurtii (class Plagiopylea), were sequenced and their MRO metabolic maps were compared. In addition, we carried out comparisons using publicly available predicted MRO proteomes from other ciliate classes (i.e., Armophorea, Litostomatea, Muranotrichea, Oligohymenophorea, Parablepharismea and Plagiopylea). We found that single-cell transcriptomes were similarly comparable to their mass-culture counterparts in predicting MRO metabolic pathways of ciliates. The patterns of the components of the MRO metabolic pathways might be divergent among anaerobic ciliates, even among closely related species. Notably, our findings indicate the existence of group-specific functional relics of electron transport chains (ETCs). Detailed group-specific ETC functional patterns are as follows: full oxidative phosphorylation in Oligohymenophorea and Muranotrichea; only electron-transfer machinery in Armophorea; either of these functional types in Parablepharismea; and ETC functional absence in Litostomatea and Plagiopylea. These findings suggest that adaptation of ciliates to anaerobic conditions is group-specific and has occurred multiple times. Our results also show the potential and the limitations of detecting ciliate MRO proteins using single-cell transcriptomes and improve the understanding of the multiple transitions from mitochondria to MROs within ciliates. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00147-w.
Collapse
Affiliation(s)
- Zhicheng Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Jia Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | | | - Miaoying Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Shilong Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Senru Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Yanyan Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
11
|
Méndez-Sánchez D, Pomahač O, Rotterová J, Bourland W, Čepička I. Diversity and Phylogenetic Position of Bothrostoma Stokes, 1887 (Ciliophora: Metopida), with Description of Four New Species. Protist 2022; 173:125887. [PMID: 35714562 DOI: 10.1016/j.protis.2022.125887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
Bothrostoma is a genus of anaerobic ciliates in family Metopidae comprising four species, all described based solely on the morphology of living and fixed cells. Unlike other metopids, cells of Bothrostoma are not twisted anteriorly, have a flattened preoral dome, a very prominent sail-like paroral membrane, and an adoral zone of distinctive, very narrow, curved membranelles confined to a wide, non-spiraling peristome on the ventral side. We examined 20 populations of Bothrostoma from hypoxic freshwater sediments. We provide morphological characterization and 18S rRNA gene sequences of four new species, namely B. bimicronucleatum sp. nov., B. boreale sp. nov., B. kovalyovi sp. nov., and B. robustum sp. nov., as well as B. undulans (type species), B. nasutum, and B. ovale comb. nov. (original combination Metopus undulans var. ovalis Kahl, 1932). Except for B. nasutum, Bothrostoma species show low genetic variability among geographically distant populations. Intraspecific phenotypic variability might be driven by environmental conditions. In phylogenetic analyses, Bothrostoma is not closely related to Metopus sensu stricto and forms a moderately supported clade with Planometopus, here referred to as BoPl clade. The anterior axial torsion of the body, typical of other Metopidae, appears to have been lost in the last common ancestor of the BoPl clade.
Collapse
Affiliation(s)
- Daniel Méndez-Sánchez
- Department of Zoology, Faculty of Science, Charles University, Vinična 7, 128 00 Prague, Czech Republic.
| | - Ondřej Pomahač
- Department of Zoology, Faculty of Science, Charles University, Vinična 7, 128 00 Prague, Czech Republic
| | - Johana Rotterová
- Department of Zoology, Faculty of Science, Charles University, Vinična 7, 128 00 Prague, Czech Republic
| | - William Bourland
- Department of Zoology, Faculty of Science, Charles University, Vinična 7, 128 00 Prague, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Vinična 7, 128 00 Prague, Czech Republic
| |
Collapse
|
12
|
Pecina L, Vďačný P. DNA barcoding and coalescent-based delimitation of endosymbiotic clevelandellid ciliates (Ciliophora: Clevelandellida): a shift to molecular taxonomy in the inventory of ciliate diversity in panesthiine cockroaches. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Phylogenetically distinct lineages may be hidden behind identical or highly similar morphologies. The phenomenon of morphological crypticity has been recently detected in symbiotic ciliates of the family Clevelandellidae, as multivariate and Fourier shape analyses failed to distinguish genetically distinct taxa. To address the question of species boundaries, the phylogenetic information contained in the rDNA cistron of clevelandellid ciliates, which had been isolated from the digestive tract of blaberid cockroaches, was studied using a multifaceted statistical approach. Multigene phylogenies revealed that the genus Clevelandella is paraphyletic containing members of the genus Paraclevelandia. To resolve the paraphyly of Clevelandella, two new genera, Anteclevelandella gen. nov. and Rhynchoclevelandella gen. nov., are proposed based on morphological synapomorphies and shared molecular characters. Multigene analyses and Bayesian species delimitation supported the existence of 13 distinct species within the family Clevelandellidae, eight of which represent new taxa. Moreover, two new Nyctotherus species were recognized within the clade that is sister to the Clevelandellidae. According to the present distance and network analyses, the first two domains of the 28S rRNA gene showed much higher power for species discrimination than the 18S rRNA gene and ITS region. Therefore, the former molecular marker was proposed to be a suitable group-specific barcode for the family Clevelandellidae.
Collapse
Affiliation(s)
- Lukáš Pecina
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| |
Collapse
|
13
|
Multiple independent losses of cell mouth in phylogenetically distant endosymbiotic lineages of oligohymenophorean ciliates: A lesson from Clausilocola. Mol Phylogenet Evol 2021; 166:107310. [PMID: 34506949 DOI: 10.1016/j.ympev.2021.107310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 01/27/2023]
Abstract
The cell mouth is a property of the vast majority of free-living and endosymbiotic/epibiotic ciliates of the class Oligohymenophorea. Cytostome, however, naturally absents in the whole endosymbiotic subclass Astomatia and was naturally or experimentally lost in a few members of the subclass Hymenostomatia. This poses a question of how homoplastic might be the lack of oral structures in the oligohymenophorean evolution. To address this question, we used two mitochondrial genes, five nuclear markers, and detailed morphological data from an enigmatic mouthless ciliate, Clausilocola apostropha, which we re-discovered after more than half of a century. According to the present phylogenetic analyses, astomy evolved at least three times independently and in different time frames of the oligohymenophorean phylogeny, ranging from the Paleozoic to the Cenozoic period. Mouthless endosymbionts inhabiting mollusks (represented by Clausilocola), planarians (Haptophrya), and annelids ('core' astomes) never clustered together. Haptophrya grouped with the scuticociliate genus Conchophthirus, 'core' astomes were placed in a sister position to the scuticociliate orders Philasterida and Pleuronematida, and Clausilocola was robustly nested within the hymenostome family Tetrahymenidae. The tetrahymenid origin of Clausilocola is further corroborated by the existence of mouthless Tetrahymena mutants and the huge phenotypic plasticity in the cytostome size in tetrahymenids.
Collapse
|
14
|
Zhuang W, Li S, Bai Y, Zhang T, Al-Rasheid KAS, Hu X. Morphology and molecular phylogeny of the anaerobic freshwater ciliate Urostomides spinosus nov. spec. (Ciliophora, Armophorea, Metopida) from China. Eur J Protistol 2021; 81:125823. [PMID: 34340055 DOI: 10.1016/j.ejop.2021.125823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 06/07/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
The morphology and molecular phylogeny of a new metopid ciliate, Urostomides spinosus nov. spec., discovered in a freshwater ditch in Qingdao, China, were investigated using live observation, morphometry and protargol staining as well as molecular phylogenetic methods. Diagnostic features of the new species include a broadly obpyriform body carrying three posterior spines, eight somatic kineties, five preoral dome kineties with specialized row 3, adoral zone composed of about 28 membranelles, making a 270° turn around body axis. Phylogenetic analyses of the SSU rDNA sequence revealed that the genus Urostomides is monophyletic, but its interspecific relationships remained unresolved. Moreover, a closer relationship of the new species with the morphologically similar Urostomides campanula was not supported by the molecular data.
Collapse
Affiliation(s)
- Wenbao Zhuang
- College of Fisheries, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Song Li
- College of Fisheries, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yang Bai
- College of Fisheries, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tengteng Zhang
- College of Fisheries, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xiaozhong Hu
- College of Fisheries, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
15
|
da Silva Costa F, Júnio Pedroso Dias R, Fonseca Rossi M. Macroevolutionary analyses of ciliates associated with hosts support high diversification rates. Int J Parasitol 2021; 51:967-976. [PMID: 33991568 DOI: 10.1016/j.ijpara.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022]
Abstract
Ciliophora is a phylum that is comprised of extremely diverse microorganisms with regard to their morphology and ecology. They may be found in various environments, as free-living organisms or associated with metazoans. Such associations range from relationships with low metabolic dependence such as epibiosis, to more intimate relationships such as mutualism and parasitism. We know that symbiotic relationships occur along the whole phylogeny of the group, however, little is known about their evolution. Theoretical studies show that there are two routes for the development of parasitism, yet few authors have investigated the evolution of these characteristics using molecular tools. In the present study, we inferred a wide dated molecular phylogeny, based on the 18S rDNA gene, for the entire Ciliophora phylum, mapped life habits throughout the evolutionary time, and evaluated whether symbiotic relationships were linked to the variation in diversification rates and to the mode of evolution of ciliates. Our results showed that the last common ancestor for Ciliophora was likely a free-living organism, and that parasitism is a recent adaptation in ciliates, emerging more than once and independently via two distinct routes: (i) a free-living ciliate evolved into a mutualistic organism and, later, into a parasitic organism, and (ii) a free-living ciliate evolved directly into a parasitic organism. Furthermore, we have found a significant increase in the diversification rate of parasitic and mutualistic ciliates compared with their free-living conspecifics. The evolutionary success in different lineages of symbiont ciliates may be associated with many factors including type and colonization placement on their host, as well as physical and physiological conditions made available by the hosts.
Collapse
Affiliation(s)
- Fabiola da Silva Costa
- Protozoology Laboratory (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Biodiversity and Nature Conservation Post-Graduation Program, Biological Sciences Institute, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Roberto Júnio Pedroso Dias
- Protozoology Laboratory (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Biodiversity and Nature Conservation Post-Graduation Program, Biological Sciences Institute, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Mariana Fonseca Rossi
- Protozoology Laboratory (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Biodiversity and Nature Conservation Post-Graduation Program, Biological Sciences Institute, Federal University of Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
16
|
Obert T, Rurik I, Vd’ačný P. Diversity and Eco-Evolutionary Associations of Endosymbiotic Astome Ciliates With Their Lumbricid Earthworm Hosts. Front Microbiol 2021; 12:689987. [PMID: 34220782 PMCID: PMC8250849 DOI: 10.3389/fmicb.2021.689987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Coevolution of endosymbionts with their hosts plays an important role in the processes of speciation and is among the most fascinating topics in evolutionary biology. Astome ciliates represent an interesting model for coevolutionary studies because they are so tightly associated with their host organisms that they completely lost the cell oral apparatus. In the present study, we used five nuclear markers (18S rRNA gene, ITS1-5.8S-ITS2 region, and 28S rRNA gene) and two mitochondrial genes (16S rRNA gene and cytochrome c oxidase subunit I) to explore the diversity of astomes inhabiting the digestive tract of lumbricid earthworms at temperate latitudes in Central Europe and to cast more light on their host specificity and coevolution events that shaped their diversification. The present coevolutionary and phylogenetic interaction-adjusted similarity analyses suggested that almost every host switch leads to speciation and firm association with the new host. Nevertheless, the suggested high structural host specificity of astomes needs to be tested with increased earthworm sampling, as only 52 out of 735 lumbricid earthworms (7.07%) were inhabited by ciliates. On the other hand, the diversification of astomes associated with megascolecid and glossoscolecid earthworms might have been driven by duplication events without host switching.
Collapse
|
17
|
Li S, Zhuang W, Pérez-Uz B, Zhang Q, Hu X. Two Anaerobic Ciliates (Ciliophora, Armophorea) from China: Morphology and SSU rDNA Sequence, with Report of a New Species, Metopus paravestitus nov. spec. J Eukaryot Microbiol 2020; 68:e12822. [PMID: 32770809 DOI: 10.1111/jeu.12822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022]
Abstract
The morphology and phylogeny of two metopid ciliates, collected from anaerobic habitats in China, were investigated using live observation, protargol staining method, and SSU rDNA sequencing. The new species Metopus paravestitus nov. spec. can be distinguished by a combination of the following features: oblong cell with densely arranged ectobiotic prokaryotes perpendicular to cell surface, filiform intracytoplasmic structures packed in the anterior portion of the cell. Our work also demonstrates the wide geographical distribution of Metopus es (Müller, 1776) Lauterborn, 1916. The order Metopida is consistently depicted as a paraphylum in SSU rDNA phylogeny. Metopus paravestitus nov. spec. is closely related to its marine congeners than to freshwater forms. The present study confirms once again the non-monophyly of the genus Metopus and genus Metopidae.
Collapse
Affiliation(s)
- Song Li
- Institute of Evolution and Marine Biodiversity & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Wenbao Zhuang
- Institute of Evolution and Marine Biodiversity & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Blanca Pérez-Uz
- Department of Genetics, Physiology & Microbiology, Faculty of Biological Sciences, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Qianqian Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Xiaozhong Hu
- Institute of Evolution and Marine Biodiversity & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
18
|
Li M, Hu G, Li C, Zhao WS, Zou H, Li WX, Wu SG, Wang GT, Ponce-Gordo F. Morphological and molecular characterization of a new ciliate Nyctotheroides grimi n. sp. (Armophorea, Clevelandellida) from Chinese frogs. Acta Trop 2020; 208:105531. [PMID: 32428457 DOI: 10.1016/j.actatropica.2020.105531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 11/25/2022]
Abstract
A new species of clevelandellid ciliate, Nyctotheroides grimi n. sp., is described from the frog Fejervarya limnocharis. Light and scanning electron microscopy were used for the morphological studies, and the DNA encoding the SSU rRNA gene (SSU rDNA) and the ITS1-5.8S subunit rRNA-ITS2 region (ITS) were sequenced for genetic comparisons and phylogenetic analysis. The main distinctive morphological feature is a knob-like projection in the left-posterior end; other differential characters are the cell size, the length of the oral groove and the shape of the infundibulum. Nyctotheroides grimi possess an apical suture line in the left and right side of the anterior end and in the left side of the caudal end. In the phylogenetic analyses, the new species engroups with other Nyctotheroides species forming a monophyletic group. The high similarity in the SSU rDNA and ITS sequences between Nyctotheroides species suggests a relative recent divergence. The genetic data and the different host range support the separation of Nyctotheroides and Nyctotherus; however the morphological criterion based on the presence (in Nyctotheroides)/absence (in Nyctothterus) of an apical kinetal suture line should be modified to consider the presence of kinetal suture lines in the apical and/or the caudal left side in Nyctotheroides.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China
| | - Guangran Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China
| | - Can Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China
| | - Wei-Shan Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China
| | - Hong Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China
| | - Wen-Xiang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China
| | - Shan-Gong Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China
| | - Gui-Tang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuchang District, Wuhan 430072, China.
| | - Francisco Ponce-Gordo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
19
|
Bourland W, Rotterová J, Čepička I. Description of Three New Genera of Metopidae (Metopida, Ciliophora): Pileometopus gen. nov., Castula gen. nov., and Longitaenia gen. nov., with Notes on the Phylogeny and Cryptic Diversity of Metopid Ciliates. Protist 2020; 171:125740. [PMID: 32544844 DOI: 10.1016/j.protis.2020.125740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/19/2020] [Accepted: 04/29/2020] [Indexed: 01/22/2023]
Abstract
We report the discovery of three new species of freshwater metopid ciliates, Pileometopus lynni gen. et sp. nov., Castula flexibilis gen. et sp. nov., and Longitaenia australis gen. et sp. nov. Based on morphologic features and the 18S rRNA gene phylogeny, we transfer two known species of Metopus to the new genus Castula, as C. fusca (Kahl, 1927) comb. nov. and C. setosa (Kahl, 1927) comb. nov. and another known species is herein transferred to the new genus Longitaenia, as L. gibba (Kahl, 1927) comb. nov. Pileometopus is characterized by a turbinate body shape, a dorsal field of densely spaced dikinetids, a bipartite paroral membrane, and long caudal cilia. A distinctive morphologic feature of Castula species is long setae arising over the posterior third of the body (as opposed to a terminal tuft). Longitaenia spp. are characterized by an equatorial cytostome and long perizonal ciliary stripe relative to the cell length. Based on phylogenetic analyses of 18S rRNA gene sequences, we identify and briefly discuss strongly supported clades and intraspecific genetic polymorphism within the order Metopida.
Collapse
Affiliation(s)
- William Bourland
- Boise State University, Department of Biological Sciences, Boise, Idaho 83725-1515, USA.
| | - Johana Rotterová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
20
|
Campello-Nunes PH, Fernandes NM, Szokoli F, Fokin SI, Serra V, Modeo L, Petroni G, Soares CA, Paiva TDS, Silva-Neto IDD. Parablepharisma (Ciliophora) is not a Heterotrich: A Phylogenetic and Morphological Study with the Proposal of New Taxa. Protist 2020; 171:125716. [DOI: 10.1016/j.protis.2020.125716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/13/2022]
|
21
|
Pecina L, Vďačný P. Two New Endozoic Ciliates, Clevelandella lynni sp. n. and Nyctotherus galerus sp. n., Isolated from the Hindgut of the Wood-feeding Cockroach Panesthia angustipennis (Illiger, 1801). J Eukaryot Microbiol 2020; 67:436-449. [PMID: 32108982 DOI: 10.1111/jeu.12793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/24/2020] [Accepted: 02/19/2020] [Indexed: 11/30/2022]
Abstract
Two new ciliate species, Clevelandella lynni sp. n. and Nyctotherus galerus sp. n., were discovered in the hindgut of wood-feeding panesthiine cockroaches. Their morphology was studied using standard methods, and their phylogenetic positions within the order Clevelandellida were determined using the 18S rRNA gene sequences. Clevelandella lynni is characterized by a prominent peristomial projection, a notched left body margin, a tear-shaped to broadly ovoidal macronucleus, a karyophore attached to the right body margin, and by an adoral zone composed of on average 48 membranelles and extending about 51% of body length. The diagnostic features of N. galerus include a short posterior body projection, a spherical to broadly ellipsoidal macronucleus, a karyophore attached to the right and left body margins, refractile bodies densely packed anterior to the macronucleus, and an adoral zone composed of on average 57 membranelles and extending about 70% body length. The order Clevelandellida was consistently depicted as monophyletic in 18S rRNA gene phylogenies. Nyctotherus galerus was placed in the paraphyletic family Nyctotheridae, as sister taxon to all other Nyctotherus and Clevelandella species isolated from cockroaches. Clevelandella lynni fell in the monophyletic family Clevelandellidae, as sister taxon to C. panesthiae KC139718 but with very poor statistical support.
Collapse
Affiliation(s)
- Lukáš Pecina
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
22
|
Obert T, Vďačný P. Delimitation of five astome ciliate species isolated from the digestive tube of three ecologically different groups of lumbricid earthworms, using the internal transcribed spacer region and the hypervariable D1/D2 region of the 28S rRNA gene. BMC Evol Biol 2020; 20:37. [PMID: 32171235 PMCID: PMC7071660 DOI: 10.1186/s12862-020-1601-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/03/2020] [Indexed: 01/19/2023] Open
Abstract
Background Various ecological groups of earthworms very likely constitute sharply isolated niches that might permit speciation of their symbiotic ciliates, even though no distinct morphological features appear to be recognizable among ciliates originating from different host groups. The nuclear highly variable ITS1–5.8S-ITS2 region and the hypervariable D1/D2 region of the 28S rRNA gene have proven to be useful tools for the delimitation of species boundaries in closely related free-living ciliate taxa. In the present study, the power of these molecular markers as well as of the secondary structure of the ITS2 molecule were tested for the first time in order to discriminate the species of endosymbiotic ciliates that were isolated from the gastrointestinal tract of three ecologically different groups of lumbricid earthworms. Results Nineteen new ITS1–5.8S-ITS2 region and D1/D2-28S rRNA gene sequences were obtained from five astome species (Anoplophrya lumbrici, A. vulgaris, Metaradiophrya lumbrici, M. varians, and Subanoplophrya nodulata comb. n.), which were living in the digestive tube of three ecological groups of earthworms. Phylogenetic analyses of the rRNA locus and secondary structure analyses of the ITS2 molecule robustly resolved their phylogenetic relationships and supported the distinctness of all five species, although previous multivariate morphometric analyses were not able to separate congeners in the genera Anoplophrya and Metaradiophrya. The occurrence of all five taxa, as delimited by molecular analyses, was perfectly correlated with the ecological groups of their host earthworms. Conclusions The present study indicates that morphology-based taxonomy of astome ciliates needs to be tested in the light of molecular and ecological data as well. The use of morphological identification alone is likely to miss species that are well delimited based on molecular markers and ecological traits and can lead to the underestimation of diversity and overestimation of host range. An integrative approach along with distinctly increased taxon sampling would be helpful to assess the consistency of the eco-evolutionary trend in astome ciliates.
Collapse
Affiliation(s)
- Tomáš Obert
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 842 15, Slovak Republic
| | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 842 15, Slovak Republic.
| |
Collapse
|
23
|
Multi-gene phylogeny of Tetrahymena refreshed with three new histophagous species invading freshwater planarians. Parasitol Res 2020; 119:1523-1545. [PMID: 32152714 DOI: 10.1007/s00436-020-06628-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
Abstract
Planarians represent an insufficiently explored group of aquatic invertebrates that might serve as hosts of histophagous ciliates belonging to the hymenostome genus Tetrahymena. During our extensive research on freshwater planarians, parasitic tetrahymenas were detected in two of the eight planarian species investigated, namely, in Dugesia gonocephala and Girardia tigrina. Using the 16S and 18S rRNA genes as well as the barcoding cytochrome oxidase subunit I, one ciliate species was identified as T. scolopax and three species were recognized as new forms: T. acanthophora, T. dugesiae, and T. nigricans. Thus, 25% of the examined planarian taxa are positive for Tetrahymena species and three of them represent new taxa, indicating a large undescribed ciliate diversity in freshwater planarians. According to phylogenetic analyses, histophagous tetrahymenas show a low phylogenetic host specificity. Although T. acanthophora, T. dugesiae, and T. scolopax clustered together within the "borealis" clade, the former species has been detected exclusively in G. tigrina, while the two latter species only in D. gonocephala. Tetrahymena nigricans, which has been isolated only from G. tigrina, was classified within the "paravorax" clade along with T. glochidiophila which feeds on glochidia. The present phylogenetic reconstruction of ancestral life strategies suggested that the last common ancestor of the family Tetrahymenidae was free-living, unlike the progenitor of the subclass Hymenostomatia which was very likely parasitic. Consequently, there were at least seven independent shifts back to parasitism/histophagy within Tetrahymena: one each in the "paravorax" and "australis" clades and at least five transfers back to parasitism in the "borealis" clade.
Collapse
|
24
|
Obert T, Vďačný P. Evolutionary Origin and Host Range of Plagiotoma lumbrici (Ciliophora, Hypotrichia), an Obligate Gut Symbiont of Lumbricid Earthworms. J Eukaryot Microbiol 2019; 67:176-189. [PMID: 31603571 DOI: 10.1111/jeu.12768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 10/04/2019] [Indexed: 11/28/2022]
Abstract
Four common earthworm species, the anecic Lumbricus terrestris, the endogeic Octolasion tyrteum as well as the epigeic Eisenia fetida and Dendrobaena veneta, were examined for the presence of the microbial gut symbiont Plagiotoma lumbrici. The evolutionary origin of this endobiotic microbe was reconstructed, using the 18S rRNA gene, the ITS1-5.8S-ITS2 region, and the first two domains of the 28S rRNA gene. Plagiotoma lumbrici was exclusively detected in the anecic Lumbricus terrestris. Multigene analyses and the ITS2 secondary structure robustly determined the phylogenetic home of Plagiotoma lumbrici populations within the oxytrichid Dorsomarginalia (Spirotrichea: Hypotrichia) as a sister taxon of the free-living Hemiurosomoida longa. This indicates that earthworms obtained their gut endosymbiont by ingesting soil/leaf litter containing oxytrichine ciliates that became adapted to the intestinal tract of earthworms. Interestingly, according to the literature data, Plagiotoma lumbrici was detected in multiple anecic and some epigeic but never in endogeic earthworms. These observations suggest that Plagiotoma lumbrici might be adapted to certain gut conditions and the lifestyle of anecic Lumbricidae, such as Lumbricus, Aporrectodea, and Scherotheca, as well as of some co-occurring epigeic Lumbricus species.
Collapse
Affiliation(s)
- Tomáš Obert
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Peter Vďačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| |
Collapse
|
25
|
Expression and molecular characterization of stress-responsive genes (hsp70 and Mn-sod) and evaluation of antioxidant enzymes (CAT and GPx) in heavy metal exposed freshwater ciliate, Tetmemena sp. Mol Biol Rep 2019; 46:4921-4931. [PMID: 31273612 DOI: 10.1007/s11033-019-04942-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022]
Abstract
Response of heavy metals namely cadmium (Cd) and copper (Cu) on the expression of stress responsive genes in the fresh water ciliate, Tetmemena sp. (single cell eukaryote) was studied. Stress responsive genes include heat shock protein genes and genes involved in antioxidant defence system. Quantitative real time PCR (qRT-PCR) was employed to evaluate the effects of Cd and Cu on the expression of cytosolic hsp70 and Mn-sod genes. Increase in the expression of these genes was observed after exposure with the heavy metals. The macronuclear cytosolic hsp70 and Mn-sod (SOD2) genes were also sequenced and characterized using various bioinformatics tools. In antioxidant defence system, the superoxide dismutase (SOD) family is a first line antioxidant enzyme group involved in catalysing reactive oxygen species (ROS) to hydrogen peroxide and molecular oxygen. Influence of Cd and Cu on the activity of SOD has already been reported by our group. Therefore, the enzymatic activities of antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx) were studied in the presence of Cd and Cu and there was significant increase in activity of these enzymes in concentration dependent manner. This study suggests that cytosolic hsp70, Mn-sod and the antioxidant enzymes such as CAT and GPx can be used as effective molecular biomarkers for heavy metal toxicity and Tetmemena sp. can be used as potential model for understanding the molecular response to heavy metal contamination in aquatic ecosystems.
Collapse
|
26
|
Vďačný P, Foissner W. A huge diversity of metopids (Ciliophora, Armophorea) in soil from the Murray River floodplain, Australia. III. Morphology, ontogenesis and conjugation of Metopus boletus nov. spec., with implications for the phylogeny of the SAL supercluster. Eur J Protistol 2019; 69:117-137. [DOI: 10.1016/j.ejop.2019.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/15/2019] [Accepted: 04/04/2019] [Indexed: 02/02/2023]
|
27
|
Reboul G, Moreira D, Bertolino P, Hillebrand-Voiculescu AM, López-García P. Microbial eukaryotes in the suboxic chemosynthetic ecosystem of Movile Cave, Romania. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:464-473. [PMID: 30969022 PMCID: PMC6697535 DOI: 10.1111/1758-2229.12756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/26/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Movile Cave is a small system of partially inundated galleries in limestone settings close to the Black Sea in Southeast Romania. Isolated from the surface for 6 million years, its sulfidic, methane and ammonia-rich waters harbour unique chemosynthetic prokaryotic communities that include sulphur and ammonium-metabolizing chemolithotrophs, methanogens, methanotrophs and methylotrophs. The cave also harbours cave-dwelling invertebrates and fungi, but the diversity of other microbial eukaryotes remained completely unknown. Here, we apply an 18S rRNA gene-based metabarcoding approach to study the composition of protist communities in floating microbial mats and plankton from a well-preserved oxygen-depleted cave chamber. Our results reveal a wide protist diversity with, as dominant groups, ciliates (Alveolata), Stramenopiles, especially bicosoecids, and jakobids (Excavata). Ciliate sequences dominated both, microbial mats and plankton, followed by either Stramenopiles or excavates. Stramenopiles were more prominent in microbial mats, whereas jakobids dominated the plankton fraction of the oxygen-depleted water column. Mats cultured in the laboratory were enriched in Cercozoa. Consistent with local low oxygen levels, Movile Cave protists are most likely anaerobic or microaerophilic. Several newly detected OTU clades were very divergent from cultured species or environmental sequences in databases and represent phylogenetic novelty, notably within jakobids. Movile Cave protists likely cover a variety of ecological roles in this ecosystem including predation, parasitism, saprotrophy and possibly diverse prokaryote-protist syntrophies.
Collapse
Affiliation(s)
- Guillaume Reboul
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, bâtiment 360, 91400 Orsay, France
| | - David Moreira
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, bâtiment 360, 91400 Orsay, France
| | - Paola Bertolino
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, bâtiment 360, 91400 Orsay, France
| | - Alexandra Maria Hillebrand-Voiculescu
- Department of Biospeleology and Karst Edaphobiology, Emil Racovita Institute of Speleology, Bucharest, Romania
- Group for Underwater and Speleological Exploration, Bucharest, Romania
| | - Purificación López-García
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, bâtiment 360, 91400 Orsay, France
| |
Collapse
|
28
|
Rataj M, Vdacny P. Living morphology and molecular phylogeny of oligohymenophorean ciliates associated with freshwater turbellarians. DISEASES OF AQUATIC ORGANISMS 2019; 134:147-166. [PMID: 31120041 DOI: 10.3354/dao03366] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three freshwater turbellarian species (Dugesia gonocephala, Girardia tigrina, and Polycelis felina), belonging to the order Tricladida, were examined for the presence of ciliates. Living morphology and phylogenetic position of the isolated ciliates were studied using light microscopy and molecular phylogenetic methods. Three ciliate species, all from the highly diverse class Oligohymenophorea, were detected: Haptophrya planariarum from the subclass Astomatia, Urceolaria mitra from the subclass Peritrichia, and Tetrahymena sp. from the subclass Hymenostomatia. Each of these ciliates is specialized for different parts of the turbellarian bodies: H. planariarum lives in the pharynx and rami of the intestine, U. mitra colonizes the body surface, and Tetrahymena sp. attacks open wounds and feeds on the mesenchyme. Astomes and peritrichs isolated from turbellarians are placed deeper in 18S rRNA gene phylogenies than their relatives isolated from annelids and mollusks. On the other hand, Tetrahymena sp. isolated from turbellarians is classified comparatively deeply within the family Tetrahymenidae, suggesting that the phylogeny of tetrahymenids does not correlate with that of their obligate/facultative host groups. Nevertheless, the reconstruction of ancestral traits corroborated the hypothesis that histophagy was already a life history trait of the progenitor of the subclass Hymenostomatia to which Tetrahymena belongs.
Collapse
Affiliation(s)
- M Rataj
- Department of Zoology, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | | |
Collapse
|
29
|
Vďačný P, Érseková E, Šoltys K, Budiš J, Pecina L, Rurik I. Co-existence of multiple bacterivorous clevelandellid ciliate species in hindgut of wood-feeding cockroaches in light of their prokaryotic consortium. Sci Rep 2018; 8:17749. [PMID: 30532066 PMCID: PMC6288088 DOI: 10.1038/s41598-018-36245-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/15/2018] [Indexed: 11/23/2022] Open
Abstract
The hindgut of wood-feeding Panesthia cockroaches harbours a diverse microbial community, whose most morphologically prominent members are bacterivorous clevelandellid ciliates. Co-occurrence and correlation patterns of prokaryotes associated with these endosymbiotic ciliates were investigated. Multidimensional scaling based on taxa interaction-adjusted index showed a very clear separation of the hindgut ciliate samples from the ciliate-free hindgut samples. This division was corroborated also by SparCC analysis which revealed strong negative associations between prokaryotic taxa that were relatively more abundant in the ciliate-free hindgut samples and prokaryotic taxa that were more abundant in the ciliate samples. This very likely reflects the grazing behaviour of hindgut ciliates which prefer Proteobacteria, Firmicutes and Actinobacteria, causing their abundances to be increased in the ciliate samples at the expense of abundances of Euryarchaeota and Bacteroidetes which prevail in the hindgut content. Ciliate species do not distinctly differ in the associated prokaryotes, indicating that minute variations in the proportion of associated bacteria might be sufficient to avoid competition between bacterivorous ciliate species and hence enable their co-occurrence in the same host. The nearest free-living relatives of hindgut ciliates have a different pattern of associations with prokaryotes, i.e., alphaproteobacteria are predominantly associated with free-living ciliates while gammaproteobacteria with hindgut ciliates.
Collapse
Affiliation(s)
- Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, 842 15, Bratislava, Slovakia.
| | - Emese Érseková
- Department of Zoology, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - Katarína Šoltys
- Comenius University Science Park, Comenius University in Bratislava, 841 04, Bratislava, Slovakia
| | - Jaroslav Budiš
- Department of Computer Science, Comenius University in Bratislava, Mlynská dolina F-1, 842 48, Bratislava, Slovakia
| | - Lukáš Pecina
- Department of Zoology, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - Ivan Rurik
- Private computer laboratory, 821 07, Bratislava, Slovakia
| |
Collapse
|